code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import struct import unittest class UpperCAmelCase_ : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : bytes ) -> None: '''simple docstring''' lowercase : Union[str, Any] =data # Initialize hash values lowercase : Dict =[ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants lowercase : Tuple =[ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] lowercase : Dict =self.preprocessing(self.data ) self.final_hash() @staticmethod def A__ ( UpperCAmelCase : bytes ) -> bytes: '''simple docstring''' lowercase : str =b'''\x80''' + (b'''\x00''' * (63 - (len(__A ) + 8) % 64)) lowercase : Tuple =struct.pack('''>Q''' , (len(__A ) * 8) ) return data + padding + big_endian_integer def A__ ( self : Dict ) -> None: '''simple docstring''' lowercase : Union[str, Any] =[ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowercase : Tuple =list(struct.unpack('''>16L''' , __A ) ) # add 48 0-ed integers words += [0] * 48 lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowercase : Tuple =( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) lowercase : List[Any] =( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) lowercase : int =( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression lowercase : Optional[int] =self.ror(__A , 6 ) ^ self.ror(__A , 11 ) ^ self.ror(__A , 25 ) lowercase : List[str] =(e & f) ^ ((~e & 0XFF_FFF_FFF) & g) lowercase : Union[str, Any] =( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 lowercase : Optional[int] =self.ror(__A , 2 ) ^ self.ror(__A , 13 ) ^ self.ror(__A , 22 ) lowercase : Optional[Any] =(a & b) ^ (a & c) ^ (b & c) lowercase : Union[str, Any] =(sa + maj) % 0X100_000_000 lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase : List[Any] =( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) lowercase : Dict =[a, b, c, d, e, f, g, h] # Modify final values lowercase : Optional[Any] =[ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes ) ] lowercase : Any =''''''.join([hex(__A )[2:].zfill(8 ) for value in self.hashes] ) def A__ ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int ) -> int: '''simple docstring''' return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Dict ) -> None: '''simple docstring''' import hashlib lowercase : int =bytes('''Test String''' , '''utf-8''' ) self.assertEqual(SHAaaa(__A ).hash , hashlib.shaaaa(__A ).hexdigest() ) def lowercase_ ( ) -> List[str]: """simple docstring""" import doctest doctest.testmod() lowercase : Optional[int] =argparse.ArgumentParser() parser.add_argument( '''-s''' , '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument( '''-f''' , '''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) lowercase : List[Any] =parser.parse_args() lowercase : Optional[int] =args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: lowercase : Dict =f.read() else: lowercase : Tuple =bytes(_lowercase , '''utf-8''' ) print(SHAaaa(_lowercase ).hash ) if __name__ == "__main__": main()
717
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
0
'''simple docstring''' import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCAmelCase_ ( __snake_case ): """simple docstring""" def __init__( self : Optional[int] , *UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' super().__init__(*_lowercase , **_lowercase ) lowercase : int =eval_examples lowercase : Optional[Any] =post_process_function def A__ ( self : Dict , UpperCAmelCase : int = None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Union[str, Any] = None , UpperCAmelCase : List[str] = "eval" , **UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' lowercase : Any =gen_kwargs.copy() lowercase : int =( gen_kwargs["""max_length"""] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowercase : Optional[int] =( gen_kwargs["""num_beams"""] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowercase : Tuple =gen_kwargs lowercase : Optional[int] =self.eval_dataset if eval_dataset is None else eval_dataset lowercase : Optional[Any] =self.get_eval_dataloader(_lowercase ) lowercase : Dict =self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase : Dict =self.compute_metrics lowercase : List[Any] =None lowercase : Dict =time.time() lowercase : Tuple =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase : Optional[Any] =eval_loop( _lowercase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowercase , metric_key_prefix=_lowercase , ) finally: lowercase : List[str] =compute_metrics lowercase : Any =self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( _lowercase , _lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase : Union[str, Any] =self.post_process_function(_lowercase , _lowercase , _lowercase ) lowercase : Tuple =self.compute_metrics(_lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase : int =metrics.pop(_lowercase ) metrics.update(output.metrics ) else: lowercase : Any =output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowercase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase : str =self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowercase ) return metrics def A__ ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : int = "test" , **UpperCAmelCase : str ) -> Tuple: '''simple docstring''' lowercase : Dict =gen_kwargs.copy() lowercase : Tuple =self.get_test_dataloader(_lowercase ) # Temporarily disable metric computation, we will do it in the loop here. lowercase : Dict =self.compute_metrics lowercase : List[str] =None lowercase : Union[str, Any] =time.time() lowercase : List[Any] =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase : str =eval_loop( _lowercase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowercase , metric_key_prefix=_lowercase , ) finally: lowercase : Optional[int] =compute_metrics lowercase : Any =self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( _lowercase , _lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase : str =self.post_process_function(_lowercase , _lowercase , _lowercase , '''predict''' ) lowercase : Tuple =self.compute_metrics(_lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase : Any =metrics.pop(_lowercase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowercase )
718
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
0
'''simple docstring''' def lowercase_ ( __A : list ) -> list: """simple docstring""" if len(lowercase_ ) <= 1: return [tuple(lowercase_ )] lowercase : Optional[Any] =[] def generate(__A : int , __A : list ): lowercase : int =[0] * n res.append(tuple(lowercase_ ) ) lowercase : List[Any] =0 while i < n: if c[i] < i: if i % 2 == 0: lowercase : Optional[Any] =arr[i], arr[0] else: lowercase : List[Any] =arr[i], arr[c[i]] res.append(tuple(lowercase_ ) ) c[i] += 1 lowercase : List[str] =0 else: lowercase : str =0 i += 1 generate(len(lowercase_ ) , lowercase_ ) return res if __name__ == "__main__": SCREAMING_SNAKE_CASE = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(',')] print(heaps(arr))
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' from math import isqrt, loga def lowercase_ ( __A : int ) -> list[int]: """simple docstring""" lowercase : Dict =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowerCAmelCase__ , lowerCAmelCase__ ): lowercase : List[str] =False return [i for i in range(2 , lowerCAmelCase__ ) if is_prime[i]] def lowercase_ ( __A : int = 8_0_0_8_0_0 , __A : int = 8_0_0_8_0_0 ) -> int: """simple docstring""" lowercase : Dict =degree * loga(lowerCAmelCase__ ) lowercase : Any =int(lowerCAmelCase__ ) lowercase : List[Any] =calculate_prime_numbers(lowerCAmelCase__ ) lowercase : List[Any] =0 lowercase : str =0 lowercase : Tuple =len(lowerCAmelCase__ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
720
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
0
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]: '''simple docstring''' super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: lowercase : str =( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , UpperCamelCase__ , standard_warn=UpperCamelCase__ ) lowercase : Union[str, Any] =dict(scheduler.config ) lowercase : Optional[int] =1 lowercase : Optional[int] =FrozenDict(UpperCamelCase__ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: lowercase : Any =( f'The configuration file of this scheduler: {scheduler} has not set the configuration' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , UpperCamelCase__ , standard_warn=UpperCamelCase__ ) lowercase : str =dict(scheduler.config ) lowercase : Optional[int] =True lowercase : List[str] =FrozenDict(UpperCamelCase__ ) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=UpperCamelCase__ , segmentation_processor=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , ) def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] = "auto" ) -> List[Any]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase : Dict =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase__ ) def A__ ( self : int ) -> Any: '''simple docstring''' self.enable_attention_slicing(UpperCamelCase__ ) def A__ ( self : Dict ) -> List[Any]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase : List[str] =torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase__ , UpperCamelCase__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : int = 512 , UpperCAmelCase : List[Any] = 512 , UpperCAmelCase : List[str] = 50 , UpperCAmelCase : Optional[Any] = 7.5 , UpperCAmelCase : Optional[Any] = None , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 0.0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Union[str, Any] = None , UpperCAmelCase : List[str] = "pil" , UpperCAmelCase : str = True , UpperCAmelCase : List[Any] = None , UpperCAmelCase : Dict = 1 , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' lowercase : Tuple =self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) lowercase : Optional[int] =self.segmentation_model(**UpperCamelCase__ ) lowercase : List[Any] =torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowercase : Tuple =self.numpy_to_pil(UpperCamelCase__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowercase : Dict =StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , height=UpperCamelCase__ , width=UpperCamelCase__ , num_inference_steps=UpperCamelCase__ , guidance_scale=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ , eta=UpperCamelCase__ , generator=UpperCamelCase__ , latents=UpperCamelCase__ , output_type=UpperCamelCase__ , return_dict=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=UpperCamelCase__ , )
721
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class UpperCAmelCase_ ( snake_case_ ): """simple docstring""" UpperCamelCase_ = """perceiver""" def __init__( self : Tuple , UpperCAmelCase : List[str]=256 , UpperCAmelCase : Dict=1280 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : str=26 , UpperCAmelCase : str=8 , UpperCAmelCase : Dict=8 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Any="kv" , UpperCAmelCase : int=1 , UpperCAmelCase : Optional[int]=1 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : str=0.1 , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : List[str]=1e-12 , UpperCAmelCase : str=True , UpperCAmelCase : Any=262 , UpperCAmelCase : Tuple=2048 , UpperCAmelCase : Any=56 , UpperCAmelCase : int=[368, 496] , UpperCAmelCase : Optional[int]=16 , UpperCAmelCase : Optional[int]=1920 , UpperCAmelCase : int=16 , UpperCAmelCase : int=[1, 16, 224, 224] , **UpperCAmelCase : Any , ) -> Optional[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : int =num_latents lowercase : str =d_latents lowercase : Dict =d_model lowercase : Union[str, Any] =num_blocks lowercase : Tuple =num_self_attends_per_block lowercase : Union[str, Any] =num_self_attention_heads lowercase : Optional[Any] =num_cross_attention_heads lowercase : Union[str, Any] =qk_channels lowercase : Tuple =v_channels lowercase : Optional[int] =cross_attention_shape_for_attention lowercase : Dict =self_attention_widening_factor lowercase : Tuple =cross_attention_widening_factor lowercase : int =hidden_act lowercase : str =attention_probs_dropout_prob lowercase : Union[str, Any] =initializer_range lowercase : Optional[int] =layer_norm_eps lowercase : List[str] =use_query_residual # masked language modeling attributes lowercase : Any =vocab_size lowercase : List[str] =max_position_embeddings # image classification attributes lowercase : Union[str, Any] =image_size # flow attributes lowercase : List[str] =train_size # multimodal autoencoding attributes lowercase : Any =num_frames lowercase : Dict =audio_samples_per_frame lowercase : int =samples_per_patch lowercase : Optional[int] =output_shape class UpperCAmelCase_ ( snake_case_ ): """simple docstring""" @property def A__ ( self : Optional[int] ) -> str: '''simple docstring''' if self.task == "multiple-choice": lowercase : Any ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase : List[Any] ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def A__ ( self : int ) -> Optional[int]: '''simple docstring''' return 1e-4 def A__ ( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] = -1 , UpperCAmelCase : List[str] = -1 , UpperCAmelCase : Optional[Any] = -1 , UpperCAmelCase : List[Any] = False , UpperCAmelCase : str = None , UpperCAmelCase : Tuple = 3 , UpperCAmelCase : str = 40 , UpperCAmelCase : List[str] = 40 , ) -> int: '''simple docstring''' if isinstance(UpperCAmelCase , UpperCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase : Any =compute_effective_axis_dimension( UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase : int =preprocessor.num_special_tokens_to_add(UpperCAmelCase ) lowercase : Union[str, Any] =compute_effective_axis_dimension( UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence lowercase : Dict =[''' '''.join(['''a'''] ) * seq_length] * batch_size lowercase : List[Any] =dict(preprocessor(UpperCAmelCase , return_tensors=UpperCAmelCase ) ) lowercase : str =inputs.pop('''input_ids''' ) return inputs elif isinstance(UpperCAmelCase , UpperCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase : Union[str, Any] =compute_effective_axis_dimension(UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) lowercase : Optional[Any] =self._generate_dummy_images(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : int =dict(preprocessor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) ) lowercase : Dict =inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = '▁' SCREAMING_SNAKE_CASE = {'vocab_file': 'sentencepiece.bpe.model'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } SCREAMING_SNAKE_CASE = { 'facebook/nllb-200-distilled-600M': 1_024, } # fmt: off SCREAMING_SNAKE_CASE = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class UpperCAmelCase_ ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] UpperCamelCase_ = [] UpperCamelCase_ = [] def __init__( self : str , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any]="<s>" , UpperCAmelCase : Any="</s>" , UpperCAmelCase : Any="</s>" , UpperCAmelCase : List[str]="<s>" , UpperCAmelCase : int="<unk>" , UpperCAmelCase : Optional[Any]="<pad>" , UpperCAmelCase : str="<mask>" , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : int=None , UpperCAmelCase : Tuple = None , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=False , **UpperCAmelCase : List[Any] , ) -> int: '''simple docstring''' lowercase : List[Any] =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token lowercase : str ={} if sp_model_kwargs is None else sp_model_kwargs lowercase : Optional[Any] =legacy_behaviour super().__init__( bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , tokenizer_file=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowercase__ , **lowercase__ , ) lowercase : Optional[Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase__ ) ) lowercase : Tuple =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowercase : Any ={"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase : Dict =1 lowercase : int =len(self.sp_model ) lowercase : Union[str, Any] ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowercase__ ) } lowercase : Optional[Any] ={v: k for k, v in self.lang_code_to_id.items()} lowercase : List[Any] =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase : Union[str, Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase : Tuple =list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase : Dict =src_lang if src_lang is not None else "eng_Latn" lowercase : List[Any] =self.lang_code_to_id[self._src_lang] lowercase : List[Any] =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : str ) -> Tuple: '''simple docstring''' lowercase : str =self.__dict__.copy() lowercase : Optional[Any] =None lowercase : Any =self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] , UpperCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' lowercase : Union[str, Any] =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase : str ={} lowercase : Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' return self._src_lang @src_lang.setter def A__ ( self : Dict , UpperCAmelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A__ ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : int = None , UpperCAmelCase : Dict = False ) -> Union[str, Any]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) lowercase : List[str] =[1] * len(self.prefix_tokens ) lowercase : Any =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase__ )) + suffix_ones return prefix_ones + ([0] * len(lowercase__ )) + ([0] * len(lowercase__ )) + suffix_ones def A__ ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Any = None ) -> Union[str, Any]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A__ ( self : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] = None ) -> List[str]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : str =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Any , **UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase : List[Any] =src_lang lowercase : Tuple =self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) lowercase : List[Any] =self.convert_tokens_to_ids(lowercase__ ) lowercase : str =tgt_lang_id return inputs def A__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ={self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ ( self : str , UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def A__ ( self : Optional[Any] , UpperCAmelCase : List[Any] ) -> str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase : List[Any] =self.sp_model.PieceToId(lowercase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self : Any , UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A__ ( self : List[Any] , UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ="".join(lowercase__ ).replace(lowercase__ , ''' ''' ).strip() return out_string def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] = None ) -> Dict: '''simple docstring''' if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Tuple =os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , '''wb''' ) as fi: lowercase : List[str] =self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,) def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : Any = "eng_Latn" , UpperCAmelCase : Dict = None , UpperCAmelCase : Dict = "fra_Latn" , **UpperCAmelCase : Optional[int] , ) -> Optional[int]: '''simple docstring''' lowercase : str =src_lang lowercase : List[Any] =tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def A__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A__ ( self : Any , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : Any =self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowercase : Dict =[] lowercase : Optional[Any] =[self.eos_token_id, self.cur_lang_code] else: lowercase : Union[str, Any] =[self.cur_lang_code] lowercase : Dict =[self.eos_token_id] def A__ ( self : Tuple , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Any =self.lang_code_to_id[lang] if self.legacy_behaviour: lowercase : List[str] =[] lowercase : Union[str, Any] =[self.eos_token_id, self.cur_lang_code] else: lowercase : Tuple =[self.cur_lang_code] lowercase : List[str] =[self.eos_token_id]
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int=13 , UpperCAmelCase : str=7 , UpperCAmelCase : Any=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=False , UpperCAmelCase : List[Any]=True , UpperCAmelCase : List[str]=99 , UpperCAmelCase : Optional[Any]=32 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : List[Any]=64 , UpperCAmelCase : List[Any]="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : int=0.0_2 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : int=2 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : str=1 , ) -> List[str]: '''simple docstring''' lowercase : Union[str, Any] =parent lowercase : int =batch_size lowercase : str =seq_length lowercase : Tuple =is_training lowercase : List[str] =use_input_mask lowercase : Optional[int] =use_token_type_ids lowercase : Any =use_labels lowercase : List[Any] =vocab_size lowercase : str =hidden_size lowercase : str =num_hidden_layers lowercase : List[str] =num_attention_heads lowercase : int =intermediate_size lowercase : Optional[int] =hidden_act lowercase : Optional[Any] =hidden_dropout_prob lowercase : Optional[Any] =attention_probs_dropout_prob lowercase : Union[str, Any] =max_position_embeddings lowercase : Optional[int] =type_vocab_size lowercase : Dict =type_sequence_label_size lowercase : Optional[int] =initializer_range lowercase : List[Any] =num_labels lowercase : Any =num_choices lowercase : str =scope lowercase : Any =q_groups lowercase : Any =k_groups lowercase : Union[str, Any] =v_groups lowercase : int =post_attention_groups lowercase : str =intermediate_groups lowercase : Union[str, Any] =output_groups def A__ ( self : Any ) -> Tuple: '''simple docstring''' lowercase : Dict =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Tuple =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : Tuple =None if self.use_labels: lowercase : str =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : int =ids_tensor([self.batch_size] , self.num_choices ) lowercase : str =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : str ) -> Tuple: '''simple docstring''' return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def A__ ( self : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =SqueezeBertModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : List[str] =model(UpperCAmelCase , UpperCAmelCase ) lowercase : Any =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : str , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =SqueezeBertForMaskedLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Any =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Any: '''simple docstring''' lowercase : Any =SqueezeBertForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : List[str] =model( UpperCAmelCase , attention_mask=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : List[str] =self.num_labels lowercase : Dict =SqueezeBertForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Union[str, Any] =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Any , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.num_labels lowercase : Dict =SqueezeBertForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Optional[Any] =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict ) -> Any: '''simple docstring''' lowercase : Optional[Any] =self.num_choices lowercase : Union[str, Any] =SqueezeBertForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : List[str] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] =model( UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =self.prepare_config_and_inputs() (lowercase) : List[Any] =config_and_inputs lowercase : Dict ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = True UpperCamelCase_ = False def A__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' lowercase : Union[str, Any] =SqueezeBertModelTester(self ) lowercase : Dict =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Any ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*UpperCAmelCase ) def A__ ( self : Any ) -> Any: '''simple docstring''' lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Tuple ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*UpperCAmelCase ) @slow def A__ ( self : Optional[int] ) -> Dict: '''simple docstring''' for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Optional[int] =SqueezeBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : int =SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) lowercase : str =torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) lowercase : Any =model(UpperCAmelCase )[0] lowercase : Tuple =torch.Size((1, 3) ) self.assertEqual(output.shape , UpperCAmelCase ) lowercase : int =torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-4 ) )
702
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514} SCREAMING_SNAKE_CASE = {} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = HerbertTokenizer def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : List[Any] =[self.cls_token_id] lowercase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
8
0
'''simple docstring''' import math def lowercase_ ( __A : list , __A : int ) -> int: """simple docstring""" lowercase : Dict =len(__lowercase ) lowercase : List[str] =int(math.floor(math.sqrt(__lowercase ) ) ) lowercase : int =0 while arr[min(__lowercase , __lowercase ) - 1] < x: lowercase : Optional[int] =step step += int(math.floor(math.sqrt(__lowercase ) ) ) if prev >= n: return -1 while arr[prev] < x: lowercase : Tuple =prev + 1 if prev == min(__lowercase , __lowercase ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": SCREAMING_SNAKE_CASE = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(',')] SCREAMING_SNAKE_CASE = int(input('Enter the number to be searched:\n')) SCREAMING_SNAKE_CASE = jump_search(arr, x) if res == -1: print('Number not found!') else: print(f"""Number {x} is at index {res}""")
703
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self : List[Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _A , ) super().__init__(*_A , **_A )
704
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
0
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class UpperCAmelCase_ ( __a ): """simple docstring""" UpperCamelCase_ = '''efficientnet''' def __init__( self : Tuple , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 600 , UpperCAmelCase : float = 2.0 , UpperCAmelCase : float = 3.1 , UpperCAmelCase : int = 8 , UpperCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , UpperCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , UpperCAmelCase : List[int] = [] , UpperCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCAmelCase : float = 0.2_5 , UpperCAmelCase : str = "swish" , UpperCAmelCase : int = 2560 , UpperCAmelCase : str = "mean" , UpperCAmelCase : float = 0.0_2 , UpperCAmelCase : float = 0.0_0_1 , UpperCAmelCase : float = 0.9_9 , UpperCAmelCase : float = 0.5 , UpperCAmelCase : float = 0.2 , **UpperCAmelCase : Optional[Any] , ) -> int: '''simple docstring''' super().__init__(**snake_case__ ) lowercase : Union[str, Any] =num_channels lowercase : List[Any] =image_size lowercase : int =width_coefficient lowercase : Tuple =depth_coefficient lowercase : Any =depth_divisor lowercase : Optional[Any] =kernel_sizes lowercase : int =in_channels lowercase : Tuple =out_channels lowercase : Tuple =depthwise_padding lowercase : Any =strides lowercase : Union[str, Any] =num_block_repeats lowercase : int =expand_ratios lowercase : Optional[int] =squeeze_expansion_ratio lowercase : str =hidden_act lowercase : Optional[Any] =hidden_dim lowercase : Dict =pooling_type lowercase : List[Any] =initializer_range lowercase : Union[str, Any] =batch_norm_eps lowercase : Any =batch_norm_momentum lowercase : List[str] =dropout_rate lowercase : Union[str, Any] =drop_connect_rate lowercase : int =sum(snake_case__ ) * 4 class UpperCAmelCase_ ( __a ): """simple docstring""" UpperCamelCase_ = version.parse('''1.11''' ) @property def A__ ( self : Tuple ) -> Any: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def A__ ( self : Optional[int] ) -> int: '''simple docstring''' return 1e-5
705
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
0
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging SCREAMING_SNAKE_CASE = '\\n\n' SCREAMING_SNAKE_CASE = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' SCREAMING_SNAKE_CASE = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def A__ ( self : int ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def A__ ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] = 16 , UpperCAmelCase : Any = True , UpperCAmelCase : Dict=None ) -> Tuple: '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": lowercase : Optional[Any] ="cuda" else: lowercase : Tuple ="cuda" if torch.cuda.is_available() else "cpu" lowercase : Tuple =AutoModelForCausalLM.from_pretrained(a_ ) lowercase : List[str] =model.to(a_ ) lowercase : Any =AutoTokenizer.from_pretrained(a_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: lowercase : str =list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(a_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" lowercase : List[str] =model.config.max_length - 1 else: lowercase : int =model.config.max_length lowercase : Any =tokenizer( a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ , max_length=a_ , return_tensors='''pt''' , return_attention_mask=a_ , ).to(a_ ) lowercase : Dict =encodings["input_ids"] lowercase : Union[str, Any] =encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." lowercase : str =[] lowercase : Union[str, Any] =CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(a_ ) , a_ ) ): lowercase : Optional[Any] =min(start_index + batch_size , len(a_ ) ) lowercase : List[str] =encoded_texts[start_index:end_index] lowercase : Optional[Any] =attn_masks[start_index:end_index] if add_start_token: lowercase : Any =torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(a_ ) lowercase : List[str] =torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) lowercase : Tuple =torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(a_ ), attn_mask] , dim=1 ) lowercase : Tuple =encoded_batch with torch.no_grad(): lowercase : Dict =model(a_ , attention_mask=a_ ).logits lowercase : List[str] =out_logits[..., :-1, :].contiguous() lowercase : Any =labels[..., 1:].contiguous() lowercase : int =attn_mask[..., 1:].contiguous() lowercase : Optional[int] =torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , a_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(a_ )}
706
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
0
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline SCREAMING_SNAKE_CASE = 'path-to-your-trained-model' SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('cuda') SCREAMING_SNAKE_CASE = 'A photo of sks dog in a bucket' SCREAMING_SNAKE_CASE = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('dog-bucket.png')
707
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class UpperCAmelCase_ ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : int , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Any ) -> None: '''simple docstring''' warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
708
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run SCREAMING_SNAKE_CASE = True except (ImportError, AttributeError): SCREAMING_SNAKE_CASE = object def lowercase_ ( *__A : int , **__A : List[str] ) -> Any: """simple docstring""" pass SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = logging.get_logger('transformers-cli/serving') def lowercase_ ( __A : List[Any] ) -> str: """simple docstring""" lowercase : str =pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(A_ , args.host , args.port , args.workers ) class UpperCAmelCase_ ( _A ): """simple docstring""" UpperCamelCase_ = 42 class UpperCAmelCase_ ( _A ): """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = 42 class UpperCAmelCase_ ( _A ): """simple docstring""" UpperCamelCase_ = 42 class UpperCAmelCase_ ( _A ): """simple docstring""" UpperCamelCase_ = 42 class UpperCAmelCase_ ( _A ): """simple docstring""" @staticmethod def A__ ( UpperCAmelCase : ArgumentParser ) -> Union[str, Any]: '''simple docstring''' lowercase : List[str] =parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=UpperCamelCase__ , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=UpperCamelCase__ , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=UpperCamelCase__ , default=8888 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=UpperCamelCase__ , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=UpperCamelCase__ , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=UpperCamelCase__ , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=UpperCamelCase__ , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=UpperCamelCase__ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self : Optional[Any] , UpperCAmelCase : Pipeline , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : int ) -> Tuple: '''simple docstring''' lowercase : List[str] =pipeline lowercase : str =host lowercase : Optional[Any] =port lowercase : Optional[Any] =workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install \"transformers[serving]\".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(f'Serving model over {host}:{port}' ) lowercase : Optional[Any] =FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=UpperCamelCase__ , response_class=UpperCamelCase__ , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=UpperCamelCase__ , response_class=UpperCamelCase__ , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=UpperCamelCase__ , response_class=UpperCamelCase__ , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=UpperCamelCase__ , response_class=UpperCamelCase__ , methods=['''POST'''] , ), ] , timeout=600 , ) def A__ ( self : Tuple ) -> str: '''simple docstring''' run(self._app , host=self.host , port=self.port , workers=self.workers ) def A__ ( self : int ) -> List[Any]: '''simple docstring''' return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def A__ ( self : List[Any] , UpperCAmelCase : str = Body(UpperCamelCase__ , embed=UpperCamelCase__ ) , UpperCAmelCase : bool = Body(UpperCamelCase__ , embed=UpperCamelCase__ ) ) -> int: '''simple docstring''' try: lowercase : List[str] =self._pipeline.tokenizer.tokenize(UpperCamelCase__ ) if return_ids: lowercase : Optional[int] =self._pipeline.tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) return ServeTokenizeResult(tokens=UpperCamelCase__ , tokens_ids=UpperCamelCase__ ) else: return ServeTokenizeResult(tokens=UpperCamelCase__ ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(UpperCamelCase__ )} ) def A__ ( self : List[Any] , UpperCAmelCase : List[int] = Body(UpperCamelCase__ , embed=UpperCamelCase__ ) , UpperCAmelCase : bool = Body(UpperCamelCase__ , embed=UpperCamelCase__ ) , UpperCAmelCase : bool = Body(UpperCamelCase__ , embed=UpperCamelCase__ ) , ) -> List[Any]: '''simple docstring''' try: lowercase : str =self._pipeline.tokenizer.decode(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return ServeDeTokenizeResult(model='''''' , text=UpperCamelCase__ ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(UpperCamelCase__ )} ) async def A__ ( self : List[str] , UpperCAmelCase : Optional[Any]=Body(UpperCamelCase__ , embed=UpperCamelCase__ ) ) -> Dict: '''simple docstring''' if len(UpperCamelCase__ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model lowercase : Any =self._pipeline(UpperCamelCase__ ) return ServeForwardResult(output=UpperCamelCase__ ) except Exception as e: raise HTTPException(500 , {'''error''': str(UpperCamelCase__ )} )
