code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from dataclasses import dataclass, field
from typing import Optional
from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser
@dataclass
class UpperCamelCase__ :
'''simple docstring'''
_UpperCamelCase = field(
metadata={'help': 'The output directory where the model will be written.'} ,)
_UpperCamelCase = field(
metadata={
'help': (
'The encoder model checkpoint for weights initialization.'
'Don\'t set if you want to train an encoder model from scratch.'
)
} ,)
_UpperCamelCase = field(
metadata={
'help': (
'The decoder model checkpoint for weights initialization.'
'Don\'t set if you want to train a decoder model from scratch.'
)
} ,)
_UpperCamelCase = field(
default=a ,metadata={'help': 'Pretrained encoder config name or path if not the same as encoder_model_name'} )
_UpperCamelCase = field(
default=a ,metadata={'help': 'Pretrained decoder config name or path if not the same as decoder_model_name'} )
def A__ ( ):
lowerCamelCase__ = HfArgumentParser((ModelArguments,) )
((lowerCamelCase__) , ) = parser.parse_args_into_dataclasses()
# Load pretrained model and tokenizer
# Use explicit specified encoder config
if model_args.encoder_config_name:
lowerCamelCase__ = AutoConfig.from_pretrained(model_args.encoder_config_name )
# Use pretrained encoder model's config
else:
lowerCamelCase__ = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path )
# Use explicit specified decoder config
if model_args.decoder_config_name:
lowerCamelCase__ = AutoConfig.from_pretrained(model_args.decoder_config_name )
# Use pretrained decoder model's config
else:
lowerCamelCase__ = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path )
# necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed
lowerCamelCase__ = True
lowerCamelCase__ = True
lowerCamelCase__ = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=__lowerCAmelCase , decoder_config=__lowerCAmelCase , )
# GPT2 only has bos/eos tokens but not decoder_start/pad tokens
lowerCamelCase__ = decoder_config.decoder_start_token_id
lowerCamelCase__ = decoder_config.pad_token_id
if decoder_start_token_id is None:
lowerCamelCase__ = decoder_config.bos_token_id
if pad_token_id is None:
lowerCamelCase__ = decoder_config.eos_token_id
# This is necessary to make Flax's generate() work
lowerCamelCase__ = decoder_config.eos_token_id
lowerCamelCase__ = decoder_start_token_id
lowerCamelCase__ = pad_token_id
lowerCamelCase__ = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path )
lowerCamelCase__ = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path )
lowerCamelCase__ = tokenizer.convert_ids_to_tokens(model.config.pad_token_id )
model.save_pretrained(model_args.output_dir )
image_processor.save_pretrained(model_args.output_dir )
tokenizer.save_pretrained(model_args.output_dir )
if __name__ == "__main__":
main()
| 9 |
'''simple docstring'''
from manim import *
class UpperCamelCase__ (a ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = Rectangle(height=0.5 ,width=0.5 )
lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 )
lowerCamelCase__ = [mem.copy() for i in range(6 )]
lowerCamelCase__ = [mem.copy() for i in range(6 )]
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = VGroup(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = Text("""CPU""" ,font_size=24 )
lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_lowerCAmelCase )
lowerCamelCase__ = [mem.copy() for i in range(1 )]
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = Text("""GPU""" ,font_size=24 )
lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase )
gpu.align_to(_lowerCAmelCase ,_lowerCAmelCase )
gpu.set_x(gpu.get_x() - 1 )
self.add(_lowerCAmelCase )
lowerCamelCase__ = [mem.copy() for i in range(6 )]
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = Text("""Model""" ,font_size=24 )
lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase )
model.move_to([3, -1.0, 0] )
self.play(
Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,)
lowerCamelCase__ = MarkupText(
F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,)
lowerCamelCase__ = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
lowerCamelCase__ = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,)
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(_lowerCAmelCase ,run_time=2.5 ) ,Write(_lowerCAmelCase ) ,Write(_lowerCAmelCase ) )
self.add(_lowerCAmelCase )
lowerCamelCase__ = []
lowerCamelCase__ = []
lowerCamelCase__ = []
for i, rect in enumerate(_lowerCAmelCase ):
lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase ,opacity=0.7 )
cpu_target.move_to(_lowerCAmelCase )
cpu_target.generate_target()
lowerCamelCase__ = 0.46 / 4
lowerCamelCase__ = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_lowerCAmelCase )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target ,direction=_lowerCAmelCase ,buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=_lowerCAmelCase ,buff=0.0 )
cpu_targs.append(_lowerCAmelCase )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCAmelCase ) )
second_animations.append(MoveToTarget(_lowerCAmelCase ,run_time=1.5 ) )
self.play(*_lowerCAmelCase )
self.play(*_lowerCAmelCase )
self.wait()
| 9 | 1 |
'''simple docstring'''
UpperCamelCase : Dict = [
'DownloadConfig',
'DownloadManager',
'DownloadMode',
'StreamingDownloadManager',
]
from .download_config import DownloadConfig
from .download_manager import DownloadManager, DownloadMode
from .streaming_download_manager import StreamingDownloadManager
| 9 |
'''simple docstring'''
UpperCamelCase : Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)]
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000]
number //= 10_0000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
UpperCamelCase : list[bool | None] = [None] * 10_00_00_00
UpperCamelCase : Tuple = True
UpperCamelCase : Optional[int] = False
def A__ ( __lowerCAmelCase : int ):
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
lowerCamelCase__ = chain(next_number(__lowerCAmelCase ) )
lowerCamelCase__ = number_chain
while number < 1000_0000:
lowerCamelCase__ = number_chain
number *= 10
return number_chain
def A__ ( __lowerCAmelCase : int = 1000_0000 ):
for i in range(1 , __lowerCAmelCase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'{solution() = }')
| 9 | 1 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class UpperCamelCase__ :
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( *_lowerCAmelCase ,**_lowerCAmelCase ):
pass
@is_pipeline_test
@require_vision
@require_torch
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = pipeline(
"""zero-shot-object-detection""" ,model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
lowerCamelCase__ = [
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
]
return object_detector, examples
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = object_detector(examples[0] ,threshold=0.0 )
lowerCamelCase__ = len(_lowerCAmelCase )
self.assertGreater(_lowerCAmelCase ,0 )
self.assertEqual(
_lowerCAmelCase ,[
{
"""score""": ANY(_lowerCAmelCase ),
"""label""": ANY(_lowerCAmelCase ),
"""box""": {"""xmin""": ANY(_lowerCAmelCase ), """ymin""": ANY(_lowerCAmelCase ), """xmax""": ANY(_lowerCAmelCase ), """ymax""": ANY(_lowerCAmelCase )},
}
for i in range(_lowerCAmelCase )
] ,)
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def UpperCamelCase_ ( self ):
pass
@require_torch
def UpperCamelCase_ ( self ):
lowerCamelCase__ = pipeline(
"""zero-shot-object-detection""" ,model="""hf-internal-testing/tiny-random-owlvit-object-detection""" )
lowerCamelCase__ = object_detector(
"""./tests/fixtures/tests_samples/COCO/000000039769.png""" ,candidate_labels=["""cat""", """remote""", """couch"""] ,threshold=0.64 ,)
self.assertEqual(
nested_simplify(_lowerCAmelCase ,decimals=4 ) ,[
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 2_04, """ymin""": 1_67, """xmax""": 2_32, """ymax""": 1_90}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 2_04, """ymin""": 1_67, """xmax""": 2_32, """ymax""": 1_90}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 2_04, """ymin""": 1_67, """xmax""": 2_32, """ymax""": 1_90}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 5_71, """ymin""": 83, """xmax""": 5_98, """ymax""": 1_03}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 5_71, """ymin""": 83, """xmax""": 5_98, """ymax""": 1_03}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 5_71, """ymin""": 83, """xmax""": 5_98, """ymax""": 1_03}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 4_94, """ymin""": 1_05, """xmax""": 5_21, """ymax""": 1_27}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 2_74, """xmax""": 93, """ymax""": 2_97}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 4_94, """ymin""": 1_05, """xmax""": 5_21, """ymax""": 1_27}},
] ,)
lowerCamelCase__ = object_detector(
[
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
] ,threshold=0.64 ,)
self.assertEqual(
nested_simplify(_lowerCAmelCase ,decimals=4 ) ,[
[
{"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 2_04, """ymin""": 1_67, """xmax""": 2_32, """ymax""": 1_90}},
{"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 2_04, """ymin""": 1_67, """xmax""": 2_32, """ymax""": 1_90}},
{"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 2_04, """ymin""": 1_67, """xmax""": 2_32, """ymax""": 1_90}},
{"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 5_71, """ymin""": 83, """xmax""": 5_98, """ymax""": 1_03}},
{"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 5_71, """ymin""": 83, """xmax""": 5_98, """ymax""": 1_03}},
{"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 5_71, """ymin""": 83, """xmax""": 5_98, """ymax""": 1_03}},
{"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 4_94, """ymin""": 1_05, """xmax""": 5_21, """ymax""": 1_27}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 2_74, """xmax""": 93, """ymax""": 2_97}},
{"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 4_94, """ymin""": 1_05, """xmax""": 5_21, """ymax""": 1_27}},
]
] ,)
@require_torch
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = pipeline("""zero-shot-object-detection""" )
lowerCamelCase__ = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" ,candidate_labels=["""cat""", """remote""", """couch"""] ,)
self.assertEqual(
nested_simplify(_lowerCAmelCase ,decimals=4 ) ,[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 3_24, """ymin""": 20, """xmax""": 6_40, """ymax""": 3_73}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 1_77, """ymax""": 1_15}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 3_15, """ymax""": 4_72}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 3_35, """ymin""": 74, """xmax""": 3_71, """ymax""": 1_87}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 6_42, """ymax""": 4_76}},
] ,)
lowerCamelCase__ = object_detector(
[
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
] ,)
self.assertEqual(
nested_simplify(_lowerCAmelCase ,decimals=4 ) ,[
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 3_24, """ymin""": 20, """xmax""": 6_40, """ymax""": 3_73}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 1_77, """ymax""": 1_15}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 3_15, """ymax""": 4_72}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 3_35, """ymin""": 74, """xmax""": 3_71, """ymax""": 1_87}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 6_42, """ymax""": 4_76}},
],
[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 3_24, """ymin""": 20, """xmax""": 6_40, """ymax""": 3_73}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 1_77, """ymax""": 1_15}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 3_15, """ymax""": 4_72}},
{"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 3_35, """ymin""": 74, """xmax""": 3_71, """ymax""": 1_87}},
{"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 6_42, """ymax""": 4_76}},
],
] ,)
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""" )
def UpperCamelCase_ ( self ):
pass
@require_torch
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 0.2
lowerCamelCase__ = pipeline("""zero-shot-object-detection""" )
lowerCamelCase__ = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" ,candidate_labels=["""cat""", """remote""", """couch"""] ,threshold=_lowerCAmelCase ,)
self.assertEqual(
nested_simplify(_lowerCAmelCase ,decimals=4 ) ,[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 3_24, """ymin""": 20, """xmax""": 6_40, """ymax""": 3_73}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 1_77, """ymax""": 1_15}},
{"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 3_15, """ymax""": 4_72}},
] ,)
@require_torch
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 2
lowerCamelCase__ = pipeline("""zero-shot-object-detection""" )
lowerCamelCase__ = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" ,candidate_labels=["""cat""", """remote""", """couch"""] ,top_k=_lowerCAmelCase ,)
self.assertEqual(
nested_simplify(_lowerCAmelCase ,decimals=4 ) ,[
{"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 3_24, """ymin""": 20, """xmax""": 6_40, """ymax""": 3_73}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 1_77, """ymax""": 1_15}},
] ,)
| 9 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : List[str] = {
'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json',
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'donut-swin'
_UpperCamelCase = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self ,_lowerCAmelCase=2_24 ,_lowerCAmelCase=4 ,_lowerCAmelCase=3 ,_lowerCAmelCase=96 ,_lowerCAmelCase=[2, 2, 6, 2] ,_lowerCAmelCase=[3, 6, 12, 24] ,_lowerCAmelCase=7 ,_lowerCAmelCase=4.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=False ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,**_lowerCAmelCase ,):
super().__init__(**_lowerCAmelCase )
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = embed_dim
lowerCamelCase__ = depths
lowerCamelCase__ = len(_lowerCAmelCase )
lowerCamelCase__ = num_heads
lowerCamelCase__ = window_size
lowerCamelCase__ = mlp_ratio
lowerCamelCase__ = qkv_bias
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = drop_path_rate
lowerCamelCase__ = hidden_act
lowerCamelCase__ = use_absolute_embeddings
lowerCamelCase__ = layer_norm_eps
lowerCamelCase__ = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCamelCase__ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
| 9 | 1 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase : List[Any] = logging.get_logger(__name__)
UpperCamelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
# See all BART models at https://huggingface.co/models?filter=bart
UpperCamelCase : int = {
'vocab_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json',
},
'merges_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt',
},
}
UpperCamelCase : Optional[Any] = {
'facebook/bart-base': 10_24,
'facebook/bart-large': 10_24,
'facebook/bart-large-mnli': 10_24,
'facebook/bart-large-cnn': 10_24,
'facebook/bart-large-xsum': 10_24,
'yjernite/bart_eli5': 10_24,
}
@lru_cache()
def A__ ( ):
lowerCamelCase__ = (
list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) )
)
lowerCamelCase__ = bs[:]
lowerCamelCase__ = 0
for b in range(2**8 ):
if b not in bs:
bs.append(__lowerCAmelCase )
cs.append(2**8 + n )
n += 1
lowerCamelCase__ = [chr(__lowerCAmelCase ) for n in cs]
return dict(zip(__lowerCAmelCase , __lowerCAmelCase ) )
def A__ ( __lowerCAmelCase : str ):
lowerCamelCase__ = set()
lowerCamelCase__ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase__ = char
return pairs
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = VOCAB_FILES_NAMES
_UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase = ['input_ids', 'attention_mask']
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase="replace" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase=False ,**_lowerCAmelCase ,):
lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else bos_token
lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else eos_token
lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else sep_token
lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else cls_token
lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else unk_token
lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token
super().__init__(
errors=_lowerCAmelCase ,bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,**_lowerCAmelCase ,)
with open(_lowerCAmelCase ,encoding="""utf-8""" ) as vocab_handle:
lowerCamelCase__ = json.load(_lowerCAmelCase )
lowerCamelCase__ = {v: k for k, v in self.encoder.items()}
lowerCamelCase__ = errors # how to handle errors in decoding
lowerCamelCase__ = bytes_to_unicode()
lowerCamelCase__ = {v: k for k, v in self.byte_encoder.items()}
with open(_lowerCAmelCase ,encoding="""utf-8""" ) as merges_handle:
lowerCamelCase__ = merges_handle.read().split("""\n""" )[1:-1]
lowerCamelCase__ = [tuple(merge.split() ) for merge in bpe_merges]
lowerCamelCase__ = dict(zip(_lowerCAmelCase ,range(len(_lowerCAmelCase ) ) ) )
lowerCamelCase__ = {}
lowerCamelCase__ = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowerCamelCase__ = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
def UpperCamelCase_ ( self ):
return len(self.encoder )
def UpperCamelCase_ ( self ):
return dict(self.encoder ,**self.added_tokens_encoder )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
if token in self.cache:
return self.cache[token]
lowerCamelCase__ = tuple(_lowerCAmelCase )
lowerCamelCase__ = get_pairs(_lowerCAmelCase )
if not pairs:
return token
while True:
lowerCamelCase__ = min(_lowerCAmelCase ,key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase ,float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase__ , lowerCamelCase__ = bigram
lowerCamelCase__ = []
lowerCamelCase__ = 0
while i < len(_lowerCAmelCase ):
try:
lowerCamelCase__ = word.index(_lowerCAmelCase ,_lowerCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCamelCase__ = j
if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase__ = tuple(_lowerCAmelCase )
lowerCamelCase__ = new_word
if len(_lowerCAmelCase ) == 1:
break
else:
lowerCamelCase__ = get_pairs(_lowerCAmelCase )
lowerCamelCase__ = """ """.join(_lowerCAmelCase )
lowerCamelCase__ = word
return word
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = []
for token in re.findall(self.pat ,_lowerCAmelCase ):
lowerCamelCase__ = """""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCAmelCase ).split(""" """ ) )
return bpe_tokens
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return self.encoder.get(_lowerCAmelCase ,self.encoder.get(self.unk_token ) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return self.decoder.get(_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = """""".join(_lowerCAmelCase )
lowerCamelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors )
return text
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
if not os.path.isdir(_lowerCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCamelCase__ = os.path.join(
_lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
lowerCamelCase__ = os.path.join(
_lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(_lowerCAmelCase ,"""w""" ,encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_lowerCAmelCase ,ensure_ascii=_lowerCAmelCase ) + """\n""" )
lowerCamelCase__ = 0
with open(_lowerCAmelCase ,"""w""" ,encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _lowerCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
""" Please check that the tokenizer is not corrupted!""" )
lowerCamelCase__ = token_index
writer.write(""" """.join(_lowerCAmelCase ) + """\n""" )
index += 1
return vocab_file, merge_file
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
lowerCamelCase__ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(_lowerCAmelCase )) + [1]
return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1]
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=False ,**_lowerCAmelCase ):
lowerCamelCase__ = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(_lowerCAmelCase ) > 0 and not text[0].isspace()):
lowerCamelCase__ = """ """ + text
return (text, kwargs)
| 9 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
UpperCamelCase : Optional[Any] = ['small', 'medium', 'large']
UpperCamelCase : Dict = 'lm_head.decoder.weight'
UpperCamelCase : int = 'lm_head.weight'
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ):
lowerCamelCase__ = torch.load(__lowerCAmelCase )
lowerCamelCase__ = d.pop(__lowerCAmelCase )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) )
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
parser.add_argument('--dialogpt_path', default='.', type=str)
UpperCamelCase : Dict = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
UpperCamelCase : Any = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl')
UpperCamelCase : str = F'./DialoGPT-{MODEL}'
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 9 | 1 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
)
@flax.struct.dataclass
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 42
_UpperCamelCase = 42
class UpperCamelCase__ (nn.Module ):
'''simple docstring'''
_UpperCamelCase = 42
_UpperCamelCase = (16, 32, 96, 256)
_UpperCamelCase = jnp.floataa
def UpperCamelCase_ ( self ):
lowerCamelCase__ = nn.Conv(
self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
lowerCamelCase__ = []
for i in range(len(self.block_out_channels ) - 1 ):
lowerCamelCase__ = self.block_out_channels[i]
lowerCamelCase__ = self.block_out_channels[i + 1]
lowerCamelCase__ = nn.Conv(
_lowerCAmelCase ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
blocks.append(_lowerCAmelCase )
lowerCamelCase__ = nn.Conv(
_lowerCAmelCase ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
blocks.append(_lowerCAmelCase )
lowerCamelCase__ = blocks
lowerCamelCase__ = nn.Conv(
self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
def __call__( self ,_lowerCAmelCase ):
lowerCamelCase__ = self.conv_in(_lowerCAmelCase )
lowerCamelCase__ = nn.silu(_lowerCAmelCase )
for block in self.blocks:
lowerCamelCase__ = block(_lowerCAmelCase )
lowerCamelCase__ = nn.silu(_lowerCAmelCase )
lowerCamelCase__ = self.conv_out(_lowerCAmelCase )
return embedding
@flax_register_to_config
class UpperCamelCase__ (nn.Module ,a ,a ):
'''simple docstring'''
_UpperCamelCase = 32
_UpperCamelCase = 4
_UpperCamelCase = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
_UpperCamelCase = False
_UpperCamelCase = (320, 640, 1280, 1280)
_UpperCamelCase = 2
_UpperCamelCase = 8
_UpperCamelCase = None
_UpperCamelCase = 1280
_UpperCamelCase = 0.0
_UpperCamelCase = False
_UpperCamelCase = jnp.floataa
_UpperCamelCase = True
_UpperCamelCase = 0
_UpperCamelCase = "rgb"
_UpperCamelCase = (16, 32, 96, 256)
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
# init input tensors
lowerCamelCase__ = (1, self.in_channels, self.sample_size, self.sample_size)
lowerCamelCase__ = jnp.zeros(_lowerCAmelCase ,dtype=jnp.floataa )
lowerCamelCase__ = jnp.ones((1,) ,dtype=jnp.intaa )
lowerCamelCase__ = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa )
lowerCamelCase__ = (1, 3, self.sample_size * 8, self.sample_size * 8)
lowerCamelCase__ = jnp.zeros(_lowerCAmelCase ,dtype=jnp.floataa )
lowerCamelCase__ , lowerCamelCase__ = jax.random.split(_lowerCAmelCase )
lowerCamelCase__ = {"""params""": params_rng, """dropout""": dropout_rng}
return self.init(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )["params"]
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.block_out_channels
lowerCamelCase__ = block_out_channels[0] * 4
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
lowerCamelCase__ = self.num_attention_heads or self.attention_head_dim
# input
lowerCamelCase__ = nn.Conv(
block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
# time
lowerCamelCase__ = FlaxTimesteps(
block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift )
lowerCamelCase__ = FlaxTimestepEmbedding(_lowerCAmelCase ,dtype=self.dtype )
lowerCamelCase__ = FlaxControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,)
lowerCamelCase__ = self.only_cross_attention
if isinstance(_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = (only_cross_attention,) * len(self.down_block_types )
if isinstance(_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = (num_attention_heads,) * len(self.down_block_types )
# down
lowerCamelCase__ = []
lowerCamelCase__ = []
lowerCamelCase__ = block_out_channels[0]
lowerCamelCase__ = nn.Conv(
_lowerCAmelCase ,kernel_size=(1, 1) ,padding="""VALID""" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
controlnet_down_blocks.append(_lowerCAmelCase )
for i, down_block_type in enumerate(self.down_block_types ):
lowerCamelCase__ = output_channel
lowerCamelCase__ = block_out_channels[i]
lowerCamelCase__ = i == len(_lowerCAmelCase ) - 1
if down_block_type == "CrossAttnDownBlock2D":
lowerCamelCase__ = FlaxCrossAttnDownBlockaD(
in_channels=_lowerCAmelCase ,out_channels=_lowerCAmelCase ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,)
else:
lowerCamelCase__ = FlaxDownBlockaD(
in_channels=_lowerCAmelCase ,out_channels=_lowerCAmelCase ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,)
down_blocks.append(_lowerCAmelCase )
for _ in range(self.layers_per_block ):
lowerCamelCase__ = nn.Conv(
_lowerCAmelCase ,kernel_size=(1, 1) ,padding="""VALID""" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
controlnet_down_blocks.append(_lowerCAmelCase )
if not is_final_block:
lowerCamelCase__ = nn.Conv(
_lowerCAmelCase ,kernel_size=(1, 1) ,padding="""VALID""" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
controlnet_down_blocks.append(_lowerCAmelCase )
lowerCamelCase__ = down_blocks
lowerCamelCase__ = controlnet_down_blocks
# mid
lowerCamelCase__ = block_out_channels[-1]
lowerCamelCase__ = FlaxUNetMidBlockaDCrossAttn(
in_channels=_lowerCAmelCase ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,)
lowerCamelCase__ = nn.Conv(
_lowerCAmelCase ,kernel_size=(1, 1) ,padding="""VALID""" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
def __call__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = 1.0 ,_lowerCAmelCase = True ,_lowerCAmelCase = False ,):
lowerCamelCase__ = self.controlnet_conditioning_channel_order
if channel_order == "bgr":
lowerCamelCase__ = jnp.flip(_lowerCAmelCase ,axis=1 )
# 1. time
if not isinstance(_lowerCAmelCase ,jnp.ndarray ):
lowerCamelCase__ = jnp.array([timesteps] ,dtype=jnp.intaa )