709
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : str =AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : List[Any] =tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Union[str, Any] =tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[str] =model(__a , labels=__a ).loss lowercase : Optional[Any] =-tf.math.reduce_mean(__a ).numpy() lowercase : str =-2_1.2_2_8_1_6_8 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
711
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2 def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" lowercase : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['ConvNextFeatureExtractor'] SCREAMING_SNAKE_CASE = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure)
712
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
0
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCAmelCase_ ( __lowerCamelCase ): """simple docstring""" UpperCamelCase_ = 'char' UpperCamelCase_ = 'bpe' UpperCamelCase_ = 'wp' SCREAMING_SNAKE_CASE = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCAmelCase_ ( __lowerCamelCase ): """simple docstring""" UpperCamelCase_ = ['image_processor', 'char_tokenizer'] UpperCamelCase_ = 'ViTImageProcessor' UpperCamelCase_ = 'MgpstrTokenizer' def __init__( self : Union[str, Any] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Any=None , **UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' lowercase : Union[str, Any] =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCamelCase_ , ) lowercase : str =kwargs.pop('''feature_extractor''' ) lowercase : List[str] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) lowercase : Dict =tokenizer lowercase : str =AutoTokenizer.from_pretrained('''gpt2''' ) lowercase : Optional[Any] =AutoTokenizer.from_pretrained('''bert-base-uncased''' ) super().__init__(UpperCamelCase_ , UpperCamelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[Any]=None , **UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowercase : Dict =self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if text is not None: lowercase : Tuple =self.char_tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if text is None: return inputs elif images is None: return encodings else: lowercase : List[str] =encodings['''input_ids'''] return inputs def A__ ( self : Dict , UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' lowercase , lowercase , lowercase : List[str] =sequences lowercase : Any =char_preds.size(0 ) lowercase , lowercase : Any =self._decode_helper(UpperCamelCase_ , '''char''' ) lowercase , lowercase : Optional[Any] =self._decode_helper(UpperCamelCase_ , '''bpe''' ) lowercase , lowercase : Tuple =self._decode_helper(UpperCamelCase_ , '''wp''' ) lowercase : Any =[] lowercase : Optional[int] =[] for i in range(UpperCamelCase_ ): lowercase : Union[str, Any] =[char_scores[i], bpe_scores[i], wp_scores[i]] lowercase : Optional[int] =[char_strs[i], bpe_strs[i], wp_strs[i]] lowercase : List[str] =scores.index(max(UpperCamelCase_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowercase : Any ={} lowercase : str =final_strs lowercase : Optional[int] =final_scores lowercase : List[str] =char_strs lowercase : str =bpe_strs lowercase : List[Any] =wp_strs return out def A__ ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple ) -> Optional[int]: '''simple docstring''' if format == DecodeType.CHARACTER: lowercase : Any =self.char_decode lowercase : int =1 lowercase : Any ='''[s]''' elif format == DecodeType.BPE: lowercase : Dict =self.bpe_decode lowercase : int =2 lowercase : Any ='''#''' elif format == DecodeType.WORDPIECE: lowercase : Union[str, Any] =self.wp_decode lowercase : List[str] =102 lowercase : str ='''[SEP]''' else: raise ValueError(f'Format {format} is not supported.' ) lowercase , lowercase : Any =[], [] lowercase : List[str] =pred_logits.size(0 ) lowercase : List[Any] =pred_logits.size(1 ) lowercase , lowercase : Tuple =pred_logits.topk(1 , dim=-1 , largest=UpperCamelCase_ , sorted=UpperCamelCase_ ) lowercase : str =preds_index.view(-1 , UpperCamelCase_ )[:, 1:] lowercase : Optional[int] =decoder(UpperCamelCase_ ) lowercase , lowercase : List[Any] =torch.nn.functional.softmax(UpperCamelCase_ , dim=2 ).max(dim=2 ) lowercase : int =preds_max_prob[:, 1:] for index in range(UpperCamelCase_ ): lowercase : int =preds_str[index].find(UpperCamelCase_ ) lowercase : List[str] =preds_str[index][:pred_eos] lowercase : str =preds_index[index].cpu().tolist() lowercase : Optional[Any] =pred_index.index(UpperCamelCase_ ) if eos_token in pred_index else -1 lowercase : int =preds_max_prob[index][: pred_eos_index + 1] lowercase : Optional[Any] =pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(UpperCamelCase_ ) conf_scores.append(UpperCamelCase_ ) return dec_strs, conf_scores def A__ ( self : Dict , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : Any =[seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(UpperCamelCase_ )] return decode_strs def A__ ( self : int , UpperCAmelCase : Any ) -> str: '''simple docstring''' return self.bpe_tokenizer.batch_decode(UpperCamelCase_ ) def A__ ( self : List[Any] , UpperCAmelCase : Any ) -> Any: '''simple docstring''' lowercase : Optional[int] =[seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(UpperCamelCase_ )] return decode_strs
713
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class UpperCAmelCase_ ( TensorFormatter[Mapping, '''torch.Tensor''', Mapping] ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : List[str] ) -> int: '''simple docstring''' super().__init__(features=UpperCAmelCase ) lowercase : Tuple =torch_tensor_kwargs import torch # noqa import torch at initialization def A__ ( self : int , UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' import torch if isinstance(UpperCAmelCase , UpperCAmelCase ) and column: if all( isinstance(UpperCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCAmelCase ) return column def A__ ( self : List[str] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' import torch if isinstance(UpperCAmelCase , (str, bytes, type(UpperCAmelCase )) ): return value elif isinstance(UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowercase : Union[str, Any] ={} if isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowercase : List[str] ={"dtype": torch.intaa} elif isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowercase : Optional[Any] ={"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase , PIL.Image.Image ): lowercase : Tuple =np.asarray(UpperCAmelCase ) return torch.tensor(UpperCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def A__ ( self : List[Any] , UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(UpperCAmelCase , '''__array__''' ) and not isinstance(UpperCAmelCase , torch.Tensor ): lowercase : List[str] =data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(UpperCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(UpperCAmelCase ) def A__ ( self : Tuple , UpperCAmelCase : dict ) -> Dict: '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCAmelCase , map_list=UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : pa.Table ) -> str: '''simple docstring''' lowercase : Dict =self.numpy_arrow_extractor().extract_row(UpperCAmelCase ) lowercase : Union[str, Any] =self.python_features_decoder.decode_row(UpperCAmelCase ) return self.recursive_tensorize(UpperCAmelCase ) def A__ ( self : Optional[int] , UpperCAmelCase : pa.Table ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[int] =self.numpy_arrow_extractor().extract_column(UpperCAmelCase ) lowercase : str =self.python_features_decoder.decode_column(UpperCAmelCase , pa_table.column_names[0] ) lowercase : Optional[int] =self.recursive_tensorize(UpperCAmelCase ) lowercase : Tuple =self._consolidate(UpperCAmelCase ) return column def A__ ( self : Dict , UpperCAmelCase : pa.Table ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.numpy_arrow_extractor().extract_batch(UpperCAmelCase ) lowercase : List[Any] =self.python_features_decoder.decode_batch(UpperCAmelCase ) lowercase : Any =self.recursive_tensorize(UpperCAmelCase ) for column_name in batch: lowercase : List[Any] =self._consolidate(batch[column_name] ) return batch
714
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from manim import * class UpperCAmelCase_ ( __A ): """simple docstring""" def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowercase : List[Any] =Rectangle(height=0.5 , width=0.5 ) lowercase : Optional[int] =Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowercase : Any =[mem.copy() for i in range(6 )] lowercase : Dict =[mem.copy() for i in range(6 )] lowercase : Tuple =VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) lowercase : Tuple =VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) lowercase : Optional[Any] =VGroup(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0 ) lowercase : Optional[int] =Text('''CPU''' , font_size=24 ) lowercase : Optional[int] =Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) lowercase : Tuple =[mem.copy() for i in range(1 )] lowercase : List[str] =VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) lowercase : Optional[Any] =Text('''GPU''' , font_size=24 ) lowercase : Union[str, Any] =Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) gpu.align_to(lowercase_ , lowercase_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowercase_ ) lowercase : Any =[mem.copy() for i in range(6 )] lowercase : List[str] =VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) lowercase : List[str] =Text('''Model''' , font_size=24 ) lowercase : List[str] =Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowercase_ , run_time=1 ) , Create(lowercase_ , run_time=1 ) , Create(lowercase_ , run_time=1 ) , ) lowercase : Any =MarkupText( f'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) lowercase : Optional[Any] =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase : int =MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ , run_time=2.5 ) , Write(lowercase_ ) , Write(lowercase_ ) ) self.add(lowercase_ ) lowercase : Optional[int] =[] lowercase : Tuple =[] lowercase : Union[str, Any] =[] for i, rect in enumerate(lowercase_ ): lowercase : List[Any] =Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowercase_ , opacity=0.7 ) cpu_target.move_to(lowercase_ ) cpu_target.generate_target() lowercase : Tuple =0.4_6 / 4 lowercase : List[Any] =0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowercase_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowercase_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowercase_ , buff=0.0 ) cpu_targs.append(lowercase_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowercase_ ) ) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5 ) ) self.play(*lowercase_ ) self.play(*lowercase_ ) self.wait()
715
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =pipeline( '''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =INVOICE_URL lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) lowercase : Dict ='''What is the placebo?''' lowercase : Optional[Any] =[ { '''image''': load_image(UpperCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : Optional[int] =[ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : str =[] lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Dict =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Dict =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : Tuple =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , ) lowercase : Tuple =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : str =INVOICE_URL lowercase : int ='''What is the invoice number?''' lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Any =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' pass
8
0
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class UpperCAmelCase_ ( __lowerCAmelCase ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : str = None , UpperCAmelCase : List[str] = None , UpperCAmelCase : int = True , UpperCAmelCase : Union[str, Any] = None , UpperCAmelCase : Optional[int] = False , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Any = True , UpperCAmelCase : Tuple = "arrow" , **UpperCAmelCase : Tuple , ) -> Dict: '''simple docstring''' super().__init__( split=lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ , streaming=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase : int =load_from_cache_file lowercase : str =file_format lowercase : Tuple =Spark( df=lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , working_dir=lowerCAmelCase_ , **lowerCAmelCase_ , ) def A__ ( self : Union[str, Any] ) -> str: '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase : Tuple =None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowerCAmelCase_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
716
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
0
'''simple docstring''' def lowercase_ ( __A : str , __A : Dict ) -> int: """simple docstring""" return number | (1 << position) def lowercase_ ( __A : Union[str, Any] , __A : List[Any] ) -> int: """simple docstring""" return number & ~(1 << position) def lowercase_ ( __A : Union[str, Any] , __A : Any ) -> int: """simple docstring""" return number ^ (1 << position) def lowercase_ ( __A : List[str] , __A : Tuple ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def lowercase_ ( __A : Optional[Any] , __A : Tuple ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
0
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]=100 , UpperCAmelCase : Optional[Any]=13 , UpperCAmelCase : int=30 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Dict=32 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Dict=10 , UpperCAmelCase : Optional[int]=0.0_2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=[0, 1, 2, 3] , ) -> Optional[int]: '''simple docstring''' lowercase : Any =parent lowercase : Tuple =100 lowercase : Optional[int] =batch_size lowercase : Optional[int] =image_size lowercase : List[Any] =patch_size lowercase : Union[str, Any] =num_channels lowercase : Tuple =is_training lowercase : Union[str, Any] =use_labels lowercase : Any =hidden_size lowercase : Optional[int] =num_hidden_layers lowercase : List[str] =num_attention_heads lowercase : int =intermediate_size lowercase : Optional[int] =hidden_act lowercase : Dict =hidden_dropout_prob lowercase : Optional[Any] =attention_probs_dropout_prob lowercase : Optional[Any] =type_sequence_label_size lowercase : str =initializer_range lowercase : Union[str, Any] =scope lowercase : Union[str, Any] =out_indices lowercase : List[str] =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase : Tuple =(image_size // patch_size) ** 2 lowercase : Any =num_patches + 1 def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : Dict =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : int =None lowercase : Union[str, Any] =None if self.use_labels: lowercase : Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : str =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase : str =self.get_config() return config, pixel_values, labels, pixel_labels def A__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def A__ ( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Optional[int] =BeitModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase : List[str] =model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : int =BeitForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase : Dict =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def A__ ( self : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] =self.type_sequence_label_size lowercase : int =BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase : List[Any] =model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase : Optional[Any] =1 lowercase : int =BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase : Dict =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase : List[Any] =model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Any ) -> Any: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : str =BeitForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase : List[str] =model(snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) lowercase : Union[str, Any] =model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowercase : Union[str, Any] =self.prepare_config_and_inputs() lowercase : str =config_and_inputs lowercase : Optional[int] ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : str ) -> int: '''simple docstring''' lowercase : Any =BeitModelTester(self ) lowercase : List[str] =ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def A__ ( self : Any ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def A__ ( self : Dict ) -> Dict: '''simple docstring''' pass def A__ ( self : int ) -> Union[str, Any]: '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[int] =model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase : str =model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def A__ ( self : Tuple ) -> Dict: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] =model_class(snake_case__ ) lowercase : List[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : List[str] =[*signature.parameters.keys()] lowercase : Optional[int] =["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def A__ ( self : str ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def A__ ( self : Dict ) -> int: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def A__ ( self : Tuple ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' if not self.model_tester.is_training: return lowercase : Any =self.model_tester.prepare_config_and_inputs_for_common() lowercase : Tuple =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]: continue lowercase : str =model_class(snake_case__ ) model.to(snake_case__ ) model.train() lowercase : Tuple =self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowercase : Union[str, Any] =model(**snake_case__ ).loss loss.backward() def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase : Optional[Any] =False lowercase : Any =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue lowercase : int =model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() lowercase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowercase : Tuple =model(**snake_case__ ).loss loss.backward() def A__ ( self : int ) -> str: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs_for_common() lowercase : Tuple =_config_zero_init(snake_case__ ) for model_class in self.all_model_classes: lowercase : List[Any] =model_class(config=snake_case__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Tuple =BeitModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowercase_ ( ) -> Union[str, Any]: """simple docstring""" lowercase : Dict =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : List[str] =BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(snake_case__ ) lowercase : Optional[Any] =self.default_image_processor lowercase : Dict =prepare_img() lowercase : Optional[Any] =image_processor(images=snake_case__ , return_tensors='''pt''' ).pixel_values.to(snake_case__ ) # prepare bool_masked_pos lowercase : str =torch.ones((1, 196) , dtype=torch.bool ).to(snake_case__ ) # forward pass with torch.no_grad(): lowercase : int =model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ ) lowercase : Any =outputs.logits # verify the logits lowercase : str =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , snake_case__ ) lowercase : List[Any] =torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) ) @slow def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(snake_case__ ) lowercase : Tuple =self.default_image_processor lowercase : int =prepare_img() lowercase : Tuple =image_processor(images=snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) # forward pass with torch.no_grad(): lowercase : Union[str, Any] =model(**snake_case__ ) lowercase : Any =outputs.logits # verify the logits lowercase : Union[str, Any] =torch.Size((1, 1000) ) self.assertEqual(logits.shape , snake_case__ ) lowercase : int =torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) lowercase : str =281 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : List[Any] =BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( snake_case__ ) lowercase : List[str] =self.default_image_processor lowercase : str =prepare_img() lowercase : Optional[int] =image_processor(images=snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) # forward pass with torch.no_grad(): lowercase : int =model(**snake_case__ ) lowercase : Any =outputs.logits # verify the logits lowercase : List[str] =torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , snake_case__ ) lowercase : Tuple =torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) lowercase : Tuple =2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def A__ ( self : str ) -> Optional[Any]: '''simple docstring''' lowercase : Any =BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) lowercase : Optional[int] =model.to(snake_case__ ) lowercase : Tuple =BeitImageProcessor(do_resize=snake_case__ , size=640 , do_center_crop=snake_case__ ) lowercase : str =load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) lowercase : List[Any] =Image.open(ds[0]['''file'''] ) lowercase : int =image_processor(images=snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) # forward pass with torch.no_grad(): lowercase : Tuple =model(**snake_case__ ) lowercase : List[str] =outputs.logits # verify the logits lowercase : Dict =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , snake_case__ ) lowercase : Tuple =version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: lowercase : List[Any] =torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=snake_case__ , ) else: lowercase : Optional[Any] =torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def A__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' lowercase : Dict =BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) lowercase : int =model.to(snake_case__ ) lowercase : Union[str, Any] =BeitImageProcessor(do_resize=snake_case__ , size=640 , do_center_crop=snake_case__ ) lowercase : int =load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) lowercase : str =Image.open(ds[0]['''file'''] ) lowercase : Optional[int] =image_processor(images=snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) # forward pass with torch.no_grad(): lowercase : Optional[Any] =model(**snake_case__ ) lowercase : Optional[int] =outputs.logits.detach().cpu() lowercase : List[str] =image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(500, 300)] ) lowercase : List[str] =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , snake_case__ ) lowercase : str =image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) lowercase : str =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , snake_case__ )
718
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
0
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Any=13 , UpperCAmelCase : Optional[Any]=30 , UpperCAmelCase : int=2 , UpperCAmelCase : Tuple=3 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=32 , UpperCAmelCase : Optional[Any]=5 , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : Dict=0.0_2 , UpperCAmelCase : Tuple=None , UpperCAmelCase : Dict=2 , ) -> Dict: '''simple docstring''' lowercase : Optional[int] =parent lowercase : Union[str, Any] =batch_size lowercase : Dict =image_size lowercase : int =patch_size lowercase : str =num_channels lowercase : Union[str, Any] =is_training lowercase : Any =use_labels lowercase : Any =hidden_size lowercase : List[str] =num_hidden_layers lowercase : List[str] =num_attention_heads lowercase : Tuple =intermediate_size lowercase : str =hidden_act lowercase : Dict =hidden_dropout_prob lowercase : Union[str, Any] =attention_probs_dropout_prob lowercase : Optional[Any] =type_sequence_label_size lowercase : int =initializer_range lowercase : Optional[Any] =scope lowercase : Optional[Any] =encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase : List[Any] =(image_size // patch_size) ** 2 lowercase : Union[str, Any] =num_patches + 1 def A__ ( self : Optional[int] ) -> str: '''simple docstring''' lowercase : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : Optional[int] =None if self.use_labels: lowercase : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Optional[Any] =self.get_config() return config, pixel_values, labels def A__ ( self : int ) -> List[Any]: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict ) -> List[Any]: '''simple docstring''' lowercase : Any =ViTModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase : Optional[Any] =model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : int ) -> str: '''simple docstring''' lowercase : Tuple =ViTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase : Dict =model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase : int =1 lowercase : Any =ViTForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase : Dict =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase : Optional[Any] =model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' lowercase : str =self.type_sequence_label_size lowercase : Union[str, Any] =ViTForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase : Optional[Any] =model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase : int =1 lowercase : Any =ViTForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase : Optional[int] =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase : int =model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Dict =config_and_inputs lowercase : int ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCamelCase_ = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ = True UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : int ) -> Optional[Any]: '''simple docstring''' lowercase : int =ViTModelTester(self ) lowercase : List[Any] =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def A__ ( self : int ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def A__ ( self : Tuple ) -> List[Any]: '''simple docstring''' pass def A__ ( self : Any ) -> Any: '''simple docstring''' lowercase , lowercase : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Dict =model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase : Optional[int] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def A__ ( self : str ) -> Any: '''simple docstring''' lowercase , lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[int] =model_class(SCREAMING_SNAKE_CASE_ ) lowercase : str =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Optional[Any] =[*signature.parameters.keys()] lowercase : Optional[int] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def A__ ( self : Optional[Any] ) -> str: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE_ ) def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self : Optional[int] ) -> int: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Union[str, Any] =ViTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( ) -> Dict: """simple docstring""" lowercase : Optional[int] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self : Optional[Any] ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def A__ ( self : List[Any] ) -> str: '''simple docstring''' lowercase : str =ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(SCREAMING_SNAKE_CASE_ ) lowercase : Dict =self.default_image_processor lowercase : List[Any] =prepare_img() lowercase : Dict =image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowercase : List[Any] =model(**SCREAMING_SNAKE_CASE_ ) # verify the logits lowercase : Dict =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowercase : str =torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) @slow def A__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(SCREAMING_SNAKE_CASE_ ) lowercase : Optional[Any] =ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' , size=480 ) lowercase : str =prepare_img() lowercase : int =image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) lowercase : Optional[int] =inputs.pixel_values.to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowercase : Dict =model(SCREAMING_SNAKE_CASE_ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE_ ) # verify the logits lowercase : int =torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , SCREAMING_SNAKE_CASE_ ) lowercase : Optional[Any] =torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def A__ ( self : Tuple ) -> int: '''simple docstring''' lowercase : List[Any] =ViTModel.from_pretrained('''facebook/dino-vits8''' , torch_dtype=torch.floataa , device_map='''auto''' ) lowercase : List[str] =self.default_image_processor lowercase : Optional[int] =prepare_img() lowercase : Tuple =image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) lowercase : Optional[Any] =inputs.pixel_values.to(SCREAMING_SNAKE_CASE_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase : List[Any] =model(SCREAMING_SNAKE_CASE_ )
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' def lowercase_ ( __A : str ) -> List[str]: """simple docstring""" return "".join(chr(ord(__A ) - 3_2 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
720
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
721
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
0
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline SCREAMING_SNAKE_CASE = 'path-to-your-trained-model' SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('cuda') SCREAMING_SNAKE_CASE = 'A photo of sks dog in a bucket' SCREAMING_SNAKE_CASE = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('dog-bucket.png')
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) SCREAMING_SNAKE_CASE = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[Any] = None , UpperCAmelCase : Dict = None ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] =None lowercase : List[str] =os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowercase : Tuple =os.path.abspath('''examples''' ) for item in os.listdir(__lowerCamelCase ): if item not in EXCLUDE_EXAMPLES: lowercase : Optional[int] =os.path.join(__lowerCamelCase , __lowerCamelCase ) if os.path.isfile(__lowerCamelCase ) and ".py" in item_path: with self.subTest( tested_script=__lowerCamelCase , feature_script=__lowerCamelCase , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowercase : Optional[int] =compare_against_test( os.path.join(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase : Tuple ='''\n'''.join(__lowerCamelCase ) if special_strings is not None: for string in special_strings: lowercase : int =diff.replace(__lowerCamelCase , '''''' ) self.assertEqual(__lowerCamelCase , '''''' ) def A__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' self.one_complete_example('''complete_nlp_example.py''' , __lowerCamelCase ) self.one_complete_example('''complete_nlp_example.py''' , __lowerCamelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' lowercase : Union[str, Any] =os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowercase : Tuple =[ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) self.one_complete_example('''complete_cv_example.py''' , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class UpperCAmelCase_ ( lowerCamelCase__ ): """simple docstring""" UpperCamelCase_ = False @classmethod def A__ ( cls : List[Any] ) -> Union[str, Any]: '''simple docstring''' super().setUpClass() lowercase : List[Any] =tempfile.mkdtemp() lowercase : str =os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowercase : Optional[int] =['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def A__ ( cls : Tuple ) -> List[str]: '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : List[str] =f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() lowercase : str =run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def A__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase : Optional[int] =f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() lowercase : Optional[int] =run_command(self._launch_args + testargs , return_stdout=__lowerCamelCase ) self.assertNotIn('''epoch 0:''' , __lowerCamelCase ) self.assertIn('''epoch 1:''' , __lowerCamelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : Any =f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() lowercase : Any =run_command(self._launch_args + testargs , return_stdout=__lowerCamelCase ) if torch.cuda.is_available(): lowercase : Union[str, Any] =torch.cuda.device_count() else: lowercase : int =1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __lowerCamelCase ) self.assertIn('''epoch 1:''' , __lowerCamelCase ) else: self.assertIn('''epoch 0:''' , __lowerCamelCase ) self.assertIn('''epoch 1:''' , __lowerCamelCase ) @slow def A__ ( self : Tuple ) -> str: '''simple docstring''' lowercase : Dict =''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowercase : Union[str, Any] =run_command(self._launch_args + testargs , return_stdout=__lowerCamelCase ) lowercase : List[Any] =re.findall('''({.+})''' , __lowerCamelCase ) lowercase : Union[str, Any] =[r for r in results if '''accuracy''' in r][-1] lowercase : List[str] =ast.literal_eval(__lowerCamelCase ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def A__ ( self : Any ) -> Dict: '''simple docstring''' lowercase : List[str] =['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def A__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: lowercase : Any =f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__lowerCamelCase , '''tracking''' ) ) ) def A__ ( self : str ) -> List[Any]: '''simple docstring''' lowercase : Dict =['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def A__ ( self : str ) -> Tuple: '''simple docstring''' lowercase : Any =['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' def lowercase_ ( __A : int = 1_0 ) -> str: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or n < 0: raise ValueError('''Invalid input''' ) lowercase : Tuple =1_0**n lowercase : Dict =2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , UpperCamelCase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