elif isinstance(_lowerCAmelCase ,jnp.ndarray ) and len(timesteps.shape ) == 0:
lowerCamelCase__ = timesteps.astype(dtype=jnp.floataa )
lowerCamelCase__ = jnp.expand_dims(_lowerCAmelCase ,0 )
lowerCamelCase__ = self.time_proj(_lowerCAmelCase )
lowerCamelCase__ = self.time_embedding(_lowerCAmelCase )
# 2. pre-process
lowerCamelCase__ = jnp.transpose(_lowerCAmelCase ,(0, 2, 3, 1) )
lowerCamelCase__ = self.conv_in(_lowerCAmelCase )
lowerCamelCase__ = jnp.transpose(_lowerCAmelCase ,(0, 2, 3, 1) )
lowerCamelCase__ = self.controlnet_cond_embedding(_lowerCAmelCase )
sample += controlnet_cond
# 3. down
lowerCamelCase__ = (sample,)
for down_block in self.down_blocks:
if isinstance(_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ , lowerCamelCase__ = down_block(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,deterministic=not train )
else:
lowerCamelCase__ , lowerCamelCase__ = down_block(_lowerCAmelCase ,_lowerCAmelCase ,deterministic=not train )
down_block_res_samples += res_samples
# 4. mid
lowerCamelCase__ = self.mid_block(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,deterministic=not train )
# 5. contronet blocks
lowerCamelCase__ = ()
for down_block_res_sample, controlnet_block in zip(_lowerCAmelCase ,self.controlnet_down_blocks ):
lowerCamelCase__ = controlnet_block(_lowerCAmelCase )
controlnet_down_block_res_samples += (down_block_res_sample,)
lowerCamelCase__ = controlnet_down_block_res_samples
lowerCamelCase__ = self.controlnet_mid_block(_lowerCAmelCase )
# 6. scaling
lowerCamelCase__ = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample *= conditioning_scale
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return FlaxControlNetOutput(
down_block_res_samples=_lowerCAmelCase ,mid_block_res_sample=_lowerCAmelCase )
| 9 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=30 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=10 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=0.6 ,_lowerCAmelCase=None ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = is_training
lowerCamelCase__ = use_labels
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = type_sequence_label_size
lowerCamelCase__ = initializer_range
lowerCamelCase__ = mask_ratio
lowerCamelCase__ = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
lowerCamelCase__ = (image_size // patch_size) ** 2
lowerCamelCase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowerCamelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self ):
return ViTMAEConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = TFViTMAEModel(config=_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
# expected sequence length = num_patches
lowerCamelCase__ = (self.image_size // self.patch_size) ** 2
lowerCamelCase__ = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
lowerCamelCase__ = 1
lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase )
lowerCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
lowerCamelCase__ = self.patch_size**2
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs
lowerCamelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
_UpperCamelCase = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {}
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFViTMAEModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 )
def UpperCamelCase_ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
lowerCamelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase ,tf.keras.layers.Layer ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
# make the mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = copy.deepcopy(self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = outputs_dict[0].numpy()
lowerCamelCase__ = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1E-6 )
def UpperCamelCase_ ( self ):
# make the mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(_lowerCAmelCase ):
lowerCamelCase__ = {}
for k, v in inputs_dict.items():
if tf.is_tensor(_lowerCAmelCase ):
lowerCamelCase__ = v.numpy()
else:
lowerCamelCase__ = np.array(_lowerCAmelCase )
return inputs_np_dict
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = prepare_numpy_arrays(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
# make masks reproducible
np.random.seed(2 )
lowerCamelCase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowerCamelCase__ = tf.constant(_lowerCAmelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
lowerCamelCase__ = tf_noise
super().check_pt_tf_models(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(_lowerCAmelCase )
if module_member_name.endswith("""MainLayer""" )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )]
for module_member in (getattr(_lowerCAmelCase ,_lowerCAmelCase ),)
if isinstance(_lowerCAmelCase ,_lowerCAmelCase )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(_lowerCAmelCase ,"""_keras_serializable""" ,_lowerCAmelCase )
}
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowerCamelCase__ = tf.convert_to_tensor(_lowerCAmelCase )
inputs_dict.update({"""noise""": noise} )
for main_layer_class in tf_main_layer_classes:
lowerCamelCase__ = main_layer_class(_lowerCAmelCase )
lowerCamelCase__ = {
name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
lowerCamelCase__ = tf.keras.Model(_lowerCAmelCase ,outputs=main_layer(_lowerCAmelCase ) )
lowerCamelCase__ = model(_lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCamelCase__ = os.path.join(_lowerCAmelCase ,"""keras_model.h5""" )
model.save(_lowerCAmelCase )
lowerCamelCase__ = tf.keras.models.load_model(
_lowerCAmelCase ,custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(_lowerCAmelCase ,tf.keras.Model )
lowerCamelCase__ = model(_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
lowerCamelCase__ = outputs.last_hidden_state.numpy()
lowerCamelCase__ = 0
else:
lowerCamelCase__ = outputs.logits.numpy()
lowerCamelCase__ = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_lowerCAmelCase ,saved_model=_lowerCAmelCase )
lowerCamelCase__ = model_class.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
lowerCamelCase__ = after_outputs["""last_hidden_state"""].numpy()
lowerCamelCase__ = 0
else:
lowerCamelCase__ = after_outputs["""logits"""].numpy()
lowerCamelCase__ = 0
lowerCamelCase__ = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_lowerCAmelCase ,1E-5 )
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(_lowerCAmelCase )
lowerCamelCase__ = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
lowerCamelCase__ = model_class.from_config(model.config )
lowerCamelCase__ = new_model(_lowerCAmelCase ) # Build model
new_model.set_weights(model.get_weights() )
lowerCamelCase__ = new_model(_lowerCAmelCase ,noise=_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def UpperCamelCase_ ( self ):
pass
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" )
self.assertIsNotNone(_lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
lowerCamelCase__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" )
lowerCamelCase__ = self.default_image_processor
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""tf""" )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
lowerCamelCase__ = ViTMAEConfig()
lowerCamelCase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(1, num_patches) )
# forward pass
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
# verify the logits
lowerCamelCase__ = tf.convert_to_tensor([1, 1_96, 7_68] )
self.assertEqual(outputs.logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = tf.convert_to_tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] ,_lowerCAmelCase ,atol=1E-4 )
| 9 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : str = logging.get_logger(__name__)
UpperCamelCase : int = {
'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json',
# See all ViT MSN models at https://huggingface.co/models?filter=vit_msn
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'vit_msn'
def __init__( self ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=30_72 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-06 ,_lowerCAmelCase=2_24 ,_lowerCAmelCase=16 ,_lowerCAmelCase=3 ,_lowerCAmelCase=True ,**_lowerCAmelCase ,):
super().__init__(**_lowerCAmelCase )
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = initializer_range
lowerCamelCase__ = layer_norm_eps
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = qkv_bias
| 9 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=7 ,_lowerCAmelCase=3 ,_lowerCAmelCase=18 ,_lowerCAmelCase=30 ,_lowerCAmelCase=4_00 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,):
lowerCamelCase__ = size if size is not None else {"""shortest_edge""": 18}
lowerCamelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = image_size
lowerCamelCase__ = min_resolution
lowerCamelCase__ = max_resolution
lowerCamelCase__ = do_resize
lowerCamelCase__ = size
lowerCamelCase__ = do_center_crop
lowerCamelCase__ = crop_size
lowerCamelCase__ = do_normalize
lowerCamelCase__ = image_mean
lowerCamelCase__ = image_std
def UpperCamelCase_ ( self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = LevitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
lowerCamelCase__ = LevitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""image_std""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_center_crop""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""size""" ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} )
self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} )
lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,Image.Image )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,numpify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,np.ndarray )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,torchify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,torch.Tensor )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
| 9 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
UpperCamelCase : List[str] = logging.get_logger(__name__)
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
warnings.warn(
"""The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DeiTImageProcessor instead.""" ,_lowerCAmelCase ,)
super().__init__(*_lowerCAmelCase ,**_lowerCAmelCase )
| 9 |
'''simple docstring'''
import numpy
# List of input, output pairs
UpperCamelCase : List[Any] = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
UpperCamelCase : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50))
UpperCamelCase : int = [2, 4, 1, 5]
UpperCamelCase : int = len(train_data)
UpperCamelCase : Dict = 0.009
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : str="train" ):
return calculate_hypothesis_value(__lowerCAmelCase , __lowerCAmelCase ) - output(
__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : Any ):
lowerCamelCase__ = 0
for i in range(len(__lowerCAmelCase ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=m ):
lowerCamelCase__ = 0
for i in range(__lowerCAmelCase ):
if index == -1:
summation_value += _error(__lowerCAmelCase )
else:
summation_value += _error(__lowerCAmelCase ) * train_data[i][0][index]
return summation_value
def A__ ( __lowerCAmelCase : List[Any] ):
lowerCamelCase__ = summation_of_cost_derivative(__lowerCAmelCase , __lowerCAmelCase ) / m
return cost_derivative_value
def A__ ( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
lowerCamelCase__ = 0.00_0002
lowerCamelCase__ = 0
lowerCamelCase__ = 0
while True:
j += 1
lowerCamelCase__ = [0, 0, 0, 0]
for i in range(0 , len(__lowerCAmelCase ) ):
lowerCamelCase__ = get_cost_derivative(i - 1 )
lowerCamelCase__ = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
__lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase , rtol=__lowerCAmelCase , ):
break
lowerCamelCase__ = temp_parameter_vector
print(("""Number of iterations:""", j) )
def A__ ( ):
for i in range(len(__lowerCAmelCase ) ):
print(("""Actual output value:""", output(__lowerCAmelCase , """test""" )) )
print(("""Hypothesis output:""", calculate_hypothesis_value(__lowerCAmelCase , """test""" )) )
if __name__ == "__main__":
run_gradient_descent()
print('\nTesting gradient descent for a linear hypothesis function.\n')
test_gradient_descent()
| 9 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ):
if exponent == 1:
return base
if exponent % 2 == 0:
lowerCamelCase__ = _modexpt(__lowerCAmelCase , exponent // 2 , __lowerCAmelCase ) % modulo_value
return (x * x) % modulo_value
else:
return (base * _modexpt(__lowerCAmelCase , exponent - 1 , __lowerCAmelCase )) % modulo_value
def A__ ( __lowerCAmelCase : int = 1777 , __lowerCAmelCase : int = 1855 , __lowerCAmelCase : int = 8 ):
lowerCamelCase__ = base
for _ in range(1 , __lowerCAmelCase ):
lowerCamelCase__ = _modexpt(__lowerCAmelCase , __lowerCAmelCase , 10**digits )
return result
if __name__ == "__main__":
print(F'{solution() = }')
| 9 |
'''simple docstring'''
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ):
lowerCamelCase__ = OmegaConf.load(__lowerCAmelCase )
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""model"""]
lowerCamelCase__ = list(state_dict.keys() )
# extract state_dict for VQVAE
lowerCamelCase__ = {}
lowerCamelCase__ = """first_stage_model."""
for key in keys:
if key.startswith(__lowerCAmelCase ):
lowerCamelCase__ = state_dict[key]
# extract state_dict for UNetLDM
lowerCamelCase__ = {}
lowerCamelCase__ = """model.diffusion_model."""
for key in keys:
if key.startswith(__lowerCAmelCase ):
lowerCamelCase__ = state_dict[key]
lowerCamelCase__ = config.model.params.first_stage_config.params
lowerCamelCase__ = config.model.params.unet_config.params
lowerCamelCase__ = VQModel(**__lowerCAmelCase ).eval()
vqvae.load_state_dict(__lowerCAmelCase )
lowerCamelCase__ = UNetLDMModel(**__lowerCAmelCase ).eval()
unet.load_state_dict(__lowerCAmelCase )
lowerCamelCase__ = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__lowerCAmelCase , )
lowerCamelCase__ = LDMPipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
pipeline.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', type=str, required=True)
parser.add_argument('--config_path', type=str, required=True)
parser.add_argument('--output_path', type=str, required=True)
UpperCamelCase : List[Any] = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 9 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase : Tuple = {
'configuration_informer': [
'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'InformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Optional[int] = [
'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'InformerForPrediction',
'InformerModel',
'InformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 9 |
'''simple docstring'''
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
UpperCamelCase : str = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase]
UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS}
UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"]
def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : tuple[int, ...] ):
lowerCamelCase__ = ""
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = 42
for keychar, cipherchar in zip(cycle(__lowerCAmelCase ) , __lowerCAmelCase ):
lowerCamelCase__ = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(__lowerCAmelCase )
return decoded
def A__ ( __lowerCAmelCase : list[int] ):
lowerCamelCase__ = []
for key in product(__lowerCAmelCase , repeat=3 ):
lowerCamelCase__ = try_key(__lowerCAmelCase , __lowerCAmelCase )
if encoded is not None:
possibles.append(__lowerCAmelCase )
return possibles
def A__ ( __lowerCAmelCase : list[str] , __lowerCAmelCase : str ):
return [possible for possible in possibles if common_word in possible.lower()]
def A__ ( __lowerCAmelCase : str = "p059_cipher.txt" ):
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = Path(__lowerCAmelCase ).parent.joinpath(__lowerCAmelCase ).read_text(encoding="""utf-8""" )
lowerCamelCase__ = [int(__lowerCAmelCase ) for number in data.strip().split(""",""" )]
lowerCamelCase__ = filter_valid_chars(__lowerCAmelCase )
for common_word in COMMON_WORDS:
lowerCamelCase__ = filter_common_word(__lowerCAmelCase , __lowerCAmelCase )
if len(__lowerCAmelCase ) == 1:
break
lowerCamelCase__ = possibles[0]
return sum(ord(__lowerCAmelCase ) for char in decoded_text )
if __name__ == "__main__":
print(F'{solution() = }')
| 9 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = [[0 for _ in range(__lowerCAmelCase )] for _ in range(m + 1 )]
for i in range(m + 1 ):
lowerCamelCase__ = 1
for n in range(m + 1 ):
for k in range(1 , __lowerCAmelCase ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
UpperCamelCase : Optional[int] = int(input('Enter a number: ').strip())
print(partition(n))
except ValueError:
print('Please enter a number.')
else:
try:
UpperCamelCase : int = int(sys.argv[1])
print(partition(n))
except ValueError:
print('Please pass a number.')
| 9 |
'''simple docstring'''
import argparse
import struct
import unittest
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ):
lowerCamelCase__ = data
# Initialize hash values
lowerCamelCase__ = [
0x6a_09_e6_67,
0xbb_67_ae_85,
0x3c_6e_f3_72,
0xa5_4f_f5_3a,
0x51_0e_52_7f,
0x9b_05_68_8c,
0x1f_83_d9_ab,
0x5b_e0_cd_19,
]
# Initialize round constants
lowerCamelCase__ = [
0x42_8a_2f_98,
0x71_37_44_91,
0xb5_c0_fb_cf,
0xe9_b5_db_a5,
0x39_56_c2_5b,
0x59_f1_11_f1,
0x92_3f_82_a4,
0xab_1c_5e_d5,
0xd8_07_aa_98,
0x12_83_5b_01,
0x24_31_85_be,
0x55_0c_7d_c3,
0x72_be_5d_74,
0x80_de_b1_fe,
0x9b_dc_06_a7,
0xc1_9b_f1_74,
0xe4_9b_69_c1,
0xef_be_47_86,
0x0f_c1_9d_c6,
0x24_0c_a1_cc,
0x2d_e9_2c_6f,
0x4a_74_84_aa,
0x5c_b0_a9_dc,
0x76_f9_88_da,
0x98_3e_51_52,
0xa8_31_c6_6d,
0xb0_03_27_c8,
0xbf_59_7f_c7,
0xc6_e0_0b_f3,
0xd5_a7_91_47,
0x06_ca_63_51,
0x14_29_29_67,
0x27_b7_0a_85,
0x2e_1b_21_38,
0x4d_2c_6d_fc,
0x53_38_0d_13,
0x65_0a_73_54,
0x76_6a_0a_bb,
0x81_c2_c9_2e,
0x92_72_2c_85,
0xa2_bf_e8_a1,
0xa8_1a_66_4b,
0xc2_4b_8b_70,
0xc7_6c_51_a3,
0xd1_92_e8_19,
0xd6_99_06_24,
0xf4_0e_35_85,
0x10_6a_a0_70,
0x19_a4_c1_16,
0x1e_37_6c_08,
0x27_48_77_4c,
0x34_b0_bc_b5,
0x39_1c_0c_b3,
0x4e_d8_aa_4a,
0x5b_9c_ca_4f,
0x68_2e_6f_f3,
0x74_8f_82_ee,
0x78_a5_63_6f,
0x84_c8_78_14,
0x8c_c7_02_08,
0x90_be_ff_fa,
0xa4_50_6c_eb,
0xbe_f9_a3_f7,
0xc6_71_78_f2,
]
lowerCamelCase__ = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def UpperCamelCase_ ( _lowerCAmelCase ):
lowerCamelCase__ = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowerCAmelCase ) + 8) % 64))
lowerCamelCase__ = struct.pack(""">Q""" ,(len(_lowerCAmelCase ) * 8) )
return data + padding + big_endian_integer
def UpperCamelCase_ ( self ):
# Convert into blocks of 64 bytes
lowerCamelCase__ = [
self.preprocessed_data[x : x + 64]
for x in range(0 ,len(self.preprocessed_data ) ,64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
lowerCamelCase__ = list(struct.unpack(""">16L""" ,_lowerCAmelCase ) )
# add 48 0-ed integers
words += [0] * 48
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.hashes
for index in range(0 ,64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
lowerCamelCase__ = (
self.ror(words[index - 15] ,7 )
^ self.ror(words[index - 15] ,18 )
^ (words[index - 15] >> 3)
)
lowerCamelCase__ = (
self.ror(words[index - 2] ,17 )
^ self.ror(words[index - 2] ,19 )
^ (words[index - 2] >> 10)
)
lowerCamelCase__ = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_00_00_00_00
# Compression
lowerCamelCase__ = self.ror(_lowerCAmelCase ,6 ) ^ self.ror(_lowerCAmelCase ,11 ) ^ self.ror(_lowerCAmelCase ,25 )
lowerCamelCase__ = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g)
lowerCamelCase__ = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_00_00_00_00
lowerCamelCase__ = self.ror(_lowerCAmelCase ,2 ) ^ self.ror(_lowerCAmelCase ,13 ) ^ self.ror(_lowerCAmelCase ,22 )
lowerCamelCase__ = (a & b) ^ (a & c) ^ (b & c)
lowerCamelCase__ = (sa + maj) % 0x1_00_00_00_00
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = (
g,
f,
e,
((d + tempa) % 0x1_00_00_00_00),
c,
b,
a,
((tempa + tempa) % 0x1_00_00_00_00),
)
lowerCamelCase__ = [a, b, c, d, e, f, g, h]
# Modify final values
lowerCamelCase__ = [
((element + mutated_hash_values[index]) % 0x1_00_00_00_00)
for index, element in enumerate(self.hashes )
]
lowerCamelCase__ = """""".join([hex(_lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations)
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
import hashlib
lowerCamelCase__ = bytes("""Test String""" ,"""utf-8""" )
self.assertEqual(SHAaaa(_lowerCAmelCase ).hash ,hashlib.shaaaa(_lowerCAmelCase ).hexdigest() )
def A__ ( ):
import doctest
doctest.testmod()
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument(
"""-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , )
parser.add_argument(
"""-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" )
lowerCamelCase__ = parser.parse_args()
lowerCamelCase__ = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , """rb""" ) as f:
lowerCamelCase__ = f.read()
else:
lowerCamelCase__ = bytes(__lowerCAmelCase , """utf-8""" )
print(SHAaaa(__lowerCAmelCase ).hash )
if __name__ == "__main__":
main()
| 9 | 1 |
'''simple docstring'''
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
lowerCamelCase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
lowerCamelCase__ = """xvjiarui/stable-diffusion-2-inpainting"""
lowerCamelCase__ , lowerCamelCase__ = FlaxStableDiffusionInpaintPipeline.from_pretrained(_lowerCAmelCase ,safety_checker=_lowerCAmelCase )
lowerCamelCase__ = """Face of a yellow cat, high resolution, sitting on a park bench"""
lowerCamelCase__ = jax.random.PRNGKey(0 )
lowerCamelCase__ = 50
lowerCamelCase__ = jax.device_count()
lowerCamelCase__ = num_samples * [prompt]
lowerCamelCase__ = num_samples * [init_image]
lowerCamelCase__ = num_samples * [mask_image]
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = pipeline.prepare_inputs(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
# shard inputs and rng
lowerCamelCase__ = replicate(_lowerCAmelCase )
lowerCamelCase__ = jax.random.split(_lowerCAmelCase ,jax.device_count() )
lowerCamelCase__ = shard(_lowerCAmelCase )
lowerCamelCase__ = shard(_lowerCAmelCase )
lowerCamelCase__ = shard(_lowerCAmelCase )
lowerCamelCase__ = pipeline(
_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,jit=_lowerCAmelCase )
lowerCamelCase__ = output.images.reshape(_lowerCAmelCase ,5_12 ,5_12 ,3 )
lowerCamelCase__ = images[0, 2_53:2_56, 2_53:2_56, -1]
lowerCamelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) )
lowerCamelCase__ = jnp.array(
[0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] )
print(F'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 9 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def A__ ( __lowerCAmelCase : Union[str, Any] ):
lowerCamelCase__ = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""encoder.embed_positions._float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : Tuple ):
lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape
lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase )
lowerCamelCase__ = emb.weight.data
return lin_layer
def A__ ( __lowerCAmelCase : Dict ):
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )
lowerCamelCase__ = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""]
lowerCamelCase__ = mam_aaa["""model"""]
remove_ignore_keys_(__lowerCAmelCase )
lowerCamelCase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0]
lowerCamelCase__ = MaMaaaConfig(
vocab_size=__lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , )
lowerCamelCase__ = state_dict["""decoder.embed_tokens.weight"""]
lowerCamelCase__ = MaMaaaForConditionalGeneration(__lowerCAmelCase )
model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
lowerCamelCase__ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
UpperCamelCase : Tuple = parser.parse_args()
UpperCamelCase : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 9 | 1 |
'''simple docstring'''
UpperCamelCase : Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)]
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000]
number //= 10_0000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
UpperCamelCase : list[bool | None] = [None] * 10_00_00_00
UpperCamelCase : Tuple = True
UpperCamelCase : Optional[int] = False
def A__ ( __lowerCAmelCase : int ):
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
lowerCamelCase__ = chain(next_number(__lowerCAmelCase ) )
lowerCamelCase__ = number_chain
while number < 1000_0000:
lowerCamelCase__ = number_chain
number *= 10
return number_chain
def A__ ( __lowerCAmelCase : int = 1000_0000 ):
for i in range(1 , __lowerCAmelCase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'{solution() = }')
| 9 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = tempfile.mkdtemp()
lowerCamelCase__ = BlipImageProcessor()
lowerCamelCase__ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
lowerCamelCase__ = BlipProcessor(_lowerCAmelCase ,_lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).tokenizer
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).image_processor
def UpperCamelCase_ ( self ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self ):
lowerCamelCase__ = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" )
lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 )
lowerCamelCase__ = BlipProcessor.from_pretrained(
self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = self.prepare_image_inputs()
lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" )
lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = processor(text=_lowerCAmelCase )
lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = self.prepare_image_inputs()
lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase )
self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(_lowerCAmelCase ):
processor()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase )
lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = self.prepare_image_inputs()
lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
| 9 | 1 |
'''simple docstring'''
import argparse
from collections import defaultdict
def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ):
lowerCamelCase__ = F'''{file}_{class_name}_{test_name}'''
done_test[_id] += 1
with open(__lowerCAmelCase , """r""" ) as f:
lowerCamelCase__ = f.readlines()
lowerCamelCase__ = F'''class {class_name}('''
lowerCamelCase__ = F'''{4 * " "}def {test_name}('''
lowerCamelCase__ = F'''{8 * " "}{correct_line.split()[0]}'''
lowerCamelCase__ = F'''{16 * " "}{correct_line.split()[0]}'''
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = 0
lowerCamelCase__ = 0
lowerCamelCase__ = []
for line in lines:
if line.startswith(__lowerCAmelCase ):
lowerCamelCase__ = True
elif in_class and line.startswith(__lowerCAmelCase ):
lowerCamelCase__ = True
elif in_class and in_func and (line.startswith(__lowerCAmelCase ) or line.startswith(__lowerCAmelCase )):
lowerCamelCase__ = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
lowerCamelCase__ = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
lowerCamelCase__ = True
if in_class and in_func and in_line and insert_line:
new_lines.append(F'''{spaces * " "}{correct_line}''' )
lowerCamelCase__ = lowerCamelCase__ = lowerCamelCase__ = lowerCamelCase__ = False
else:
new_lines.append(__lowerCAmelCase )
with open(__lowerCAmelCase , """w""" ) as f:
for line in new_lines:
f.write(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : List[str]=None ):
if fail is not None:
with open(__lowerCAmelCase , """r""" ) as f:
lowerCamelCase__ = {l.strip() for l in f.readlines()}
else:
lowerCamelCase__ = None
with open(__lowerCAmelCase , """r""" ) as f:
lowerCamelCase__ = f.readlines()
lowerCamelCase__ = defaultdict(__lowerCAmelCase )
for line in correct_lines:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = line.split(""";""" )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase : str = argparse.ArgumentParser()
parser.add_argument('--correct_filename', help='filename of tests with expected result')
parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None)
UpperCamelCase : str = parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 9 |
'''simple docstring'''
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True)
os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True)
os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True)
def A__ ( __lowerCAmelCase : Union[str, Any] ):
if hor == 128:
lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
lowerCamelCase__ = (32, 128, 256)
lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""")
elif hor == 32:
lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
lowerCamelCase__ = (32, 64, 128, 256)
lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""")
lowerCamelCase__ = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' )
lowerCamelCase__ = model.state_dict()
lowerCamelCase__ = {
"""down_block_types""": down_block_types,
"""block_out_channels""": block_out_channels,
"""up_block_types""": up_block_types,
"""layers_per_block""": 1,
"""use_timestep_embedding""": True,
"""out_block_type""": """OutConv1DBlock""",
"""norm_num_groups""": 8,
"""downsample_each_block""": False,
"""in_channels""": 14,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""sample_size""": 6_5536,
"""mid_block_type""": """MidResTemporalBlock1D""",
"""act_fn""": """mish""",
}
lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase )
print(F'''length of state dict: {len(state_dict.keys() )}''' )
print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' )
lowerCamelCase__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
hf_value_function.load_state_dict(__lowerCAmelCase )
torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' )
with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = {
"""in_channels""": 14,
"""down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""),
"""up_block_types""": (),
"""out_block_type""": """ValueFunction""",
"""mid_block_type""": """ValueFunctionMidBlock1D""",
"""block_out_channels""": (32, 64, 128, 256),
"""layers_per_block""": 1,
"""downsample_each_block""": True,
"""sample_size""": 6_5536,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""use_timestep_embedding""": True,
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""norm_num_groups""": 8,
"""act_fn""": """mish""",
}
lowerCamelCase__ = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" )
lowerCamelCase__ = model
lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase )
print(F'''length of state dict: {len(state_dict.keys() )}''' )
print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' )
lowerCamelCase__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
hf_value_function.load_state_dict(__lowerCAmelCase )
torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" )
with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
unet(32)
# unet(128)
value_function()
| 9 | 1 |
'''simple docstring'''
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
def A__ ( __lowerCAmelCase : str ):
lowerCamelCase__ = SwinConfig.from_pretrained(
"""microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
lowerCamelCase__ = MaskFormerConfig(backbone_config=__lowerCAmelCase )
lowerCamelCase__ = """huggingface/label-files"""
if "ade20k-full" in model_name:
# this should be ok
lowerCamelCase__ = 847
lowerCamelCase__ = """maskformer-ade20k-full-id2label.json"""
elif "ade" in model_name:
# this should be ok
lowerCamelCase__ = 150
lowerCamelCase__ = """ade20k-id2label.json"""
elif "coco-stuff" in model_name:
# this should be ok
lowerCamelCase__ = 171
lowerCamelCase__ = """maskformer-coco-stuff-id2label.json"""
elif "coco" in model_name:
# TODO
lowerCamelCase__ = 133
lowerCamelCase__ = """coco-panoptic-id2label.json"""
elif "cityscapes" in model_name:
# this should be ok
lowerCamelCase__ = 19
lowerCamelCase__ = """cityscapes-id2label.json"""
elif "vistas" in model_name:
# this should be ok
lowerCamelCase__ = 65
lowerCamelCase__ = """mapillary-vistas-id2label.json"""
lowerCamelCase__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) )
lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
return config
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = []
# stem
# fmt: off
rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") )
rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") )
rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') )
rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') )
# FPN
rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") )
rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") )
rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') )
rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") )
rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') )
# cross-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') )
# MLP 1
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') )
# MLP 2
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') )
# layernorm 1 (self-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') )
# layernorm 3 (final layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') )
rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") )
rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") )
# heads on top
rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") )
rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") )
rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") )
rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") )
rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") )
for i in range(3 ):
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') )
# fmt: on
return rename_keys
def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : str ):
lowerCamelCase__ = dct.pop(__lowerCAmelCase )
lowerCamelCase__ = val
def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ):
lowerCamelCase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
lowerCamelCase__ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
lowerCamelCase__ = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' )
lowerCamelCase__ = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__ = in_proj_weight[:dim, :]
lowerCamelCase__ = in_proj_bias[: dim]
lowerCamelCase__ = in_proj_weight[
dim : dim * 2, :
]
lowerCamelCase__ = in_proj_bias[
dim : dim * 2
]
lowerCamelCase__ = in_proj_weight[
-dim :, :
]
lowerCamelCase__ = in_proj_bias[-dim :]
# fmt: on
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ):
# fmt: off
lowerCamelCase__ = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
lowerCamelCase__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' )
lowerCamelCase__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__ = in_proj_weight[: hidden_size, :]
lowerCamelCase__ = in_proj_bias[:config.hidden_size]
lowerCamelCase__ = in_proj_weight[hidden_size : hidden_size * 2, :]
lowerCamelCase__ = in_proj_bias[hidden_size : hidden_size * 2]
lowerCamelCase__ = in_proj_weight[-hidden_size :, :]
lowerCamelCase__ = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
lowerCamelCase__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' )
lowerCamelCase__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__ = in_proj_weight[: hidden_size, :]
lowerCamelCase__ = in_proj_bias[:config.hidden_size]
lowerCamelCase__ = in_proj_weight[hidden_size : hidden_size * 2, :]
lowerCamelCase__ = in_proj_bias[hidden_size : hidden_size * 2]
lowerCamelCase__ = in_proj_weight[-hidden_size :, :]
lowerCamelCase__ = in_proj_bias[-hidden_size :]
# fmt: on
def A__ ( ):
lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
return im
@torch.no_grad()
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : bool = False ):
lowerCamelCase__ = get_maskformer_config(__lowerCAmelCase )
# load original state_dict
with open(__lowerCAmelCase , """rb""" ) as f:
lowerCamelCase__ = pickle.load(__lowerCAmelCase )
lowerCamelCase__ = data["""model"""]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
lowerCamelCase__ = create_rename_keys(__lowerCAmelCase )
for src, dest in rename_keys:
rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
read_in_swin_q_k_v(__lowerCAmelCase , config.backbone_config )
read_in_decoder_q_k_v(__lowerCAmelCase , __lowerCAmelCase )
# update to torch tensors
for key, value in state_dict.items():
lowerCamelCase__ = torch.from_numpy(__lowerCAmelCase )
# load 🤗 model
lowerCamelCase__ = MaskFormerForInstanceSegmentation(__lowerCAmelCase )
model.eval()
for name, param in model.named_parameters():
print(__lowerCAmelCase , param.shape )
lowerCamelCase__ , lowerCamelCase__ = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(__lowerCAmelCase ) == 0, F'''Unexpected keys: {unexpected_keys}'''
# verify results
lowerCamelCase__ = prepare_img()
if "vistas" in model_name:
lowerCamelCase__ = 65
elif "cityscapes" in model_name:
lowerCamelCase__ = 6_5535
else:
lowerCamelCase__ = 255
lowerCamelCase__ = True if """ade""" in model_name else False
lowerCamelCase__ = MaskFormerImageProcessor(ignore_index=__lowerCAmelCase , reduce_labels=__lowerCAmelCase )
lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" )
lowerCamelCase__ = model(**__lowerCAmelCase )
print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
lowerCamelCase__ = torch.tensor(
[[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' )
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
model.save_pretrained(__lowerCAmelCase )
image_processor.save_pretrained(__lowerCAmelCase )
if push_to_hub:
print("""Pushing model and image processor to the hub...""" )
model.push_to_hub(F'''nielsr/{model_name}''' )
image_processor.push_to_hub(F'''nielsr/{model_name}''' )
if __name__ == "__main__":
UpperCamelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='maskformer-swin-tiny-ade',
type=str,
help=('Name of the MaskFormer model you\'d like to convert',),
)
parser.add_argument(
'--checkpoint_path',
default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl',
type=str,
help='Path to the original state dict (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
UpperCamelCase : Optional[Any] = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 9 |
'''simple docstring'''
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase = "▁" ,_lowerCAmelCase = True ,_lowerCAmelCase = "<unk>" ,_lowerCAmelCase = "</s>" ,_lowerCAmelCase = "<pad>" ,):
lowerCamelCase__ = {
"""pad""": {"""id""": 0, """token""": pad_token},
"""eos""": {"""id""": 1, """token""": eos_token},
"""unk""": {"""id""": 2, """token""": unk_token},
}
lowerCamelCase__ = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
lowerCamelCase__ = token_dict["""token"""]
lowerCamelCase__ = Tokenizer(Unigram() )
lowerCamelCase__ = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(""" {2,}""" ) ,""" """ ),
normalizers.Lowercase(),
] )
lowerCamelCase__ = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ),
pre_tokenizers.Digits(individual_digits=_lowerCAmelCase ),
pre_tokenizers.Punctuation(),
] )
lowerCamelCase__ = decoders.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase )
lowerCamelCase__ = TemplateProcessing(
single=F'''$A {self.special_tokens["eos"]["token"]}''' ,special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] ,)
lowerCamelCase__ = {
"""model""": """SentencePieceUnigram""",
"""replacement""": replacement,
"""add_prefix_space""": add_prefix_space,
}
super().__init__(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,):
lowerCamelCase__ = trainers.UnigramTrainer(
vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,)
if isinstance(_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = [files]
self._tokenizer.train(_lowerCAmelCase ,trainer=_lowerCAmelCase )
self.add_unk_id()
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,):
lowerCamelCase__ = trainers.UnigramTrainer(
vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,)
self._tokenizer.train_from_iterator(_lowerCAmelCase ,trainer=_lowerCAmelCase )
self.add_unk_id()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = json.loads(self._tokenizer.to_str() )
lowerCamelCase__ = self.special_tokens["""unk"""]["""id"""]
lowerCamelCase__ = Tokenizer.from_str(json.dumps(_lowerCAmelCase ) )
| 9 | 1 |
'''simple docstring'''
import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = ['image_processor', 'tokenizer']
_UpperCamelCase = 'BlipImageProcessor'
_UpperCamelCase = 'AutoTokenizer'
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
super().__init__(_lowerCAmelCase ,_lowerCAmelCase )
# add QFormer tokenizer
lowerCamelCase__ = qformer_tokenizer
def __call__( self ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = True ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = 0 ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,_lowerCAmelCase = False ,_lowerCAmelCase = False ,_lowerCAmelCase = False ,_lowerCAmelCase = False ,_lowerCAmelCase = True ,_lowerCAmelCase = None ,**_lowerCAmelCase ,):
if images is None and text is None:
raise ValueError("""You have to specify at least images or text.""" )
lowerCamelCase__ = BatchFeature()
if text is not None:
lowerCamelCase__ = self.tokenizer(
text=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ,padding=_lowerCAmelCase ,truncation=_lowerCAmelCase ,max_length=_lowerCAmelCase ,stride=_lowerCAmelCase ,pad_to_multiple_of=_lowerCAmelCase ,return_attention_mask=_lowerCAmelCase ,return_overflowing_tokens=_lowerCAmelCase ,return_special_tokens_mask=_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase ,return_length=_lowerCAmelCase ,verbose=_lowerCAmelCase ,return_tensors=_lowerCAmelCase ,**_lowerCAmelCase ,)
encoding.update(_lowerCAmelCase )
lowerCamelCase__ = self.qformer_tokenizer(
text=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ,padding=_lowerCAmelCase ,truncation=_lowerCAmelCase ,max_length=_lowerCAmelCase ,stride=_lowerCAmelCase ,pad_to_multiple_of=_lowerCAmelCase ,return_attention_mask=_lowerCAmelCase ,return_overflowing_tokens=_lowerCAmelCase ,return_special_tokens_mask=_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase ,return_length=_lowerCAmelCase ,verbose=_lowerCAmelCase ,return_tensors=_lowerCAmelCase ,**_lowerCAmelCase ,)
lowerCamelCase__ = qformer_text_encoding.pop("""input_ids""" )
lowerCamelCase__ = qformer_text_encoding.pop("""attention_mask""" )
if images is not None:
lowerCamelCase__ = self.image_processor(_lowerCAmelCase ,return_tensors=_lowerCAmelCase )
encoding.update(_lowerCAmelCase )
return encoding
def UpperCamelCase_ ( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
return self.tokenizer.batch_decode(*_lowerCAmelCase ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
return self.tokenizer.decode(*_lowerCAmelCase ,**_lowerCAmelCase )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.tokenizer.model_input_names
lowerCamelCase__ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,**_lowerCAmelCase ):
if os.path.isfile(_lowerCAmelCase ):
raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(_lowerCAmelCase ,exist_ok=_lowerCAmelCase )
lowerCamelCase__ = os.path.join(_lowerCAmelCase ,"""qformer_tokenizer""" )
self.qformer_tokenizer.save_pretrained(_lowerCAmelCase )
return super().save_pretrained(_lowerCAmelCase ,**_lowerCAmelCase )
@classmethod
def UpperCamelCase_ ( cls ,_lowerCAmelCase ,**_lowerCAmelCase ):
lowerCamelCase__ = AutoTokenizer.from_pretrained(_lowerCAmelCase ,subfolder="""qformer_tokenizer""" )
lowerCamelCase__ = cls._get_arguments_from_pretrained(_lowerCAmelCase ,**_lowerCAmelCase )
args.append(_lowerCAmelCase )
return cls(*_lowerCAmelCase )
| 9 |
'''simple docstring'''
from __future__ import annotations
import math
def A__ ( __lowerCAmelCase : int ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
UpperCamelCase : str = [num for num in range(3, 10_00_01, 2) if not is_prime(num)]
def A__ ( __lowerCAmelCase : int ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""n must be an integer""" )
if n <= 0:
raise ValueError("""n must be >= 0""" )
lowerCamelCase__ = []
for num in range(len(__lowerCAmelCase ) ):
lowerCamelCase__ = 0
while 2 * i * i <= odd_composites[num]:
lowerCamelCase__ = odd_composites[num] - 2 * i * i
if is_prime(__lowerCAmelCase ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(__lowerCAmelCase ) == n:
return list_nums
return []
def A__ ( ):
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F'{solution() = }')
| 9 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int ):
if number > 0:
raise ValueError("""input must be a negative integer""" )
lowerCamelCase__ = len(bin(__lowerCAmelCase )[3:] )
lowerCamelCase__ = bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:]
lowerCamelCase__ = (
(
"""1"""
+ """0""" * (binary_number_length - len(__lowerCAmelCase ))
+ twos_complement_number
)
if number < 0
else """0"""
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
'''simple docstring'''
def A__ ( ):
return [
a * b * (1000 - a - b)
for a in range(1 , 999 )
for b in range(__lowerCAmelCase , 999 )
if (a * a + b * b == (1000 - a - b) ** 2)
][0]
if __name__ == "__main__":
print(F'{solution() = }')
| 9 | 1 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
UpperCamelCase : Dict = logging.get_logger(__name__)
UpperCamelCase : Optional[int] = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'ctc_proj',
'mask_emb': 'masked_spec_embed',
}
UpperCamelCase : Optional[int] = [
'ctc_proj',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ):
for attribute in key.split(""".""" ):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
lowerCamelCase__ = """lm_head"""
lowerCamelCase__ = getattr(__lowerCAmelCase , __lowerCAmelCase )
if weight_type is not None:
lowerCamelCase__ = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape
else:
lowerCamelCase__ = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
lowerCamelCase__ = value
elif weight_type == "weight_g":
lowerCamelCase__ = value
elif weight_type == "weight_v":
lowerCamelCase__ = value
elif weight_type == "bias":
lowerCamelCase__ = value
else:
lowerCamelCase__ = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int ):
lowerCamelCase__ = []
lowerCamelCase__ = fairseq_model.state_dict()
lowerCamelCase__ = hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
lowerCamelCase__ = False
if "conv_layers" in name:
load_conv_layer(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , )
lowerCamelCase__ = True
else:
for key, mapped_key in MAPPING.items():
lowerCamelCase__ = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
lowerCamelCase__ = True
if "*" in mapped_key:
lowerCamelCase__ = name.split(__lowerCAmelCase )[0].split(""".""" )[-2]
lowerCamelCase__ = mapped_key.replace("""*""" , __lowerCAmelCase )
if "weight_g" in name:
lowerCamelCase__ = """weight_g"""
elif "weight_v" in name:
lowerCamelCase__ = """weight_v"""
elif "bias" in name:
lowerCamelCase__ = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowerCamelCase__ = """weight"""
else:
lowerCamelCase__ = None
set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
continue
if not is_used:
unused_weights.append(__lowerCAmelCase )
logger.warning(F'''Unused weights: {unused_weights}''' )
def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ):
lowerCamelCase__ = full_name.split("""conv_layers.""" )[-1]
lowerCamelCase__ = name.split(""".""" )
lowerCamelCase__ = int(items[0] )
lowerCamelCase__ = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
lowerCamelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
lowerCamelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
lowerCamelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
lowerCamelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__lowerCAmelCase )
@torch.no_grad()
def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Union[str, Any]=True ):
if config_path is not None:
lowerCamelCase__ = UniSpeechConfig.from_pretrained(__lowerCAmelCase )
else:
lowerCamelCase__ = UniSpeechConfig()
if is_finetuned:
if dict_path:
lowerCamelCase__ = Dictionary.load_from_json(__lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowerCamelCase__ = target_dict.pad_index
lowerCamelCase__ = target_dict.bos_index
lowerCamelCase__ = target_dict.eos_index
lowerCamelCase__ = len(target_dict.symbols )
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """vocab.json""" )
if not os.path.isdir(__lowerCAmelCase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) )
return
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
lowerCamelCase__ = target_dict.indices
# fairseq has the <pad> and <s> switched
lowerCamelCase__ = 42
lowerCamelCase__ = 43
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = WavaVecaPhonemeCTCTokenizer(
__lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , )
lowerCamelCase__ = True if config.feat_extract_norm == """layer""" else False
lowerCamelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , )
lowerCamelCase__ = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
lowerCamelCase__ = UniSpeechForCTC(__lowerCAmelCase )
else:
lowerCamelCase__ = UniSpeechForPreTraining(__lowerCAmelCase )
if is_finetuned:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} )
else:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
lowerCamelCase__ = model[0].eval()
recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
hf_unispeech.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase : int = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
UpperCamelCase : Tuple = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 9 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase : int = logging.get_logger(__name__)
UpperCamelCase : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'}
UpperCamelCase : Dict = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
}
}
UpperCamelCase : List[Any] = {
'camembert-base': 5_12,
}
UpperCamelCase : List[str] = '▁'
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = VOCAB_FILES_NAMES
_UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase = ['input_ids', 'attention_mask']
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] ,_lowerCAmelCase = None ,**_lowerCAmelCase ,):
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token
lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,additional_special_tokens=_lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCAmelCase ,)
lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_lowerCAmelCase ) )
lowerCamelCase__ = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
lowerCamelCase__ = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3}
lowerCamelCase__ = len(self.fairseq_tokens_to_ids )
lowerCamelCase__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
lowerCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
lowerCamelCase__ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(_lowerCAmelCase )) + [1]
return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1]
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCamelCase_ ( self ):
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return self.sp_model.encode(_lowerCAmelCase ,out_type=_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(_lowerCAmelCase ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = []
lowerCamelCase__ = """"""
lowerCamelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_lowerCAmelCase ) + token
lowerCamelCase__ = True
lowerCamelCase__ = []
else:
current_sub_tokens.append(_lowerCAmelCase )
lowerCamelCase__ = False
out_string += self.sp_model.decode(_lowerCAmelCase )
return out_string.strip()
def __getstate__( self ):
lowerCamelCase__ = self.__dict__.copy()
lowerCamelCase__ = None
return state
def __setstate__( self ,_lowerCAmelCase ):
lowerCamelCase__ = d
# for backward compatibility
if not hasattr(self ,"""sp_model_kwargs""" ):
lowerCamelCase__ = {}
lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
if not os.path.isdir(_lowerCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCamelCase__ = os.path.join(
_lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,_lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCAmelCase ,"""wb""" ) as fi:
lowerCamelCase__ = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (out_vocab_file,)
| 9 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] ):
if n == 0:
return 1
elif n % 2 == 1:
return (binary_exponentiation(__lowerCAmelCase , n - 1 , __lowerCAmelCase ) * a) % mod
else:
lowerCamelCase__ = binary_exponentiation(__lowerCAmelCase , n / 2 , __lowerCAmelCase )
return (b * b) % mod
# a prime number
UpperCamelCase : Any = 7_01
UpperCamelCase : Optional[Any] = 10_00_00_00_00
UpperCamelCase : Tuple = 10
# using binary exponentiation function, O(log(p)):
print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p)
print((a / b) % p == (a * b ** (p - 2)) % p)
| 9 |
'''simple docstring'''
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = R"""\w+[.]\d+"""
lowerCamelCase__ = re.findall(__lowerCAmelCase , __lowerCAmelCase )
for pat in pats:
lowerCamelCase__ = key.replace(__lowerCAmelCase , """_""".join(pat.split(""".""" ) ) )
return key
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ):
lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",)
if (
any("""norm""" in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
lowerCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
lowerCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",)
if pt_tuple_key[-1] == "weight":
lowerCamelCase__ = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
lowerCamelCase__ = pt_tuple_key[:-1] + ("""weight""",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
lowerCamelCase__ = pt_tuple_key[:-1] + ("""bias""",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=42 ):
# Step 1: Convert pytorch tensor to numpy
lowerCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
lowerCamelCase__ = flax_model.init_weights(PRNGKey(__lowerCAmelCase ) )
lowerCamelCase__ = flatten_dict(__lowerCAmelCase )
lowerCamelCase__ = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowerCamelCase__ = rename_key(__lowerCAmelCase )
lowerCamelCase__ = tuple(renamed_pt_key.split(""".""" ) )
# Correctly rename weight parameters
lowerCamelCase__ , lowerCamelCase__ = rename_key_and_reshape_tensor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '''
F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
# also add unexpected weight so that warning is thrown
lowerCamelCase__ = jnp.asarray(__lowerCAmelCase )
return unflatten_dict(__lowerCAmelCase )
| 9 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import SegformerConfig, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_MAPPING,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerModel,
)
from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import SegformerImageProcessor
class UpperCamelCase__ (a ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_lowerCAmelCase ,"""hidden_sizes""" ) )
self.parent.assertTrue(hasattr(_lowerCAmelCase ,"""num_attention_heads""" ) )
self.parent.assertTrue(hasattr(_lowerCAmelCase ,"""num_encoder_blocks""" ) )
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=64 ,_lowerCAmelCase=3 ,_lowerCAmelCase=4 ,_lowerCAmelCase=[2, 2, 2, 2] ,_lowerCAmelCase=[8, 4, 2, 1] ,_lowerCAmelCase=[16, 32, 64, 1_28] ,_lowerCAmelCase=[1, 4, 8, 16] ,_lowerCAmelCase=[1, 2, 4, 8] ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=None ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = image_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = num_encoder_blocks
lowerCamelCase__ = sr_ratios
lowerCamelCase__ = depths
lowerCamelCase__ = hidden_sizes
lowerCamelCase__ = downsampling_rates
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = is_training
lowerCamelCase__ = use_labels
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = initializer_range
lowerCamelCase__ = num_labels
lowerCamelCase__ = scope
def UpperCamelCase_ ( self ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
lowerCamelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self ):
return SegformerConfig(
image_size=self.image_size ,num_channels=self.num_channels ,num_encoder_blocks=self.num_encoder_blocks ,depths=self.depths ,hidden_sizes=self.hidden_sizes ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = SegformerModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase )
lowerCamelCase__ = lowerCamelCase__ = self.image_size // (self.downsampling_rates[-1] * 2)
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = self.num_labels
lowerCamelCase__ = SegformerForSemanticSegmentation(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
self.parent.assertGreater(result.loss ,0.0 )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = 1
lowerCamelCase__ = SegformerForSemanticSegmentation(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = torch.randint(0 ,1 ,(self.batch_size, self.image_size, self.image_size) ).to(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase )
self.parent.assertGreater(result.loss ,0.0 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs
lowerCamelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (
(
SegformerModel,
SegformerForSemanticSegmentation,
SegformerForImageClassification,
)
if is_torch_available()
else ()
)
_UpperCamelCase = (
{
'feature-extraction': SegformerModel,
'image-classification': SegformerForImageClassification,
'image-segmentation': SegformerForSemanticSegmentation,
}
if is_torch_available()
else {}
)
_UpperCamelCase = True
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = SegformerModelTester(self )
lowerCamelCase__ = SegformerConfigTester(self ,config_class=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_binary_image_segmentation(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_segmentation(*_lowerCAmelCase )
@unittest.skip("""SegFormer does not use inputs_embeds""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = True
for model_class in self.all_model_classes:
lowerCamelCase__ = True
lowerCamelCase__ = False
lowerCamelCase__ = True
lowerCamelCase__ = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = outputs.attentions
lowerCamelCase__ = sum(self.model_tester.depths )
self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
lowerCamelCase__ = True
lowerCamelCase__ = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = outputs.attentions
self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase )
# verify the first attentions (first block, first layer)
lowerCamelCase__ = (self.model_tester.image_size // 4) ** 2
lowerCamelCase__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,)
# verify the last attentions (last block, last layer)
lowerCamelCase__ = (self.model_tester.image_size // 32) ** 2
lowerCamelCase__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2
self.assertListEqual(
list(attentions[-1].shape[-3:] ) ,[self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] ,)
lowerCamelCase__ = len(_lowerCAmelCase )
# Check attention is always last and order is fine
lowerCamelCase__ = True
lowerCamelCase__ = True
lowerCamelCase__ = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
self.assertEqual(out_len + 1 ,len(_lowerCAmelCase ) )
lowerCamelCase__ = outputs.attentions
self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase )
# verify the first attentions (first block, first layer)
lowerCamelCase__ = (self.model_tester.image_size // 4) ** 2
lowerCamelCase__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,)
def UpperCamelCase_ ( self ):
def check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = outputs.hidden_states
lowerCamelCase__ = self.model_tester.num_encoder_blocks
self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) ,[
self.model_tester.hidden_sizes[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] ,)
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = True
check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase__ = True
check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
if not self.model_tester.is_training:
return
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = True
for model_class in self.all_model_classes:
if model_class in get_values(_lowerCAmelCase ):
continue
lowerCamelCase__ = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.train()
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase )
lowerCamelCase__ = model(**_lowerCAmelCase ).loss
loss.backward()
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def UpperCamelCase_ ( self ):
pass
@slow
def UpperCamelCase_ ( self ):
for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ = SegformerModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self ):
# only resize + normalize
lowerCamelCase__ = SegformerImageProcessor(
image_scale=(5_12, 5_12) ,keep_ratio=_lowerCAmelCase ,align=_lowerCAmelCase ,do_random_crop=_lowerCAmelCase )
lowerCamelCase__ = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to(
_lowerCAmelCase )
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" )
lowerCamelCase__ = encoded_inputs.pixel_values.to(_lowerCAmelCase )
with torch.no_grad():
lowerCamelCase__ = model(_lowerCAmelCase )
lowerCamelCase__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) )
self.assertEqual(outputs.logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = torch.tensor(
[
[[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]],
[[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]],
[[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]],
] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,_lowerCAmelCase ,atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self ):
# only resize + normalize
lowerCamelCase__ = SegformerImageProcessor(
image_scale=(5_12, 5_12) ,keep_ratio=_lowerCAmelCase ,align=_lowerCAmelCase ,do_random_crop=_lowerCAmelCase )
lowerCamelCase__ = SegformerForSemanticSegmentation.from_pretrained(
"""nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(_lowerCAmelCase )
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" )
lowerCamelCase__ = encoded_inputs.pixel_values.to(_lowerCAmelCase )
with torch.no_grad():
lowerCamelCase__ = model(_lowerCAmelCase )
lowerCamelCase__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) )
self.assertEqual(outputs.logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = torch.tensor(
[
[[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]],
[[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]],
[[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]],
] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,_lowerCAmelCase ,atol=1E-1 ) )
@slow
def UpperCamelCase_ ( self ):
# only resize + normalize
lowerCamelCase__ = SegformerImageProcessor(
image_scale=(5_12, 5_12) ,keep_ratio=_lowerCAmelCase ,align=_lowerCAmelCase ,do_random_crop=_lowerCAmelCase )
lowerCamelCase__ = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to(
_lowerCAmelCase )
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" )
lowerCamelCase__ = encoded_inputs.pixel_values.to(_lowerCAmelCase )
with torch.no_grad():
lowerCamelCase__ = model(_lowerCAmelCase )
lowerCamelCase__ = outputs.logits.detach().cpu()
lowerCamelCase__ = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase ,target_sizes=[(5_00, 3_00)] )
lowerCamelCase__ = torch.Size((5_00, 3_00) )
self.assertEqual(segmentation[0].shape ,_lowerCAmelCase )
lowerCamelCase__ = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase )
lowerCamelCase__ = torch.Size((1_28, 1_28) )
self.assertEqual(segmentation[0].shape ,_lowerCAmelCase )
| 9 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] ,model_result["""ss"""] ):
lowerCamelCase__ = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sgugger/tiny-distilbert-classification"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,only_pretrain_model=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """patrickvonplaten/t5-tiny-random"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,configs=[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,"""Cannot do xla on CPU.""" )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=_lowerCAmelCase ,save_to_csv=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ,inference_memory_csv_file=os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ,env_info_csv_file=os.path.join(_lowerCAmelCase ,"""env.csv""" ) ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""env.csv""" ) ).exists() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(_lowerCAmelCase ):
self.assertTrue(hasattr(_lowerCAmelCase ,"""sequential""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""cumulative""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""current""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(_lowerCAmelCase ,"""log.txt""" ) ,log_print=_lowerCAmelCase ,trace_memory_line_by_line=_lowerCAmelCase ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""log.txt""" ) ).exists() )
| 9 | 1 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
UpperCamelCase : List[str] = logging.getLogger(__name__)
@dataclass
class UpperCamelCase__ :
'''simple docstring'''
_UpperCamelCase = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
_UpperCamelCase = field(
default=a ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
_UpperCamelCase = field(
default=a ,metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
_UpperCamelCase = field(
default=a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,)
_UpperCamelCase = field(default=a ,metadata={'help': 'Whether tp freeze the encoder.'} )
_UpperCamelCase = field(default=a ,metadata={'help': 'Whether to freeze the embeddings.'} )
@dataclass
class UpperCamelCase__ :
'''simple docstring'''
_UpperCamelCase = field(
metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} )
_UpperCamelCase = field(
default='summarization' ,metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} ,)
_UpperCamelCase = field(
default=1024 ,metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} ,)
_UpperCamelCase = field(
default=128 ,metadata={
'help': (
'The maximum total sequence length for target text after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} ,)
_UpperCamelCase = field(
default=142 ,metadata={
'help': (
'The maximum total sequence length for validation target text after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded. '
'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used '
'during ``evaluate`` and ``predict``.'
)
} ,)
_UpperCamelCase = field(
default=142 ,metadata={
'help': (
'The maximum total sequence length for test target text after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} ,)
_UpperCamelCase = field(default=-1 ,metadata={'help': '# training examples. -1 means use all.'} )
_UpperCamelCase = field(default=-1 ,metadata={'help': '# validation examples. -1 means use all.'} )
_UpperCamelCase = field(default=-1 ,metadata={'help': '# test examples. -1 means use all.'} )
_UpperCamelCase = field(default=a ,metadata={'help': 'Source language id for translation.'} )
_UpperCamelCase = field(default=a ,metadata={'help': 'Target language id for translation.'} )
_UpperCamelCase = field(default=a ,metadata={'help': '# num_beams to use for evaluation.'} )
_UpperCamelCase = field(
default=a ,metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} ,)
def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ):
logger.info(F'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(F''' {key} = {metrics[key]}''' )
save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , F'''{split}_results.json''' ) )
def A__ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowerCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_args_into_dataclasses()
check_output_dir(__lowerCAmelCase )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info("""Training/evaluation parameters %s""" , __lowerCAmelCase )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase__ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
lowerCamelCase__ = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""")
for p in extra_model_params:
if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
assert hasattr(__lowerCAmelCase , __lowerCAmelCase ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
lowerCamelCase__ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
lowerCamelCase__ = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(__lowerCAmelCase , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
lowerCamelCase__ = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(__lowerCAmelCase , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
lowerCamelCase__ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(__lowerCAmelCase )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
lowerCamelCase__ = SeqaSeqDataset
# Get datasets
lowerCamelCase__ = (
dataset_class(
__lowerCAmelCase , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , )
if training_args.do_train
else None
)
lowerCamelCase__ = (
dataset_class(
__lowerCAmelCase , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
lowerCamelCase__ = (
dataset_class(
__lowerCAmelCase , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , )
if training_args.do_predict
else None
)
# Initialize our Trainer
lowerCamelCase__ = (
build_compute_metrics_fn(data_args.task , __lowerCAmelCase ) if training_args.predict_with_generate else None
)
lowerCamelCase__ = SeqaSeqTrainer(
model=__lowerCAmelCase , args=__lowerCAmelCase , data_args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , data_collator=SeqaSeqDataCollator(
__lowerCAmelCase , __lowerCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , )
lowerCamelCase__ = {}
# Training
if training_args.do_train:
logger.info("""*** Train ***""" )
lowerCamelCase__ = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
lowerCamelCase__ = train_result.metrics
lowerCamelCase__ = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics("""train""" , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
lowerCamelCase__ = trainer.evaluate(metric_key_prefix="""val""" )
lowerCamelCase__ = data_args.n_val
lowerCamelCase__ = round(metrics["""val_loss"""] , 4 )
if trainer.is_world_process_zero():
handle_metrics("""val""" , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
lowerCamelCase__ = trainer.predict(test_dataset=__lowerCAmelCase , metric_key_prefix="""test""" )
lowerCamelCase__ = test_output.metrics
lowerCamelCase__ = data_args.n_test
if trainer.is_world_process_zero():
lowerCamelCase__ = round(metrics["""test_loss"""] , 4 )
handle_metrics("""test""" , __lowerCAmelCase , training_args.output_dir )
all_metrics.update(__lowerCAmelCase )
if training_args.predict_with_generate:
lowerCamelCase__ = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )
lowerCamelCase__ = lmap(str.strip , __lowerCAmelCase )
write_txt_file(__lowerCAmelCase , os.path.join(training_args.output_dir , """test_generations.txt""" ) )
if trainer.is_world_process_zero():
save_json(__lowerCAmelCase , os.path.join(training_args.output_dir , """all_results.json""" ) )
return all_metrics
def A__ ( __lowerCAmelCase : Any ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 9 |
'''simple docstring'''
from math import factorial
UpperCamelCase : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)}
def A__ ( __lowerCAmelCase : int ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError("""Parameter number must be int""" )
if number < 0:
raise ValueError("""Parameter number must be greater than or equal to 0""" )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowerCAmelCase ) )
def A__ ( __lowerCAmelCase : int = 60 , __lowerCAmelCase : int = 100_0000 ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError("""Parameters chain_length and number_limit must be int""" )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
"""Parameters chain_length and number_limit must be greater than 0""" )
# the counter for the chains with the exact desired length
lowerCamelCase__ = 0
# the cached sizes of the previous chains
lowerCamelCase__ = {}
for start_chain_element in range(1 , __lowerCAmelCase ):
# The temporary set will contain the elements of the chain
lowerCamelCase__ = set()
lowerCamelCase__ = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
lowerCamelCase__ = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(__lowerCAmelCase )
chain_set_length += 1
lowerCamelCase__ = digit_factorial_sum(__lowerCAmelCase )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
lowerCamelCase__ = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'{solution()}')
| 9 | 1 |
'''simple docstring'''
from __future__ import annotations
def A__ ( __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = len(__lowerCAmelCase )
# We need to create solution object to save path.
lowerCamelCase__ = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )]
lowerCamelCase__ = run_maze(__lowerCAmelCase , 0 , 0 , __lowerCAmelCase )
if solved:
print("""\n""".join(str(__lowerCAmelCase ) for row in solutions ) )
else:
print("""No solution exists!""" )
return solved
def A__ ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : list[list[int]] ):
lowerCamelCase__ = len(__lowerCAmelCase )
# Final check point.
if i == j == (size - 1):
lowerCamelCase__ = 1
return True
lowerCamelCase__ = (not i < 0) and (not j < 0) # Check lower bounds
lowerCamelCase__ = (i < size) and (j < size) # Check upper bounds
if lower_flag and upper_flag:
# check for already visited and block points.
lowerCamelCase__ = (not solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
lowerCamelCase__ = 1
# check for directions
if (
run_maze(__lowerCAmelCase , i + 1 , __lowerCAmelCase , __lowerCAmelCase )
or run_maze(__lowerCAmelCase , __lowerCAmelCase , j + 1 , __lowerCAmelCase )
or run_maze(__lowerCAmelCase , i - 1 , __lowerCAmelCase , __lowerCAmelCase )
or run_maze(__lowerCAmelCase , __lowerCAmelCase , j - 1 , __lowerCAmelCase )
):
return True
lowerCamelCase__ = 0
return False
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
'''simple docstring'''
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
UpperCamelCase : Optional[Any] = 'src/diffusers'
# Matches is_xxx_available()
UpperCamelCase : Union[str, Any] = re.compile(r'is\_([a-z_]*)_available\(\)')
# Matches from xxx import bla
UpperCamelCase : Optional[Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
UpperCamelCase : Optional[int] = '\n{0} = None\n'
UpperCamelCase : Optional[Any] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n'
UpperCamelCase : Any = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n'
def A__ ( __lowerCAmelCase : Union[str, Any] ):
lowerCamelCase__ = _re_backend.findall(__lowerCAmelCase )
if len(__lowerCAmelCase ) == 0:
return None
return "_and_".join(__lowerCAmelCase )
def A__ ( ):
with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.readlines()
# Get to the point we do the actual imports for type checking
lowerCamelCase__ = 0
lowerCamelCase__ = {}
# Go through the end of the file
while line_index < len(__lowerCAmelCase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
lowerCamelCase__ = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("""else:""" ):
line_index += 1
line_index += 1
lowerCamelCase__ = []
# Until we unindent, add backend objects to the list
while line_index < len(__lowerCAmelCase ) and len(lines[line_index] ) > 1:
lowerCamelCase__ = lines[line_index]
lowerCamelCase__ = _re_single_line_import.search(__lowerCAmelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__lowerCAmelCase ) > 0:
lowerCamelCase__ = objects
else:
line_index += 1
return backend_specific_objects
def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict ):
if name.isupper():
return DUMMY_CONSTANT.format(__lowerCAmelCase )
elif name.islower():
return DUMMY_FUNCTION.format(__lowerCAmelCase , __lowerCAmelCase )
else:
return DUMMY_CLASS.format(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : Optional[int]=None ):
if backend_specific_objects is None:
lowerCamelCase__ = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
lowerCamelCase__ = {}
for backend, objects in backend_specific_objects.items():
lowerCamelCase__ = """[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]"""
lowerCamelCase__ = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n"""
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__lowerCAmelCase , __lowerCAmelCase ) for o in objects] )
lowerCamelCase__ = dummy_file
return dummy_files
def A__ ( __lowerCAmelCase : List[str]=False ):
lowerCamelCase__ = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
lowerCamelCase__ = {"""torch""": """pt"""}
# Locate actual dummy modules and read their content.
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """utils""" )
lowerCamelCase__ = {
backend: os.path.join(__lowerCAmelCase , F'''dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py''' )
for backend in dummy_files.keys()
}
lowerCamelCase__ = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__lowerCAmelCase ):
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.read()
else:
lowerCamelCase__ = """"""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'''Updating diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py as the main '''
"""__init__ has new objects.""" )
with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"""The main __init__ has objects that are not present in """
F'''diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py. Run `make fix-copies` '''
"""to fix this.""" )
if __name__ == "__main__":
UpperCamelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
UpperCamelCase : Any = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 9 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int ):
if length <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""Length must be a positive integer.""" )
return [n * (2 * n - 1) for n in range(__lowerCAmelCase )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 9 |
'''simple docstring'''
import unittest
from transformers import GPTSwaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
UpperCamelCase : List[Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model')
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = GPTSwaTokenizer
_UpperCamelCase = False
_UpperCamelCase = True
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ,eos_token="""<unk>""" ,bos_token="""<unk>""" ,pad_token="""<unk>""" )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = """This is a test"""
lowerCamelCase__ = """This is a test"""
return input_text, output_text
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """<s>"""
lowerCamelCase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) ,_lowerCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,"""<unk>""" )
self.assertEqual(vocab_keys[1] ,"""<s>""" )
self.assertEqual(vocab_keys[-1] ,"""j""" )
self.assertEqual(len(_lowerCAmelCase ) ,20_00 )
def UpperCamelCase_ ( self ):
self.assertEqual(self.get_tokenizer().vocab_size ,20_00 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase )
lowerCamelCase__ = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(_lowerCAmelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,[4_65, 2_87, 2_65, 6_31, 8_42] )
lowerCamelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
# fmt: off
self.assertListEqual(
_lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ,)
# fmt: on
lowerCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase )
self.assertListEqual(
_lowerCAmelCase ,[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] ,)
lowerCamelCase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase )
# fmt: off
self.assertListEqual(
_lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] )
# fmt: on
def UpperCamelCase_ ( self ):
lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase )
lowerCamelCase__ = ["""This is a test""", """I was born in 92000, and this is falsé."""]