702
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514} SCREAMING_SNAKE_CASE = {} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = HerbertTokenizer def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : List[Any] =[self.cls_token_id] lowercase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
8
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase_ ( __A : Tuple ) -> Union[str, Any]: """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def lowercase_ ( __A : str ) -> Union[str, Any]: """simple docstring""" for char in word: lowercase : Tuple =ord(__SCREAMING_SNAKE_CASE ) if not _is_chinese_char(__SCREAMING_SNAKE_CASE ): return 0 return 1 def lowercase_ ( __A : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase : Optional[int] =set() for token in tokens: lowercase : Dict =len(__SCREAMING_SNAKE_CASE ) > 1 and is_chinese(__SCREAMING_SNAKE_CASE ) if chinese_word: word_set.add(__SCREAMING_SNAKE_CASE ) lowercase : int =list(__SCREAMING_SNAKE_CASE ) return word_list def lowercase_ ( __A : Any , __A : str ) -> List[Any]: """simple docstring""" if not chinese_word_set: return bert_tokens lowercase : Dict =max([len(__SCREAMING_SNAKE_CASE ) for w in chinese_word_set] ) lowercase : Optional[int] =bert_tokens lowercase : List[str] =0, len(__SCREAMING_SNAKE_CASE ) while start < end: lowercase : Dict =True if is_chinese(bert_word[start] ): lowercase : List[Any] =min(end - start , __SCREAMING_SNAKE_CASE ) for i in range(__SCREAMING_SNAKE_CASE , 1 , -1 ): lowercase : Dict ="".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase : Optional[Any] ="##" + bert_word[j] lowercase : str =start + i lowercase : Dict =False break if single_word: start += 1 return bert_word def lowercase_ ( __A : Dict , __A : Optional[Any] , __A : List[Any] ) -> Dict: """simple docstring""" lowercase : Union[str, Any] =[] for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , 1_0_0 ): lowercase : Tuple =ltp_tokenizer.seg(lines[i : i + 1_0_0] )[0] lowercase : Optional[int] =[get_chinese_word(__SCREAMING_SNAKE_CASE ) for r in res] ltp_res.extend(__SCREAMING_SNAKE_CASE ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) lowercase : Optional[Any] =[] for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , 1_0_0 ): lowercase : str =bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=5_1_2 ) bert_res.extend(res['''input_ids'''] ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) lowercase : int =[] for input_ids, chinese_word in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase : List[str] =[] for id in input_ids: lowercase : List[str] =bert_tokenizer._convert_id_to_token(__SCREAMING_SNAKE_CASE ) input_tokens.append(__SCREAMING_SNAKE_CASE ) lowercase : Optional[Any] =add_sub_symbol(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase : Any =[] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__SCREAMING_SNAKE_CASE ): if token[:2] == "##": lowercase : List[str] =token[2:] # save chinese tokens' pos if len(__SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(__SCREAMING_SNAKE_CASE ) ): ref_id.append(__SCREAMING_SNAKE_CASE ) ref_ids.append(__SCREAMING_SNAKE_CASE ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) return ref_ids def lowercase_ ( __A : Union[str, Any] ) -> Any: """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: lowercase : List[Any] =f.readlines() lowercase : Dict =[line.strip() for line in data if len(__SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase : int =LTP(args.ltp ) # faster in GPU device lowercase : Dict =BertTokenizer.from_pretrained(args.bert ) lowercase : List[str] =prepare_ref(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: lowercase : str =[json.dumps(__SCREAMING_SNAKE_CASE ) + "\n" for ref in ref_ids] f.writelines(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
703
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
0
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( __A : Tuple , __A : Optional[Any] , __A : Tuple , __A : Tuple , __A : str ) -> Optional[Any]: """simple docstring""" lowercase : Tuple =TapasConfig.from_json_file(__A ) # set absolute/relative position embeddings parameter lowercase : List[str] =reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowercase : int =TapasForQuestionAnswering(config=__A ) elif task == "WTQ": # run_task_main.py hparams lowercase : Union[str, Any] =4 lowercase : List[Any] =True # hparam_utils.py hparams lowercase : Optional[Any] =0.664694 lowercase : str =0.207951 lowercase : Tuple =0.121194 lowercase : Union[str, Any] =True lowercase : Union[str, Any] =True lowercase : Union[str, Any] =False lowercase : List[Any] =0.0352513 lowercase : Any =TapasForQuestionAnswering(config=__A ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowercase : List[str] =4 lowercase : Tuple =False # hparam_utils.py hparams lowercase : Tuple =36.4519 lowercase : Any =0.903421 lowercase : List[str] =222.088 lowercase : List[Any] =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : List[str] =0.763141 lowercase : Tuple =TapasForQuestionAnswering(config=__A ) elif task == "TABFACT": lowercase : Any =TapasForSequenceClassification(config=__A ) elif task == "MLM": lowercase : int =TapasForMaskedLM(config=__A ) elif task == "INTERMEDIATE_PRETRAINING": lowercase : Optional[int] =TapasModel(config=__A ) else: raise ValueError(F'Task {task} not supported.' ) print(F'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__A , __A , __A ) # Save pytorch-model (weights and configuration) print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__A ) # Save tokenizer files print(F'Save tokenizer files to {pytorch_dump_path}' ) lowercase : Tuple =TapasTokenizer(vocab_file=tf_checkpoint_path[:-1_0] + '''vocab.txt''' , model_max_length=5_1_2 ) tokenizer.save_pretrained(__A ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
704
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
0
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int]=13 , UpperCAmelCase : List[str]=7 , UpperCAmelCase : int=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : str=False , UpperCAmelCase : str=False , UpperCAmelCase : Any=False , UpperCAmelCase : Any=2 , UpperCAmelCase : Dict=99 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Optional[int]=32 , UpperCAmelCase : Optional[int]=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : List[str]=512 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Union[str, Any]=0.0_2 , UpperCAmelCase : str=3 , UpperCAmelCase : str=4 , UpperCAmelCase : Optional[int]="last" , UpperCAmelCase : List[str]=None , UpperCAmelCase : Any=None , ) -> List[str]: '''simple docstring''' lowercase : Dict =parent lowercase : Union[str, Any] =batch_size lowercase : Optional[Any] =seq_length lowercase : str =is_training lowercase : int =use_input_lengths lowercase : Optional[Any] =use_token_type_ids lowercase : Any =use_labels lowercase : Optional[Any] =gelu_activation lowercase : Union[str, Any] =sinusoidal_embeddings lowercase : str =causal lowercase : Optional[int] =asm lowercase : List[str] =n_langs lowercase : List[str] =vocab_size lowercase : Tuple =n_special lowercase : Optional[int] =hidden_size lowercase : Optional[int] =num_hidden_layers lowercase : Union[str, Any] =num_attention_heads lowercase : Optional[int] =hidden_dropout_prob lowercase : str =attention_probs_dropout_prob lowercase : Tuple =max_position_embeddings lowercase : Optional[int] =type_vocab_size lowercase : List[Any] =type_sequence_label_size lowercase : List[Any] =initializer_range lowercase : Tuple =num_labels lowercase : str =num_choices lowercase : Optional[Any] =summary_type lowercase : int =use_proj lowercase : int =scope def A__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Dict =None if self.use_input_lengths: lowercase : Optional[int] =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Dict =None if self.use_token_type_ids: lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase : Dict =None lowercase : Tuple =None lowercase : List[Any] =None if self.use_labels: lowercase : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Optional[int] =ids_tensor([self.batch_size] , 2 ).float() lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[str] =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def A__ ( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] =FlaubertModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Optional[Any] =model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) lowercase : Any =model(UpperCAmelCase , langs=UpperCAmelCase ) lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] =FlaubertWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Any =model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =FlaubertForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : List[Any] =model(UpperCAmelCase ) lowercase : Tuple =model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : int , ) -> Optional[int]: '''simple docstring''' lowercase : Union[str, Any] =FlaubertForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Any =model(UpperCAmelCase ) lowercase : Optional[Any] =model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) lowercase : Dict =model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) (lowercase ) : Optional[int] =result_with_labels.to_tuple() lowercase : str =model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) (lowercase ) : Optional[int] =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , ) -> int: '''simple docstring''' lowercase : Dict =FlaubertForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Optional[Any] =model(UpperCAmelCase ) lowercase : Optional[Any] =model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' lowercase : Optional[int] =self.num_labels lowercase : Optional[int] =FlaubertForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Union[str, Any] =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , ) -> List[Any]: '''simple docstring''' lowercase : str =self.num_choices lowercase : Dict =FlaubertForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : int =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Optional[int] =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Union[str, Any] =model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[str] ) -> Tuple: '''simple docstring''' lowercase : Union[str, Any] =self.prepare_config_and_inputs() ( lowercase ) : Tuple =config_and_inputs lowercase : Optional[Any] ={ "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def A__ ( self : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A__ ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=False ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase : str =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) lowercase : Dict =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def A__ ( self : Dict ) -> Tuple: '''simple docstring''' lowercase : Optional[int] =FlaubertModelTester(self ) lowercase : Optional[int] =ConfigTester(self , config_class=UpperCAmelCase , emb_dim=37 ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*UpperCAmelCase ) def A__ ( self : Any ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Tuple: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*UpperCAmelCase ) def A__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*UpperCAmelCase ) @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : List[Any] =FlaubertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @slow @require_torch_gpu def A__ ( self : Union[str, Any] ) -> str: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase : Optional[Any] =True lowercase : Any =model_class(config=UpperCAmelCase ) lowercase : Tuple =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowercase : int =torch.jit.trace( UpperCAmelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCAmelCase , os.path.join(UpperCAmelCase , '''traced_model.pt''' ) ) lowercase : Union[str, Any] =torch.jit.load(os.path.join(UpperCAmelCase , '''traced_model.pt''' ) , map_location=UpperCAmelCase ) loaded(inputs_dict['''input_ids'''].to(UpperCAmelCase ) , inputs_dict['''attention_mask'''].to(UpperCAmelCase ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : List[str] =FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) lowercase : Any =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowercase : Union[str, Any] =model(UpperCAmelCase )[0] lowercase : int =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Union[str, Any] =torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
705
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
0
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=99 , UpperCAmelCase : int=32 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : Union[str, Any]="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Tuple=512 , UpperCAmelCase : Optional[Any]=16 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=0.0_2 , UpperCAmelCase : Dict=4 , ) -> int: '''simple docstring''' lowercase : int =parent lowercase : Optional[int] =batch_size lowercase : Optional[Any] =seq_length lowercase : Optional[Any] =is_training lowercase : Union[str, Any] =use_attention_mask lowercase : Optional[int] =use_token_type_ids lowercase : Union[str, Any] =use_labels lowercase : List[str] =vocab_size lowercase : List[str] =hidden_size lowercase : Dict =num_hidden_layers lowercase : Optional[Any] =num_attention_heads lowercase : Union[str, Any] =intermediate_size lowercase : List[Any] =hidden_act lowercase : Dict =hidden_dropout_prob lowercase : Optional[int] =attention_probs_dropout_prob lowercase : str =max_position_embeddings lowercase : str =type_vocab_size lowercase : str =type_sequence_label_size lowercase : Tuple =initializer_range lowercase : List[str] =num_choices def A__ ( self : Dict ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_attention_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__UpperCamelCase , ) return config, input_ids, attention_mask def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() lowercase , lowercase , lowercase : Optional[Any] =config_and_inputs lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def A__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowercase : Union[str, Any] =FlaxDistilBertModelTester(self ) @slow def A__ ( self : Any ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: lowercase : Any =model_class_name.from_pretrained('''distilbert-base-uncased''' ) lowercase : Dict =model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCamelCase ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' lowercase : str =FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : int =np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase : Optional[Any] =np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase : List[str] =model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] lowercase : int =(1, 11, 768) self.assertEqual(output.shape , __UpperCamelCase ) lowercase : Optional[int] =np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1e-4 ) )
706
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
0
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowercase_ ( __A : Any ) -> Optional[Any]: """simple docstring""" lowercase : Dict =model.config lowercase : List[Any] =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 1_6, 3_2] , window_size=original_config.window_size , embed_dim=1_2_8 , ) lowercase : List[Any] =MBartConfig( is_decoder=__A , is_encoder_decoder=__A , add_cross_attention=__A , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__A , add_final_layer_norm=__A , ) return encoder_config, decoder_config def lowercase_ ( __A : Optional[int] ) -> Union[str, Any]: """simple docstring""" if "encoder.model" in name: lowercase : int =name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: lowercase : Dict =name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: lowercase : int =name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase : Tuple =name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: lowercase : Any ="""encoder.""" + name if "attn.proj" in name: lowercase : Any =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: lowercase : Tuple =name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase : Dict =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase : Union[str, Any] =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase : List[Any] =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase : Dict =name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowercase : str ="""encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase : Dict ="""encoder.layernorm.bias""" return name def lowercase_ ( __A : Optional[Any] , __A : int ) -> Optional[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase : List[str] =orig_state_dict.pop(__A ) if "qkv" in key: lowercase : int =key.split('''.''' ) lowercase : List[str] =int(key_split[3] ) lowercase : Optional[Any] =int(key_split[5] ) lowercase : str =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase : Union[str, Any] =val[:dim, :] lowercase : Optional[int] =val[dim : dim * 2, :] lowercase : Union[str, Any] =val[-dim:, :] else: lowercase : List[Any] =val[:dim] lowercase : Optional[Any] =val[dim : dim * 2] lowercase : Dict =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase : List[str] =val return orig_state_dict def lowercase_ ( __A : int , __A : List[Any]=None , __A : Dict=False ) -> List[Any]: """simple docstring""" lowercase : Dict =DonutModel.from_pretrained(__A ).eval() # load HuggingFace model lowercase : List[str] =get_configs(__A ) lowercase : Union[str, Any] =DonutSwinModel(__A ) lowercase : Union[str, Any] =MBartForCausalLM(__A ) lowercase : Any =VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() lowercase : List[Any] =original_model.state_dict() lowercase : List[Any] =convert_state_dict(__A , __A ) model.load_state_dict(__A ) # verify results on scanned document lowercase : str =load_dataset('''hf-internal-testing/example-documents''' ) lowercase : List[Any] =dataset["""test"""][0]["""image"""].convert('''RGB''' ) lowercase : List[Any] =XLMRobertaTokenizerFast.from_pretrained(__A , from_slow=__A ) lowercase : Tuple =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase : Optional[int] =DonutProcessor(__A , __A ) lowercase : Tuple =processor(__A , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase : List[str] ="""<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase : Union[str, Any] ="""When is the coffee break?""" lowercase : List[str] =task_prompt.replace('''{user_input}''' , __A ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase : str ="""<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase : str ="""<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase : Any ="""s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase : List[str] ="""<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase : int ="""hello world""" else: raise ValueError('''Model name not supported''' ) lowercase : List[Any] =original_model.decoder.tokenizer(__A , add_special_tokens=__A , return_tensors='''pt''' )[ """input_ids""" ] lowercase : Tuple =original_model.encoder.model.patch_embed(__A ) lowercase : str =model.encoder.embeddings(__A ) assert torch.allclose(__A , __A , atol=1E-3 ) # verify encoder hidden states lowercase : Any =original_model.encoder(__A ) lowercase : Optional[int] =model.encoder(__A ).last_hidden_state assert torch.allclose(__A , __A , atol=1E-2 ) # verify decoder hidden states lowercase : int =original_model(__A , __A , __A ).logits lowercase : Dict =model(__A , decoder_input_ids=__A ).logits assert torch.allclose(__A , __A , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
707
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
0
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = (DPMSolverSDEScheduler,) UpperCamelCase_ = 10 def A__ ( self : int , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] ={ 'num_train_timesteps': 1100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**UpperCamelCase__ ) return config def A__ ( self : str ) -> Tuple: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def A__ ( self : Any ) -> List[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def A__ ( self : Any ) -> Any: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def A__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =self.scheduler_classes[0] lowercase : List[Any] =self.get_scheduler_config() lowercase : List[str] =scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase : Union[str, Any] =self.dummy_model() lowercase : Any =self.dummy_sample_deter * scheduler.init_noise_sigma lowercase : Any =sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowercase : Any =scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowercase : List[str] =model(UpperCamelCase__ , UpperCamelCase__ ) lowercase : Optional[Any] =scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase : Optional[Any] =output.prev_sample lowercase : Tuple =torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase : Optional[Any] =torch.mean(torch.abs(UpperCamelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3 def A__ ( self : int ) -> Optional[Any]: '''simple docstring''' lowercase : int =self.scheduler_classes[0] lowercase : List[Any] =self.get_scheduler_config(prediction_type='''v_prediction''' ) lowercase : Optional[int] =scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase : Dict =self.dummy_model() lowercase : Optional[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma lowercase : Tuple =sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowercase : Tuple =scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowercase : str =model(UpperCamelCase__ , UpperCamelCase__ ) lowercase : List[Any] =scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase : Optional[int] =output.prev_sample lowercase : List[Any] =torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase : Union[str, Any] =torch.mean(torch.abs(UpperCamelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1e-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1e-3 def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Any =self.scheduler_classes[0] lowercase : List[Any] =self.get_scheduler_config() lowercase : int =scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) lowercase : List[Any] =self.dummy_model() lowercase : Dict =self.dummy_sample_deter.to(UpperCamelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowercase : Tuple =scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowercase : Any =model(UpperCamelCase__ , UpperCamelCase__ ) lowercase : List[str] =scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase : Optional[Any] =output.prev_sample lowercase : List[Any] =torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase : Dict =torch.mean(torch.abs(UpperCamelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3 def A__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] =self.scheduler_classes[0] lowercase : List[Any] =self.get_scheduler_config() lowercase : Optional[Any] =scheduler_class(**UpperCamelCase__ , use_karras_sigmas=UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) lowercase : Dict =self.dummy_model() lowercase : str =self.dummy_sample_deter.to(UpperCamelCase__ ) * scheduler.init_noise_sigma lowercase : int =sample.to(UpperCamelCase__ ) for t in scheduler.timesteps: lowercase : Optional[int] =scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowercase : List[str] =model(UpperCamelCase__ , UpperCamelCase__ ) lowercase : Dict =scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowercase : Optional[Any] =output.prev_sample lowercase : int =torch.sum(torch.abs(UpperCamelCase__ ) ) lowercase : int =torch.mean(torch.abs(UpperCamelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2
708
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } SCREAMING_SNAKE_CASE = { 'facebook/bart-base': 1_024, 'facebook/bart-large': 1_024, 'facebook/bart-large-mnli': 1_024, 'facebook/bart-large-cnn': 1_024, 'facebook/bart-large-xsum': 1_024, 'yjernite/bart_eli5': 1_024, } @lru_cache() def lowercase_ ( ) -> Any: """simple docstring""" lowercase : List[str] =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Optional[int] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : int =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : Any ) -> List[str]: """simple docstring""" lowercase : List[Any] =set() lowercase : Any =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : str =char return pairs class UpperCAmelCase_ ( a__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ["input_ids", "attention_mask"] def __init__( self : Any , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Optional[Any]="replace" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : int="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : int="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Union[str, Any]="<pad>" , UpperCAmelCase : str="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : Union[str, Any] , ) -> str: '''simple docstring''' lowercase : Tuple =AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token lowercase : Optional[Any] =AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token lowercase : List[str] =AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token lowercase : List[Any] =AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token lowercase : Dict =AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token lowercase : List[str] =AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Tuple =AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding='''utf-8''' ) as vocab_handle: lowercase : List[str] =json.load(lowerCamelCase_ ) lowercase : Dict ={v: k for k, v in self.encoder.items()} lowercase : Tuple =errors # how to handle errors in decoding lowercase : Optional[int] =bytes_to_unicode() lowercase : List[Any] ={v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ , encoding='''utf-8''' ) as merges_handle: lowercase : Optional[int] =merges_handle.read().split('''\n''' )[1:-1] lowercase : List[str] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Tuple =dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) lowercase : Tuple ={} lowercase : Union[str, Any] =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : List[Any] =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def A__ ( self : List[Any] ) -> str: '''simple docstring''' return len(self.encoder ) def A__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : Tuple , UpperCAmelCase : List[str] ) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : Optional[Any] =tuple(lowerCamelCase_ ) lowercase : int =get_pairs(lowerCamelCase_ ) if not pairs: return token while True: lowercase : List[Any] =min(lowerCamelCase_ , key=lambda UpperCAmelCase : self.bpe_ranks.get(lowerCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : List[str] =bigram lowercase : Tuple =[] lowercase : Any =0 while i < len(lowerCamelCase_ ): try: lowercase : Union[str, Any] =word.index(lowerCamelCase_ , lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Tuple =j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(lowerCamelCase_ ) lowercase : Tuple =new_word if len(lowerCamelCase_ ) == 1: break else: lowercase : int =get_pairs(lowerCamelCase_ ) lowercase : str =''' '''.join(lowerCamelCase_ ) lowercase : Optional[int] =word return word def A__ ( self : List[Any] , UpperCAmelCase : Any ) -> Any: '''simple docstring''' lowercase : Any =[] for token in re.findall(self.pat , lowerCamelCase_ ): lowercase : int =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Any , UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def A__ ( self : Optional[int] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' return self.decoder.get(lowerCamelCase_ ) def A__ ( self : Dict , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : int =''''''.join(lowerCamelCase_ ) lowercase : List[Any] =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[int] =os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[str] =os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + '''\n''' ) lowercase : Optional[int] =0 with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : int =token_index writer.write(''' '''.join(lowerCamelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Dict =[self.cls_token_id] lowercase : Dict =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] = None , UpperCAmelCase : Any = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def A__ ( self : str , UpperCAmelCase : Any , UpperCAmelCase : List[Any] = None ) -> List[int]: '''simple docstring''' lowercase : int =[self.sep_token_id] lowercase : Optional[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Any=False , **UpperCAmelCase : int ) -> Any: '''simple docstring''' lowercase : List[Any] =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): lowercase : Optional[int] =''' ''' + text return (text, kwargs)
709
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
0
from itertools import count def lowercase_ ( __A : int = 5_0 ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] =[1] * min_block_length for n in count(__A ): fill_count_functions.append(1 ) for block_length in range(__A , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_0_0_0_0_0_0: break return n if __name__ == "__main__": print(f"""{solution() = }""")
710
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
0
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE = "RegNetConfig" # Base docstring SCREAMING_SNAKE_CASE = "facebook/regnet-y-040" SCREAMING_SNAKE_CASE = [1, 1_088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE = "facebook/regnet-y-040" SCREAMING_SNAKE_CASE = "tabby, tabby cat" SCREAMING_SNAKE_CASE = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 1 , UpperCAmelCase : Optional[str] = "relu" , **UpperCAmelCase : Dict , ) -> Dict: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowercase : List[str] =tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowercase : List[str] =tf.keras.layers.ConvaD( filters=lowerCAmelCase_ , kernel_size=lowerCAmelCase_ , strides=lowerCAmelCase_ , padding='''VALID''' , groups=lowerCAmelCase_ , use_bias=lowerCAmelCase_ , name='''convolution''' , ) lowercase : Tuple =tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) lowercase : Any =ACTaFN[activation] if activation is not None else tf.identity def A__ ( self : Optional[int] , UpperCAmelCase : int ) -> Any: '''simple docstring''' lowercase : Optional[Any] =self.convolution(self.padding(lowerCAmelCase_ ) ) lowercase : Tuple =self.normalization(lowerCAmelCase_ ) lowercase : List[Any] =self.activation(lowerCAmelCase_ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : RegNetConfig , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) lowercase : Optional[Any] =config.num_channels lowercase : Any =TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def A__ ( self : Any , UpperCAmelCase : Tuple ) -> str: '''simple docstring''' lowercase : str =shape_list(lowerCAmelCase_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowercase : Dict =tf.transpose(lowerCAmelCase_ , perm=(0, 2, 3, 1) ) lowercase : Union[str, Any] =self.embedder(lowerCAmelCase_ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : int = 2 , **UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) lowercase : int =tf.keras.layers.ConvaD( filters=lowerCAmelCase_ , kernel_size=1 , strides=lowerCAmelCase_ , use_bias=lowerCAmelCase_ , name='''convolution''' ) lowercase : Any =tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) def A__ ( self : Dict , UpperCAmelCase : tf.Tensor , UpperCAmelCase : bool = False ) -> int: '''simple docstring''' return self.normalization(self.convolution(lowerCAmelCase_ ) , training=lowerCAmelCase_ ) class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : int , UpperCAmelCase : int , UpperCAmelCase : int , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) lowercase : int =tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase_ , name='''pooler''' ) lowercase : Dict =[ tf.keras.layers.ConvaD(filters=lowerCAmelCase_ , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=lowerCAmelCase_ , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def A__ ( self : Tuple , UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' lowercase : List[str] =self.pooler(lowerCAmelCase_ ) for layer_module in self.attention: lowercase : List[Any] =layer_module(lowerCAmelCase_ ) lowercase : Dict =hidden_state * pooled return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : RegNetConfig , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int = 1 , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) lowercase : Optional[int] =in_channels != out_channels or stride != 1 lowercase : int =max(1 , out_channels // config.groups_width ) lowercase : Optional[int] =( TFRegNetShortCut(lowerCAmelCase_ , stride=lowerCAmelCase_ , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowercase : Tuple =[ TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( lowerCAmelCase_ , stride=lowerCAmelCase_ , groups=lowerCAmelCase_ , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ , name='''layer.2''' ), ] lowercase : Any =ACTaFN[config.hidden_act] def A__ ( self : Union[str, Any] , UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' lowercase : Union[str, Any] =hidden_state for layer_module in self.layers: lowercase : Tuple =layer_module(lowerCAmelCase_ ) lowercase : Optional[Any] =self.shortcut(lowerCAmelCase_ ) hidden_state += residual lowercase : Optional[Any] =self.activation(lowerCAmelCase_ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : RegNetConfig , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int = 1 , **UpperCAmelCase : Optional[Any] ) -> int: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) lowercase : Tuple =in_channels != out_channels or stride != 1 lowercase : int =max(1 , out_channels // config.groups_width ) lowercase : Union[str, Any] =( TFRegNetShortCut(lowerCAmelCase_ , stride=lowerCAmelCase_ , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) lowercase : List[Any] =[ TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( lowerCAmelCase_ , stride=lowerCAmelCase_ , groups=lowerCAmelCase_ , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(lowerCAmelCase_ , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ , name='''layer.3''' ), ] lowercase : List[str] =ACTaFN[config.hidden_act] def A__ ( self : Tuple , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Optional[Any] =hidden_state for layer_module in self.layers: lowercase : List[str] =layer_module(lowerCAmelCase_ ) lowercase : List[str] =self.shortcut(lowerCAmelCase_ ) hidden_state += residual lowercase : Any =self.activation(lowerCAmelCase_ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : RegNetConfig , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , **UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) lowercase : int =TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer lowercase : Optional[Any] =[ # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , name='''layers.0''' ), *[layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def A__ ( self : List[str] , UpperCAmelCase : int ) -> int: '''simple docstring''' for layer_module in self.layers: lowercase : str =layer_module(lowerCAmelCase_ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : RegNetConfig , **UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) lowercase : Optional[int] =[] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) lowercase : Any =zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCAmelCase_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , depth=lowerCAmelCase_ , name=f'stages.{i+1}' ) ) def A__ ( self : Dict , UpperCAmelCase : tf.Tensor , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =() if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase : Optional[Any] =hidden_states + (hidden_state,) lowercase : str =stage_module(lowerCAmelCase_ ) if output_hidden_states: lowercase : Optional[int] =hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ ) @keras_serializable class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" UpperCamelCase_ = RegNetConfig def __init__( self : Any , UpperCAmelCase : Any , **UpperCAmelCase : List[Any] ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) lowercase : Union[str, Any] =config lowercase : List[str] =TFRegNetEmbeddings(lowerCAmelCase_ , name='''embedder''' ) lowercase : Tuple =TFRegNetEncoder(lowerCAmelCase_ , name='''encoder''' ) lowercase : Optional[Any] =tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase_ , name='''pooler''' ) @unpack_inputs def A__ ( self : Any , UpperCAmelCase : tf.Tensor , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , ) -> Tuple: '''simple docstring''' lowercase : Optional[Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase : Tuple =return_dict if return_dict is not None else self.config.use_return_dict lowercase : List[Any] =self.embedder(lowerCAmelCase_ , training=lowerCAmelCase_ ) lowercase : Dict =self.encoder( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ ) lowercase : List[str] =encoder_outputs[0] lowercase : Optional[int] =self.pooler(lowerCAmelCase_ ) # Change to NCHW output format have uniformity in the modules lowercase : List[Any] =tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) ) lowercase : List[Any] =tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowercase : Tuple =tuple([tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase_ , pooler_output=lowerCAmelCase_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCAmelCase_ ( __UpperCAmelCase ): """simple docstring""" UpperCamelCase_ = RegNetConfig UpperCamelCase_ = '''regnet''' UpperCamelCase_ = '''pixel_values''' @property def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} SCREAMING_SNAKE_CASE = r"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" SCREAMING_SNAKE_CASE = r"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , __UpperCAmelCase , ) class UpperCAmelCase_ ( __UpperCAmelCase ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : RegNetConfig , *UpperCAmelCase : Any , **UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' super().__init__(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) lowercase : Any =TFRegNetMainLayer(lowerCAmelCase_ , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A__ ( self : Optional[int] , UpperCAmelCase : tf.Tensor , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : int=False , ) -> Optional[Any]: '''simple docstring''' lowercase : str =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase : Dict =return_dict if return_dict is not None else self.config.use_return_dict lowercase : List[str] =self.regnet( pixel_values=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '''\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ''' , __UpperCAmelCase , ) class UpperCAmelCase_ ( __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : RegNetConfig , *UpperCAmelCase : Tuple , **UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' super().__init__(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) lowercase : List[str] =config.num_labels lowercase : int =TFRegNetMainLayer(lowerCAmelCase_ , name='''regnet''' ) # classification head lowercase : str =[ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A__ ( self : int , UpperCAmelCase : tf.Tensor = None , UpperCAmelCase : tf.Tensor = None , UpperCAmelCase : bool = None , UpperCAmelCase : bool = None , UpperCAmelCase : Tuple=False , ) -> List[str]: '''simple docstring''' lowercase : int =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase : Optional[int] =return_dict if return_dict is not None else self.config.use_return_dict lowercase : List[Any] =self.regnet( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ ) lowercase : Optional[int] =outputs.pooler_output if return_dict else outputs[1] lowercase : Optional[int] =self.classifier[0](lowerCAmelCase_ ) lowercase : Optional[Any] =self.classifier[1](lowerCAmelCase_ ) lowercase : Optional[int] =None if labels is None else self.hf_compute_loss(labels=lowerCAmelCase_ , logits=lowerCAmelCase_ ) if not return_dict: lowercase : List[Any] =(logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCAmelCase_ , logits=lowerCAmelCase_ , hidden_states=outputs.hidden_states )
711
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2 def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" lowercase : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger('transformers.models.speecht5') SCREAMING_SNAKE_CASE = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } SCREAMING_SNAKE_CASE = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } SCREAMING_SNAKE_CASE = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } SCREAMING_SNAKE_CASE = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } SCREAMING_SNAKE_CASE = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } SCREAMING_SNAKE_CASE = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } SCREAMING_SNAKE_CASE = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } SCREAMING_SNAKE_CASE = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } SCREAMING_SNAKE_CASE = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } SCREAMING_SNAKE_CASE = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } SCREAMING_SNAKE_CASE = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] SCREAMING_SNAKE_CASE = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] SCREAMING_SNAKE_CASE = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] SCREAMING_SNAKE_CASE = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def lowercase_ ( __A : Any , __A : List[str] , __A : str , __A : Optional[Any] , __A : Optional[Any] ) -> str: """simple docstring""" for attribute in key.split('''.''' ): lowercase : Optional[Any] =getattr(a_ , a_ ) if weight_type is not None: lowercase : List[str] =getattr(a_ , a_ ).shape else: lowercase : List[Any] =hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase : Optional[int] =value elif weight_type == "weight_g": lowercase : Union[str, Any] =value elif weight_type == "weight_v": lowercase : Any =value elif weight_type == "bias": lowercase : Tuple =value elif weight_type == "running_mean": lowercase : int =value elif weight_type == "running_var": lowercase : str =value elif weight_type == "num_batches_tracked": lowercase : Optional[Any] =value else: lowercase : List[Any] =value logger.info(F'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def lowercase_ ( __A : str , __A : Optional[int] ) -> int: """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowercase : Optional[Any] =key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase_ ( __A : str , __A : str , __A : Union[str, Any] ) -> Dict: """simple docstring""" lowercase : List[Any] =[] if task == "s2t": lowercase : Optional[int] =hf_model.speechta.encoder.prenet.feature_encoder lowercase : int =MAPPING_S2T lowercase : List[str] =IGNORE_KEYS_S2T elif task == "t2s": lowercase : int =None lowercase : List[Any] =MAPPING_T2S lowercase : List[Any] =IGNORE_KEYS_T2S elif task == "s2s": lowercase : Dict =hf_model.speechta.encoder.prenet.feature_encoder lowercase : int =MAPPING_S2S lowercase : Dict =IGNORE_KEYS_S2S else: raise ValueError(F'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(a_ , a_ ): logger.info(F'{name} was ignored' ) continue lowercase : int =False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == '''group''' , ) lowercase : str =True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: lowercase : List[Any] =key.split('''.*.''' ) if prefix in name and suffix in name: lowercase : List[Any] =suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: lowercase : List[Any] =True if "*" in mapped_key: lowercase : Union[str, Any] =name.split(a_ )[0].split('''.''' )[-2] lowercase : Optional[Any] =mapped_key.replace('''*''' , a_ ) if "weight_g" in name: lowercase : Dict ='''weight_g''' elif "weight_v" in name: lowercase : List[str] ='''weight_v''' elif "bias" in name: lowercase : List[Any] ='''bias''' elif "weight" in name: lowercase : List[Any] ='''weight''' elif "running_mean" in name: lowercase : Tuple ='''running_mean''' elif "running_var" in name: lowercase : Tuple ='''running_var''' elif "num_batches_tracked" in name: lowercase : Tuple ='''num_batches_tracked''' else: lowercase : Union[str, Any] =None set_recursively(a_ , a_ , a_ , a_ , a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(F'Unused weights: {unused_weights}' ) def lowercase_ ( __A : int , __A : str , __A : Union[str, Any] , __A : List[Any] , __A : int ) -> List[Any]: """simple docstring""" lowercase : List[Any] =full_name.split('''conv_layers.''' )[-1] lowercase : int =name.split('''.''' ) lowercase : Optional[Any] =int(items[0] ) lowercase : Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase : Optional[Any] =value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase : Optional[int] =value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) lowercase : Union[str, Any] =value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase : List[str] =value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(a_ ) @torch.no_grad() def lowercase_ ( __A : str , __A : str , __A : Tuple , __A : Union[str, Any]=None , __A : Any=None , __A : Union[str, Any]=None , ) -> Optional[Any]: """simple docstring""" if config_path is not None: lowercase : int =SpeechTaConfig.from_pretrained(a_ ) else: lowercase : List[str] =SpeechTaConfig() if task == "s2t": lowercase : Any =config.max_text_positions lowercase : Optional[Any] =SpeechTaForSpeechToText(a_ ) elif task == "t2s": lowercase : Dict =1_8_7_6 lowercase : str =6_0_0 lowercase : str =config.max_speech_positions lowercase : List[Any] =SpeechTaForTextToSpeech(a_ ) elif task == "s2s": lowercase : List[Any] =1_8_7_6 lowercase : Optional[int] =config.max_speech_positions lowercase : Optional[int] =SpeechTaForSpeechToSpeech(a_ ) else: raise ValueError(F'Unknown task name: {task}' ) if vocab_path: lowercase : Any =SpeechTaTokenizer(a_ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it lowercase : Optional[Any] =AddedToken('''<mask>''' , lstrip=a_ , rstrip=a_ ) lowercase : int =mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) lowercase : int =SpeechTaFeatureExtractor() lowercase : Dict =SpeechTaProcessor(tokenizer=a_ , feature_extractor=a_ ) processor.save_pretrained(a_ ) lowercase : str =torch.load(a_ ) recursively_load_weights(fairseq_checkpoint['''model'''] , a_ , a_ ) model.save_pretrained(a_ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(a_ ) model.push_to_hub(a_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
712
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
0
'''simple docstring''' SCREAMING_SNAKE_CASE = { 'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.', ':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '"': '.-..-.', '?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-', '(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/' } # Exclamation mark is not in ITU-R recommendation # fmt: on SCREAMING_SNAKE_CASE = {value: key for key, value in MORSE_CODE_DICT.items()} def lowercase_ ( __A : Tuple ) -> int: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def lowercase_ ( __A : Optional[int] ) -> Any: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def lowercase_ ( ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[int] ='''Morse code here!''' print(UpperCAmelCase__ ) lowercase : Union[str, Any] =encrypt(UpperCAmelCase__ ) print(UpperCAmelCase__ ) lowercase : List[Any] =decrypt(UpperCAmelCase__ ) print(UpperCAmelCase__ ) if __name__ == "__main__": main()
713
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def lowercase_ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
714
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from __future__ import annotations def lowercase_ ( __A : int | str ) -> bool: """simple docstring""" lowercase : Optional[Any] =str(_UpperCamelCase ) return n == n[::-1] def lowercase_ ( __A : int = 1_0_0_0_0_0_0 ) -> Dict: """simple docstring""" lowercase : List[str] =0 for i in range(1 , _UpperCamelCase ): if is_palindrome(_UpperCamelCase ) and is_palindrome(bin(_UpperCamelCase ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
715
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =pipeline( '''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =INVOICE_URL lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) lowercase : Dict ='''What is the placebo?''' lowercase : Optional[Any] =[ { '''image''': load_image(UpperCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : Optional[int] =[ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : str =[] lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Dict =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Dict =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : Tuple =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , ) lowercase : Tuple =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : str =INVOICE_URL lowercase : int ='''What is the invoice number?''' lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Any =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' pass
8
0
'''simple docstring''' from math import pow def lowercase_ ( __A : Any , __A : Dict , __A : Optional[Any] , __A : int , __A : Any , ) -> Optional[int]: """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count lowercase : int =int(pow(__A , __A ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n lowercase , lowercase : List[Any] =backtrack( __A , __A , current_number + 1 , __A , __A ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. lowercase , lowercase : Tuple =backtrack( __A , __A , current_number + 1 , __A , __A ) return current_sum, solutions_count def lowercase_ ( __A : Any , __A : Union[str, Any] ) -> int: """simple docstring""" if not (1 <= needed_sum <= 1_0_0_0 and 2 <= power <= 1_0): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(__A , __A , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github SCREAMING_SNAKE_CASE = [ "good first issue", "feature request", "wip", ] def lowercase_ ( ) -> int: """simple docstring""" lowercase : Union[str, Any] =Github(os.environ['''GITHUB_TOKEN'''] ) lowercase : List[Any] =g.get_repo('''huggingface/accelerate''' ) lowercase : Tuple =repo.get_issues(state='''open''' ) for issue in open_issues: lowercase : str =sorted([comment for comment in issue.get_comments()] , key=lambda __A : i.created_at , reverse=__A ) lowercase : str =comments[0] if len(__A ) > 0 else None lowercase : Optional[int] =dt.utcnow() lowercase : Optional[Any] =(current_time - issue.updated_at).days lowercase : List[Any] =(current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 2_3 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
717
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
0
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets SCREAMING_SNAKE_CASE = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' SCREAMING_SNAKE_CASE = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' SCREAMING_SNAKE_CASE = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def A__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def A__ ( self : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : str="auto" , UpperCAmelCase : str=-1 , UpperCAmelCase : List[Any]=0.9 , UpperCAmelCase : str=5 , UpperCAmelCase : Tuple=500 , UpperCAmelCase : Optional[int]="gpt2-large" , UpperCAmelCase : Union[str, Any]=-1 , UpperCAmelCase : Union[str, Any]=1024 , UpperCAmelCase : Dict=25 , UpperCAmelCase : Dict=5 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[int]=25 , ) -> Tuple: '''simple docstring''' lowercase : Dict =compute_mauve( p_text=UpperCAmelCase , q_text=UpperCAmelCase , p_features=UpperCAmelCase , q_features=UpperCAmelCase , p_tokens=UpperCAmelCase , q_tokens=UpperCAmelCase , num_buckets=UpperCAmelCase , pca_max_data=UpperCAmelCase , kmeans_explained_var=UpperCAmelCase , kmeans_num_redo=UpperCAmelCase , kmeans_max_iter=UpperCAmelCase , featurize_model_name=UpperCAmelCase , device_id=UpperCAmelCase , max_text_length=UpperCAmelCase , divergence_curve_discretization_size=UpperCAmelCase , mauve_scaling_factor=UpperCAmelCase , verbose=UpperCAmelCase , seed=UpperCAmelCase , ) return out
718
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] SCREAMING_SNAKE_CASE = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowercase_ ( __A : str ) -> str: """simple docstring""" lowercase : List[Any] =torch.load(UpperCamelCase__ , map_location='''cpu''' ) return sd def lowercase_ ( __A : Union[str, Any] , __A : str , __A : Tuple=rename_keys_prefix ) -> Tuple: """simple docstring""" lowercase : Dict =OrderedDict() lowercase : Dict =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowercase : Optional[int] =key for name_pair in rename_keys_prefix: lowercase : Union[str, Any] =new_key.replace(name_pair[0] , name_pair[1] ) lowercase : str =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowercase : Union[str, Any] =new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def lowercase_ ( __A : str , __A : str ) -> List[str]: """simple docstring""" assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: lowercase : Optional[int] ='''pretraining''' if "vcr" in checkpoint_path: lowercase : Union[str, Any] ={'''visual_embedding_dim''': 5_1_2} elif "vqa_advanced" in checkpoint_path: lowercase : Tuple ={'''visual_embedding_dim''': 2_0_4_8} elif "vqa" in checkpoint_path: lowercase : Tuple ={'''visual_embedding_dim''': 2_0_4_8} elif "nlvr" in checkpoint_path: lowercase : str ={'''visual_embedding_dim''': 1_0_2_4} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: lowercase : Any ={'''visual_embedding_dim''': 5_1_2} lowercase : List[str] ='''multichoice''' elif "vqa_advanced" in checkpoint_path: lowercase : Optional[int] ={'''visual_embedding_dim''': 2_0_4_8} lowercase : List[str] ='''vqa_advanced''' elif "vqa" in checkpoint_path: lowercase : List[Any] ={'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9} lowercase : Any ='''vqa''' elif "nlvr" in checkpoint_path: lowercase : Optional[int] ={ '''visual_embedding_dim''': 1_0_2_4, '''num_labels''': 2, } lowercase : List[Any] ='''nlvr''' lowercase : List[str] =VisualBertConfig(**UpperCamelCase__ ) # Load State Dict lowercase : Any =load_state_dict(UpperCamelCase__ ) lowercase : Union[str, Any] =get_new_dict(UpperCamelCase__ , UpperCamelCase__ ) if model_type == "pretraining": lowercase : Optional[Any] =VisualBertForPreTraining(UpperCamelCase__ ) elif model_type == "vqa": lowercase : Optional[Any] =VisualBertForQuestionAnswering(UpperCamelCase__ ) elif model_type == "nlvr": lowercase : int =VisualBertForVisualReasoning(UpperCamelCase__ ) elif model_type == "multichoice": lowercase : Dict =VisualBertForMultipleChoice(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) # Save Checkpoints Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowercase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple=7 , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : List[str]=30 , UpperCAmelCase : List[str]=400 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Any=[0.5, 0.5, 0.5] , UpperCAmelCase : int=[0.5, 0.5, 0.5] , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[Any]=1 / 255 , UpperCAmelCase : Optional[int]=True , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} lowercase : List[Any] =parent lowercase : Tuple =batch_size lowercase : Tuple =num_channels lowercase : List[str] =min_resolution lowercase : Optional[int] =max_resolution lowercase : Any =do_resize lowercase : Tuple =size lowercase : Optional[int] =do_normalize lowercase : Any =image_mean lowercase : Any =image_std lowercase : int =do_rescale lowercase : Tuple =rescale_factor lowercase : int =do_pad def A__ ( self : str ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A__ ( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' if not batched: lowercase : Optional[Any] =image_inputs[0] if isinstance(UpperCAmelCase , Image.Image ): lowercase , lowercase : Tuple =image.size else: lowercase , lowercase : int =image.shape[1], image.shape[2] if w < h: lowercase : Union[str, Any] =int(self.size['''shortest_edge'''] * h / w ) lowercase : int =self.size['''shortest_edge'''] elif w > h: lowercase : Optional[Any] =self.size['''shortest_edge'''] lowercase : List[str] =int(self.size['''shortest_edge'''] * w / h ) else: lowercase : List[str] =self.size['''shortest_edge'''] lowercase : str =self.size['''shortest_edge'''] else: lowercase : Tuple =[] for image in image_inputs: lowercase , lowercase : Tuple =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase : List[str] =max(UpperCAmelCase , key=lambda UpperCAmelCase : item[0] )[0] lowercase : Dict =max(UpperCAmelCase , key=lambda UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase__ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = DeformableDetrImageProcessor if is_vision_available() else None def A__ ( self : Tuple ) -> str: '''simple docstring''' lowercase : Optional[int] =DeformableDetrImageProcessingTester(self ) @property def A__ ( self : str ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''size''' ) ) def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : int =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase ) lowercase : Optional[int] =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase ) def A__ ( self : List[Any] ) -> Any: '''simple docstring''' pass def A__ ( self : Any ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input lowercase : Dict =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase , lowercase : Tuple =self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase : int =self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) lowercase : Tuple =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self : str ) -> int: '''simple docstring''' lowercase : str =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input lowercase : List[Any] =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase , lowercase : Optional[Any] =self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase : int =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values lowercase , lowercase : Tuple =self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self : Any ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Optional[int] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input lowercase : List[Any] =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase , lowercase : int =self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase : List[Any] =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values lowercase , lowercase : Tuple =self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def A__ ( self : Union[str, Any] ) -> str: '''simple docstring''' lowercase : List[str] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowercase : Any =json.loads(f.read() ) lowercase : Any ={'''image_id''': 3_9769, '''annotations''': target} # encode them lowercase : Union[str, Any] =DeformableDetrImageProcessor() lowercase : List[Any] =image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values lowercase : Tuple =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase ) lowercase : Dict =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase , atol=1e-4 ) ) # verify area lowercase : Optional[Any] =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase ) ) # verify boxes lowercase : Optional[int] =torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase ) lowercase : Tuple =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase , atol=1e-3 ) ) # verify image_id lowercase : List[str] =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase ) ) # verify is_crowd lowercase : int =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase ) ) # verify class_labels lowercase : Tuple =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase ) ) # verify orig_size lowercase : Optional[Any] =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase ) ) # verify size lowercase : Union[str, Any] =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase ) ) @slow def A__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowercase : Tuple =json.loads(f.read() ) lowercase : List[str] ={'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} lowercase : List[str] =pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowercase : Optional[Any] =DeformableDetrImageProcessor(format='''coco_panoptic''' ) lowercase : Dict =image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , masks_path=UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values lowercase : Any =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase ) lowercase : List[str] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase , atol=1e-4 ) ) # verify area lowercase : int =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase ) ) # verify boxes lowercase : Optional[Any] =torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase ) lowercase : List[str] =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase , atol=1e-3 ) ) # verify image_id lowercase : Optional[int] =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase ) ) # verify is_crowd lowercase : Optional[int] =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase ) ) # verify class_labels lowercase : List[str] =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase ) ) # verify masks lowercase : List[Any] =82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase ) # verify orig_size lowercase : int =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase ) ) # verify size lowercase : Optional[int] =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase ) )
720
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
0
'''simple docstring''' import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger() def lowercase_ ( __A : int , __A : str , __A : LevitConfig , __A : Path , __A : bool = True ) -> str: """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 1_2_8: if name[-1] == "S": lowercase : List[str] =timm.create_model('''levit_128s''' , pretrained=__A ) else: lowercase : List[Any] =timm.create_model('''levit_128''' , pretrained=__A ) if hidden_sizes == 1_9_2: lowercase : int =timm.create_model('''levit_192''' , pretrained=__A ) if hidden_sizes == 2_5_6: lowercase : Dict =timm.create_model('''levit_256''' , pretrained=__A ) if hidden_sizes == 3_8_4: lowercase : str =timm.create_model('''levit_384''' , pretrained=__A ) from_model.eval() lowercase : List[str] =LevitForImageClassificationWithTeacher(__A ).eval() lowercase : str =OrderedDict() lowercase : Optional[Any] =from_model.state_dict() lowercase : Any =list(from_model.state_dict().keys() ) lowercase : str =list(our_model.state_dict().keys() ) print(len(__A ) , len(__A ) ) for i in range(len(__A ) ): lowercase : int =weights[og_keys[i]] our_model.load_state_dict(__A ) lowercase : int =torch.randn((2, 3, 2_2_4, 2_2_4) ) lowercase : Optional[Any] =from_model(__A ) lowercase : Optional[int] =our_model(__A ).logits assert torch.allclose(__A , __A ), "The model logits don't match the original one." lowercase : Any =name print(__A ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase : int =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def lowercase_ ( __A : Path , __A : str = None , __A : bool = True ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[Any] ='''imagenet-1k-id2label.json''' lowercase : Optional[int] =1_0_0_0 lowercase : List[Any] =(1, num_labels) lowercase : Optional[Any] ='''huggingface/label-files''' lowercase : str =num_labels lowercase : Union[str, Any] =json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) ) lowercase : Any ={int(__A ): v for k, v in idalabel.items()} lowercase : Optional[Any] =idalabel lowercase : int ={v: k for k, v in idalabel.items()} lowercase : Dict =partial(__A , num_labels=__A , idalabel=__A , labelaid=__A ) lowercase : int ={ '''levit-128S''': 1_2_8, '''levit-128''': 1_2_8, '''levit-192''': 1_9_2, '''levit-256''': 2_5_6, '''levit-384''': 3_8_4, } lowercase : Optional[Any] ={ '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_2_8, 2_5_6, 3_8_4] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[1_6, 1_6, 1_6] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_2_8, 2_5_6, 3_8_4] , num_attention_heads=[4, 8, 1_2] , depths=[4, 4, 4] , key_dim=[1_6, 1_6, 1_6] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_9_2, 2_8_8, 3_8_4] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[3_2, 3_2, 3_2] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_5_6, 3_8_4, 5_1_2] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[3_2, 3_2, 3_2] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_8_4, 5_1_2, 7_6_8] , num_attention_heads=[6, 9, 1_2] , depths=[4, 4, 4] , key_dim=[3_2, 3_2, 3_2] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __A , names_to_config[model_name] , __A , __A ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __A , __A , __A , __A ) return config, expected_shape if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
721
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
0