lowerCamelCase__ = [
[4_65, 2_87, 2_65, 6_31, 8_42],
[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60],
]
# Test that encode_fast returns the same as tokenize + convert_tokens_to_ids
for text, expected_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ):
self.assertListEqual(tokenizer.encode_fast(_lowerCAmelCase ) ,_lowerCAmelCase )
# Test that decode_fast returns the input text
for text, token_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ):
self.assertEqual(tokenizer.decode_fast(_lowerCAmelCase ) ,_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = [
"""<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""",
"""Hey there, how are you doing this fine day?""",
"""This is a text with a trailing spaces followed by a dot .""",
"""Häj sväjs lillebrör! =)""",
"""Det är inget fel på Mr. Cool""",
]
# fmt: off
lowerCamelCase__ = {"""input_ids""": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowerCAmelCase ,model_name="""AI-Sweden/gpt-sw3-126m""" ,sequences=_lowerCAmelCase ,)
| 9 | 1 |
'''simple docstring'''
from __future__ import annotations
import os
from typing import Any
import requests
UpperCamelCase : int = 'https://api.github.com'
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
UpperCamelCase : Optional[Any] = BASE_URL + '/user'
# https://github.com/settings/tokens
UpperCamelCase : int = os.environ.get('USER_TOKEN', '')
def A__ ( __lowerCAmelCase : str ):
lowerCamelCase__ = {
"""Authorization""": F'''token {auth_token}''',
"""Accept""": """application/vnd.github.v3+json""",
}
return requests.get(__lowerCAmelCase , headers=__lowerCAmelCase ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(F'{key}: {value}')
else:
raise ValueError('\'USER_TOKEN\' field cannot be empty.')
| 9 |
'''simple docstring'''
from manim import *
class UpperCamelCase__ (a ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = Rectangle(height=0.5 ,width=0.5 )
lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 )
lowerCamelCase__ = [mem.copy() for i in range(6 )]
lowerCamelCase__ = [mem.copy() for i in range(6 )]
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = VGroup(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = Text("""CPU""" ,font_size=24 )
lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_lowerCAmelCase )
lowerCamelCase__ = [mem.copy() for i in range(1 )]
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = Text("""GPU""" ,font_size=24 )
lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase )
gpu.align_to(_lowerCAmelCase ,_lowerCAmelCase )
gpu.set_x(gpu.get_x() - 1 )
self.add(_lowerCAmelCase )
lowerCamelCase__ = [mem.copy() for i in range(6 )]
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = Text("""Model""" ,font_size=24 )
lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase )
model.move_to([3, -1.0, 0] )
self.play(
Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,)
lowerCamelCase__ = MarkupText(
F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,)
lowerCamelCase__ = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
lowerCamelCase__ = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,)
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(_lowerCAmelCase ,run_time=2.5 ) ,Write(_lowerCAmelCase ) ,Write(_lowerCAmelCase ) )
self.add(_lowerCAmelCase )
lowerCamelCase__ = []
lowerCamelCase__ = []
lowerCamelCase__ = []
for i, rect in enumerate(_lowerCAmelCase ):
lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase ,opacity=0.7 )
cpu_target.move_to(_lowerCAmelCase )
cpu_target.generate_target()
lowerCamelCase__ = 0.46 / 4
lowerCamelCase__ = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_lowerCAmelCase )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target ,direction=_lowerCAmelCase ,buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=_lowerCAmelCase ,buff=0.0 )
cpu_targs.append(_lowerCAmelCase )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCAmelCase ) )
second_animations.append(MoveToTarget(_lowerCAmelCase ,run_time=1.5 ) )
self.play(*_lowerCAmelCase )
self.play(*_lowerCAmelCase )
self.wait()
| 9 | 1 |
'''simple docstring'''
from __future__ import annotations
def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : int ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(__lowerCAmelCase ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
lowerCamelCase__ = i + 1
else:
lowerCamelCase__ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'{two_pointer([2, 7, 11, 15], 9) = }')
| 9 |
'''simple docstring'''
UpperCamelCase : Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)]
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000]
number //= 10_0000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
UpperCamelCase : list[bool | None] = [None] * 10_00_00_00
UpperCamelCase : Tuple = True
UpperCamelCase : Optional[int] = False
def A__ ( __lowerCAmelCase : int ):
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
lowerCamelCase__ = chain(next_number(__lowerCAmelCase ) )
lowerCamelCase__ = number_chain
while number < 1000_0000:
lowerCamelCase__ = number_chain
number *= 10
return number_chain
def A__ ( __lowerCAmelCase : int = 1000_0000 ):
for i in range(1 , __lowerCAmelCase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'{solution() = }')
| 9 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase : Optional[int] = logging.get_logger(__name__)
def A__ ( __lowerCAmelCase : str ):
lowerCamelCase__ = DPTConfig()
if "large" in checkpoint_url:
lowerCamelCase__ = 1024
lowerCamelCase__ = 4096
lowerCamelCase__ = 24
lowerCamelCase__ = 16
lowerCamelCase__ = [5, 11, 17, 23]
lowerCamelCase__ = [256, 512, 1024, 1024]
lowerCamelCase__ = (1, 384, 384)
if "ade" in checkpoint_url:
lowerCamelCase__ = True
lowerCamelCase__ = 150
lowerCamelCase__ = """huggingface/label-files"""
lowerCamelCase__ = """ade20k-id2label.json"""
lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) )
lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
lowerCamelCase__ = idalabel
lowerCamelCase__ = {v: k for k, v in idalabel.items()}
lowerCamelCase__ = [1, 150, 480, 480]
return config, expected_shape
def A__ ( __lowerCAmelCase : Tuple ):
lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : Dict ):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" )
if "pretrained.model" in name:
lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" )
if "patch_embed" in name:
lowerCamelCase__ = name.replace("""patch_embed""" , """patch_embeddings""" )
if "pos_embed" in name:
lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" )
if "attn.proj" in name:
lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "proj" in name and "project" not in name:
lowerCamelCase__ = name.replace("""proj""" , """projection""" )
if "blocks" in name:
lowerCamelCase__ = name.replace("""blocks""" , """layer""" )
if "mlp.fc1" in name:
lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" )
if "norm1" in name:
lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" )
if "scratch.output_conv" in name:
lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" )
if "scratch" in name:
lowerCamelCase__ = name.replace("""scratch""" , """neck""" )
if "layer1_rn" in name:
lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" )
if "layer2_rn" in name:
lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" )
if "layer3_rn" in name:
lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" )
if "layer4_rn" in name:
lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" )
if "refinenet" in name:
lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' )
if "out_conv" in name:
lowerCamelCase__ = name.replace("""out_conv""" , """projection""" )
if "resConfUnit1" in name:
lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" )
if "resConfUnit2" in name:
lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" )
if "conv1" in name:
lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" )
if "conv2" in name:
lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" )
if "bn" in name:
lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" )
if "head" in name:
lowerCamelCase__ = name.replace("""head""" , """head.head""" )
if "encoder.norm" in name:
lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" )
if "auxlayer" in name:
lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" )
return name
def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' )
lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__ = in_proj_weight[: config.hidden_size, :]
lowerCamelCase__ = in_proj_bias[: config.hidden_size]
lowerCamelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCamelCase__ = in_proj_bias[-config.hidden_size :]
def A__ ( ):
lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
return im
@torch.no_grad()
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ):
lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase )
# load original state_dict from URL
lowerCamelCase__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(__lowerCAmelCase )
# rename keys
for key in state_dict.copy().keys():
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
lowerCamelCase__ = val
# read in qkv matrices
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase )
# load HuggingFace model
lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
model.eval()
# Check outputs on an image
lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384
lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase )
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" )
# forward pass
lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth
# Assert logits
lowerCamelCase__ = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] )
if "ade" in checkpoint_url:
lowerCamelCase__ = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] )
assert outputs.shape == torch.Size(__lowerCAmelCase )
assert (
torch.allclose(outputs[0, 0, :3, :3] , __lowerCAmelCase , atol=1e-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , __lowerCAmelCase )
)
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__lowerCAmelCase )
if push_to_hub:
print("""Pushing model to hub...""" )
model.push_to_hub(
repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=__lowerCAmelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=__lowerCAmelCase , )
if __name__ == "__main__":
UpperCamelCase : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
UpperCamelCase : List[str] = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 9 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : List[str] = {
'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json',
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'donut-swin'
_UpperCamelCase = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self ,_lowerCAmelCase=2_24 ,_lowerCAmelCase=4 ,_lowerCAmelCase=3 ,_lowerCAmelCase=96 ,_lowerCAmelCase=[2, 2, 6, 2] ,_lowerCAmelCase=[3, 6, 12, 24] ,_lowerCAmelCase=7 ,_lowerCAmelCase=4.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=False ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,**_lowerCAmelCase ,):
super().__init__(**_lowerCAmelCase )
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = embed_dim
lowerCamelCase__ = depths
lowerCamelCase__ = len(_lowerCAmelCase )
lowerCamelCase__ = num_heads
lowerCamelCase__ = window_size
lowerCamelCase__ = mlp_ratio
lowerCamelCase__ = qkv_bias
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = drop_path_rate
lowerCamelCase__ = hidden_act
lowerCamelCase__ = use_absolute_embeddings
lowerCamelCase__ = layer_norm_eps
lowerCamelCase__ = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCamelCase__ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
| 9 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = abs(__lowerCAmelCase )
lowerCamelCase__ = 0
while n > 0:
res += n % 10
n //= 10
return res
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = abs(__lowerCAmelCase )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def A__ ( __lowerCAmelCase : int ):
return sum(int(__lowerCAmelCase ) for c in str(abs(__lowerCAmelCase ) ) )
def A__ ( ):
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None:
lowerCamelCase__ = F'''{func.__name__}({value})'''
lowerCamelCase__ = timeit(F'''__main__.{call}''' , setup="""import __main__""" )
print(F'''{call:56} = {func(__lowerCAmelCase )} -- {timing:.4f} seconds''' )
for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 9 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
UpperCamelCase : Optional[Any] = ['small', 'medium', 'large']
UpperCamelCase : Dict = 'lm_head.decoder.weight'
UpperCamelCase : int = 'lm_head.weight'
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ):
lowerCamelCase__ = torch.load(__lowerCAmelCase )
lowerCamelCase__ = d.pop(__lowerCAmelCase )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) )
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
parser.add_argument('--dialogpt_path', default='.', type=str)
UpperCamelCase : Dict = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
UpperCamelCase : Any = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl')
UpperCamelCase : str = F'./DialoGPT-{MODEL}'
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 9 | 1 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionPipeline,
PNDMScheduler,
)
from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline'
def UpperCamelCase_ ( self ,_lowerCAmelCase=0 ):
lowerCamelCase__ = np.random.RandomState(_lowerCAmelCase )
lowerCamelCase__ = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
lowerCamelCase__ = self.get_dummy_inputs()
lowerCamelCase__ = pipe(**_lowerCAmelCase ).images
lowerCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
lowerCamelCase__ = np.array([0.6_5072, 0.5_8492, 0.4_8219, 0.5_5521, 0.5_3180, 0.5_5939, 0.5_0697, 0.3_9800, 0.4_6455] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" )
lowerCamelCase__ = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
lowerCamelCase__ = self.get_dummy_inputs()
lowerCamelCase__ = pipe(**_lowerCAmelCase ).images
lowerCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
lowerCamelCase__ = np.array([0.6_5863, 0.5_9425, 0.4_9326, 0.5_6313, 0.5_3875, 0.5_6627, 0.5_1065, 0.3_9777, 0.4_6330] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" )
lowerCamelCase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
lowerCamelCase__ = self.get_dummy_inputs()
lowerCamelCase__ = pipe(**_lowerCAmelCase ).images
lowerCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
lowerCamelCase__ = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" )
lowerCamelCase__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
lowerCamelCase__ = self.get_dummy_inputs()
lowerCamelCase__ = pipe(**_lowerCAmelCase ).images
lowerCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
lowerCamelCase__ = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" )
lowerCamelCase__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
lowerCamelCase__ = self.get_dummy_inputs()
lowerCamelCase__ = pipe(**_lowerCAmelCase ).images
lowerCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
lowerCamelCase__ = np.array([0.5_3817, 0.6_0812, 0.4_7384, 0.4_9530, 0.5_1894, 0.4_9814, 0.4_7984, 0.3_8958, 0.4_4271] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" )
lowerCamelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
lowerCamelCase__ = self.get_dummy_inputs()
lowerCamelCase__ = pipe(**_lowerCAmelCase ).images
lowerCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
lowerCamelCase__ = np.array([0.5_3895, 0.6_0808, 0.4_7933, 0.4_9608, 0.5_1886, 0.4_9950, 0.4_8053, 0.3_8957, 0.4_4200] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
lowerCamelCase__ = self.get_dummy_inputs()
lowerCamelCase__ = 3 * [inputs["""prompt"""]]
# forward
lowerCamelCase__ = pipe(**_lowerCAmelCase )
lowerCamelCase__ = output.images[0, -3:, -3:, -1]
lowerCamelCase__ = self.get_dummy_inputs()
lowerCamelCase__ = 3 * [inputs.pop("""prompt""" )]
lowerCamelCase__ = pipe.tokenizer(
_lowerCAmelCase ,padding="""max_length""" ,max_length=pipe.tokenizer.model_max_length ,truncation=_lowerCAmelCase ,return_tensors="""np""" ,)
lowerCamelCase__ = text_inputs["""input_ids"""]
lowerCamelCase__ = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0]
lowerCamelCase__ = prompt_embeds
# forward
lowerCamelCase__ = pipe(**_lowerCAmelCase )
lowerCamelCase__ = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
lowerCamelCase__ = self.get_dummy_inputs()
lowerCamelCase__ = 3 * ["""this is a negative prompt"""]
lowerCamelCase__ = negative_prompt
lowerCamelCase__ = 3 * [inputs["""prompt"""]]
# forward
lowerCamelCase__ = pipe(**_lowerCAmelCase )
lowerCamelCase__ = output.images[0, -3:, -3:, -1]
lowerCamelCase__ = self.get_dummy_inputs()
lowerCamelCase__ = 3 * [inputs.pop("""prompt""" )]
lowerCamelCase__ = []
for p in [prompt, negative_prompt]:
lowerCamelCase__ = pipe.tokenizer(
_lowerCAmelCase ,padding="""max_length""" ,max_length=pipe.tokenizer.model_max_length ,truncation=_lowerCAmelCase ,return_tensors="""np""" ,)
lowerCamelCase__ = text_inputs["""input_ids"""]
embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] )
lowerCamelCase__ , lowerCamelCase__ = embeds
# forward
lowerCamelCase__ = pipe(**_lowerCAmelCase )
lowerCamelCase__ = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@nightly
@require_onnxruntime
@require_torch_gpu
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCamelCase_ ( self ):
lowerCamelCase__ = ort.SessionOptions()
lowerCamelCase__ = False
return options
def UpperCamelCase_ ( self ):
# using the PNDM scheduler by default
lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" ,revision="""onnx""" ,safety_checker=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ,provider=self.gpu_provider ,sess_options=self.gpu_options ,)
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
lowerCamelCase__ = """A painting of a squirrel eating a burger"""
np.random.seed(0 )
lowerCamelCase__ = sd_pipe([prompt] ,guidance_scale=6.0 ,num_inference_steps=10 ,output_type="""np""" )
lowerCamelCase__ = output.images
lowerCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCamelCase__ = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def UpperCamelCase_ ( self ):
lowerCamelCase__ = DDIMScheduler.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" ,subfolder="""scheduler""" ,revision="""onnx""" )
lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,scheduler=_lowerCAmelCase ,safety_checker=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ,provider=self.gpu_provider ,sess_options=self.gpu_options ,)
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
lowerCamelCase__ = """open neural network exchange"""
lowerCamelCase__ = np.random.RandomState(0 )
lowerCamelCase__ = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=_lowerCAmelCase ,output_type="""np""" )
lowerCamelCase__ = output.images
lowerCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCamelCase__ = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def UpperCamelCase_ ( self ):
lowerCamelCase__ = LMSDiscreteScheduler.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" ,subfolder="""scheduler""" ,revision="""onnx""" )
lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,scheduler=_lowerCAmelCase ,safety_checker=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ,provider=self.gpu_provider ,sess_options=self.gpu_options ,)
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
lowerCamelCase__ = """open neural network exchange"""
lowerCamelCase__ = np.random.RandomState(0 )
lowerCamelCase__ = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=_lowerCAmelCase ,output_type="""np""" )
lowerCamelCase__ = output.images
lowerCamelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCamelCase__ = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 0
def test_callback_fn(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> None:
lowerCamelCase__ = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
assert latents.shape == (1, 4, 64, 64)
lowerCamelCase__ = latents[0, -3:, -3:, -1]
lowerCamelCase__ = np.array(
[-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3
elif step == 5:
assert latents.shape == (1, 4, 64, 64)
lowerCamelCase__ = latents[0, -3:, -3:, -1]
lowerCamelCase__ = np.array(
[-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3
lowerCamelCase__ = False
lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,safety_checker=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ,provider=self.gpu_provider ,sess_options=self.gpu_options ,)
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
lowerCamelCase__ = """Andromeda galaxy in a bottle"""
lowerCamelCase__ = np.random.RandomState(0 )
pipe(
prompt=_lowerCAmelCase ,num_inference_steps=5 ,guidance_scale=7.5 ,generator=_lowerCAmelCase ,callback=_lowerCAmelCase ,callback_steps=1 ,)
assert test_callback_fn.has_been_called
assert number_of_steps == 6
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,safety_checker=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ,provider=self.gpu_provider ,sess_options=self.gpu_options ,)
assert isinstance(_lowerCAmelCase ,_lowerCAmelCase )
assert pipe.safety_checker is None
lowerCamelCase__ = pipe("""example prompt""" ,num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_lowerCAmelCase )
lowerCamelCase__ = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
lowerCamelCase__ = pipe("""example prompt""" ,num_inference_steps=2 ).images[0]
assert image is not None
| 9 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=30 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=10 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=0.6 ,_lowerCAmelCase=None ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = is_training
lowerCamelCase__ = use_labels
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = type_sequence_label_size
lowerCamelCase__ = initializer_range
lowerCamelCase__ = mask_ratio
lowerCamelCase__ = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
lowerCamelCase__ = (image_size // patch_size) ** 2
lowerCamelCase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowerCamelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self ):
return ViTMAEConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = TFViTMAEModel(config=_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
# expected sequence length = num_patches
lowerCamelCase__ = (self.image_size // self.patch_size) ** 2
lowerCamelCase__ = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
lowerCamelCase__ = 1
lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase )
lowerCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
lowerCamelCase__ = self.patch_size**2
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs
lowerCamelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
_UpperCamelCase = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {}
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFViTMAEModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 )
def UpperCamelCase_ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
lowerCamelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase ,tf.keras.layers.Layer ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
# make the mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = copy.deepcopy(self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = outputs_dict[0].numpy()
lowerCamelCase__ = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1E-6 )
def UpperCamelCase_ ( self ):
# make the mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(_lowerCAmelCase ):
lowerCamelCase__ = {}
for k, v in inputs_dict.items():
if tf.is_tensor(_lowerCAmelCase ):
lowerCamelCase__ = v.numpy()
else:
lowerCamelCase__ = np.array(_lowerCAmelCase )
return inputs_np_dict
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = prepare_numpy_arrays(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
# make masks reproducible
np.random.seed(2 )
lowerCamelCase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowerCamelCase__ = tf.constant(_lowerCAmelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
lowerCamelCase__ = tf_noise
super().check_pt_tf_models(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(_lowerCAmelCase )
if module_member_name.endswith("""MainLayer""" )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )]
for module_member in (getattr(_lowerCAmelCase ,_lowerCAmelCase ),)
if isinstance(_lowerCAmelCase ,_lowerCAmelCase )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(_lowerCAmelCase ,"""_keras_serializable""" ,_lowerCAmelCase )
}
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowerCamelCase__ = tf.convert_to_tensor(_lowerCAmelCase )
inputs_dict.update({"""noise""": noise} )
for main_layer_class in tf_main_layer_classes:
lowerCamelCase__ = main_layer_class(_lowerCAmelCase )
lowerCamelCase__ = {
name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
lowerCamelCase__ = tf.keras.Model(_lowerCAmelCase ,outputs=main_layer(_lowerCAmelCase ) )
lowerCamelCase__ = model(_lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCamelCase__ = os.path.join(_lowerCAmelCase ,"""keras_model.h5""" )
model.save(_lowerCAmelCase )
lowerCamelCase__ = tf.keras.models.load_model(
_lowerCAmelCase ,custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(_lowerCAmelCase ,tf.keras.Model )
lowerCamelCase__ = model(_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
lowerCamelCase__ = outputs.last_hidden_state.numpy()
lowerCamelCase__ = 0
else:
lowerCamelCase__ = outputs.logits.numpy()
lowerCamelCase__ = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_lowerCAmelCase ,saved_model=_lowerCAmelCase )
lowerCamelCase__ = model_class.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
lowerCamelCase__ = after_outputs["""last_hidden_state"""].numpy()
lowerCamelCase__ = 0
else:
lowerCamelCase__ = after_outputs["""logits"""].numpy()
lowerCamelCase__ = 0
lowerCamelCase__ = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_lowerCAmelCase ,1E-5 )
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(_lowerCAmelCase )
lowerCamelCase__ = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
lowerCamelCase__ = model_class.from_config(model.config )
lowerCamelCase__ = new_model(_lowerCAmelCase ) # Build model
new_model.set_weights(model.get_weights() )
lowerCamelCase__ = new_model(_lowerCAmelCase ,noise=_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def UpperCamelCase_ ( self ):
pass
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" )
self.assertIsNotNone(_lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
lowerCamelCase__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" )
lowerCamelCase__ = self.default_image_processor
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""tf""" )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
lowerCamelCase__ = ViTMAEConfig()
lowerCamelCase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(1, num_patches) )
# forward pass
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
# verify the logits
lowerCamelCase__ = tf.convert_to_tensor([1, 1_96, 7_68] )
self.assertEqual(outputs.logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = tf.convert_to_tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] ,_lowerCAmelCase ,atol=1E-4 )
| 9 | 1 |
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=3 ,_lowerCAmelCase=32 ,_lowerCAmelCase=3 ,_lowerCAmelCase=10 ,_lowerCAmelCase=[10, 20, 30, 40] ,_lowerCAmelCase=[1, 1, 2, 1] ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase="relu" ,_lowerCAmelCase=3 ,_lowerCAmelCase=None ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = image_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = embeddings_size
lowerCamelCase__ = hidden_sizes
lowerCamelCase__ = depths
lowerCamelCase__ = is_training
lowerCamelCase__ = use_labels
lowerCamelCase__ = hidden_act
lowerCamelCase__ = num_labels
lowerCamelCase__ = scope
lowerCamelCase__ = len(_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.num_labels )
lowerCamelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self ):
return RegNetConfig(
num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = TFRegNetModel(config=_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = self.num_labels
lowerCamelCase__ = TFRegNetForImageClassification(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase ,training=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs
lowerCamelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
_UpperCamelCase = (
{'feature-extraction': TFRegNetModel, 'image-classification': TFRegNetForImageClassification}
if is_tf_available()
else {}
)
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFRegNetModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase )
def UpperCamelCase_ ( self ):
return
@unittest.skip(reason="""RegNet does not use inputs_embeds""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,reason="""TF does not support backprop for grouped convolutions on CPU.""" ,)
@slow
def UpperCamelCase_ ( self ):
super().test_keras_fit()
@unittest.skip(reason="""RegNet does not support input and output embeddings""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
def check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ,training=_lowerCAmelCase )
lowerCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCamelCase__ = self.model_tester.num_stages
self.assertEqual(len(_lowerCAmelCase ) ,expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 2, self.model_tester.image_size // 2] ,)
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = ["""basic""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
lowerCamelCase__ = layer_type
lowerCamelCase__ = True
check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase__ = True
check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase={} ):
lowerCamelCase__ = model(_lowerCAmelCase ,return_dict=_lowerCAmelCase ,**_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,return_dict=_lowerCAmelCase ,**_lowerCAmelCase ).to_tuple()
def recursive_check(_lowerCAmelCase ,_lowerCAmelCase ):
if isinstance(_lowerCAmelCase ,(List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(_lowerCAmelCase ,_lowerCAmelCase ):
recursive_check(_lowerCAmelCase ,_lowerCAmelCase )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(_lowerCAmelCase ,_lowerCAmelCase ) ) ,msg=(
"""Tuple and dict output are not equal. Difference:"""
F''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}'''
) ,)
recursive_check(_lowerCAmelCase ,_lowerCAmelCase )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase )
check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,{"""output_hidden_states""": True} )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase )
check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,{"""output_hidden_states""": True} )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ = TFRegNetModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
lowerCamelCase__ = self.default_image_processor
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""tf""" )
# forward pass
lowerCamelCase__ = model(**_lowerCAmelCase ,training=_lowerCAmelCase )
# verify the logits
lowerCamelCase__ = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = tf.constant([-0.4180, -1.5051, -3.4836] )
tf.debugging.assert_near(outputs.logits[0, :3] ,_lowerCAmelCase ,atol=1E-4 )
| 9 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=7 ,_lowerCAmelCase=3 ,_lowerCAmelCase=18 ,_lowerCAmelCase=30 ,_lowerCAmelCase=4_00 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,):
lowerCamelCase__ = size if size is not None else {"""shortest_edge""": 18}
lowerCamelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = image_size
lowerCamelCase__ = min_resolution
lowerCamelCase__ = max_resolution
lowerCamelCase__ = do_resize
lowerCamelCase__ = size
lowerCamelCase__ = do_center_crop
lowerCamelCase__ = crop_size
lowerCamelCase__ = do_normalize
lowerCamelCase__ = image_mean
lowerCamelCase__ = image_std
def UpperCamelCase_ ( self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = LevitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
lowerCamelCase__ = LevitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""image_std""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_center_crop""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""size""" ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} )
self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} )
lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,Image.Image )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,numpify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,np.ndarray )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,torchify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,torch.Tensor )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
| 9 | 1 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_tf_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_tf_available():
import tensorflow as tf
UpperCamelCase : List[Any] = logging.get_logger(__name__)
@dataclass
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = [
'no_inference',
'no_cuda',
'no_tpu',
'no_speed',
'no_memory',
'no_env_print',
'no_multi_process',
]
def __init__( self ,**_lowerCAmelCase ):
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
lowerCamelCase__ = deprecated_arg[3:]
lowerCamelCase__ = not kwargs.pop(_lowerCAmelCase )
logger.warning(
F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or'''
F''' {positive_arg}={kwargs[positive_arg]}''' )
lowerCamelCase__ = kwargs.pop("""tpu_name""" ,self.tpu_name )
lowerCamelCase__ = kwargs.pop("""device_idx""" ,self.device_idx )
lowerCamelCase__ = kwargs.pop("""eager_mode""" ,self.eager_mode )
lowerCamelCase__ = kwargs.pop("""use_xla""" ,self.use_xla )
super().__init__(**_lowerCAmelCase )
_UpperCamelCase = field(
default=a ,metadata={'help': 'Name of TPU'} ,)
_UpperCamelCase = field(
default=0 ,metadata={'help': 'CPU / GPU device index. Defaults to 0.'} ,)
_UpperCamelCase = field(default=a ,metadata={'help': 'Benchmark models in eager model.'} )
_UpperCamelCase = field(
default=a ,metadata={
'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.'