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants SCREAMING_SNAKE_CASE = Mapping[str, np.ndarray] SCREAMING_SNAKE_CASE = Mapping[str, Any] # Is a nested dict. SCREAMING_SNAKE_CASE = 0.01 @dataclasses.dataclass(frozen=__A ) class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. UpperCamelCase_ = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. UpperCamelCase_ = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. UpperCamelCase_ = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. UpperCamelCase_ = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions UpperCamelCase_ = None # Optional remark about the protein. Included as a comment in output PDB # files UpperCamelCase_ = None # Templates used to generate this protein (prediction-only) UpperCamelCase_ = None # Chain corresponding to each parent UpperCamelCase_ = None def lowercase_ ( __A : str ) -> Protein: """simple docstring""" lowercase : int =R'''(\[[A-Z]+\]\n)''' lowercase : List[str] =[tag.strip() for tag in re.split(__A , __A ) if len(__A ) > 0] lowercase : Iterator[Tuple[str, List[str]]] =zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowercase : List[str] =["N", "CA", "C"] lowercase : int =None lowercase : List[Any] =None lowercase : Dict =None for g in groups: if "[PRIMARY]" == g[0]: lowercase : List[Any] =g[1][0].strip() for i in range(len(__A ) ): if seq[i] not in residue_constants.restypes: lowercase : List[Any] ='''X''' # FIXME: strings are immutable lowercase : str =np.array( [residue_constants.restype_order.get(__A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase : List[List[float]] =[] for axis in range(3 ): tertiary.append(list(map(__A , g[1][axis].split() ) ) ) lowercase : int =np.array(__A ) lowercase : List[str] =np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__A ): lowercase : Optional[int] =np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase : Any =np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowercase : str =np.zeros( ( len(__A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__A ): lowercase : List[str] =1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__A , atom_mask=__A , aatype=__A , residue_index=np.arange(len(__A ) ) , b_factors=__A , ) def lowercase_ ( __A : Protein , __A : int = 0 ) -> List[str]: """simple docstring""" lowercase : List[str] =[] lowercase : List[str] =prot.remark if remark is not None: pdb_headers.append(F'REMARK {remark}' ) lowercase : Union[str, Any] =prot.parents lowercase : Optional[int] =prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase : List[str] =[p for i, p in zip(__A , __A ) if i == chain_id] if parents is None or len(__A ) == 0: lowercase : Optional[Any] =['''N/A'''] pdb_headers.append(F'PARENT {" ".join(__A )}' ) return pdb_headers def lowercase_ ( __A : Protein , __A : str ) -> str: """simple docstring""" lowercase : List[str] =[] lowercase : Any =pdb_str.split('''\n''' ) lowercase : Tuple =prot.remark if remark is not None: out_pdb_lines.append(F'REMARK {remark}' ) lowercase : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: lowercase : List[str] =[] if prot.parents_chain_index is not None: lowercase : Dict[str, List[str]] ={} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__A ) , [] ) parent_dict[str(__A )].append(__A ) lowercase : int =max([int(__A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase : Union[str, Any] =parent_dict.get(str(__A ) , ['''N/A'''] ) parents_per_chain.append(__A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase : Optional[int] =[['''N/A''']] def make_parent_line(__A : Sequence[str] ) -> str: return F'PARENT {" ".join(__A )}' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase : Dict =0 for i, l in enumerate(__A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__A ): lowercase : Optional[Any] =parents_per_chain[chain_counter] else: lowercase : str =['''N/A'''] out_pdb_lines.append(make_parent_line(__A ) ) return "\n".join(__A ) def lowercase_ ( __A : Protein ) -> str: """simple docstring""" lowercase : List[str] =residue_constants.restypes + ['''X'''] def res_atoa(__A : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowercase : Union[str, Any] =residue_constants.atom_types lowercase : List[str] =[] lowercase : Dict =prot.atom_mask lowercase : Tuple =prot.aatype lowercase : List[Any] =prot.atom_positions lowercase : List[str] =prot.residue_index.astype(np.intaa ) lowercase : Dict =prot.b_factors lowercase : Optional[Any] =prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowercase : List[str] =get_pdb_headers(__A ) if len(__A ) > 0: pdb_lines.extend(__A ) lowercase : Any =aatype.shape[0] lowercase : Any =1 lowercase : Any =0 lowercase : int =string.ascii_uppercase lowercase : List[str] =None # Add all atom sites. for i in range(__A ): lowercase : Any =res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase : str ='''ATOM''' lowercase : Optional[int] =atom_name if len(__A ) == 4 else F' {atom_name}' lowercase : List[str] ='''''' lowercase : int ='''''' lowercase : Optional[Any] =1.00 lowercase : Tuple =atom_name[0] # Protein supports only C, N, O, S, this works. lowercase : Union[str, Any] ='''''' lowercase : List[str] ='''A''' if chain_index is not None: lowercase : List[Any] =chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase : str =( F'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}' F'{res_name_a:>3} {chain_tag:>1}' F'{residue_index[i]:>4}{insertion_code:>1} ' F'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}' F'{occupancy:>6.2f}{b_factor:>6.2f} ' F'{element:>2}{charge:>2}' ) pdb_lines.append(__A ) atom_index += 1 lowercase : Union[str, Any] =i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase : Optional[Any] =True lowercase : Dict =chain_index[i + 1] if should_terminate: # Close the chain. lowercase : Union[str, Any] ='''TER''' lowercase : Any =( F'{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}' ) pdb_lines.append(__A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__A , __A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(__A ) def lowercase_ ( __A : Protein ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def lowercase_ ( __A : FeatureDict , __A : ModelOutput , __A : Optional[np.ndarray] = None , __A : Optional[np.ndarray] = None , __A : Optional[str] = None , __A : Optional[Sequence[str]] = None , __A : Optional[Sequence[int]] = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=__A , remark=__A , parents=__A , parents_chain_index=__A , )
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller SCREAMING_SNAKE_CASE = 3 def lowercase_ ( __A : int ) -> int: """simple docstring""" print('''Generating primitive root of p''' ) while True: lowercase : List[str] =random.randrange(3 , __A ) if pow(__A , 2 , __A ) == 1: continue if pow(__A , __A , __A ) == 1: continue return g def lowercase_ ( __A : int ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: """simple docstring""" print('''Generating prime p...''' ) lowercase : Any =rabin_miller.generate_large_prime(__A ) # select large prime number. lowercase : List[str] =primitive_root(__A ) # one primitive root on modulo p. lowercase : List[str] =random.randrange(3 , __A ) # private_key -> have to be greater than 2 for safety. lowercase : List[str] =cryptomath.find_mod_inverse(pow(__A , __A , __A ) , __A ) lowercase : Union[str, Any] =(key_size, e_a, e_a, p) lowercase : Optional[Any] =(key_size, d) return public_key, private_key def lowercase_ ( __A : str , __A : int ) -> None: """simple docstring""" if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ): print('''\nWARNING:''' ) print( F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' '''Use a different name or delete these files and re-run this program.''' ) sys.exit() lowercase : str =generate_key(__A ) print(F'\nWriting public key to file {name}_pubkey.txt...' ) with open(F'{name}_pubkey.txt' , '''w''' ) as fo: fo.write(F'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}' ) print(F'Writing private key to file {name}_privkey.txt...' ) with open(F'{name}_privkey.txt' , '''w''' ) as fo: fo.write(F'{private_key[0]},{private_key[1]}' ) def lowercase_ ( ) -> None: """simple docstring""" print('''Making key files...''' ) make_key_files('''elgamal''' , 2_0_4_8 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''informer''' UpperCamelCase_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : str = "student_t" , UpperCAmelCase : str = "nll" , UpperCAmelCase : int = 1 , UpperCAmelCase : List[int] = None , UpperCAmelCase : Optional[Union[str, bool]] = "mean" , UpperCAmelCase : int = 0 , UpperCAmelCase : int = 0 , UpperCAmelCase : int = 0 , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : int = 64 , UpperCAmelCase : int = 32 , UpperCAmelCase : int = 32 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : bool = True , UpperCAmelCase : str = "gelu" , UpperCAmelCase : float = 0.0_5 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : int = 100 , UpperCAmelCase : float = 0.0_2 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : str = "prob" , UpperCAmelCase : int = 5 , UpperCAmelCase : bool = True , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =prediction_length lowercase : Union[str, Any] =context_length or prediction_length lowercase : Optional[Any] =distribution_output lowercase : int =loss lowercase : str =input_size lowercase : Optional[Any] =num_time_features lowercase : Union[str, Any] =lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowercase : Any =scaling lowercase : Any =num_dynamic_real_features lowercase : Any =num_static_real_features lowercase : Any =num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowercase : Dict =cardinality else: lowercase : Tuple =[0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowercase : str =embedding_dimension else: lowercase : Optional[Any] =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase : str =num_parallel_samples # Transformer architecture configuration lowercase : List[Any] =input_size * len(self.lags_sequence ) + self._number_of_features lowercase : List[Any] =d_model lowercase : Optional[Any] =encoder_attention_heads lowercase : Any =decoder_attention_heads lowercase : Any =encoder_ffn_dim lowercase : Dict =decoder_ffn_dim lowercase : Optional[Any] =encoder_layers lowercase : Union[str, Any] =decoder_layers lowercase : str =dropout lowercase : Tuple =attention_dropout lowercase : Optional[int] =activation_dropout lowercase : Tuple =encoder_layerdrop lowercase : Any =decoder_layerdrop lowercase : str =activation_function lowercase : Any =init_std lowercase : Tuple =use_cache # Informer lowercase : Optional[int] =attention_type lowercase : Union[str, Any] =sampling_factor lowercase : Tuple =distil super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : Tuple ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
702
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514} SCREAMING_SNAKE_CASE = {} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = HerbertTokenizer def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : List[Any] =[self.cls_token_id] lowercase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
8
0
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : list , __A : list ) -> list: """simple docstring""" if len(__A ) != 2 or len(a[0] ) != 2 or len(__A ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) lowercase : Optional[Any] =[ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def lowercase_ ( __A : list , __A : list ) -> Optional[Any]: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__A ) ) ] def lowercase_ ( __A : list , __A : list ) -> Any: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__A ) ) ] def lowercase_ ( __A : list ) -> tuple[list, list, list, list]: """simple docstring""" if len(__A ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) lowercase : str =len(__A ) lowercase : Optional[Any] =matrix_length // 2 lowercase : str =[[a[i][j] for j in range(__A , __A )] for i in range(__A )] lowercase : Union[str, Any] =[ [a[i][j] for j in range(__A , __A )] for i in range(__A , __A ) ] lowercase : str =[[a[i][j] for j in range(__A )] for i in range(__A )] lowercase : Dict =[[a[i][j] for j in range(__A )] for i in range(__A , __A )] return top_left, top_right, bot_left, bot_right def lowercase_ ( __A : list ) -> tuple[int, int]: """simple docstring""" return len(__A ), len(matrix[0] ) def lowercase_ ( __A : list ) -> None: """simple docstring""" print('''\n'''.join(str(__A ) for line in matrix ) ) def lowercase_ ( __A : list , __A : list ) -> list: """simple docstring""" if matrix_dimensions(__A ) == (2, 2): return default_matrix_multiplication(__A , __A ) lowercase : Any =split_matrix(__A ) lowercase : Optional[Any] =split_matrix(__A ) lowercase : Any =actual_strassen(__A , matrix_subtraction(__A , __A ) ) lowercase : Optional[Any] =actual_strassen(matrix_addition(__A , __A ) , __A ) lowercase : int =actual_strassen(matrix_addition(__A , __A ) , __A ) lowercase : Tuple =actual_strassen(__A , matrix_subtraction(__A , __A ) ) lowercase : List[Any] =actual_strassen(matrix_addition(__A , __A ) , matrix_addition(__A , __A ) ) lowercase : Any =actual_strassen(matrix_subtraction(__A , __A ) , matrix_addition(__A , __A ) ) lowercase : Optional[Any] =actual_strassen(matrix_subtraction(__A , __A ) , matrix_addition(__A , __A ) ) lowercase : Optional[int] =matrix_addition(matrix_subtraction(matrix_addition(__A , __A ) , __A ) , __A ) lowercase : Union[str, Any] =matrix_addition(__A , __A ) lowercase : Dict =matrix_addition(__A , __A ) lowercase : int =matrix_subtraction(matrix_subtraction(matrix_addition(__A , __A ) , __A ) , __A ) # construct the new matrix from our 4 quadrants lowercase : str =[] for i in range(len(__A ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__A ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def lowercase_ ( __A : list , __A : list ) -> list: """simple docstring""" if matrix_dimensions(__A )[1] != matrix_dimensions(__A )[0]: lowercase : Dict =( '''Unable to multiply these matrices, please check the dimensions.\n''' F'Matrix A: {matrixa}\n' F'Matrix B: {matrixa}' ) raise Exception(__A ) lowercase : Dict =matrix_dimensions(__A ) lowercase : Optional[int] =matrix_dimensions(__A ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase : Optional[Any] =max(*__A , *__A ) lowercase : int =int(math.pow(2 , math.ceil(math.loga(__A ) ) ) ) lowercase : List[Any] =matrixa lowercase : Union[str, Any] =matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __A ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __A ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __A ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase : Optional[int] =actual_strassen(__A , __A ) # Removing the additional zeros for i in range(0 , __A ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __A ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": SCREAMING_SNAKE_CASE = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] SCREAMING_SNAKE_CASE = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
703
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
0
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
704
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
0
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil SCREAMING_SNAKE_CASE = 100 SCREAMING_SNAKE_CASE = set(range(3, NUM_PRIMES, 2)) primes.add(2) SCREAMING_SNAKE_CASE = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def lowercase_ ( __A : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase : set[int] =set() lowercase : int lowercase : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowercase_ ( __A : int = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __A ): if len(partition(__A ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"""{solution() = }""")
705
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
0
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params SCREAMING_SNAKE_CASE = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def lowercase_ ( __A : Tuple ) -> int: """simple docstring""" for pegasus_name, hf_name in PATTERNS: lowercase : Optional[int] =k.replace(__A , __A ) return k def lowercase_ ( __A : dict , __A : dict ) -> PegasusForConditionalGeneration: """simple docstring""" lowercase : List[str] =DEFAULTS.copy() cfg_kwargs.update(__A ) lowercase : Dict =PegasusConfig(**__A ) lowercase : Optional[int] =PegasusForConditionalGeneration(__A ) lowercase : Union[str, Any] =torch_model.model.state_dict() lowercase : Union[str, Any] ={} for k, v in tf_weights.items(): lowercase : Dict =rename_state_dict_key(__A ) if new_k not in sd: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: lowercase : Union[str, Any] =v.T lowercase : Any =torch.tensor(__A , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected lowercase : int =torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) lowercase : Dict =mapping['''shared.weight'''] lowercase : List[str] =mapping['''shared.weight'''] lowercase : Optional[int] ={k: torch.zeros_like(__A ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**__A ) lowercase : List[str] =torch_model.model.load_state_dict(__A , strict=__A ) lowercase : Optional[int] =[ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def lowercase_ ( __A : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: """simple docstring""" lowercase : Dict =tf.train.list_variables(__A ) lowercase : str ={} lowercase : Union[str, Any] =['''Adafactor''', '''global_step'''] for name, shape in tqdm(__A , desc='''converting tf checkpoint to dict''' ): lowercase : int =any(pat in name for pat in ignore_name ) if skip_key: continue lowercase : List[Any] =tf.train.load_variable(__A , __A ) lowercase : Tuple =array return tf_weights def lowercase_ ( __A : str , __A : str ) -> Dict: """simple docstring""" lowercase : Any =Path(__A ).parent.name lowercase : List[Any] =task_specific_params[F'summarization_{dataset}']['''max_position_embeddings'''] lowercase : List[str] =PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=__A ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__A ) # convert model lowercase : str =get_tf_weights_as_numpy(__A ) lowercase : List[Any] =task_specific_params[F'summarization_{dataset}'] if dataset == "large": lowercase : Tuple =task_specific_params lowercase : Optional[Any] =convert_pegasus(__A , __A ) torch_model.save_pretrained(__A ) lowercase : int =torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(__A , Path(__A ) / '''pytorch_model.bin''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE = parser.parse_args() if args.save_dir is None: SCREAMING_SNAKE_CASE = Path(args.tf_ckpt_path).parent.name SCREAMING_SNAKE_CASE = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
706
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : Optional[int]=30 , UpperCAmelCase : Any=400 , UpperCAmelCase : str=True , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Dict=True , UpperCAmelCase : List[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase : Any=[0.5, 0.5, 0.5] , UpperCAmelCase : str=True , UpperCAmelCase : Optional[Any]=1 / 255 , UpperCAmelCase : int=True , ) -> str: '''simple docstring''' lowercase : Optional[Any] =size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} lowercase : List[str] =parent lowercase : Union[str, Any] =batch_size lowercase : List[Any] =num_channels lowercase : List[str] =min_resolution lowercase : Union[str, Any] =max_resolution lowercase : Union[str, Any] =do_resize lowercase : Optional[Any] =size lowercase : List[Any] =do_normalize lowercase : Tuple =image_mean lowercase : Any =image_std lowercase : Any =do_rescale lowercase : str =rescale_factor lowercase : Union[str, Any] =do_pad def A__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : Tuple=False ) -> Tuple: '''simple docstring''' if not batched: lowercase : str =image_inputs[0] if isinstance(UpperCAmelCase , Image.Image ): lowercase : Dict =image.size else: lowercase : int =image.shape[1], image.shape[2] if w < h: lowercase : List[Any] =int(self.size['''shortest_edge'''] * h / w ) lowercase : List[Any] =self.size['''shortest_edge'''] elif w > h: lowercase : str =self.size['''shortest_edge'''] lowercase : str =int(self.size['''shortest_edge'''] * w / h ) else: lowercase : Union[str, Any] =self.size['''shortest_edge'''] lowercase : List[str] =self.size['''shortest_edge'''] else: lowercase : Optional[Any] =[] for image in image_inputs: lowercase : int =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase : Union[str, Any] =max(UpperCAmelCase , key=lambda UpperCAmelCase : item[0] )[0] lowercase : Dict =max(UpperCAmelCase , key=lambda UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = YolosImageProcessor if is_vision_available() else None def A__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' lowercase : Dict =YolosImageProcessingTester(self ) @property def A__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''size''' ) ) def A__ ( self : Tuple ) -> List[Any]: '''simple docstring''' lowercase : int =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase ) lowercase : List[Any] =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass def A__ ( self : Tuple ) -> Dict: '''simple docstring''' lowercase : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input lowercase : int =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase : Union[str, Any] =self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase : Any =self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) lowercase : int =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self : Union[str, Any] ) -> str: '''simple docstring''' lowercase : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : int =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input lowercase : int =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase : str =self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase : int =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values lowercase : int =self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self : Any ) -> int: '''simple docstring''' lowercase : Any =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input lowercase : List[Any] =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase : Optional[int] =self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase : List[Any] =image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values lowercase : Union[str, Any] =self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) lowercase : Tuple =self.image_processing_class(do_resize=UpperCAmelCase , do_normalize=UpperCAmelCase , do_rescale=UpperCAmelCase ) # create random PyTorch tensors lowercase : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowercase : Any =image_processing_a.pad(UpperCAmelCase , return_tensors='''pt''' ) lowercase : Any =image_processing_a(UpperCAmelCase , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def A__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[int] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowercase : Union[str, Any] =json.loads(f.read() ) lowercase : List[Any] ={'''image_id''': 3_9769, '''annotations''': target} # encode them lowercase : Any =YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) lowercase : Optional[int] =image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values lowercase : Optional[int] =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase ) lowercase : Union[str, Any] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase , atol=1e-4 ) ) # verify area lowercase : Optional[Any] =torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase ) ) # verify boxes lowercase : Any =torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase ) lowercase : Optional[Any] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase , atol=1e-3 ) ) # verify image_id lowercase : str =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase ) ) # verify is_crowd lowercase : Dict =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase ) ) # verify class_labels lowercase : Optional[int] =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase ) ) # verify orig_size lowercase : str =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase ) ) # verify size lowercase : Optional[Any] =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase ) ) @slow def A__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowercase : int =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowercase : Dict =json.loads(f.read() ) lowercase : Any ={'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} lowercase : Optional[Any] =pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowercase : Optional[Any] =YolosImageProcessor(format='''coco_panoptic''' ) lowercase : Optional[int] =image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , masks_path=UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values lowercase : Optional[int] =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase ) lowercase : Optional[int] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase , atol=1e-4 ) ) # verify area lowercase : Dict =torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase ) ) # verify boxes lowercase : Optional[int] =torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase ) lowercase : Tuple =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase , atol=1e-3 ) ) # verify image_id lowercase : List[str] =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase ) ) # verify is_crowd lowercase : Any =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase ) ) # verify class_labels lowercase : Dict =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase ) ) # verify masks lowercase : Optional[int] =82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase ) # verify orig_size lowercase : List[Any] =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase ) ) # verify size lowercase : Union[str, Any] =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase ) )
707
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass SCREAMING_SNAKE_CASE = (3, 9, -11, 0, 7, 5, 1, -1) SCREAMING_SNAKE_CASE = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = 42 class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Iterable[int] ) -> None: '''simple docstring''' lowercase : Node | None =None for i in sorted(UpperCAmelCase , reverse=UpperCAmelCase ): lowercase : Optional[Any] =Node(UpperCAmelCase , self.head ) def __iter__( self : Any ) -> Iterator[int]: '''simple docstring''' lowercase : Dict =self.head while node: yield node.data lowercase : List[Any] =node.next_node def __len__( self : List[str] ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self : Tuple ) -> str: '''simple docstring''' return " -> ".join([str(UpperCAmelCase ) for node in self] ) def lowercase_ ( __A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__A ) + list(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
708
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
0
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) SCREAMING_SNAKE_CASE = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) SCREAMING_SNAKE_CASE = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) SCREAMING_SNAKE_CASE = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) SCREAMING_SNAKE_CASE = tf.keras.preprocessing.image.img_to_array(test_image) SCREAMING_SNAKE_CASE = np.expand_dims(test_image, axis=0) SCREAMING_SNAKE_CASE = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: SCREAMING_SNAKE_CASE = 'Normal' if result[0][0] == 1: SCREAMING_SNAKE_CASE = 'Abnormality detected'
709
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCAmelCase_ ( __A , __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = StableUnCLIPImgaImgPipeline UpperCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS UpperCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase_ = frozenset([] ) def A__ ( self : Any ) -> List[Any]: '''simple docstring''' lowercase : List[Any] =32 lowercase : Optional[Any] =embedder_hidden_size # image encoding components lowercase : List[str] =CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowercase : str =CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCAmelCase , projection_dim=UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowercase : int =StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase ) lowercase : Union[str, Any] =DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) lowercase : str =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) lowercase : Tuple =CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase : int =UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase , layers_per_block=1 , upcast_attention=UpperCAmelCase , use_linear_projection=UpperCAmelCase , ) torch.manual_seed(0 ) lowercase : int =DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowercase : str =AutoencoderKL() lowercase : int ={ # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def A__ ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : int=True ) -> Optional[Any]: '''simple docstring''' if str(UpperCAmelCase ).startswith('''mps''' ): lowercase : List[str] =torch.manual_seed(UpperCAmelCase ) else: lowercase : Any =torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase : Any =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if pil_image: lowercase : str =input_image * 0.5 + 0.5 lowercase : Tuple =input_image.clamp(0 , 1 ) lowercase : Tuple =input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase : Dict =DiffusionPipeline.numpy_to_pil(UpperCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : Union[str, Any] ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Optional[int] =self.get_dummy_components() lowercase : List[Any] =StableUnCLIPImgaImgPipeline(**UpperCAmelCase ) lowercase : str =sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : Optional[Any] =self.get_dummy_inputs(UpperCAmelCase ) inputs.update({'''image_embeds''': None} ) lowercase : int =sd_pipe(**UpperCAmelCase ).images lowercase : str =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase : str =np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self : Dict ) -> Tuple: '''simple docstring''' lowercase : Union[str, Any] =torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : int =torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCAmelCase ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Any =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) lowercase : Dict =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) lowercase : Union[str, Any] =StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase : Tuple =torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase : Dict =pipe(UpperCAmelCase , '''anime turle''' , generator=UpperCAmelCase , output_type='''np''' ) lowercase : int =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) lowercase : Optional[int] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) lowercase : Tuple =StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase : Any =torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase : Optional[Any] =pipe(UpperCAmelCase , '''anime turle''' , generator=UpperCAmelCase , output_type='''np''' ) lowercase : str =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> Tuple: '''simple docstring''' lowercase : Union[str, Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase : Any =StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) lowercase : List[Any] =pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase : List[str] =pipe( UpperCAmelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) lowercase : Dict =torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
710
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
0
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False, False, False @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = None # Automatically constructed UpperCamelCase_ = '''dict''' UpperCamelCase_ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) UpperCamelCase_ = field(default='''Audio''' , init=__A , repr=__A ) def __call__( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return self.pa_type def A__ ( self : Any , UpperCAmelCase : Union[str, bytes, dict] ) -> dict: '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(UpperCAmelCase , UpperCAmelCase ): return {"bytes": None, "path": value} elif isinstance(UpperCAmelCase , UpperCAmelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowercase : List[Any] =BytesIO() sf.write(UpperCAmelCase , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowercase : Union[str, Any] =np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_2767 else: lowercase : List[Any] =np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_2767 lowercase : List[str] =BytesIO(bytes() ) sf.write(UpperCAmelCase , UpperCAmelCase , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def A__ ( self : str , UpperCAmelCase : dict , UpperCAmelCase : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: '''simple docstring''' if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) lowercase : List[str] =(value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err lowercase : Optional[int] =xsplitext(UpperCAmelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: lowercase : List[Any] =token_per_repo_id or {} lowercase : List[Any] =path.split('''::''' )[-1] try: lowercase : Union[str, Any] =string_to_dict(UpperCAmelCase , config.HUB_DATASETS_URL )['''repo_id'''] lowercase : List[Any] =token_per_repo_id[repo_id] except (ValueError, KeyError): lowercase : Any =None with xopen(UpperCAmelCase , '''rb''' , use_auth_token=UpperCAmelCase ) as f: lowercase : List[str] =sf.read(UpperCAmelCase ) else: lowercase : int =sf.read(UpperCAmelCase ) lowercase : List[Any] =array.T if self.mono: lowercase : List[str] =librosa.to_mono(UpperCAmelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowercase : Dict =librosa.resample(UpperCAmelCase , orig_sr=UpperCAmelCase , target_sr=self.sampling_rate ) lowercase : Any =self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def A__ ( self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def A__ ( self : Optional[int] , UpperCAmelCase : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): lowercase : Optional[int] =pa.array([None] * len(UpperCAmelCase ) , type=pa.binary() ) lowercase : Optional[Any] =pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase : Union[str, Any] =pa.array([None] * len(UpperCAmelCase ) , type=pa.string() ) lowercase : List[Any] =pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): lowercase : List[Any] =pa.array([Audio().encode_example(UpperCAmelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: lowercase : List[Any] =storage.field('''bytes''' ) else: lowercase : Any =pa.array([None] * len(UpperCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: lowercase : Any =storage.field('''path''' ) else: lowercase : int =pa.array([None] * len(UpperCAmelCase ) , type=pa.string() ) lowercase : Union[str, Any] =pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(UpperCAmelCase , self.pa_type ) def A__ ( self : List[Any] , UpperCAmelCase : pa.StructArray ) -> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase : Dict ): with xopen(UpperCAmelCase , '''rb''' ) as f: lowercase : str =f.read() return bytes_ lowercase : List[str] =pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase : str =pa.array( [os.path.basename(UpperCAmelCase ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) lowercase : Optional[int] =pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(UpperCAmelCase , self.pa_type )