} ,)
@cached_property
def UpperCamelCase_ ( self ):
requires_backends(self ,["""tf"""] )
lowerCamelCase__ = None
if self.tpu:
try:
if self.tpu_name:
lowerCamelCase__ = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name )
else:
lowerCamelCase__ = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
lowerCamelCase__ = None
return tpu
@cached_property
def UpperCamelCase_ ( self ):
requires_backends(self ,["""tf"""] )
if self.is_tpu:
tf.config.experimental_connect_to_cluster(self._setup_tpu )
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu )
lowerCamelCase__ = tf.distribute.TPUStrategy(self._setup_tpu )
else:
# currently no multi gpu is allowed
if self.is_gpu:
# TODO: Currently only single GPU is supported
tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,"""GPU""" )
lowerCamelCase__ = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' )
else:
tf.config.set_visible_devices([] ,"""GPU""" ) # disable GPU
lowerCamelCase__ = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' )
return strategy
@property
def UpperCamelCase_ ( self ):
requires_backends(self ,["""tf"""] )
return self._setup_tpu is not None
@property
def UpperCamelCase_ ( self ):
requires_backends(self ,["""tf"""] )
return self._setup_strategy
@property
def UpperCamelCase_ ( self ):
requires_backends(self ,["""tf"""] )
return tf.config.list_physical_devices("""GPU""" )
@property
def UpperCamelCase_ ( self ):
requires_backends(self ,["""tf"""] )
if self.cuda:
return len(self.gpu_list )
return 0
@property
def UpperCamelCase_ ( self ):
return self.n_gpu > 0
| 9 |
'''simple docstring'''
import numpy
# List of input, output pairs
UpperCamelCase : List[Any] = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
UpperCamelCase : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50))
UpperCamelCase : int = [2, 4, 1, 5]
UpperCamelCase : int = len(train_data)
UpperCamelCase : Dict = 0.009
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : str="train" ):
return calculate_hypothesis_value(__lowerCAmelCase , __lowerCAmelCase ) - output(
__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : Any ):
lowerCamelCase__ = 0
for i in range(len(__lowerCAmelCase ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=m ):
lowerCamelCase__ = 0
for i in range(__lowerCAmelCase ):
if index == -1:
summation_value += _error(__lowerCAmelCase )
else:
summation_value += _error(__lowerCAmelCase ) * train_data[i][0][index]
return summation_value
def A__ ( __lowerCAmelCase : List[Any] ):
lowerCamelCase__ = summation_of_cost_derivative(__lowerCAmelCase , __lowerCAmelCase ) / m
return cost_derivative_value
def A__ ( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
lowerCamelCase__ = 0.00_0002
lowerCamelCase__ = 0
lowerCamelCase__ = 0
while True:
j += 1
lowerCamelCase__ = [0, 0, 0, 0]
for i in range(0 , len(__lowerCAmelCase ) ):
lowerCamelCase__ = get_cost_derivative(i - 1 )
lowerCamelCase__ = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
__lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase , rtol=__lowerCAmelCase , ):
break
lowerCamelCase__ = temp_parameter_vector
print(("""Number of iterations:""", j) )
def A__ ( ):
for i in range(len(__lowerCAmelCase ) ):
print(("""Actual output value:""", output(__lowerCAmelCase , """test""" )) )
print(("""Hypothesis output:""", calculate_hypothesis_value(__lowerCAmelCase , """test""" )) )
if __name__ == "__main__":
run_gradient_descent()
print('\nTesting gradient descent for a linear hypothesis function.\n')
test_gradient_descent()
| 9 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int ):
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
'''simple docstring'''
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ):
lowerCamelCase__ = OmegaConf.load(__lowerCAmelCase )
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""model"""]
lowerCamelCase__ = list(state_dict.keys() )
# extract state_dict for VQVAE
lowerCamelCase__ = {}
lowerCamelCase__ = """first_stage_model."""
for key in keys:
if key.startswith(__lowerCAmelCase ):
lowerCamelCase__ = state_dict[key]
# extract state_dict for UNetLDM
lowerCamelCase__ = {}
lowerCamelCase__ = """model.diffusion_model."""
for key in keys:
if key.startswith(__lowerCAmelCase ):
lowerCamelCase__ = state_dict[key]
lowerCamelCase__ = config.model.params.first_stage_config.params
lowerCamelCase__ = config.model.params.unet_config.params
lowerCamelCase__ = VQModel(**__lowerCAmelCase ).eval()
vqvae.load_state_dict(__lowerCAmelCase )
lowerCamelCase__ = UNetLDMModel(**__lowerCAmelCase ).eval()
unet.load_state_dict(__lowerCAmelCase )
lowerCamelCase__ = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__lowerCAmelCase , )
lowerCamelCase__ = LDMPipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
pipeline.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', type=str, required=True)
parser.add_argument('--config_path', type=str, required=True)
parser.add_argument('--output_path', type=str, required=True)
UpperCamelCase : List[Any] = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 9 | 1 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=30 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=10 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=0.6 ,_lowerCAmelCase=None ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = is_training
lowerCamelCase__ = use_labels
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = type_sequence_label_size
lowerCamelCase__ = initializer_range
lowerCamelCase__ = mask_ratio
lowerCamelCase__ = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
lowerCamelCase__ = (image_size // patch_size) ** 2
lowerCamelCase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowerCamelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self ):
return ViTMAEConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = TFViTMAEModel(config=_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
# expected sequence length = num_patches
lowerCamelCase__ = (self.image_size // self.patch_size) ** 2
lowerCamelCase__ = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
lowerCamelCase__ = 1
lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase )
lowerCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
lowerCamelCase__ = self.patch_size**2
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs
lowerCamelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
_UpperCamelCase = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {}
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFViTMAEModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 )
def UpperCamelCase_ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
lowerCamelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase ,tf.keras.layers.Layer ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
# make the mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = copy.deepcopy(self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = outputs_dict[0].numpy()
lowerCamelCase__ = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1E-6 )
def UpperCamelCase_ ( self ):
# make the mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(_lowerCAmelCase ):
lowerCamelCase__ = {}
for k, v in inputs_dict.items():
if tf.is_tensor(_lowerCAmelCase ):
lowerCamelCase__ = v.numpy()
else:
lowerCamelCase__ = np.array(_lowerCAmelCase )
return inputs_np_dict
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = prepare_numpy_arrays(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
# make masks reproducible
np.random.seed(2 )
lowerCamelCase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowerCamelCase__ = tf.constant(_lowerCAmelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
lowerCamelCase__ = tf_noise
super().check_pt_tf_models(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(_lowerCAmelCase )
if module_member_name.endswith("""MainLayer""" )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )]
for module_member in (getattr(_lowerCAmelCase ,_lowerCAmelCase ),)
if isinstance(_lowerCAmelCase ,_lowerCAmelCase )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(_lowerCAmelCase ,"""_keras_serializable""" ,_lowerCAmelCase )
}
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowerCamelCase__ = tf.convert_to_tensor(_lowerCAmelCase )
inputs_dict.update({"""noise""": noise} )
for main_layer_class in tf_main_layer_classes:
lowerCamelCase__ = main_layer_class(_lowerCAmelCase )
lowerCamelCase__ = {
name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
lowerCamelCase__ = tf.keras.Model(_lowerCAmelCase ,outputs=main_layer(_lowerCAmelCase ) )
lowerCamelCase__ = model(_lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCamelCase__ = os.path.join(_lowerCAmelCase ,"""keras_model.h5""" )
model.save(_lowerCAmelCase )
lowerCamelCase__ = tf.keras.models.load_model(
_lowerCAmelCase ,custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(_lowerCAmelCase ,tf.keras.Model )
lowerCamelCase__ = model(_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
lowerCamelCase__ = outputs.last_hidden_state.numpy()
lowerCamelCase__ = 0
else:
lowerCamelCase__ = outputs.logits.numpy()
lowerCamelCase__ = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_lowerCAmelCase ,saved_model=_lowerCAmelCase )
lowerCamelCase__ = model_class.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
lowerCamelCase__ = after_outputs["""last_hidden_state"""].numpy()
lowerCamelCase__ = 0
else:
lowerCamelCase__ = after_outputs["""logits"""].numpy()
lowerCamelCase__ = 0
lowerCamelCase__ = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_lowerCAmelCase ,1E-5 )
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(_lowerCAmelCase )
lowerCamelCase__ = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
lowerCamelCase__ = model_class.from_config(model.config )
lowerCamelCase__ = new_model(_lowerCAmelCase ) # Build model
new_model.set_weights(model.get_weights() )
lowerCamelCase__ = new_model(_lowerCAmelCase ,noise=_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def UpperCamelCase_ ( self ):
pass
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" )
self.assertIsNotNone(_lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
lowerCamelCase__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" )
lowerCamelCase__ = self.default_image_processor
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""tf""" )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
lowerCamelCase__ = ViTMAEConfig()
lowerCamelCase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(1, num_patches) )
# forward pass
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
# verify the logits
lowerCamelCase__ = tf.convert_to_tensor([1, 1_96, 7_68] )
self.assertEqual(outputs.logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = tf.convert_to_tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] ,_lowerCAmelCase ,atol=1E-4 )
| 9 |
'''simple docstring'''
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
UpperCamelCase : str = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase]
UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS}
UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"]
def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : tuple[int, ...] ):
lowerCamelCase__ = ""
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = 42
for keychar, cipherchar in zip(cycle(__lowerCAmelCase ) , __lowerCAmelCase ):
lowerCamelCase__ = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(__lowerCAmelCase )
return decoded
def A__ ( __lowerCAmelCase : list[int] ):
lowerCamelCase__ = []
for key in product(__lowerCAmelCase , repeat=3 ):
lowerCamelCase__ = try_key(__lowerCAmelCase , __lowerCAmelCase )
if encoded is not None:
possibles.append(__lowerCAmelCase )
return possibles
def A__ ( __lowerCAmelCase : list[str] , __lowerCAmelCase : str ):
return [possible for possible in possibles if common_word in possible.lower()]
def A__ ( __lowerCAmelCase : str = "p059_cipher.txt" ):
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = Path(__lowerCAmelCase ).parent.joinpath(__lowerCAmelCase ).read_text(encoding="""utf-8""" )
lowerCamelCase__ = [int(__lowerCAmelCase ) for number in data.strip().split(""",""" )]
lowerCamelCase__ = filter_valid_chars(__lowerCAmelCase )
for common_word in COMMON_WORDS:
lowerCamelCase__ = filter_common_word(__lowerCAmelCase , __lowerCAmelCase )
if len(__lowerCAmelCase ) == 1:
break
lowerCamelCase__ = possibles[0]
return sum(ord(__lowerCAmelCase ) for char in decoded_text )
if __name__ == "__main__":
print(F'{solution() = }')
| 9 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
UpperCamelCase : Union[str, Any] = {
'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig']
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : int = ['ConvNextFeatureExtractor']
UpperCamelCase : Any = ['ConvNextImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Dict = [
'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvNextForImageClassification',
'ConvNextModel',
'ConvNextPreTrainedModel',
'ConvNextBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Tuple = [
'TFConvNextForImageClassification',
'TFConvNextModel',
'TFConvNextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
UpperCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 9 |
'''simple docstring'''
import argparse
import struct
import unittest
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ):
lowerCamelCase__ = data
# Initialize hash values
lowerCamelCase__ = [
0x6a_09_e6_67,
0xbb_67_ae_85,
0x3c_6e_f3_72,
0xa5_4f_f5_3a,
0x51_0e_52_7f,
0x9b_05_68_8c,
0x1f_83_d9_ab,
0x5b_e0_cd_19,
]
# Initialize round constants
lowerCamelCase__ = [
0x42_8a_2f_98,
0x71_37_44_91,
0xb5_c0_fb_cf,
0xe9_b5_db_a5,
0x39_56_c2_5b,
0x59_f1_11_f1,
0x92_3f_82_a4,
0xab_1c_5e_d5,
0xd8_07_aa_98,
0x12_83_5b_01,
0x24_31_85_be,
0x55_0c_7d_c3,
0x72_be_5d_74,
0x80_de_b1_fe,
0x9b_dc_06_a7,
0xc1_9b_f1_74,
0xe4_9b_69_c1,
0xef_be_47_86,
0x0f_c1_9d_c6,
0x24_0c_a1_cc,
0x2d_e9_2c_6f,
0x4a_74_84_aa,
0x5c_b0_a9_dc,
0x76_f9_88_da,
0x98_3e_51_52,
0xa8_31_c6_6d,
0xb0_03_27_c8,
0xbf_59_7f_c7,
0xc6_e0_0b_f3,
0xd5_a7_91_47,
0x06_ca_63_51,
0x14_29_29_67,
0x27_b7_0a_85,
0x2e_1b_21_38,
0x4d_2c_6d_fc,
0x53_38_0d_13,
0x65_0a_73_54,
0x76_6a_0a_bb,
0x81_c2_c9_2e,
0x92_72_2c_85,
0xa2_bf_e8_a1,
0xa8_1a_66_4b,
0xc2_4b_8b_70,
0xc7_6c_51_a3,
0xd1_92_e8_19,
0xd6_99_06_24,
0xf4_0e_35_85,
0x10_6a_a0_70,
0x19_a4_c1_16,
0x1e_37_6c_08,
0x27_48_77_4c,
0x34_b0_bc_b5,
0x39_1c_0c_b3,
0x4e_d8_aa_4a,
0x5b_9c_ca_4f,
0x68_2e_6f_f3,
0x74_8f_82_ee,
0x78_a5_63_6f,
0x84_c8_78_14,
0x8c_c7_02_08,
0x90_be_ff_fa,
0xa4_50_6c_eb,
0xbe_f9_a3_f7,
0xc6_71_78_f2,
]
lowerCamelCase__ = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def UpperCamelCase_ ( _lowerCAmelCase ):
lowerCamelCase__ = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowerCAmelCase ) + 8) % 64))
lowerCamelCase__ = struct.pack(""">Q""" ,(len(_lowerCAmelCase ) * 8) )
return data + padding + big_endian_integer
def UpperCamelCase_ ( self ):
# Convert into blocks of 64 bytes
lowerCamelCase__ = [
self.preprocessed_data[x : x + 64]
for x in range(0 ,len(self.preprocessed_data ) ,64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
lowerCamelCase__ = list(struct.unpack(""">16L""" ,_lowerCAmelCase ) )
# add 48 0-ed integers
words += [0] * 48
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.hashes
for index in range(0 ,64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
lowerCamelCase__ = (
self.ror(words[index - 15] ,7 )
^ self.ror(words[index - 15] ,18 )
^ (words[index - 15] >> 3)
)
lowerCamelCase__ = (
self.ror(words[index - 2] ,17 )
^ self.ror(words[index - 2] ,19 )
^ (words[index - 2] >> 10)
)
lowerCamelCase__ = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_00_00_00_00
# Compression
lowerCamelCase__ = self.ror(_lowerCAmelCase ,6 ) ^ self.ror(_lowerCAmelCase ,11 ) ^ self.ror(_lowerCAmelCase ,25 )
lowerCamelCase__ = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g)
lowerCamelCase__ = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_00_00_00_00
lowerCamelCase__ = self.ror(_lowerCAmelCase ,2 ) ^ self.ror(_lowerCAmelCase ,13 ) ^ self.ror(_lowerCAmelCase ,22 )
lowerCamelCase__ = (a & b) ^ (a & c) ^ (b & c)
lowerCamelCase__ = (sa + maj) % 0x1_00_00_00_00
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = (
g,
f,
e,
((d + tempa) % 0x1_00_00_00_00),
c,
b,
a,
((tempa + tempa) % 0x1_00_00_00_00),
)
lowerCamelCase__ = [a, b, c, d, e, f, g, h]
# Modify final values
lowerCamelCase__ = [
((element + mutated_hash_values[index]) % 0x1_00_00_00_00)
for index, element in enumerate(self.hashes )
]
lowerCamelCase__ = """""".join([hex(_lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations)
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
import hashlib
lowerCamelCase__ = bytes("""Test String""" ,"""utf-8""" )
self.assertEqual(SHAaaa(_lowerCAmelCase ).hash ,hashlib.shaaaa(_lowerCAmelCase ).hexdigest() )
def A__ ( ):
import doctest
doctest.testmod()
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument(
"""-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , )
parser.add_argument(
"""-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" )
lowerCamelCase__ = parser.parse_args()
lowerCamelCase__ = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , """rb""" ) as f:
lowerCamelCase__ = f.read()
else:
lowerCamelCase__ = bytes(__lowerCAmelCase , """utf-8""" )
print(SHAaaa(__lowerCAmelCase ).hash )
if __name__ == "__main__":
main()
| 9 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or number < 0:
raise ValueError("""Input must be a non-negative integer""" )
lowerCamelCase__ = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def A__ ( __lowerCAmelCase : Union[str, Any] ):
lowerCamelCase__ = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""encoder.embed_positions._float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : Tuple ):
lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape
lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase )
lowerCamelCase__ = emb.weight.data
return lin_layer
def A__ ( __lowerCAmelCase : Dict ):
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )
lowerCamelCase__ = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""]
lowerCamelCase__ = mam_aaa["""model"""]
remove_ignore_keys_(__lowerCAmelCase )
lowerCamelCase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0]
lowerCamelCase__ = MaMaaaConfig(
vocab_size=__lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , )
lowerCamelCase__ = state_dict["""decoder.embed_tokens.weight"""]
lowerCamelCase__ = MaMaaaForConditionalGeneration(__lowerCAmelCase )
model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
lowerCamelCase__ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
UpperCamelCase : Tuple = parser.parse_args()
UpperCamelCase : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 9 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ):
lowerCamelCase__ = 0
lowerCamelCase__ = len(__lowerCAmelCase ) - 1
while left <= right:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
lowerCamelCase__ = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(__lowerCAmelCase ):
return None
lowerCamelCase__ = sorted_collection[point]
if current_item == item:
return point
else:
if point < left:
lowerCamelCase__ = left
lowerCamelCase__ = point
elif point > right:
lowerCamelCase__ = right
lowerCamelCase__ = point
else:
if item < current_item:
lowerCamelCase__ = point - 1
else:
lowerCamelCase__ = point + 1
return None
def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : str ):
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
lowerCamelCase__ = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(__lowerCAmelCase ):
return None
if sorted_collection[point] == item:
return point
elif point < left:
return interpolation_search_by_recursion(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
elif point > right:
return interpolation_search_by_recursion(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
if sorted_collection[point] > item:
return interpolation_search_by_recursion(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , point - 1 )
else:
return interpolation_search_by_recursion(
__lowerCAmelCase , __lowerCAmelCase , point + 1 , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : str ):
if collection != sorted(__lowerCAmelCase ):
raise ValueError("""Collection must be ascending sorted""" )
return True
if __name__ == "__main__":
import sys
UpperCamelCase : List[str] = 0
if debug == 1:
UpperCamelCase : Dict = [10, 30, 40, 45, 50, 66, 77, 93]
try:
__assert_sorted(collection)
except ValueError:
sys.exit('Sequence must be ascending sorted to apply interpolation search')
UpperCamelCase : Optional[int] = 67
UpperCamelCase : str = interpolation_search(collection, target)
if result is not None:
print(F'{target} found at positions: {result}')
else:
print('Not found')
| 9 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = tempfile.mkdtemp()
lowerCamelCase__ = BlipImageProcessor()
lowerCamelCase__ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
lowerCamelCase__ = BlipProcessor(_lowerCAmelCase ,_lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).tokenizer
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).image_processor
def UpperCamelCase_ ( self ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self ):
lowerCamelCase__ = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" )
lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 )
lowerCamelCase__ = BlipProcessor.from_pretrained(
self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = self.prepare_image_inputs()
lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" )
lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = processor(text=_lowerCAmelCase )
lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = self.prepare_image_inputs()
lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase )
self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(_lowerCAmelCase ):
processor()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase )
lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = self.prepare_image_inputs()
lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
| 9 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class UpperCamelCase__ :
'''simple docstring'''
_UpperCamelCase = 42
_UpperCamelCase = 42
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ):
lowerCamelCase__ = [[] for _ in range(_lowerCAmelCase )]
lowerCamelCase__ = size
def __getitem__( self ,_lowerCAmelCase ):
return iter(self._graph[vertex] )
@property
def UpperCamelCase_ ( self ):
return self._size
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
if weight not in (0, 1):
raise ValueError("""Edge weight must be either 0 or 1.""" )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("""Vertex indexes must be in [0; size).""" )
self._graph[from_vertex].append(Edge(_lowerCAmelCase ,_lowerCAmelCase ) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = deque([start_vertex] )
lowerCamelCase__ = [None] * self.size
lowerCamelCase__ = 0
while queue:
lowerCamelCase__ = queue.popleft()
lowerCamelCase__ = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowerCamelCase__ = current_distance + edge.weight
lowerCamelCase__ = distances[edge.destination_vertex]
if (
isinstance(_lowerCAmelCase ,_lowerCAmelCase )
and new_distance >= dest_vertex_distance
):
continue
lowerCamelCase__ = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("""No path from start_vertex to finish_vertex.""" )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
'''simple docstring'''
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True)
os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True)
os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True)
def A__ ( __lowerCAmelCase : Union[str, Any] ):
if hor == 128:
lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
lowerCamelCase__ = (32, 128, 256)
lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""")
elif hor == 32:
lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
lowerCamelCase__ = (32, 64, 128, 256)
lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""")
lowerCamelCase__ = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' )
lowerCamelCase__ = model.state_dict()
lowerCamelCase__ = {
"""down_block_types""": down_block_types,
"""block_out_channels""": block_out_channels,
"""up_block_types""": up_block_types,
"""layers_per_block""": 1,
"""use_timestep_embedding""": True,
"""out_block_type""": """OutConv1DBlock""",
"""norm_num_groups""": 8,
"""downsample_each_block""": False,
"""in_channels""": 14,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""sample_size""": 6_5536,
"""mid_block_type""": """MidResTemporalBlock1D""",
"""act_fn""": """mish""",
}
lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase )
print(F'''length of state dict: {len(state_dict.keys() )}''' )
print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' )
lowerCamelCase__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
hf_value_function.load_state_dict(__lowerCAmelCase )
torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' )
with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = {
"""in_channels""": 14,
"""down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""),
"""up_block_types""": (),
"""out_block_type""": """ValueFunction""",
"""mid_block_type""": """ValueFunctionMidBlock1D""",
"""block_out_channels""": (32, 64, 128, 256),
"""layers_per_block""": 1,
"""downsample_each_block""": True,
"""sample_size""": 6_5536,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""use_timestep_embedding""": True,
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""norm_num_groups""": 8,
"""act_fn""": """mish""",
}
lowerCamelCase__ = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" )
lowerCamelCase__ = model
lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase )
print(F'''length of state dict: {len(state_dict.keys() )}''' )
print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' )
lowerCamelCase__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
hf_value_function.load_state_dict(__lowerCAmelCase )
torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" )
with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
unet(32)
# unet(128)
value_function()
| 9 | 1 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
UpperCamelCase : Dict = logging.get_logger(__name__)
@add_end_docstrings(a )
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,**_lowerCAmelCase ):
super().__init__(**_lowerCAmelCase )
requires_backends(self ,"""vision""" )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self ,_lowerCAmelCase ,**_lowerCAmelCase ):
return super().__call__(_lowerCAmelCase ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
lowerCamelCase__ = {}
if "candidate_labels" in kwargs:
lowerCamelCase__ = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
lowerCamelCase__ = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase="This is a photo of {}." ):
lowerCamelCase__ = load_image(_lowerCAmelCase )
lowerCamelCase__ = self.image_processor(images=[image] ,return_tensors=self.framework )
lowerCamelCase__ = candidate_labels
lowerCamelCase__ = [hypothesis_template.format(_lowerCAmelCase ) for x in candidate_labels]
lowerCamelCase__ = self.tokenizer(_lowerCAmelCase ,return_tensors=self.framework ,padding=_lowerCAmelCase )
lowerCamelCase__ = [text_inputs]
return inputs
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = model_inputs.pop("""candidate_labels""" )
lowerCamelCase__ = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] ,_lowerCAmelCase ):
lowerCamelCase__ = text_inputs[0]
else:
# Batching case.
lowerCamelCase__ = text_inputs[0][0]
lowerCamelCase__ = self.model(**_lowerCAmelCase ,**_lowerCAmelCase )
lowerCamelCase__ = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_image,
}
return model_outputs
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = model_outputs.pop("""candidate_labels""" )
lowerCamelCase__ = model_outputs["""logits"""][0]
if self.framework == "pt":
lowerCamelCase__ = logits.softmax(dim=-1 ).squeeze(-1 )
lowerCamelCase__ = probs.tolist()
if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = [scores]
elif self.framework == "tf":
lowerCamelCase__ = stable_softmax(_lowerCAmelCase ,axis=-1 )
lowerCamelCase__ = probs.numpy().tolist()
else:
raise ValueError(F'''Unsupported framework: {self.framework}''' )
lowerCamelCase__ = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(_lowerCAmelCase ,_lowerCAmelCase ) ,key=lambda _lowerCAmelCase : -x[0] )
]
return result
| 9 |
'''simple docstring'''
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase = "▁" ,_lowerCAmelCase = True ,_lowerCAmelCase = "<unk>" ,_lowerCAmelCase = "</s>" ,_lowerCAmelCase = "<pad>" ,):
lowerCamelCase__ = {
"""pad""": {"""id""": 0, """token""": pad_token},
"""eos""": {"""id""": 1, """token""": eos_token},
"""unk""": {"""id""": 2, """token""": unk_token},
}
lowerCamelCase__ = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
lowerCamelCase__ = token_dict["""token"""]
lowerCamelCase__ = Tokenizer(Unigram() )
lowerCamelCase__ = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(""" {2,}""" ) ,""" """ ),
normalizers.Lowercase(),
] )
lowerCamelCase__ = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ),
pre_tokenizers.Digits(individual_digits=_lowerCAmelCase ),
pre_tokenizers.Punctuation(),
] )
lowerCamelCase__ = decoders.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase )
lowerCamelCase__ = TemplateProcessing(
single=F'''$A {self.special_tokens["eos"]["token"]}''' ,special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] ,)
lowerCamelCase__ = {
"""model""": """SentencePieceUnigram""",
"""replacement""": replacement,
"""add_prefix_space""": add_prefix_space,
}
super().__init__(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,):
lowerCamelCase__ = trainers.UnigramTrainer(
vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,)
if isinstance(_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = [files]
self._tokenizer.train(_lowerCAmelCase ,trainer=_lowerCAmelCase )
self.add_unk_id()
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,):
lowerCamelCase__ = trainers.UnigramTrainer(
vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,)
self._tokenizer.train_from_iterator(_lowerCAmelCase ,trainer=_lowerCAmelCase )
self.add_unk_id()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = json.loads(self._tokenizer.to_str() )
lowerCamelCase__ = self.special_tokens["""unk"""]["""id"""]
lowerCamelCase__ = Tokenizer.from_str(json.dumps(_lowerCAmelCase ) )
| 9 | 1 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
def A__ ( __lowerCAmelCase : list ):
if not postfix_notation:
return 0
lowerCamelCase__ = {"""+""", """-""", """*""", """/"""}
lowerCamelCase__ = []
for token in postfix_notation:
if token in operations:
lowerCamelCase__ , lowerCamelCase__ = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(__lowerCAmelCase ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
'''simple docstring'''
from __future__ import annotations
import math
def A__ ( __lowerCAmelCase : int ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
UpperCamelCase : str = [num for num in range(3, 10_00_01, 2) if not is_prime(num)]
def A__ ( __lowerCAmelCase : int ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""n must be an integer""" )
if n <= 0:
raise ValueError("""n must be >= 0""" )
lowerCamelCase__ = []
for num in range(len(__lowerCAmelCase ) ):
lowerCamelCase__ = 0
while 2 * i * i <= odd_composites[num]:
lowerCamelCase__ = odd_composites[num] - 2 * i * i
if is_prime(__lowerCAmelCase ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(__lowerCAmelCase ) == n:
return list_nums
return []
def A__ ( ):
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F'{solution() = }')
| 9 | 1 |
'''simple docstring'''
import os
# Precomputes a list of the 100 first triangular numbers
UpperCamelCase : str = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)]
def A__ ( ):
lowerCamelCase__ = os.path.dirname(os.path.realpath(__lowerCAmelCase ) )
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """words.txt""" )
lowerCamelCase__ = """"""
with open(__lowerCAmelCase ) as f:
lowerCamelCase__ = f.readline()
lowerCamelCase__ = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )]
lowerCamelCase__ = [
word
for word in [sum(ord(__lowerCAmelCase ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(__lowerCAmelCase )
if __name__ == "__main__":
print(solution())
| 9 |
'''simple docstring'''
def A__ ( ):
return [
a * b * (1000 - a - b)
for a in range(1 , 999 )
for b in range(__lowerCAmelCase , 999 )
if (a * a + b * b == (1000 - a - b) ** 2)
][0]
if __name__ == "__main__":
print(F'{solution() = }')
| 9 | 1 |
'''simple docstring'''
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class UpperCamelCase__ :
'''simple docstring'''
@property
def UpperCamelCase_ ( self ):
return self.get_dummy_input()
@property
def UpperCamelCase_ ( self ):
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' )
def UpperCamelCase_ ( self ,_lowerCAmelCase=True ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,):
lowerCamelCase__ = 4
lowerCamelCase__ = 32
lowerCamelCase__ = (32, 32)
lowerCamelCase__ = torch.manual_seed(0 )
lowerCamelCase__ = torch.device(_lowerCAmelCase )
lowerCamelCase__ = (batch_size, num_channels) + sizes
lowerCamelCase__ = randn_tensor(_lowerCAmelCase ,generator=_lowerCAmelCase ,device=_lowerCAmelCase )
lowerCamelCase__ = {"""hidden_states""": hidden_states}
if include_temb:
lowerCamelCase__ = 1_28
lowerCamelCase__ = randn_tensor((batch_size, temb_channels) ,generator=_lowerCAmelCase ,device=_lowerCAmelCase )
if include_res_hidden_states_tuple:
lowerCamelCase__ = torch.manual_seed(1 )
lowerCamelCase__ = (randn_tensor(_lowerCAmelCase ,generator=_lowerCAmelCase ,device=_lowerCAmelCase ),)
if include_encoder_hidden_states:
lowerCamelCase__ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase )
if include_skip_sample:
lowerCamelCase__ = randn_tensor(((batch_size, 3) + sizes) ,generator=_lowerCAmelCase ,device=_lowerCAmelCase )
return dummy_input
def UpperCamelCase_ ( self ):
lowerCamelCase__ = {
"""in_channels""": 32,
"""out_channels""": 32,
"""temb_channels""": 1_28,
}
if self.block_type == "up":
lowerCamelCase__ = 32
if self.block_type == "mid":
init_dict.pop("""out_channels""" )
lowerCamelCase__ = self.dummy_input
return init_dict, inputs_dict
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ , lowerCamelCase__ = self.prepare_init_args_and_inputs_for_common()
lowerCamelCase__ = self.block_class(**_lowerCAmelCase )
unet_block.to(_lowerCAmelCase )
unet_block.eval()
with torch.no_grad():
lowerCamelCase__ = unet_block(**_lowerCAmelCase )
if isinstance(_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = output[0]
self.assertEqual(output.shape ,self.output_shape )
lowerCamelCase__ = output[0, -1, -3:, -3:]
lowerCamelCase__ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase )
assert torch_all_close(output_slice.flatten() ,_lowerCAmelCase ,atol=5E-3 )
@unittest.skipIf(torch_device == """mps""" ,"""Training is not supported in mps""" )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.prepare_init_args_and_inputs_for_common()
lowerCamelCase__ = self.block_class(**_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.train()
lowerCamelCase__ = model(**_lowerCAmelCase )
if isinstance(_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = output[0]
lowerCamelCase__ = torch.device(_lowerCAmelCase )
lowerCamelCase__ = randn_tensor(output.shape ,device=_lowerCAmelCase )
lowerCamelCase__ = torch.nn.functional.mse_loss(_lowerCAmelCase ,_lowerCAmelCase )
loss.backward()
| 9 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase : int = logging.get_logger(__name__)
UpperCamelCase : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'}
UpperCamelCase : Dict = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
}
}
UpperCamelCase : List[Any] = {
'camembert-base': 5_12,
}
UpperCamelCase : List[str] = '▁'
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = VOCAB_FILES_NAMES
_UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase = ['input_ids', 'attention_mask']
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] ,_lowerCAmelCase = None ,**_lowerCAmelCase ,):
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token
lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,additional_special_tokens=_lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCAmelCase ,)
lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_lowerCAmelCase ) )
lowerCamelCase__ = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
lowerCamelCase__ = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3}
lowerCamelCase__ = len(self.fairseq_tokens_to_ids )
lowerCamelCase__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
lowerCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
lowerCamelCase__ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(_lowerCAmelCase )) + [1]
return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1]
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCamelCase_ ( self ):
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return self.sp_model.encode(_lowerCAmelCase ,out_type=_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(_lowerCAmelCase ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = []
lowerCamelCase__ = """"""
lowerCamelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_lowerCAmelCase ) + token
lowerCamelCase__ = True
lowerCamelCase__ = []
else:
current_sub_tokens.append(_lowerCAmelCase )
lowerCamelCase__ = False
out_string += self.sp_model.decode(_lowerCAmelCase )
return out_string.strip()
def __getstate__( self ):
lowerCamelCase__ = self.__dict__.copy()
lowerCamelCase__ = None
return state
def __setstate__( self ,_lowerCAmelCase ):
lowerCamelCase__ = d
# for backward compatibility
if not hasattr(self ,"""sp_model_kwargs""" ):
lowerCamelCase__ = {}
lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
if not os.path.isdir(_lowerCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCamelCase__ = os.path.join(
_lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,_lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCAmelCase ,"""wb""" ) as fi:
lowerCamelCase__ = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (out_vocab_file,)
| 9 | 1 |
'''simple docstring'''
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 9 |
'''simple docstring'''
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = R"""\w+[.]\d+"""
lowerCamelCase__ = re.findall(__lowerCAmelCase , __lowerCAmelCase )
for pat in pats:
lowerCamelCase__ = key.replace(__lowerCAmelCase , """_""".join(pat.split(""".""" ) ) )
return key
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ):
lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",)
if (
any("""norm""" in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
lowerCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
lowerCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",)
if pt_tuple_key[-1] == "weight":
lowerCamelCase__ = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
lowerCamelCase__ = pt_tuple_key[:-1] + ("""weight""",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
lowerCamelCase__ = pt_tuple_key[:-1] + ("""bias""",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=42 ):
# Step 1: Convert pytorch tensor to numpy
lowerCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
lowerCamelCase__ = flax_model.init_weights(PRNGKey(__lowerCAmelCase ) )
lowerCamelCase__ = flatten_dict(__lowerCAmelCase )
lowerCamelCase__ = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowerCamelCase__ = rename_key(__lowerCAmelCase )
lowerCamelCase__ = tuple(renamed_pt_key.split(""".""" ) )
# Correctly rename weight parameters
lowerCamelCase__ , lowerCamelCase__ = rename_key_and_reshape_tensor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '''
F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
# also add unexpected weight so that warning is thrown
lowerCamelCase__ = jnp.asarray(__lowerCAmelCase )
return unflatten_dict(__lowerCAmelCase )
| 9 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import (
SPIECE_UNDERLINE,
AddedToken,
BatchEncoding,
NllbTokenizer,
NllbTokenizerFast,
is_torch_available,
)
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
UpperCamelCase : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
UpperCamelCase : List[Any] = 25_60_47
UpperCamelCase : Dict = 25_61_45
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = NllbTokenizer
_UpperCamelCase = NllbTokenizerFast
_UpperCamelCase = True
_UpperCamelCase = True
_UpperCamelCase = {}
def UpperCamelCase_ ( self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase__ = NllbTokenizer(_lowerCAmelCase ,keep_accents=_lowerCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = NllbTokenizer(_lowerCAmelCase ,keep_accents=_lowerCAmelCase )
lowerCamelCase__ = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(_lowerCAmelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,)
lowerCamelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
_lowerCAmelCase ,[
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] ,)
lowerCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase )
self.assertListEqual(
_lowerCAmelCase ,[
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] ,)
lowerCamelCase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase )
self.assertListEqual(
_lowerCAmelCase ,[
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] ,)
def UpperCamelCase_ ( self ):
lowerCamelCase__ = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase ,**_lowerCAmelCase )
lowerCamelCase__ = self.tokenizer_class.from_pretrained(_lowerCAmelCase ,**_lowerCAmelCase )
lowerCamelCase__ = tempfile.mkdtemp()
lowerCamelCase__ = tokenizer_r.save_pretrained(_lowerCAmelCase )
lowerCamelCase__ = tokenizer_p.save_pretrained(_lowerCAmelCase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
lowerCamelCase__ = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(_lowerCAmelCase ,_lowerCAmelCase )
# Checks everything loads correctly in the same way
lowerCamelCase__ = tokenizer_r.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = tokenizer_p.from_pretrained(_lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowerCAmelCase ,_lowerCAmelCase ) )
shutil.rmtree(_lowerCAmelCase )
# Save tokenizer rust, legacy_format=True
lowerCamelCase__ = tempfile.mkdtemp()
lowerCamelCase__ = tokenizer_r.save_pretrained(_lowerCAmelCase ,legacy_format=_lowerCAmelCase )
lowerCamelCase__ = tokenizer_p.save_pretrained(_lowerCAmelCase )
# Checks it save with the same files
self.assertSequenceEqual(_lowerCAmelCase ,_lowerCAmelCase )
# Checks everything loads correctly in the same way
lowerCamelCase__ = tokenizer_r.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = tokenizer_p.from_pretrained(_lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowerCAmelCase ,_lowerCAmelCase ) )
shutil.rmtree(_lowerCAmelCase )
# Save tokenizer rust, legacy_format=False
lowerCamelCase__ = tempfile.mkdtemp()
lowerCamelCase__ = tokenizer_r.save_pretrained(_lowerCAmelCase ,legacy_format=_lowerCAmelCase )
lowerCamelCase__ = tokenizer_p.save_pretrained(_lowerCAmelCase )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
lowerCamelCase__ = tokenizer_r.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = tokenizer_p.from_pretrained(_lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_lowerCAmelCase ,_lowerCAmelCase ) )
shutil.rmtree(_lowerCAmelCase )
@require_torch
def UpperCamelCase_ ( self ):
if not self.test_seqaseq:
return
lowerCamelCase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Longer text that will definitely require truncation.