711
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2 def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" lowercase : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''swinv2''' UpperCamelCase_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Optional[Any] , UpperCAmelCase : str=224 , UpperCAmelCase : str=4 , UpperCAmelCase : Dict=3 , UpperCAmelCase : Dict=96 , UpperCAmelCase : List[Any]=[2, 2, 6, 2] , UpperCAmelCase : Dict=[3, 6, 12, 24] , UpperCAmelCase : Tuple=7 , UpperCAmelCase : Tuple=4.0 , UpperCAmelCase : Tuple=True , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : int="gelu" , UpperCAmelCase : Dict=False , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : Union[str, Any]=1e-5 , UpperCAmelCase : List[Any]=32 , **UpperCAmelCase : Dict , ): '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : int =image_size lowercase : Any =patch_size lowercase : List[str] =num_channels lowercase : Optional[int] =embed_dim lowercase : List[str] =depths lowercase : Tuple =len(UpperCAmelCase ) lowercase : List[Any] =num_heads lowercase : List[str] =window_size lowercase : Union[str, Any] =mlp_ratio lowercase : List[Any] =qkv_bias lowercase : List[Any] =hidden_dropout_prob lowercase : Optional[int] =attention_probs_dropout_prob lowercase : Tuple =drop_path_rate lowercase : List[Any] =hidden_act lowercase : List[str] =use_absolute_embeddings lowercase : List[str] =layer_norm_eps lowercase : Optional[int] =initializer_range lowercase : Any =encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase : str =int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) ) lowercase : str =(0, 0, 0, 0)
712
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : Any =tempfile.mkdtemp() # fmt: off lowercase : Optional[int] =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on lowercase : List[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowercase : List[Any] ={ '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } lowercase : Dict =os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any , **UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : Tuple , **UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A__ ( self : List[str] ) -> int: '''simple docstring''' lowercase : Optional[int] =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase : Any =[Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ ( self : Optional[int] ) -> Any: '''simple docstring''' lowercase : Optional[Any] =self.get_tokenizer() lowercase : Optional[int] =self.get_image_processor() lowercase : int =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase : Optional[int] =VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def A__ ( self : Tuple ) -> List[str]: '''simple docstring''' lowercase : Optional[Any] =VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase : Optional[int] =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowercase : str =self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowercase : str =VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def A__ ( self : List[Any] ) -> str: '''simple docstring''' lowercase : Any =self.get_image_processor() lowercase : Optional[int] =self.get_tokenizer() lowercase : Union[str, Any] =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : str =self.prepare_image_inputs() lowercase : Any =image_processor(UpperCAmelCase , return_tensors='''np''' ) lowercase : Union[str, Any] =processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A__ ( self : str ) -> Optional[Any]: '''simple docstring''' lowercase : str =self.get_image_processor() lowercase : Optional[Any] =self.get_tokenizer() lowercase : Dict =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : int ='''lower newer''' lowercase : List[str] =processor(text=UpperCAmelCase ) lowercase : Tuple =tokenizer(UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : Optional[int] =self.get_image_processor() lowercase : Dict =self.get_tokenizer() lowercase : Dict =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Dict ='''lower newer''' lowercase : List[Any] =self.prepare_image_inputs() lowercase : Dict =processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(UpperCAmelCase ): processor() def A__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase : List[str] =self.get_image_processor() lowercase : str =self.get_tokenizer() lowercase : str =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase : Tuple =processor.batch_decode(UpperCAmelCase ) lowercase : Optional[int] =tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowercase : Union[str, Any] =self.get_image_processor() lowercase : List[str] =self.get_tokenizer() lowercase : Tuple =VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[int] ='''lower newer''' lowercase : Dict =self.prepare_image_inputs() lowercase : Any =processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
713
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import requests SCREAMING_SNAKE_CASE = 'https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=' def lowercase_ ( __A : str ) -> None: """simple docstring""" lowercase : Tuple =requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(F'{i}.) {article["title"]}' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
714
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase_ ( __A ): """simple docstring""" def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : Tuple =tempfile.mkdtemp() lowercase : str =5 # Realm tok lowercase : Optional[int] =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase : Optional[int] =os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) lowercase : Optional[Any] =os.path.join(UpperCAmelCase , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowercase : Dict =os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) def A__ ( self : Any ) -> RealmTokenizer: '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def A__ ( self : Dict ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =RealmConfig(num_block_records=self.num_block_records ) return config def A__ ( self : int ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def A__ ( self : Tuple ) -> str: '''simple docstring''' lowercase : Optional[Any] =np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ] , dtype=UpperCAmelCase , ) return block_records def A__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def A__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' lowercase : Union[str, Any] =self.get_config() lowercase : Tuple =self.get_dummy_retriever() lowercase : int =retriever.tokenizer lowercase : Any =np.array([0, 3] , dtype='''long''' ) lowercase : Optional[int] =tokenizer(['''Test question'''] ).input_ids lowercase : Optional[int] =tokenizer( ['''the fourth'''] , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ).input_ids lowercase : List[Any] =config.reader_seq_len lowercase : Dict =retriever( UpperCAmelCase , UpperCAmelCase , answer_ids=UpperCAmelCase , max_length=UpperCAmelCase , return_tensors='''np''' ) self.assertEqual(len(UpperCAmelCase ) , 2 ) self.assertEqual(len(UpperCAmelCase ) , 2 ) self.assertEqual(len(UpperCAmelCase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def A__ ( self : Tuple ) -> int: '''simple docstring''' lowercase : List[str] =self.get_config() lowercase : Optional[Any] =self.get_dummy_retriever() lowercase : int =retriever.tokenizer lowercase : Optional[Any] =np.array([0, 3, 5] , dtype='''long''' ) lowercase : Union[str, Any] =tokenizer(['''Test question'''] ).input_ids lowercase : Tuple =tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ).input_ids lowercase : Tuple =config.reader_seq_len lowercase : int =retriever( UpperCAmelCase , UpperCAmelCase , answer_ids=UpperCAmelCase , max_length=UpperCAmelCase , return_tensors='''np''' ) self.assertEqual([False, True, True] , UpperCAmelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , UpperCAmelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path lowercase : List[Any] =retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: lowercase : Dict =os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) lowercase : Dict =RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
715
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =pipeline( '''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =INVOICE_URL lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) lowercase : Dict ='''What is the placebo?''' lowercase : Optional[Any] =[ { '''image''': load_image(UpperCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : Optional[int] =[ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : str =[] lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Dict =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Dict =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : Tuple =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , ) lowercase : Tuple =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : str =INVOICE_URL lowercase : int ='''What is the invoice number?''' lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Any =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' pass
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
716
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def lowercase_ ( __A : int ) -> Union[str, Any]: """simple docstring""" lowercase : str =[tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class UpperCAmelCase_ ( __A , __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = StableDiffusionLatentUpscalePipeline UpperCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } UpperCamelCase_ = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} UpperCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase_ = frozenset([] ) UpperCamelCase_ = True @property def A__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : str =1 lowercase : List[str] =4 lowercase : Union[str, Any] =(16, 16) lowercase : Dict =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase : Optional[int] =UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=UpperCAmelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=UpperCAmelCase , only_cross_attention=UpperCAmelCase , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) lowercase : List[str] =AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) lowercase : Union[str, Any] =EulerDiscreteScheduler(prediction_type='''sample''' ) lowercase : int =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''quick_gelu''' , projection_dim=512 , ) lowercase : Dict =CLIPTextModel(UpperCAmelCase ) lowercase : int =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase : List[Any] ={ '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def A__ ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int]=0 ) -> List[str]: '''simple docstring''' if str(UpperCAmelCase ).startswith('''mps''' ): lowercase : int =torch.manual_seed(UpperCAmelCase ) else: lowercase : Union[str, Any] =torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase : List[str] ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def A__ ( self : str ) -> List[Any]: '''simple docstring''' lowercase : str ='''cpu''' lowercase : List[str] =self.get_dummy_components() lowercase : str =self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : List[str] =self.get_dummy_inputs(UpperCAmelCase ) lowercase : int =pipe(**UpperCAmelCase ).images lowercase : str =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) lowercase : Dict =np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) lowercase : int =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def A__ ( self : str ) -> Optional[Any]: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def A__ ( self : str ) -> int: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def A__ ( self : str ) -> List[str]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def A__ ( self : Dict ) -> int: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def A__ ( self : int ) -> Tuple: '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : Dict =[ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] lowercase : int =self.get_dummy_components() lowercase : Dict =self.pipeline_class(**UpperCAmelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase : int =self.get_dummy_inputs(UpperCAmelCase ) lowercase : int =2 lowercase : Optional[Any] =[] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowercase : Dict =getattr(UpperCAmelCase , scheduler_enum.name ) lowercase : Tuple =scheduler_cls.from_config(pipe.scheduler.config ) lowercase : Dict =pipe(**UpperCAmelCase )[0] outputs.append(UpperCAmelCase ) assert check_same_shape(UpperCAmelCase ) @require_torch_gpu @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Tuple ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' lowercase : Tuple =torch.manual_seed(33 ) lowercase : Dict =StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) lowercase : List[str] =StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) lowercase : str ='''a photo of an astronaut high resolution, unreal engine, ultra realistic''' lowercase : Dict =pipe(UpperCAmelCase , generator=UpperCAmelCase , output_type='''latent''' ).images lowercase : Union[str, Any] =upscaler( prompt=UpperCAmelCase , image=UpperCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase , output_type='''np''' , ).images[0] lowercase : str =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def A__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowercase : str =torch.manual_seed(33 ) lowercase : Optional[int] =StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) lowercase : Union[str, Any] ='''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' lowercase : Union[str, Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) lowercase : Optional[Any] =upscaler( prompt=UpperCAmelCase , image=UpperCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase , output_type='''np''' , ).images[0] lowercase : str =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
717
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
0
'''simple docstring''' import math import sys def lowercase_ ( __A : int ) -> int: """simple docstring""" if number != int(__A ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 lowercase : List[str] =[-1] * (number + 1) lowercase : Dict =0 for i in range(1 , number + 1 ): lowercase : Union[str, Any] =sys.maxsize lowercase : List[Any] =int(math.sqrt(__A ) ) for j in range(1 , root + 1 ): lowercase : Optional[Any] =1 + answers[i - (j**2)] lowercase : List[str] =min(__A , __A ) lowercase : Dict =answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
0
'''simple docstring''' class UpperCAmelCase_ : """simple docstring""" def __init__( self : Dict , UpperCAmelCase : Any ) -> Dict: '''simple docstring''' lowercase : str =val lowercase : Tuple =None lowercase : List[str] =None def A__ ( self : Any , UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' if self.val: if val < self.val: if self.left is None: lowercase : str =Node(UpperCAmelCase ) else: self.left.insert(UpperCAmelCase ) elif val > self.val: if self.right is None: lowercase : List[Any] =Node(UpperCAmelCase ) else: self.right.insert(UpperCAmelCase ) else: lowercase : Tuple =val def lowercase_ ( __A : Any , __A : List[Any] ) -> Tuple: """simple docstring""" if root: inorder(root.left , __A ) res.append(root.val ) inorder(root.right , __A ) def lowercase_ ( __A : Optional[int] ) -> Optional[Any]: """simple docstring""" if len(__A ) == 0: return arr lowercase : List[str] =Node(arr[0] ) for i in range(1 , len(__A ) ): root.insert(arr[i] ) # Traverse BST in order. lowercase : int =[] inorder(__A , __A ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) SCREAMING_SNAKE_CASE = '\\n Text data.\n Second line of data.' SCREAMING_SNAKE_CASE = 'file' @pytest.fixture(scope='''session''' ) def lowercase_ ( __A : Optional[int] ) -> Dict: """simple docstring""" lowercase : Union[str, Any] =tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') lowercase : Dict =bytes(__A , '''utf-8''' ) with zstd.open(__A , '''wb''' ) as f: f.write(__A ) return path @pytest.fixture def lowercase_ ( __A : Any ) -> int: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , __A ) , '''w''' ) as f: f.write(__A ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def lowercase_ ( __A : int , __A : int , __A : Any , __A : List[Any] , __A : Dict , __A : Tuple ) -> Dict: """simple docstring""" lowercase : Optional[Any] ={'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} lowercase : List[Any] =input_paths[compression_format] lowercase : Optional[Any] =tmp_path / '''cache''' lowercase : List[Any] =DownloadConfig(cache_dir=__A , extract_compressed_file=__A ) lowercase : List[str] =cached_path(__A , download_config=__A ) with open(__A ) as f: lowercase : Any =f.read() with open(__A ) as f: lowercase : int =f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def lowercase_ ( __A : Union[str, Any] , __A : List[Any] , __A : List[Any] , __A : Optional[Any] , __A : Any ) -> Optional[Any]: """simple docstring""" lowercase : Dict ='''custom_cache''' lowercase : int ='''custom_extracted_dir''' lowercase : Optional[Any] =tmp_path / '''custom_extracted_path''' if default_extracted: lowercase : Tuple =('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , __A ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__A ) ) lowercase : List[Any] =custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowercase : str =xz_file lowercase : str =( DownloadConfig(extract_compressed_file=__A ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__A ) ) lowercase : Tuple =cached_path(__A , download_config=__A ) assert Path(__A ).parent.parts[-2:] == expected def lowercase_ ( __A : int ) -> Any: """simple docstring""" lowercase : Tuple =str(Path(__A ).resolve() ) assert cached_path(__A ) == text_file # relative path lowercase : Optional[Any] =str(Path(__A ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__A ) == text_file def lowercase_ ( __A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] =str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(__A ): cached_path(__A ) # relative path lowercase : List[str] ='''./__missing_file__.txt''' with pytest.raises(__A ): cached_path(__A ) def lowercase_ ( __A : Optional[Any] ) -> Tuple: """simple docstring""" lowercase : Union[str, Any] =get_from_cache(F'tmp://{tmpfs_file}' ) with open(__A ) as f: lowercase : Optional[int] =f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __A ) def lowercase_ ( ) -> Dict: """simple docstring""" with pytest.raises(__A ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __A ) def lowercase_ ( __A : Tuple ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] =tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__A ): http_get('''https://huggingface.co''' , temp_file=__A ) with pytest.raises(__A ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __A ) def lowercase_ ( __A : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase : str =tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__A ): ftp_get('''ftp://huggingface.co''' , temp_file=__A ) with pytest.raises(__A ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __A ) def lowercase_ ( __A : List[str] ) -> Any: """simple docstring""" lowercase : Tuple =tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__A ): fsspec_get('''s3://huggingface.co''' , temp_file=__A ) with pytest.raises(__A ): fsspec_head('''s3://huggingface.co''' )
720
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
0
'''simple docstring''' def lowercase_ ( __A : int = 5_0 ) -> int: """simple docstring""" lowercase : str =[1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
721
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
0
'''simple docstring''' def lowercase_ ( __A : int = 2_0_0 ) -> int: """simple docstring""" lowercase : Dict =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] lowercase : Any =[0] * (pence + 1) lowercase : Optional[int] =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__A , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73_682
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def lowercase_ ( __A : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase : str =SwinConfig(image_size=1_9_2 ) if "base" in model_name: lowercase : Dict =6 lowercase : Union[str, Any] =1_2_8 lowercase : int =(2, 2, 1_8, 2) lowercase : str =(4, 8, 1_6, 3_2) elif "large" in model_name: lowercase : List[str] =1_2 lowercase : Optional[Any] =1_9_2 lowercase : int =(2, 2, 1_8, 2) lowercase : int =(6, 1_2, 2_4, 4_8) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowercase : Union[str, Any] =window_size lowercase : List[Any] =embed_dim lowercase : Union[str, Any] =depths lowercase : List[Any] =num_heads return config def lowercase_ ( __A : Tuple ) -> List[str]: """simple docstring""" if "encoder.mask_token" in name: lowercase : List[Any] =name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowercase : List[Any] =name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowercase : Union[str, Any] =name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowercase : Optional[Any] =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowercase : Dict =name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase : Any =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase : int =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase : int =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase : List[str] =name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowercase : List[Any] ='''layernorm.weight''' if name == "encoder.norm.bias": lowercase : Union[str, Any] ='''layernorm.bias''' if "decoder" in name: pass else: lowercase : Optional[int] ='''swin.''' + name return name def lowercase_ ( __A : Optional[Any] , __A : List[Any] ) -> Any: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase : Tuple =orig_state_dict.pop(__A ) if "attn_mask" in key: pass elif "qkv" in key: lowercase : int =key.split('''.''' ) lowercase : Union[str, Any] =int(key_split[2] ) lowercase : Any =int(key_split[4] ) lowercase : str =model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase : Tuple =val[:dim, :] lowercase : str =val[ dim : dim * 2, : ] lowercase : Optional[int] =val[-dim:, :] else: lowercase : int =val[ :dim ] lowercase : List[Any] =val[ dim : dim * 2 ] lowercase : Optional[Any] =val[ -dim: ] else: lowercase : Optional[Any] =val return orig_state_dict def lowercase_ ( __A : List[str] , __A : str , __A : str , __A : List[Any] ) -> int: """simple docstring""" lowercase : Any =torch.load(__A , map_location='''cpu''' )['''model'''] lowercase : Optional[int] =get_swin_config(__A ) lowercase : Optional[Any] =SwinForMaskedImageModeling(__A ) model.eval() lowercase : Optional[Any] =convert_state_dict(__A , __A ) model.load_state_dict(__A ) lowercase : int ='''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Union[str, Any] =ViTImageProcessor(size={'''height''': 1_9_2, '''width''': 1_9_2} ) lowercase : Any =Image.open(requests.get(__A , stream=__A ).raw ) lowercase : Any =image_processor(images=__A , return_tensors='''pt''' ) with torch.no_grad(): lowercase : Tuple =model(**__A ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__A ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__A ) if push_to_hub: print(F'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(F'microsoft/{model_name}' ) image_processor.push_to_hub(F'microsoft/{model_name}' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import random def lowercase_ ( __A : int ) -> bool: """simple docstring""" lowercase : Dict =num - 1 lowercase : Union[str, Any] =0 while s % 2 == 0: lowercase : Any =s // 2 t += 1 for _ in range(5 ): lowercase : Any =random.randrange(2 , num - 1 ) lowercase : Optional[Any] =pow(__A , __A , __A ) if v != 1: lowercase : str =0 while v != (num - 1): if i == t - 1: return False else: lowercase : List[str] =i + 1 lowercase : Tuple =(v**2) % num return True def lowercase_ ( __A : int ) -> bool: """simple docstring""" if num < 2: return False lowercase : Any =[ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__A ) def lowercase_ ( __A : int = 1_0_2_4 ) -> int: """simple docstring""" while True: lowercase : Tuple =random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(__A ): return num if __name__ == "__main__": SCREAMING_SNAKE_CASE = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
702
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514} SCREAMING_SNAKE_CASE = {} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = HerbertTokenizer def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : List[Any] =[self.cls_token_id] lowercase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
8
0
'''simple docstring''' import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file SCREAMING_SNAKE_CASE = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def lowercase_ ( __A : str=None ) -> List[str]: """simple docstring""" if subparsers is not None: lowercase : Optional[int] =subparsers.add_parser('''tpu-config''' , description=_description ) else: lowercase : List[Any] =argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments lowercase : Dict =parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=__A , default=__A , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=__A , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=__A , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) lowercase : Any =parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=__A , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=__A ) return parser def lowercase_ ( __A : Dict ) -> List[str]: """simple docstring""" lowercase : List[str] =None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__A ): lowercase : List[Any] =load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowercase : Any =defaults.command_file if not args.command and defaults.commands is not None: lowercase : List[Any] =defaults.commands if not args.tpu_name: lowercase : Dict =defaults.tpu_name if not args.tpu_zone: lowercase : Dict =defaults.tpu_zone if args.accelerate_version == "dev": lowercase : str ='''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": lowercase : int ='''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , __A ): lowercase : Any =F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: lowercase : List[str] =[f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __A ): lowercase : Union[str, Any] =[line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowercase : Tuple =['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command lowercase : Dict ='''; '''.join(__A ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowercase : int =['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(__A )}' ) return subprocess.run(__A ) print('''Successfully setup pod.''' ) def lowercase_ ( ) -> Any: """simple docstring""" lowercase : str =tpu_command_parser() lowercase : Any =parser.parse_args() tpu_command_launcher(__A )
703
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
0
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE = getLogger(__name__) SCREAMING_SNAKE_CASE = 'cuda' if torch.cuda.is_available() else 'cpu' def lowercase_ ( __A : List[str] , __A : str , __A : str , __A : int = 8 , __A : str = DEFAULT_DEVICE , __A : str=False , __A : Union[str, Any]="summarization" , __A : Tuple=None , **__A : Dict , ) -> Dict: """simple docstring""" lowercase : List[str] =Path(__A ).open('''w''' , encoding='''utf-8''' ) lowercase : int =str(__A ) lowercase : Optional[Any] =AutoModelForSeqaSeqLM.from_pretrained(__A ).to(__A ) if fpaa: lowercase : List[str] =model.half() lowercase : str =AutoTokenizer.from_pretrained(__A ) logger.info(F'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. lowercase : Optional[int] =time.time() # update config with task specific params use_task_specific_params(__A , __A ) if prefix is None: lowercase : str =prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(__A , __A ) ) ): lowercase : Any =[prefix + text for text in examples_chunk] lowercase : Optional[int] =tokenizer(__A , return_tensors='''pt''' , truncation=__A , padding='''longest''' ).to(__A ) lowercase : List[str] =model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **__A , ) lowercase : Dict =tokenizer.batch_decode(__A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() lowercase : Optional[int] =int(time.time() - start_time ) # seconds lowercase : List[Any] =len(__A ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase_ ( ) -> Optional[Any]: """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def lowercase_ ( __A : Tuple=True ) -> List[Any]: """simple docstring""" lowercase : Optional[int] =argparse.ArgumentParser() parser.add_argument('''model_name''' , type=__A , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=__A , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=__A , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=__A , required=__A , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=__A , required=__A , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=__A , required=__A , default=__A , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=__A , required=__A , default=__A , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=__A , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=__A , default=8 , required=__A , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=__A , default=-1 , required=__A , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=__A , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate lowercase : Dict =parser.parse_known_args() lowercase : Any =parse_numeric_n_bool_cl_kwargs(__A ) if parsed_args and verbose: print(F'parsed the following generate kwargs: {parsed_args}' ) lowercase : Tuple =[''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: lowercase : List[str] =examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=__A ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'score_path {args.score_path} will be overwritten unless you type ctrl-c.' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) lowercase : Union[str, Any] =generate_summaries_or_translations( __A , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **__A , ) if args.reference_path is None: return {} # Compute scores lowercase : int =calculate_bleu if '''translation''' in args.task else calculate_rouge lowercase : List[str] =[x.rstrip() for x in open(args.save_path ).readlines()] lowercase : List[Any] =[x.rstrip() for x in open(args.reference_path ).readlines()][: len(__A )] lowercase : dict =score_fn(__A , __A ) scores.update(__A ) if args.dump_args: scores.update(__A ) if args.info: lowercase : Tuple =args.info if verbose: print(__A ) if args.score_path is not None: json.dump(__A , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
704
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
0
'''simple docstring''' SCREAMING_SNAKE_CASE = tuple[float, float, float] SCREAMING_SNAKE_CASE = tuple[float, float, float] def lowercase_ ( __A : Pointad , __A : Pointad ) -> Vectorad: """simple docstring""" lowercase : Optional[Any] =end_pointa[0] - end_pointa[0] lowercase : Dict =end_pointa[1] - end_pointa[1] lowercase : List[Any] =end_pointa[2] - end_pointa[2] return (x, y, z) def lowercase_ ( __A : Vectorad , __A : Vectorad ) -> Vectorad: """simple docstring""" lowercase : List[str] =ab[1] * ac[2] - ab[2] * ac[1] # *i lowercase : Optional[int] =(ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j lowercase : str =ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def lowercase_ ( __A : Vectorad , __A : int ) -> bool: """simple docstring""" return tuple(round(__A , __A ) for x in vector ) == (0, 0, 0) def lowercase_ ( __A : Pointad , __A : Pointad , __A : Pointad , __A : int = 1_0 ) -> bool: """simple docstring""" lowercase : Optional[int] =create_vector(__A , __A ) lowercase : int =create_vector(__A , __A ) return is_zero_vector(get_ad_vectors_cross(__A , __A ) , __A )
705
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
0
'''simple docstring''' import requests from bsa import BeautifulSoup def lowercase_ ( __A : str = "AAPL" ) -> str: """simple docstring""" lowercase : int =F'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' lowercase : List[Any] =BeautifulSoup(requests.get(__A ).text , '''html.parser''' ) lowercase : Union[str, Any] ='''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
706
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
0
'''simple docstring''' from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar SCREAMING_SNAKE_CASE = TypeVar('T') class UpperCAmelCase_ ( Generic[T] ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : bool = True ) -> None: '''simple docstring''' lowercase : dict[T, list[T]] ={} # dictionary of lists lowercase : Dict =directed def A__ ( self : List[str] , UpperCAmelCase : T , UpperCAmelCase : T ) -> GraphAdjacencyList[T]: '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCAmelCase ) self.adj_list[destination_vertex].append(UpperCAmelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCAmelCase ) lowercase : Tuple =[source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(UpperCAmelCase ) lowercase : Any =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowercase : int =[destination_vertex] lowercase : List[str] =[source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCAmelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCAmelCase ) lowercase : List[Any] =[] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowercase : Optional[int] =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowercase : Union[str, Any] =[destination_vertex] lowercase : int =[] return self def __repr__( self : str ) -> str: '''simple docstring''' return pformat(self.adj_list )
707
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
0
'''simple docstring''' from __future__ import annotations import math SCREAMING_SNAKE_CASE = '2020.9.26' SCREAMING_SNAKE_CASE = 'xcodz-dot, cclaus, dhruvmanila' def lowercase_ ( __A : float , __A : float , __A : float , __A : float , __A : float ) -> tuple[float, float]: """simple docstring""" if not all(isinstance(__A , (float, int) ) for val in locals().values() ): lowercase : Dict =F'Input values must either be float or int: {list(locals().values() )}' raise TypeError(__A ) lowercase : int =((x * distance) / (z + distance)) * scale lowercase : List[Any] =((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowercase_ ( __A : float , __A : float , __A : float , __A : str , __A : float ) -> tuple[float, float, float]: """simple docstring""" if not isinstance(__A , __A ): raise TypeError('''Axis must be a str''' ) lowercase : Dict =locals() del input_variables["axis"] if not all(isinstance(__A , (float, int) ) for val in input_variables.values() ): lowercase : Tuple =( '''Input values except axis must either be float or int: ''' F'{list(input_variables.values() )}' ) raise TypeError(__A ) lowercase : Optional[Any] =(angle % 3_6_0) / 4_5_0 * 1_8_0 / math.pi if axis == "z": lowercase : List[Any] =x * math.cos(__A ) - y * math.sin(__A ) lowercase : List[str] =y * math.cos(__A ) + x * math.sin(__A ) lowercase : Union[str, Any] =z elif axis == "x": lowercase : int =y * math.cos(__A ) - z * math.sin(__A ) lowercase : Optional[Any] =z * math.cos(__A ) + y * math.sin(__A ) lowercase : Any =x elif axis == "y": lowercase : Any =x * math.cos(__A ) - z * math.sin(__A ) lowercase : Any =z * math.cos(__A ) + x * math.sin(__A ) lowercase : Optional[int] =y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(f"""{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }""")
708
'''simple docstring''' def lowercase_ ( __A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: """simple docstring""" try: lowercase : Any =int(__A ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =1 lowercase : Dict =2 while i * i <= n: while n % i == 0: lowercase : Optional[int] =i n //= i i += 1 if n > 1: lowercase : Dict =n return int(__A ) if __name__ == "__main__": print(f"""{solution() = }""")
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
'''simple docstring''' from __future__ import annotations import math def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" lowercase : str =u for i in range(1 , __A ): lowercase : Any =temp * (u - i) return temp def lowercase_ ( ) -> None: """simple docstring""" lowercase : List[str] =int(input('''enter the numbers of values: ''' ) ) lowercase : list[list[float]] =[] for _ in range(__A ): y.append([] ) for i in range(__A ): for j in range(__A ): y[i].append(__A ) lowercase : List[Any] =0 print('''enter the values of parameters in a list: ''' ) lowercase : Optional[int] =list(map(__A , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(__A ): lowercase : str =float(input() ) lowercase : int =int(input('''enter the value to interpolate: ''' ) ) lowercase : Union[str, Any] =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __A ): for j in range(n - i ): lowercase : str =y[j + 1][i - 1] - y[j][i - 1] lowercase : Any =y[0][0] for i in range(1 , __A ): summ += (ucal(__A , __A ) * y[0][i]) / math.factorial(__A ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Dict ) -> int: '''simple docstring''' lowercase : List[Any] =inspect.getfile(accelerate.test_utils ) lowercase : int =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) lowercase : Any =os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowercase : Union[str, Any] =f'\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n '.split() lowercase : Union[str, Any] =[sys.executable] + distributed_args execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() )
710
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
0
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , __A , ) class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = RobertaConfig UpperCamelCase_ = '''roberta''' def __init__( self : Union[str, Any] , UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' super().__init__(UpperCAmelCase ) lowercase : List[str] =RobertaEmbeddings(UpperCAmelCase ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , __A , ) class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = RobertaConfig UpperCamelCase_ = '''roberta''' def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().__init__(UpperCAmelCase ) lowercase : Optional[int] =config.num_labels lowercase : List[Any] =config.num_hidden_layers lowercase : Any =DeeRobertaModel(UpperCAmelCase ) lowercase : str =nn.Dropout(config.hidden_dropout_prob ) lowercase : int =nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(UpperCAmelCase ) def A__ ( self : List[Any] , UpperCAmelCase : List[Any]=None , UpperCAmelCase : str=None , UpperCAmelCase : int=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : int=None , UpperCAmelCase : Any=None , UpperCAmelCase : str=None , UpperCAmelCase : Any=-1 , UpperCAmelCase : Union[str, Any]=False , ) -> Dict: '''simple docstring''' lowercase : List[str] =self.num_layers try: lowercase : Tuple =self.roberta( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , position_ids=UpperCAmelCase , head_mask=UpperCAmelCase , inputs_embeds=UpperCAmelCase , ) lowercase : Optional[Any] =outputs[1] lowercase : Any =self.dropout(UpperCAmelCase ) lowercase : int =self.classifier(UpperCAmelCase ) lowercase : int =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowercase : List[str] =e.message lowercase : Optional[Any] =e.exit_layer lowercase : Any =outputs[0] if not self.training: lowercase : List[str] =entropy(UpperCAmelCase ) lowercase : int =[] lowercase : Optional[Any] =[] if labels is not None: if self.num_labels == 1: # We are doing regression lowercase : Dict =MSELoss() lowercase : Any =loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: lowercase : str =CrossEntropyLoss() lowercase : Any =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits lowercase : List[Any] =[] for highway_exit in outputs[-1]: lowercase : Any =highway_exit[0] if not self.training: highway_logits_all.append(UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowercase : Union[str, Any] =MSELoss() lowercase : Optional[Any] =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: lowercase : Tuple =CrossEntropyLoss() lowercase : List[Any] =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCAmelCase ) if train_highway: lowercase : int =(sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowercase : Any =(loss,) + outputs if not self.training: lowercase : Union[str, Any] =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowercase : Tuple =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
711
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = 8.988E9 # units = N * m^s * C^-2 def lowercase_ ( __A : float , __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" lowercase : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : Union[str, Any] =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : int =abs(__A ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Tuple =(COULOMBS_CONSTANT * charge_product / abs(__A )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' def lowercase_ ( __A : str , __A : str ) -> int: """simple docstring""" if len(__A ) != len(__A ): raise ValueError('''String lengths must match!''' ) lowercase : List[Any] =0 for chara, chara in zip(__A , __A ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = 42 class UpperCAmelCase_ ( __A , __A ): """simple docstring""" @register_to_config def __init__( self : Optional[Any] , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 3 , UpperCAmelCase : Tuple[str] = ("DownEncoderBlock2D",) , UpperCAmelCase : Tuple[str] = ("UpDecoderBlock2D",) , UpperCAmelCase : Tuple[int] = (64,) , UpperCAmelCase : int = 1 , UpperCAmelCase : str = "silu" , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 32 , UpperCAmelCase : int = 256 , UpperCAmelCase : int = 32 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : float = 0.1_8_2_1_5 , UpperCAmelCase : str = "group" , ) -> Union[str, Any]: '''simple docstring''' super().__init__() # pass init params to Encoder lowercase : Union[str, Any] =Encoder( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , down_block_types=UpperCAmelCase , block_out_channels=UpperCAmelCase , layers_per_block=UpperCAmelCase , act_fn=UpperCAmelCase , norm_num_groups=UpperCAmelCase , double_z=UpperCAmelCase , ) lowercase : Union[str, Any] =vq_embed_dim if vq_embed_dim is not None else latent_channels lowercase : Any =nn.Convad(UpperCAmelCase , UpperCAmelCase , 1 ) lowercase : Optional[Any] =VectorQuantizer(UpperCAmelCase , UpperCAmelCase , beta=0.2_5 , remap=UpperCAmelCase , sane_index_shape=UpperCAmelCase ) lowercase : List[Any] =nn.Convad(UpperCAmelCase , UpperCAmelCase , 1 ) # pass init params to Decoder lowercase : Union[str, Any] =Decoder( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , up_block_types=UpperCAmelCase , block_out_channels=UpperCAmelCase , layers_per_block=UpperCAmelCase , act_fn=UpperCAmelCase , norm_num_groups=UpperCAmelCase , norm_type=UpperCAmelCase , ) @apply_forward_hook def A__ ( self : Tuple , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True ) -> VQEncoderOutput: '''simple docstring''' lowercase : Tuple =self.encoder(UpperCAmelCase ) lowercase : Any =self.quant_conv(UpperCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCAmelCase ) @apply_forward_hook def A__ ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if not force_not_quantize: lowercase : Tuple =self.quantize(UpperCAmelCase ) else: lowercase : Dict =h lowercase : Tuple =self.post_quant_conv(UpperCAmelCase ) lowercase : List[Any] =self.decoder(UpperCAmelCase , quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase ) def A__ ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' lowercase : int =sample lowercase : Dict =self.encode(UpperCAmelCase ).latents lowercase : Optional[Any] =self.decode(UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase )
713
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''umt5''' UpperCamelCase_ = ['''past_key_values'''] def __init__( self : Optional[Any] , UpperCAmelCase : Optional[int]=25_0112 , UpperCAmelCase : str=512 , UpperCAmelCase : Optional[int]=64 , UpperCAmelCase : List[Any]=1024 , UpperCAmelCase : Tuple=8 , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=6 , UpperCAmelCase : Dict=32 , UpperCAmelCase : List[str]=128 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Optional[int]=1e-6 , UpperCAmelCase : Optional[int]=1.0 , UpperCAmelCase : Optional[Any]="gated-gelu" , UpperCAmelCase : str=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : List[str]="T5Tokenizer" , UpperCAmelCase : int=True , UpperCAmelCase : Tuple=0 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : int=0 , **UpperCAmelCase : Union[str, Any] , ) -> List[Any]: '''simple docstring''' super().__init__( is_encoder_decoder=UpperCAmelCase , tokenizer_class=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , pad_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , **UpperCAmelCase , ) lowercase : Optional[Any] =vocab_size lowercase : List[Any] =d_model lowercase : Optional[Any] =d_kv lowercase : Any =d_ff lowercase : Union[str, Any] =num_layers lowercase : Optional[int] =( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase : int =num_heads lowercase : Tuple =relative_attention_num_buckets lowercase : int =relative_attention_max_distance lowercase : Tuple =dropout_rate lowercase : List[str] =layer_norm_epsilon lowercase : Union[str, Any] =initializer_factor lowercase : int =feed_forward_proj lowercase : List[Any] =use_cache lowercase : List[Any] =self.feed_forward_proj.split('''-''' ) lowercase : Dict =act_info[-1] lowercase : Tuple =act_info[0] == '''gated''' if len(UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(UpperCAmelCase ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) if feed_forward_proj == "gated-gelu": lowercase : List[Any] ='''gelu_new''' @property def A__ ( self : Any ) -> List[Any]: '''simple docstring''' return self.d_model @property def A__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' return self.num_heads @property def A__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return self.num_layers class UpperCAmelCase_ ( __A ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def A__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowercase : List[str] ={ '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: lowercase : Union[str, Any] ='''past_encoder_sequence + sequence''' lowercase : Tuple ={0: '''batch'''} lowercase : Any ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowercase : Dict ={0: '''batch''', 1: '''decoder_sequence'''} lowercase : List[str] ={0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction='''inputs''' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def A__ ( self : List[Any] ) -> int: '''simple docstring''' return 13 @property def A__ ( self : Union[str, Any] ) -> float: '''simple docstring''' return 5e-4
714
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[Any] ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[str] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : str , **UpperCAmelCase : int ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : str ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : int , **UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[int] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : str , **UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : str ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : List[str] , **UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : str , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : Any , **UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : List[str] , **UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Any ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : List[Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : int , **UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : Any , **UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) def lowercase_ ( *__A : List[Any] , **__A : Tuple ) -> Dict: """simple docstring""" requires_backends(__A , ['''torch'''] ) def lowercase_ ( *__A : Union[str, Any] , **__A : Dict ) -> str: """simple docstring""" requires_backends(__A , ['''torch'''] ) def lowercase_ ( *__A : Any , **__A : Dict ) -> Any: """simple docstring""" requires_backends(__A , ['''torch'''] ) def lowercase_ ( *__A : Dict , **__A : Dict ) -> Tuple: """simple docstring""" requires_backends(__A , ['''torch'''] ) def lowercase_ ( *__A : Tuple , **__A : str ) -> Union[str, Any]: """simple docstring""" requires_backends(__A , ['''torch'''] ) def lowercase_ ( *__A : Tuple , **__A : Optional[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(__A , ['''torch'''] ) def lowercase_ ( *__A : Any , **__A : str ) -> Dict: """simple docstring""" requires_backends(__A , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Tuple ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : Tuple , **UpperCAmelCase : int ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : str , **UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase : int , **UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : Tuple , **UpperCAmelCase : int ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : List[str] , **UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Any , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : str , **UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[Any] , *UpperCAmelCase : int , **UpperCAmelCase : str ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : Tuple , **UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Any , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Any , **UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : int , **UpperCAmelCase : int ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : int ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : str ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : int , *UpperCAmelCase : int , **UpperCAmelCase : int ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Any ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[str] ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[str] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : List[str] , **UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : int , **UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Any , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : List[Any] ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : Tuple , **UpperCAmelCase : int ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : str , **UpperCAmelCase : int ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[Any] , *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : Tuple ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase : List[str] , **UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : List[Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : Dict ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase : str , **UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : List[str] , **UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Tuple , **UpperCAmelCase : int ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : Dict , **UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : List[str] , **UpperCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : List[str] , **UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Tuple , *UpperCAmelCase : str , **UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : str , **UpperCAmelCase : str ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : int ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : Dict , **UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : str , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Optional[Any] , *UpperCAmelCase : int , **UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Any , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : List[str] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : List[Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Dict , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def A__ ( cls : int , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[str] ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] )
715
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase_ : """simple docstring""" @staticmethod def A__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' pass def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def A__ ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =pipeline( '''document-question-answering''' , model=UpperCAmelCase , tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase : Optional[Any] =INVOICE_URL lowercase : Any =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) lowercase : Dict ='''What is the placebo?''' lowercase : Optional[Any] =[ { '''image''': load_image(UpperCAmelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def A__ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : Dict =dqa_pipeline(UpperCAmelCase , top_k=2 ) self.assertEqual( UpperCAmelCase , [ [ {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, {'''score''': ANY(UpperCAmelCase ), '''answer''': ANY(UpperCAmelCase ), '''start''': ANY(UpperCAmelCase ), '''end''': ANY(UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Dict =pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowercase : Union[str, Any] =INVOICE_URL lowercase : Tuple ='''How many cats are there?''' lowercase : Optional[int] =[ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowercase : Optional[Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) lowercase : List[str] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase : Optional[Any] ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Any =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowercase : int ='''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowercase : Dict =[] lowercase : str =[] lowercase : str =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , words=UpperCAmelCase , boxes=UpperCAmelCase , top_k=2 ) self.assertEqual(UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowercase : Dict =INVOICE_URL lowercase : str ='''What is the invoice number?''' lowercase : List[str] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : List[Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowercase : Dict =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Union[str, Any] =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : int =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Any =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : Tuple =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , ) lowercase : Tuple =INVOICE_URL lowercase : Any ='''What is the invoice number?''' lowercase : Dict =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : Any =dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowercase : str =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowercase : Tuple =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Dict =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Dict =AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=UpperCAmelCase ) lowercase : List[Any] =pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=UpperCAmelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowercase : str =INVOICE_URL lowercase : int ='''What is the invoice number?''' lowercase : Tuple =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowercase : Union[str, Any] =dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowercase : List[str] =list(zip(*apply_tesseract(load_image(UpperCAmelCase ) , UpperCAmelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowercase : Union[str, Any] =dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowercase : Any =INVOICE_URL lowercase : Union[str, Any] ='''What is the invoice number?''' lowercase : int =dqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def A__ ( self : Any ) -> Any: '''simple docstring''' pass
8
0
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Optional[int]=13 , UpperCAmelCase : str=32 , UpperCAmelCase : Any=2 , UpperCAmelCase : Dict=3 , UpperCAmelCase : str=16 , UpperCAmelCase : Union[str, Any]=[1, 2, 1] , UpperCAmelCase : List[str]=[2, 2, 4] , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Tuple=2.0 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Dict=False , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : List[str]=1e-5 , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=10 , UpperCAmelCase : Dict=8 , UpperCAmelCase : str=["stage1", "stage2", "stage3"] , UpperCAmelCase : List[str]=[1, 2, 3] , ) -> Any: '''simple docstring''' lowercase : int =parent lowercase : List[str] =batch_size lowercase : List[str] =image_size lowercase : Optional[int] =patch_size lowercase : int =num_channels lowercase : Union[str, Any] =embed_dim lowercase : Tuple =depths lowercase : List[Any] =num_heads lowercase : int =window_size lowercase : int =mlp_ratio lowercase : Optional[Any] =qkv_bias lowercase : List[Any] =hidden_dropout_prob lowercase : Optional[int] =attention_probs_dropout_prob lowercase : Any =drop_path_rate lowercase : Optional[int] =hidden_act lowercase : Tuple =use_absolute_embeddings lowercase : Union[str, Any] =patch_norm lowercase : str =layer_norm_eps lowercase : List[str] =initializer_range lowercase : Optional[int] =is_training lowercase : str =scope lowercase : Tuple =use_labels lowercase : List[str] =type_sequence_label_size lowercase : Optional[int] =encoder_stride lowercase : str =out_features lowercase : Optional[Any] =out_indices def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : str =None if self.use_labels: lowercase : List[str] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[str] =self.get_config() return config, pixel_values, labels def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' lowercase : Any =MaskFormerSwinModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Dict =model(UpperCAmelCase ) lowercase : Optional[Any] =((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase : List[str] =int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : Any =MaskFormerSwinBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : str =model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(UpperCAmelCase ): lowercase : Dict =['''stem'''] lowercase : str =MaskFormerSwinBackbone(config=UpperCAmelCase ) def A__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowercase : Tuple =self.prepare_config_and_inputs() lowercase : List[Any] =config_and_inputs lowercase : Any ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCamelCase_ = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : Optional[Any] =MaskFormerSwinModelTester(self ) lowercase : List[str] =ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def A__ ( self : Any ) -> str: '''simple docstring''' pass def A__ ( self : str ) -> Optional[int]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return def A__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> Dict: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def A__ ( self : Optional[int] ) -> Dict: '''simple docstring''' pass @unittest.skip('''Swin does not support feedforward chunking''' ) def A__ ( self : Tuple ) -> Dict: '''simple docstring''' pass def A__ ( self : str ) -> str: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] =model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase : int =model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] =model_class(UpperCAmelCase ) lowercase : List[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : List[Any] =[*signature.parameters.keys()] lowercase : Optional[Any] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def A__ ( self : str ) -> Any: '''simple docstring''' pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def A__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' pass def A__ ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Dict ) -> Any: '''simple docstring''' lowercase : Tuple =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : Union[str, Any] =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase : Tuple =outputs.hidden_states lowercase : Union[str, Any] =getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # Swin has a different seq_length lowercase : int =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase : Dict =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() lowercase : Dict =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase : List[Any] =True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Union[str, Any] =True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs_for_common() lowercase : List[str] =3 lowercase : List[Any] =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase : List[str] =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase : Optional[Any] =image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase : Optional[int] =image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase : Union[str, Any] =True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Any =True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def A__ ( self : str ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def A__ ( self : int ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def A__ ( self : Union[str, Any] ) -> str: '''simple docstring''' pass def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(UpperCAmelCase : List[str] ): lowercase : Optional[int] =0 return t def check_equivalence(UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int]={} ): with torch.no_grad(): lowercase : int =model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ) lowercase : Tuple =model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ).to_tuple() def recursive_check(UpperCAmelCase : int , UpperCAmelCase : Tuple ): if isinstance(UpperCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase , UpperCAmelCase ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(UpperCAmelCase ) , set_nan_tensor_to_zero(UpperCAmelCase ) , atol=1e-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' f' {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}. Dict has' f' `nan`: {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}.' ) , ) recursive_check(UpperCAmelCase , UpperCAmelCase ) for model_class in self.all_model_classes: lowercase : Any =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : List[Any] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowercase : Union[str, Any] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Optional[int] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) lowercase : List[str] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Union[str, Any] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowercase : List[str] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'''output_hidden_states''': True} ) lowercase : int =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) lowercase : List[Any] =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'''output_hidden_states''': True} ) @require_torch class UpperCAmelCase_ ( unittest.TestCase , __A ): """simple docstring""" UpperCamelCase_ = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCamelCase_ = MaskFormerSwinConfig def A__ ( self : Optional[int] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =MaskFormerSwinModelTester(self ) def A__ ( self : List[str] ) -> Tuple: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs_for_common() lowercase : Tuple =inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: lowercase : str =backbone_class(UpperCAmelCase ) backbone.to(UpperCAmelCase ) backbone.eval() lowercase : Optional[int] =backbone(**UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase : List[Any] =backbone(**UpperCAmelCase , output_hidden_states=UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase : str =hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase : str =backbone(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
716
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) UpperCamelCase_ = field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) UpperCamelCase_ = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) UpperCamelCase_ = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) UpperCamelCase_ = field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) UpperCamelCase_ = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) UpperCamelCase_ = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) UpperCamelCase_ = field( default=10000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) UpperCamelCase_ = field(default=2e-4 , metadata={'''help''': '''Learning rate fo training.'''} ) UpperCamelCase_ = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) UpperCamelCase_ = field( default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) UpperCamelCase_ = field( default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) UpperCamelCase_ = field(default=50000 , metadata={'''help''': '''Maximum number of training steps.'''} ) UpperCamelCase_ = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) UpperCamelCase_ = field(default=1024 , metadata={'''help''': '''Sequence lengths used for training.'''} ) UpperCamelCase_ = field(default=1 , metadata={'''help''': '''Training seed.'''} ) UpperCamelCase_ = field( default=1024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) UpperCamelCase_ = field(default=__A , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) UpperCamelCase_ = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) UpperCamelCase_ = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) UpperCamelCase_ = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) UpperCamelCase_ = field(default=1024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) UpperCamelCase_ = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) UpperCamelCase_ = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) UpperCamelCase_ = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) UpperCamelCase_ = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) UpperCamelCase_ = field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) UpperCamelCase_ = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) UpperCamelCase_ = field( default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) UpperCamelCase_ = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) UpperCamelCase_ = field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) UpperCamelCase_ = field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) UpperCamelCase_ = field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = field( default=__A , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) UpperCamelCase_ = field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) UpperCamelCase_ = field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) UpperCamelCase_ = field( default=100000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) UpperCamelCase_ = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) UpperCamelCase_ = field( default=1000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) UpperCamelCase_ = field( default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) UpperCamelCase_ = field( default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) UpperCamelCase_ = field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) UpperCamelCase_ = field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) UpperCamelCase_ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) UpperCamelCase_ = field( default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) UpperCamelCase_ = field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) UpperCamelCase_ = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) UpperCamelCase_ = field(default=200000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) UpperCamelCase_ = field( default=32768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) UpperCamelCase_ = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) UpperCamelCase_ = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) UpperCamelCase_ = field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) UpperCamelCase_ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) UpperCamelCase_ = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) UpperCamelCase_ = field(default=__A , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
717
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
0
'''simple docstring''' class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : list ) -> None: '''simple docstring''' lowercase : Union[str, Any] =set_counts lowercase : Any =max(UpperCAmelCase ) lowercase : Optional[Any] =len(UpperCAmelCase ) lowercase : Tuple =[1] * num_sets lowercase : List[Any] =list(range(UpperCAmelCase ) ) def A__ ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int ) -> bool: '''simple docstring''' lowercase : int =self.get_parent(UpperCAmelCase ) lowercase : int =self.get_parent(UpperCAmelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase : str =0 lowercase : Dict =dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase : Optional[Any] =self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase : List[str] =0 lowercase : Tuple =src_parent lowercase : int =self.set_counts[src_parent] lowercase : Union[str, Any] =max(self.max_set , UpperCAmelCase ) return True def A__ ( self : int , UpperCAmelCase : int ) -> int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowercase : Tuple =self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
718
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] , ) -> Union[str, Any]: '''simple docstring''' lowercase : int =parent lowercase : Any =13 lowercase : Any =7 lowercase : Optional[int] =True lowercase : Optional[int] =True lowercase : Tuple =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : Union[str, Any] =2 lowercase : Union[str, Any] =4 lowercase : List[str] =37 lowercase : str ='''gelu''' lowercase : Dict =0.1 lowercase : List[Any] =0.1 lowercase : List[str] =512 lowercase : Optional[int] =16 lowercase : Optional[Any] =2 lowercase : List[str] =0.0_2 lowercase : Any =3 lowercase : Optional[Any] =4 lowercase : int =None def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Any =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None lowercase : Any =None lowercase : str =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase ) lowercase : str =[input_ids, input_mask] lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[str] =TFDistilBertForMaskedLM(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =TFDistilBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Optional[Any] =TFDistilBertForSequenceClassification(UpperCAmelCase ) lowercase : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Union[str, Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Optional[int] =TFDistilBertForMultipleChoice(UpperCAmelCase ) lowercase : Optional[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : Tuple =TFDistilBertForTokenClassification(UpperCAmelCase ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : str =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase) , (lowercase)) : Union[str, Any] =config_and_inputs lowercase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict ) -> str: '''simple docstring''' lowercase : str =TFDistilBertModelTester(self ) lowercase : int =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Union[str, Any] =TFDistilBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Tuple =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[Any] =model(UpperCAmelCase )[0] lowercase : str =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Optional[int] =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
8
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'camembert-base': 512, } SCREAMING_SNAKE_CASE = '▁' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] UpperCamelCase_ = CamembertTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]="<s>" , UpperCAmelCase : Tuple="</s>" , UpperCAmelCase : Dict="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : Union[str, Any]="<unk>" , UpperCAmelCase : Union[str, Any]="<pad>" , UpperCAmelCase : List[Any]="<mask>" , UpperCAmelCase : Union[str, Any]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCAmelCase : Any , ) -> Optional[Any]: '''simple docstring''' lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) lowercase : Optional[int] =vocab_file lowercase : Any =False if not self.vocab_file else True def A__ ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : Dict =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Tuple =[self.sep_token_id] lowercase : Optional[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class lowercase__ ( __A ): """simple docstring""" UpperCamelCase_ = '''lilt''' def __init__( self : Tuple , UpperCAmelCase : Any=3_0522 , UpperCAmelCase : Dict=768 , UpperCAmelCase : int=12 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : Dict=3072 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Optional[int]=512 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Optional[int]=0.0_2 , UpperCAmelCase : Dict=1e-12 , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : Tuple="absolute" , UpperCAmelCase : Any=None , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=1024 , **UpperCAmelCase : Optional[int] , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase , **UpperCAmelCase ) lowercase : List[Any] =vocab_size lowercase : Dict =hidden_size lowercase : Optional[Any] =num_hidden_layers lowercase : int =num_attention_heads lowercase : str =hidden_act lowercase : Optional[Any] =intermediate_size lowercase : Optional[int] =hidden_dropout_prob lowercase : List[Any] =attention_probs_dropout_prob lowercase : Union[str, Any] =max_position_embeddings lowercase : Optional[Any] =type_vocab_size lowercase : int =initializer_range lowercase : int =layer_norm_eps lowercase : Union[str, Any] =position_embedding_type lowercase : Dict =classifier_dropout lowercase : str =channel_shrink_ratio lowercase : Any =max_ad_position_embeddings
720
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE = parse(importlib.metadata.version('torch')) def lowercase_ ( __A : Union[str, Version] , __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) lowercase : Any =STR_OPERATION_TO_FUNC[operation] if isinstance(__A , __A ): lowercase : List[Any] =parse(importlib.metadata.version(__A ) ) return operation(__A , parse(__A ) ) def lowercase_ ( __A : str , __A : str ) -> Tuple: """simple docstring""" return compare_versions(__A , __A , __A )
8
0
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = None @property def A__ ( self : Tuple ) -> Dict: '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Optional[int] =self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''sampling_rate''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''padding_value''' ) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.feat_extract_tester.prepare_inputs_for_common() lowercase : List[Any] =self.feature_extraction_class(**self.feat_extract_dict ) lowercase : Dict =feat_extract.model_input_names[0] lowercase : Union[str, Any] =BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(UpperCAmelCase ) == len(UpperCAmelCase ) for x, y in zip(UpperCAmelCase , processed_features[input_name] ) ) ) lowercase : Optional[Any] =self.feat_extract_tester.prepare_inputs_for_common(equal_length=UpperCAmelCase ) lowercase : List[Any] =BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) lowercase : int =processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase : Optional[Any] =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =self.feat_extract_tester.prepare_inputs_for_common(equal_length=UpperCAmelCase ) lowercase : Dict =self.feature_extraction_class(**self.feat_extract_dict ) lowercase : Union[str, Any] =feat_extract.model_input_names[0] lowercase : List[str] =BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) lowercase : Tuple =processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase : Tuple =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def A__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.feat_extract_tester.prepare_inputs_for_common(equal_length=UpperCAmelCase ) lowercase : List[Any] =self.feature_extraction_class(**self.feat_extract_dict ) lowercase : Tuple =feat_extract.model_input_names[0] lowercase : str =BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' ) lowercase : Dict =processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase : List[str] =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def A__ ( self : int , UpperCAmelCase : List[Any]=False ) -> str: '''simple docstring''' def _inputs_have_equal_length(UpperCAmelCase : List[str] ): lowercase : Tuple =len(input[0] ) for input_slice in input[1:]: if len(UpperCAmelCase ) != length: return False return True def _inputs_are_equal(UpperCAmelCase : List[str] , UpperCAmelCase : Any ): if len(UpperCAmelCase ) != len(UpperCAmelCase ): return False for input_slice_a, input_slice_a in zip(UpperCAmelCase , UpperCAmelCase ): if not np.allclose(np.asarray(UpperCAmelCase ) , np.asarray(UpperCAmelCase ) , atol=1e-3 ): return False return True lowercase : str =self.feature_extraction_class(**self.feat_extract_dict ) lowercase : Optional[int] =self.feat_extract_tester.prepare_inputs_for_common(numpify=UpperCAmelCase ) lowercase : List[str] =feat_extract.model_input_names[0] lowercase : Any =BatchFeature({input_name: speech_inputs} ) lowercase : List[str] =self.feat_extract_tester.seq_length_diff lowercase : Union[str, Any] =self.feat_extract_tester.max_seq_length + pad_diff lowercase : Union[str, Any] =self.feat_extract_tester.min_seq_length lowercase : Tuple =self.feat_extract_tester.batch_size lowercase : List[str] =self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase : Union[str, Any] =feat_extract.pad(UpperCAmelCase , padding=UpperCAmelCase ) lowercase : str =input_a[input_name] lowercase : List[str] =feat_extract.pad(UpperCAmelCase , padding='''longest''' ) lowercase : Any =input_a[input_name] lowercase : Tuple =feat_extract.pad(UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[-1] ) ) lowercase : Union[str, Any] =input_a[input_name] lowercase : Tuple =feat_extract.pad(UpperCAmelCase , padding='''longest''' , return_tensors='''np''' ) lowercase : str =input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(UpperCAmelCase ): feat_extract.pad(UpperCAmelCase , padding='''max_length''' )[input_name] lowercase : List[Any] =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=UpperCAmelCase , return_tensors='''np''' ) lowercase : Union[str, Any] =input_a[input_name] self.assertFalse(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertTrue(_inputs_are_equal(UpperCAmelCase , UpperCAmelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase : str =feat_extract.pad(UpperCAmelCase , pad_to_multiple_of=10 ) lowercase : int =input_a[input_name] lowercase : Any =feat_extract.pad(UpperCAmelCase , padding='''longest''' , pad_to_multiple_of=10 ) lowercase : List[Any] =input_a[input_name] lowercase : Union[str, Any] =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=UpperCAmelCase ) lowercase : int =input_a[input_name] lowercase : Dict =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=UpperCAmelCase , return_tensors='''np''' , ) lowercase : Any =input_a[input_name] self.assertTrue(all(len(UpperCAmelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(UpperCAmelCase , UpperCAmelCase ) ) lowercase : Union[str, Any] =pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(UpperCAmelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct lowercase : Union[str, Any] =(np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def A__ ( self : Optional[int] , UpperCAmelCase : Optional[int]=False ) -> Optional[Any]: '''simple docstring''' def _inputs_have_equal_length(UpperCAmelCase : int ): lowercase : List[Any] =len(input[0] ) for input_slice in input[1:]: if len(UpperCAmelCase ) != length: return False return True def _inputs_are_equal(UpperCAmelCase : Dict , UpperCAmelCase : Any ): if len(UpperCAmelCase ) != len(UpperCAmelCase ): return False for input_slice_a, input_slice_a in zip(UpperCAmelCase , UpperCAmelCase ): if not np.allclose(np.asarray(UpperCAmelCase ) , np.asarray(UpperCAmelCase ) , atol=1e-3 ): return False return True lowercase : Dict =self.feature_extraction_class(**self.feat_extract_dict ) lowercase : Union[str, Any] =self.feat_extract_tester.prepare_inputs_for_common(numpify=UpperCAmelCase ) lowercase : List[str] =feat_extract.model_input_names[0] lowercase : Union[str, Any] =BatchFeature({input_name: speech_inputs} ) # truncate to smallest lowercase : Union[str, Any] =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=UpperCAmelCase ) lowercase : List[str] =input_a[input_name] lowercase : str =feat_extract.pad(UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) ) lowercase : Tuple =input_a[input_name] self.assertTrue(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(UpperCAmelCase ) ) # truncate to smallest with np lowercase : Any =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=UpperCAmelCase , ) lowercase : Union[str, Any] =input_a[input_name] lowercase : List[Any] =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' ) lowercase : int =input_a[input_name] self.assertTrue(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(UpperCAmelCase ) ) # truncate to middle lowercase : Optional[Any] =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=UpperCAmelCase , return_tensors='''np''' , ) lowercase : Union[str, Any] =input_a[input_name] lowercase : int =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=UpperCAmelCase ) lowercase : str =input_a[input_name] lowercase : str =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' ) lowercase : Tuple =input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertTrue(_inputs_are_equal(UpperCAmelCase , UpperCAmelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(UpperCAmelCase ): feat_extract.pad(UpperCAmelCase , truncation=UpperCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(UpperCAmelCase ): feat_extract.pad(UpperCAmelCase , padding='''longest''' , truncation=UpperCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(UpperCAmelCase ): feat_extract.pad(UpperCAmelCase , padding='''longest''' , truncation=UpperCAmelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(UpperCAmelCase ): feat_extract.pad(UpperCAmelCase , padding='''max_length''' , truncation=UpperCAmelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase : int =12 lowercase : List[str] =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=UpperCAmelCase , truncation=UpperCAmelCase , ) lowercase : int =input_a[input_name] lowercase : Tuple =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=UpperCAmelCase , ) lowercase : Dict =input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase : Dict =len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: lowercase : List[Any] =((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(UpperCAmelCase ) ) def A__ ( self : str ) -> int: '''simple docstring''' self._check_padding(numpify=UpperCAmelCase ) def A__ ( self : Tuple ) -> Dict: '''simple docstring''' self._check_padding(numpify=UpperCAmelCase ) def A__ ( self : Any ) -> Any: '''simple docstring''' self._check_truncation(numpify=UpperCAmelCase ) def A__ ( self : Any ) -> Any: '''simple docstring''' self._check_truncation(numpify=UpperCAmelCase ) @require_torch def A__ ( self : Any ) -> int: '''simple docstring''' lowercase : Optional[Any] =self.feature_extraction_class(**self.feat_extract_dict ) lowercase : int =self.feat_extract_tester.prepare_inputs_for_common() lowercase : str =feat_extract.model_input_names[0] lowercase : Optional[int] =BatchFeature({input_name: speech_inputs} ) lowercase : Optional[Any] =feat_extract.pad(UpperCAmelCase , padding='''longest''' , return_tensors='''np''' )[input_name] lowercase : List[str] =feat_extract.pad(UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =self.feature_extraction_class(**self.feat_extract_dict ) lowercase : Tuple =self.feat_extract_tester.prepare_inputs_for_common() lowercase : Optional[Any] =feat_extract.model_input_names[0] lowercase : int =BatchFeature({input_name: speech_inputs} ) lowercase : str =feat_extract.pad(UpperCAmelCase , padding='''longest''' , return_tensors='''np''' )[input_name] lowercase : List[str] =feat_extract.pad(UpperCAmelCase , padding='''longest''' , return_tensors='''tf''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def A__ ( self : str ) -> List[Any]: '''simple docstring''' lowercase : str =self.feat_extract_dict lowercase : Union[str, Any] =True lowercase : List[str] =self.feature_extraction_class(**UpperCAmelCase ) lowercase : Optional[int] =self.feat_extract_tester.prepare_inputs_for_common() lowercase : int =[len(UpperCAmelCase ) for x in speech_inputs] lowercase : Tuple =feat_extract.model_input_names[0] lowercase : Dict =BatchFeature({input_name: speech_inputs} ) lowercase : str =feat_extract.pad(UpperCAmelCase , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , UpperCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , UpperCAmelCase ) def A__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowercase : Dict =self.feat_extract_dict lowercase : List[str] =True lowercase : Optional[Any] =self.feature_extraction_class(**UpperCAmelCase ) lowercase : Any =self.feat_extract_tester.prepare_inputs_for_common() lowercase : Optional[Any] =[len(UpperCAmelCase ) for x in speech_inputs] lowercase : Tuple =feat_extract.model_input_names[0] lowercase : Optional[Any] =BatchFeature({input_name: speech_inputs} ) lowercase : List[str] =min(UpperCAmelCase ) lowercase : Any =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors='''np''' ) self.assertIn('''attention_mask''' , UpperCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
721
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''AutoImageProcessor''' UpperCamelCase_ = '''AutoTokenizer''' def __init__( self : Dict , UpperCAmelCase : int , UpperCAmelCase : List[str] ) -> str: '''simple docstring''' super().__init__(UpperCAmelCase , UpperCAmelCase ) lowercase : Union[str, Any] =self.image_processor def __call__( self : Dict , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : int=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase : Optional[int] =self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if images is not None: lowercase : Dict =self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: lowercase : Optional[int] =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def A__ ( self : Union[str, Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ) -> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : Dict ) -> Optional[int]: '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import argparse import os import re SCREAMING_SNAKE_CASE = 'src/diffusers' # Pattern that looks at the indentation in a line. SCREAMING_SNAKE_CASE = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. SCREAMING_SNAKE_CASE = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. SCREAMING_SNAKE_CASE = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. SCREAMING_SNAKE_CASE = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. SCREAMING_SNAKE_CASE = re.compile(r'\[([^\]]+)\]') def lowercase_ ( __A : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase : Dict =_re_indent.search(__A ) return "" if search is None else search.groups()[0] def lowercase_ ( __A : List[str] , __A : Tuple="" , __A : List[str]=None , __A : Dict=None ) -> str: """simple docstring""" lowercase : List[str] =0 lowercase : List[Any] =code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(__A ): index += 1 lowercase : Tuple =['''\n'''.join(lines[:index] )] else: lowercase : Optional[Any] =[] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowercase : List[str] =[lines[index]] index += 1 while index < len(__A ) and (end_prompt is None or not lines[index].startswith(__A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(__A ) ) if index < len(__A ) - 1: lowercase : Tuple =[lines[index + 1]] index += 1 else: lowercase : List[Any] =[] else: blocks.append('''\n'''.join(__A ) ) lowercase : Any =[lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__A ) > 0: blocks.append('''\n'''.join(__A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__A ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def lowercase_ ( __A : List[Any] ) -> Union[str, Any]: """simple docstring""" def _inner(__A : Tuple ): return key(__A ).lower().replace('''_''' , '''''' ) return _inner def lowercase_ ( __A : str , __A : Union[str, Any]=None ) -> Union[str, Any]: """simple docstring""" def noop(__A : Optional[Any] ): return x if key is None: lowercase : str =noop # Constants are all uppercase, they go first. lowercase : int =[obj for obj in objects if key(__A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowercase : Tuple =[obj for obj in objects if key(__A )[0].isupper() and not key(__A ).isupper()] # Functions begin with a lowercase, they go last. lowercase : List[str] =[obj for obj in objects if not key(__A )[0].isupper()] lowercase : Dict =ignore_underscore(__A ) return sorted(__A , key=__A ) + sorted(__A , key=__A ) + sorted(__A , key=__A ) def lowercase_ ( __A : Union[str, Any] ) -> int: """simple docstring""" def _replace(__A : List[str] ): lowercase : Dict =match.groups()[0] if "," not in imports: return F'[{imports}]' lowercase : Union[str, Any] =[part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase : Any =keys[:-1] return "[" + ", ".join([F'"{k}"' for k in sort_objects(__A )] ) + "]" lowercase : Tuple =import_statement.split('''\n''' ) if len(__A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowercase : int =2 if lines[1].strip() == '''[''' else 1 lowercase : List[str] =[(i, _re_strip_line.search(__A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowercase : Tuple =sort_objects(__A , key=lambda __A : x[1] ) lowercase : List[Any] =[lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowercase : Union[str, Any] =_re_bracket_content.sub(_replace , lines[1] ) else: lowercase : List[str] =[part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowercase : Union[str, Any] =keys[:-1] lowercase : Optional[int] =get_indent(lines[1] ) + ''', '''.join([F'"{k}"' for k in sort_objects(__A )] ) return "\n".join(__A ) else: # Finally we have to deal with imports fitting on one line lowercase : Optional[Any] =_re_bracket_content.sub(_replace , __A ) return import_statement def lowercase_ ( __A : int , __A : int=True ) -> int: """simple docstring""" with open(__A , '''r''' ) as f: lowercase : Optional[Any] =f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowercase : Tuple =split_code_in_indented_blocks( __A , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowercase : int =main_blocks[block_idx] lowercase : List[Any] =block.split('''\n''' ) # Get to the start of the imports. lowercase : List[str] =0 while line_idx < len(__A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowercase : int =len(__A ) else: line_idx += 1 if line_idx >= len(__A ): continue # Ignore beginning and last line: they don't contain anything. lowercase : int ='''\n'''.join(block_lines[line_idx:-1] ) lowercase : List[Any] =get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowercase : int =split_code_in_indented_blocks(__A , indent_level=__A ) # We have two categories of import key: list or _import_structure[key].append/extend lowercase : List[str] =_re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowercase : int =[(pattern.search(__A ).groups()[0] if pattern.search(__A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowercase : List[Any] =[(i, key) for i, key in enumerate(__A ) if key is not None] lowercase : Optional[int] =[x[0] for x in sorted(__A , key=lambda __A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowercase : Optional[Any] =0 lowercase : str =[] for i in range(len(__A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowercase : Optional[Any] =sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__A ) count += 1 # And we put our main block back together with its first and last line. lowercase : Any ='''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__A ): if check_only: return True else: print(F'Overwriting {file}.' ) with open(__A , '''w''' ) as f: f.write('''\n'''.join(__A ) ) def lowercase_ ( __A : Tuple=True ) -> List[str]: """simple docstring""" lowercase : Tuple =[] for root, _, files in os.walk(__A ): if "__init__.py" in files: lowercase : Optional[int] =sort_imports(os.path.join(__A , '''__init__.py''' ) , check_only=__A ) if result: lowercase : Optional[Any] =[os.path.join(__A , '''__init__.py''' )] if len(__A ) > 0: raise ValueError(F'Would overwrite {len(__A )} files, run `make style`.' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') SCREAMING_SNAKE_CASE = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear', 'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed', 'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } SCREAMING_SNAKE_CASE = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowercase_ ( __A : Optional[Any] , __A : Tuple , __A : Dict , __A : Optional[int] , __A : List[str] ) -> Dict: """simple docstring""" for attribute in key.split('''.''' ): lowercase : Union[str, Any] =getattr(__A , __A ) if weight_type is not None: lowercase : int =getattr(__A , __A ).shape else: lowercase : str =hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase : List[str] =value elif weight_type == "weight_g": lowercase : Optional[int] =value elif weight_type == "weight_v": lowercase : List[str] =value elif weight_type == "bias": lowercase : str =value else: lowercase : Optional[Any] =value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowercase_ ( __A : int , __A : List[str] ) -> Optional[Any]: """simple docstring""" lowercase : List[Any] =[] lowercase : int =fairseq_model.state_dict() lowercase : Union[str, Any] =hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase : Optional[Any] =False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == '''group''' , ) lowercase : Optional[Any] =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase : Any =True if "*" in mapped_key: lowercase : Any =name.split(__A )[0].split('''.''' )[-2] lowercase : int =mapped_key.replace('''*''' , __A ) if "weight_g" in name: lowercase : List[str] ='''weight_g''' elif "weight_v" in name: lowercase : str ='''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: lowercase : int ='''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase : List[Any] ='''weight''' else: lowercase : Optional[int] =None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(F'Unused weights: {unused_weights}' ) def lowercase_ ( __A : Any , __A : Optional[Any] , __A : Dict , __A : Union[str, Any] , __A : Tuple ) -> Optional[Any]: """simple docstring""" lowercase : Optional[Any] =full_name.split('''conv_layers.''' )[-1] lowercase : Dict =name.split('''.''' ) lowercase : List[str] =int(items[0] ) lowercase : Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase : Optional[int] =value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase : Tuple =value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowercase : Union[str, Any] =value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase : Optional[Any] =value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__A ) @torch.no_grad() def lowercase_ ( __A : Any , __A : Tuple , __A : Dict=None ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =torch.load(__A ) lowercase : Any =WavLMConfigOrig(checkpoint['''cfg'''] ) lowercase : int =WavLMOrig(__A ) model.load_state_dict(checkpoint['''model'''] ) model.eval() if config_path is not None: lowercase : Tuple =WavLMConfig.from_pretrained(__A ) else: lowercase : Any =WavLMConfig() lowercase : Dict =WavLMModel(__A ) recursively_load_weights(__A , __A ) hf_wavlm.save_pretrained(__A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') SCREAMING_SNAKE_CASE = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
702
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514} SCREAMING_SNAKE_CASE = {} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = HerbertTokenizer def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : List[Any] =[self.cls_token_id] lowercase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
8
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''table-transformer''' UpperCamelCase_ = ['''past_key_values'''] UpperCamelCase_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : int , UpperCAmelCase : Dict=True , UpperCAmelCase : int=None , UpperCAmelCase : List[Any]=3 , UpperCAmelCase : Dict=100 , UpperCAmelCase : Optional[int]=6 , UpperCAmelCase : int=2048 , UpperCAmelCase : List[Any]=8 , UpperCAmelCase : Any=6 , UpperCAmelCase : List[Any]=2048 , UpperCAmelCase : Union[str, Any]=8 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Optional[Any]="relu" , UpperCAmelCase : List[str]=256 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.0 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : Tuple=0.0_2 , UpperCAmelCase : str=1.0 , UpperCAmelCase : int=False , UpperCAmelCase : List[str]="sine" , UpperCAmelCase : Tuple="resnet50" , UpperCAmelCase : int=True , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Dict=1 , UpperCAmelCase : Tuple=5 , UpperCAmelCase : Dict=2 , UpperCAmelCase : int=1 , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : int=5 , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=0.1 , **UpperCAmelCase : List[str] , ) -> str: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase : List[Any] =CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Any =backbone_config.get('''model_type''' ) lowercase : Union[str, Any] =CONFIG_MAPPING[backbone_model_type] lowercase : Dict =config_class.from_dict(UpperCAmelCase ) # set timm attributes to None lowercase : Union[str, Any] =None, None, None lowercase : Optional[int] =use_timm_backbone lowercase : Tuple =backbone_config lowercase : int =num_channels lowercase : int =num_queries lowercase : List[str] =d_model lowercase : int =encoder_ffn_dim lowercase : Tuple =encoder_layers lowercase : Optional[Any] =encoder_attention_heads lowercase : Dict =decoder_ffn_dim lowercase : Optional[Any] =decoder_layers lowercase : List[Any] =decoder_attention_heads lowercase : Optional[int] =dropout lowercase : List[Any] =attention_dropout lowercase : str =activation_dropout lowercase : List[Any] =activation_function lowercase : str =init_std lowercase : int =init_xavier_std lowercase : str =encoder_layerdrop lowercase : Any =decoder_layerdrop lowercase : str =encoder_layers lowercase : Any =auxiliary_loss lowercase : Any =position_embedding_type lowercase : str =backbone lowercase : List[Any] =use_pretrained_backbone lowercase : str =dilation # Hungarian matcher lowercase : Union[str, Any] =class_cost lowercase : Tuple =bbox_cost lowercase : Optional[Any] =giou_cost # Loss coefficients lowercase : str =mask_loss_coefficient lowercase : List[Any] =dice_loss_coefficient lowercase : Any =bbox_loss_coefficient lowercase : Any =giou_loss_coefficient lowercase : str =eos_coefficient super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : Tuple ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def A__ ( self : List[str] ) -> int: '''simple docstring''' return self.d_model class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = version.parse('''1.11''' ) @property def A__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def A__ ( self : str ) -> float: '''simple docstring''' return 1e-5 @property def A__ ( self : List[str] ) -> int: '''simple docstring''' return 12
703
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
0
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
704
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
0
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> int: """simple docstring""" while b: lowercase : Union[str, Any] =b, a % b return a def lowercase_ ( __A : int , __A : int ) -> int: """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(__A , a % b ) def lowercase_ ( ) -> Any: """simple docstring""" print(F'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(F'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(F'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(F'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(F'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(F'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(F'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(F'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
705
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : Any =re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__A , __A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
8
0
'''simple docstring''' import heapq def lowercase_ ( __A : dict ) -> set[int]: """simple docstring""" lowercase : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__A , [-1 * len(__A ), (key, value)] ) # chosen_vertices = set of chosen vertices lowercase : Dict =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowercase : List[str] =heapq.heappop(__A )[1][0] chosen_vertices.add(__A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowercase : str =elem[1][1].index(__A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
706
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
0