lowerCamelCase__ = [
""" UN Chief Says There Is No Military Solution in Syria""",
""" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for"""
""" Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons"""
""" will only worsen the violence and misery for millions of people.""",
]
lowerCamelCase__ = [
"""Şeful ONU declară că nu există o soluţie militară în Siria""",
"""Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al"""
""" Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi"""
""" că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""",
]
try:
lowerCamelCase__ = tokenizer.prepare_seqaseq_batch(
src_texts=_lowerCAmelCase ,tgt_texts=_lowerCAmelCase ,max_length=3 ,max_target_length=10 ,return_tensors="""pt""" ,src_lang="""eng_Latn""" ,tgt_lang="""ron_Latn""" ,)
except NotImplementedError:
return
self.assertEqual(batch.input_ids.shape[1] ,3 )
self.assertEqual(batch.labels.shape[1] ,10 )
# max_target_length will default to max_length if not specified
lowerCamelCase__ = tokenizer.prepare_seqaseq_batch(
_lowerCAmelCase ,tgt_texts=_lowerCAmelCase ,max_length=3 ,return_tensors="""pt""" )
self.assertEqual(batch.input_ids.shape[1] ,3 )
self.assertEqual(batch.labels.shape[1] ,3 )
lowerCamelCase__ = tokenizer.prepare_seqaseq_batch(
src_texts=_lowerCAmelCase ,max_length=3 ,max_target_length=10 ,return_tensors="""pt""" )
self.assertEqual(batch_encoder_only.input_ids.shape[1] ,3 )
self.assertEqual(batch_encoder_only.attention_mask.shape[1] ,3 )
self.assertNotIn("""decoder_input_ids""" ,_lowerCAmelCase )
@unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
lowerCamelCase__ = [AddedToken("""<special>""" ,lstrip=_lowerCAmelCase )]
lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(
_lowerCAmelCase ,additional_special_tokens=_lowerCAmelCase ,**_lowerCAmelCase )
lowerCamelCase__ = tokenizer_r.encode("""Hey this is a <special> token""" )
lowerCamelCase__ = tokenizer_r.encode("""<special>""" ,add_special_tokens=_lowerCAmelCase )[0]
self.assertTrue(special_token_id in r_output )
if self.test_slow_tokenizer:
lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(
_lowerCAmelCase ,additional_special_tokens=_lowerCAmelCase ,**_lowerCAmelCase ,)
lowerCamelCase__ = self.tokenizer_class.from_pretrained(
_lowerCAmelCase ,additional_special_tokens=_lowerCAmelCase ,**_lowerCAmelCase )
lowerCamelCase__ = tokenizer_p.encode("""Hey this is a <special> token""" )
lowerCamelCase__ = tokenizer_cr.encode("""Hey this is a <special> token""" )
self.assertEqual(_lowerCAmelCase ,_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase ,_lowerCAmelCase )
self.assertTrue(special_token_id in p_output )
self.assertTrue(special_token_id in cr_output )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = 'facebook/nllb-200-distilled-600M'
_UpperCamelCase = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
_UpperCamelCase = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
_UpperCamelCase = [
256047,
16297,
134408,
8165,
248066,
14734,
950,
1135,
105721,
3573,
83,
27352,
108,
49486,
2,
]
@classmethod
def UpperCamelCase_ ( cls ):
lowerCamelCase__ = NllbTokenizer.from_pretrained(
cls.checkpoint_name ,src_lang="""eng_Latn""" ,tgt_lang="""ron_Latn""" )
lowerCamelCase__ = 1
return cls
def UpperCamelCase_ ( self ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""] ,25_60_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""] ,25_60_02 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""] ,25_60_57 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
self.assertIn(_lowerCAmelCase ,self.tokenizer.all_special_ids )
# fmt: off
lowerCamelCase__ = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47]
# fmt: on
lowerCamelCase__ = self.tokenizer.decode(_lowerCAmelCase ,skip_special_tokens=_lowerCAmelCase )
lowerCamelCase__ = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase ,_lowerCAmelCase )
self.assertNotIn(self.tokenizer.eos_token ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = ["""this is gunna be a long sentence """ * 20]
assert isinstance(src_text[0] ,_lowerCAmelCase )
lowerCamelCase__ = 10
lowerCamelCase__ = self.tokenizer(_lowerCAmelCase ,max_length=_lowerCAmelCase ,truncation=_lowerCAmelCase ).input_ids[0]
self.assertEqual(ids[-1] ,2 )
self.assertEqual(ids[0] ,_lowerCAmelCase )
self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) ,[25_62_03, 3] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = tempfile.mkdtemp()
lowerCamelCase__ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_lowerCAmelCase )
lowerCamelCase__ = NllbTokenizer.from_pretrained(_lowerCAmelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,_lowerCAmelCase )
@require_torch
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.tokenizer(
self.src_text ,text_target=self.tgt_text ,padding=_lowerCAmelCase ,truncation=_lowerCAmelCase ,max_length=len(self.expected_src_tokens ) ,return_tensors="""pt""" ,)
lowerCamelCase__ = shift_tokens_right(
batch["""labels"""] ,self.tokenizer.pad_token_id ,self.tokenizer.lang_code_to_id["""ron_Latn"""] )
self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase )
self.assertEqual((2, 15) ,batch.input_ids.shape )
self.assertEqual((2, 15) ,batch.attention_mask.shape )
lowerCamelCase__ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens ,_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase ,batch.decoder_input_ids[0, 0] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens ,[EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.tokenizer(self.src_text ,padding=_lowerCAmelCase ,truncation=_lowerCAmelCase ,max_length=3 ,return_tensors="""pt""" )
lowerCamelCase__ = self.tokenizer(
text_target=self.tgt_text ,padding=_lowerCAmelCase ,truncation=_lowerCAmelCase ,max_length=10 ,return_tensors="""pt""" )
lowerCamelCase__ = targets["""input_ids"""]
lowerCamelCase__ = shift_tokens_right(
_lowerCAmelCase ,self.tokenizer.pad_token_id ,decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] ,)
self.assertEqual(batch.input_ids.shape[1] ,3 )
self.assertEqual(batch.decoder_input_ids.shape[1] ,10 )
@require_torch
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.tokenizer._build_translation_inputs(
"""A test""" ,return_tensors="""pt""" ,src_lang="""eng_Latn""" ,tgt_lang="""fra_Latn""" )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) ,{
# A, test, EOS, en_XX
"""input_ids""": [[25_60_47, 70, 73_56, 2]],
"""attention_mask""": [[1, 1, 1, 1]],
# ar_AR
"""forced_bos_token_id""": 25_60_57,
} ,)
@require_torch
def UpperCamelCase_ ( self ):
lowerCamelCase__ = True
lowerCamelCase__ = self.tokenizer(
"""UN Chief says there is no military solution in Syria""" ,src_lang="""eng_Latn""" ,tgt_lang="""fra_Latn""" )
self.assertEqual(
inputs.input_ids ,[1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] )
lowerCamelCase__ = False
lowerCamelCase__ = self.tokenizer(
"""UN Chief says there is no military solution in Syria""" ,src_lang="""eng_Latn""" ,tgt_lang="""fra_Latn""" )
self.assertEqual(
inputs.input_ids ,[25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
| 9 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] ,model_result["""ss"""] ):
lowerCamelCase__ = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sgugger/tiny-distilbert-classification"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,only_pretrain_model=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """patrickvonplaten/t5-tiny-random"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,configs=[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,"""Cannot do xla on CPU.""" )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=_lowerCAmelCase ,save_to_csv=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ,inference_memory_csv_file=os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ,env_info_csv_file=os.path.join(_lowerCAmelCase ,"""env.csv""" ) ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""env.csv""" ) ).exists() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(_lowerCAmelCase ):
self.assertTrue(hasattr(_lowerCAmelCase ,"""sequential""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""cumulative""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""current""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(_lowerCAmelCase ,"""log.txt""" ) ,log_print=_lowerCAmelCase ,trace_memory_line_by_line=_lowerCAmelCase ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""log.txt""" ) ).exists() )
| 9 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
UpperCamelCase : int = {
'configuration_encodec': [
'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP',
'EncodecConfig',
],
'feature_extraction_encodec': ['EncodecFeatureExtractor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Optional[Any] = [
'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST',
'EncodecModel',
'EncodecPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
UpperCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 9 |
'''simple docstring'''
from math import factorial
UpperCamelCase : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)}
def A__ ( __lowerCAmelCase : int ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError("""Parameter number must be int""" )
if number < 0:
raise ValueError("""Parameter number must be greater than or equal to 0""" )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowerCAmelCase ) )
def A__ ( __lowerCAmelCase : int = 60 , __lowerCAmelCase : int = 100_0000 ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError("""Parameters chain_length and number_limit must be int""" )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
"""Parameters chain_length and number_limit must be greater than 0""" )
# the counter for the chains with the exact desired length
lowerCamelCase__ = 0
# the cached sizes of the previous chains
lowerCamelCase__ = {}
for start_chain_element in range(1 , __lowerCAmelCase ):
# The temporary set will contain the elements of the chain
lowerCamelCase__ = set()
lowerCamelCase__ = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
lowerCamelCase__ = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(__lowerCAmelCase )
chain_set_length += 1
lowerCamelCase__ = digit_factorial_sum(__lowerCAmelCase )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
lowerCamelCase__ = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'{solution()}')
| 9 | 1 |
'''simple docstring'''
import csv
import tweepy
# Twitter API credentials
UpperCamelCase : Dict = ''
UpperCamelCase : Optional[Any] = ''
UpperCamelCase : int = ''
UpperCamelCase : Optional[int] = ''
def A__ ( __lowerCAmelCase : str ):
# authorize twitter, initialize tweepy
lowerCamelCase__ = tweepy.OAuthHandler(__lowerCAmelCase , __lowerCAmelCase )
auth.set_access_token(__lowerCAmelCase , __lowerCAmelCase )
lowerCamelCase__ = tweepy.API(__lowerCAmelCase )
# initialize a list to hold all the tweepy Tweets
lowerCamelCase__ = []
# make initial request for most recent tweets (200 is the maximum allowed count)
lowerCamelCase__ = api.user_timeline(screen_name=__lowerCAmelCase , count=200 )
# save most recent tweets
alltweets.extend(__lowerCAmelCase )
# save the id of the oldest tweet less one
lowerCamelCase__ = alltweets[-1].id - 1
# keep grabbing tweets until there are no tweets left to grab
while len(__lowerCAmelCase ) > 0:
print(F'''getting tweets before {oldest}''' )
# all subsequent requests use the max_id param to prevent duplicates
lowerCamelCase__ = api.user_timeline(
screen_name=__lowerCAmelCase , count=200 , max_id=__lowerCAmelCase )
# save most recent tweets
alltweets.extend(__lowerCAmelCase )
# update the id of the oldest tweet less one
lowerCamelCase__ = alltweets[-1].id - 1
print(F'''...{len(__lowerCAmelCase )} tweets downloaded so far''' )
# transform the tweepy tweets into a 2D array that will populate the csv
lowerCamelCase__ = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets]
# write the csv
with open(F'''new_{screen_name}_tweets.csv''' , """w""" ) as f:
lowerCamelCase__ = csv.writer(__lowerCAmelCase )
writer.writerow(["""id""", """created_at""", """text"""] )
writer.writerows(__lowerCAmelCase )
if __name__ == "__main__":
# pass in the username of the account you want to download
get_all_tweets('FirePing32')
| 9 |
'''simple docstring'''
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
UpperCamelCase : Optional[Any] = 'src/diffusers'
# Matches is_xxx_available()
UpperCamelCase : Union[str, Any] = re.compile(r'is\_([a-z_]*)_available\(\)')
# Matches from xxx import bla
UpperCamelCase : Optional[Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
UpperCamelCase : Optional[int] = '\n{0} = None\n'
UpperCamelCase : Optional[Any] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n'
UpperCamelCase : Any = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n'
def A__ ( __lowerCAmelCase : Union[str, Any] ):
lowerCamelCase__ = _re_backend.findall(__lowerCAmelCase )
if len(__lowerCAmelCase ) == 0:
return None
return "_and_".join(__lowerCAmelCase )
def A__ ( ):
with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.readlines()
# Get to the point we do the actual imports for type checking
lowerCamelCase__ = 0
lowerCamelCase__ = {}
# Go through the end of the file
while line_index < len(__lowerCAmelCase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
lowerCamelCase__ = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("""else:""" ):
line_index += 1
line_index += 1
lowerCamelCase__ = []
# Until we unindent, add backend objects to the list
while line_index < len(__lowerCAmelCase ) and len(lines[line_index] ) > 1:
lowerCamelCase__ = lines[line_index]
lowerCamelCase__ = _re_single_line_import.search(__lowerCAmelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__lowerCAmelCase ) > 0:
lowerCamelCase__ = objects
else:
line_index += 1
return backend_specific_objects
def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict ):
if name.isupper():
return DUMMY_CONSTANT.format(__lowerCAmelCase )
elif name.islower():
return DUMMY_FUNCTION.format(__lowerCAmelCase , __lowerCAmelCase )
else:
return DUMMY_CLASS.format(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : Optional[int]=None ):
if backend_specific_objects is None:
lowerCamelCase__ = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
lowerCamelCase__ = {}
for backend, objects in backend_specific_objects.items():
lowerCamelCase__ = """[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]"""
lowerCamelCase__ = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n"""
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__lowerCAmelCase , __lowerCAmelCase ) for o in objects] )
lowerCamelCase__ = dummy_file
return dummy_files
def A__ ( __lowerCAmelCase : List[str]=False ):
lowerCamelCase__ = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
lowerCamelCase__ = {"""torch""": """pt"""}
# Locate actual dummy modules and read their content.
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """utils""" )
lowerCamelCase__ = {
backend: os.path.join(__lowerCAmelCase , F'''dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py''' )
for backend in dummy_files.keys()
}
lowerCamelCase__ = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__lowerCAmelCase ):
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.read()
else:
lowerCamelCase__ = """"""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'''Updating diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py as the main '''
"""__init__ has new objects.""" )
with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"""The main __init__ has objects that are not present in """
F'''diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py. Run `make fix-copies` '''
"""to fix this.""" )
if __name__ == "__main__":
UpperCamelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
UpperCamelCase : Any = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 9 | 1 |
'''simple docstring'''
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCamelCase : List[Any] = {
'facebook/mask2former-swin-small-coco-instance': (
'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json'
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
UpperCamelCase : int = logging.get_logger(__name__)
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'mask2former'
_UpperCamelCase = ['swin']
_UpperCamelCase = {'hidden_size': 'hidden_dim'}
def __init__( self ,_lowerCAmelCase = None ,_lowerCAmelCase = 2_56 ,_lowerCAmelCase = 2_56 ,_lowerCAmelCase = 2_56 ,_lowerCAmelCase = 10_24 ,_lowerCAmelCase = "relu" ,_lowerCAmelCase = 6 ,_lowerCAmelCase = 10 ,_lowerCAmelCase = 8 ,_lowerCAmelCase = 0.0 ,_lowerCAmelCase = 20_48 ,_lowerCAmelCase = False ,_lowerCAmelCase = False ,_lowerCAmelCase = 4 ,_lowerCAmelCase = 2_55 ,_lowerCAmelCase = 1_00 ,_lowerCAmelCase = 0.1 ,_lowerCAmelCase = 2.0 ,_lowerCAmelCase = 5.0 ,_lowerCAmelCase = 5.0 ,_lowerCAmelCase = 1_25_44 ,_lowerCAmelCase = 3.0 ,_lowerCAmelCase = 0.75 ,_lowerCAmelCase = 0.02 ,_lowerCAmelCase = 1.0 ,_lowerCAmelCase = True ,_lowerCAmelCase = [4, 8, 16, 32] ,_lowerCAmelCase = None ,**_lowerCAmelCase ,):
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" )
lowerCamelCase__ = CONFIG_MAPPING["""swin"""](
image_size=2_24 ,in_channels=3 ,patch_size=4 ,embed_dim=96 ,depths=[2, 2, 18, 2] ,num_heads=[3, 6, 12, 24] ,window_size=7 ,drop_path_rate=0.3 ,use_absolute_embeddings=_lowerCAmelCase ,out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ,)
if isinstance(_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = backbone_config.pop("""model_type""" )
lowerCamelCase__ = CONFIG_MAPPING[backbone_model_type]
lowerCamelCase__ = config_class.from_dict(_lowerCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. '''
F'''Supported model types: {",".join(self.backbones_supported )}''' )
lowerCamelCase__ = backbone_config
lowerCamelCase__ = feature_size
lowerCamelCase__ = mask_feature_size
lowerCamelCase__ = hidden_dim
lowerCamelCase__ = encoder_feedforward_dim
lowerCamelCase__ = activation_function
lowerCamelCase__ = encoder_layers
lowerCamelCase__ = decoder_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = dropout
lowerCamelCase__ = dim_feedforward
lowerCamelCase__ = pre_norm
lowerCamelCase__ = enforce_input_projection
lowerCamelCase__ = common_stride
lowerCamelCase__ = ignore_value
lowerCamelCase__ = num_queries
lowerCamelCase__ = no_object_weight
lowerCamelCase__ = class_weight
lowerCamelCase__ = mask_weight
lowerCamelCase__ = dice_weight
lowerCamelCase__ = train_num_points
lowerCamelCase__ = oversample_ratio
lowerCamelCase__ = importance_sample_ratio
lowerCamelCase__ = init_std
lowerCamelCase__ = init_xavier_std
lowerCamelCase__ = use_auxiliary_loss
lowerCamelCase__ = feature_strides
lowerCamelCase__ = output_auxiliary_logits
lowerCamelCase__ = decoder_layers
super().__init__(**_lowerCAmelCase )
@classmethod
def UpperCamelCase_ ( cls ,_lowerCAmelCase ,**_lowerCAmelCase ):
return cls(
backbone_config=_lowerCAmelCase ,**_lowerCAmelCase ,)
def UpperCamelCase_ ( self ):
lowerCamelCase__ = copy.deepcopy(self.__dict__ )
lowerCamelCase__ = self.backbone_config.to_dict()
lowerCamelCase__ = self.__class__.model_type
return output
| 9 |
'''simple docstring'''
import unittest
from transformers import GPTSwaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
UpperCamelCase : List[Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model')
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = GPTSwaTokenizer
_UpperCamelCase = False
_UpperCamelCase = True
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ,eos_token="""<unk>""" ,bos_token="""<unk>""" ,pad_token="""<unk>""" )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = """This is a test"""
lowerCamelCase__ = """This is a test"""
return input_text, output_text
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """<s>"""
lowerCamelCase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) ,_lowerCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,"""<unk>""" )
self.assertEqual(vocab_keys[1] ,"""<s>""" )
self.assertEqual(vocab_keys[-1] ,"""j""" )
self.assertEqual(len(_lowerCAmelCase ) ,20_00 )
def UpperCamelCase_ ( self ):
self.assertEqual(self.get_tokenizer().vocab_size ,20_00 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase )
lowerCamelCase__ = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(_lowerCAmelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,[4_65, 2_87, 2_65, 6_31, 8_42] )
lowerCamelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
# fmt: off
self.assertListEqual(
_lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ,)
# fmt: on
lowerCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase )
self.assertListEqual(
_lowerCAmelCase ,[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] ,)
lowerCamelCase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase )
# fmt: off
self.assertListEqual(
_lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] )
# fmt: on
def UpperCamelCase_ ( self ):
lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase )
lowerCamelCase__ = ["""This is a test""", """I was born in 92000, and this is falsé."""]
lowerCamelCase__ = [
[4_65, 2_87, 2_65, 6_31, 8_42],
[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60],
]
# Test that encode_fast returns the same as tokenize + convert_tokens_to_ids
for text, expected_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ):
self.assertListEqual(tokenizer.encode_fast(_lowerCAmelCase ) ,_lowerCAmelCase )
# Test that decode_fast returns the input text
for text, token_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ):
self.assertEqual(tokenizer.decode_fast(_lowerCAmelCase ) ,_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = [
"""<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""",
"""Hey there, how are you doing this fine day?""",
"""This is a text with a trailing spaces followed by a dot .""",
"""Häj sväjs lillebrör! =)""",
"""Det är inget fel på Mr. Cool""",
]
# fmt: off
lowerCamelCase__ = {"""input_ids""": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowerCAmelCase ,model_name="""AI-Sweden/gpt-sw3-126m""" ,sequences=_lowerCAmelCase ,)
| 9 | 1 |
'''simple docstring'''
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
UpperCamelCase : Optional[Any] = logging.getLogger(__name__)
UpperCamelCase : Union[str, Any] = 'pytorch_model.bin'
@dataclasses.dataclass
class UpperCamelCase__ :
'''simple docstring'''
_UpperCamelCase = dataclasses.field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} )
_UpperCamelCase = dataclasses.field(
default=a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} ,)
@dataclasses.dataclass
class UpperCamelCase__ :
'''simple docstring'''
_UpperCamelCase = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} )
_UpperCamelCase = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} )
_UpperCamelCase = dataclasses.field(
default=a ,metadata={'help': 'A csv or a json file containing the validation data.'} )
_UpperCamelCase = dataclasses.field(
default=a ,metadata={'help': 'The name of the task to train on.'} ,)
_UpperCamelCase = dataclasses.field(
default=a ,metadata={'help': 'The list of labels for the task.'} )
@dataclasses.dataclass
class UpperCamelCase__ :
'''simple docstring'''
_UpperCamelCase = dataclasses.field(
metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} )
_UpperCamelCase = dataclasses.field(
default='accuracy' ,metadata={'help': 'The evaluation metric used for the task.'} )
_UpperCamelCase = dataclasses.field(
default='no' ,metadata={
'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]'
} ,)
_UpperCamelCase = dataclasses.field(
default=10 ,metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} ,)
_UpperCamelCase = dataclasses.field(
default=0.0 ,metadata={
'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.'
} ,)
_UpperCamelCase = dataclasses.field(
default=a ,metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} ,)
_UpperCamelCase = dataclasses.field(
default=a ,metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} ,)
_UpperCamelCase = dataclasses.field(
default=a ,metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} ,)
_UpperCamelCase = dataclasses.field(
default=0.0 ,metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} ,)
_UpperCamelCase = dataclasses.field(
default=100 ,metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} ,)
_UpperCamelCase = dataclasses.field(
default=a ,metadata={'help': 'Random seed for initialization.'} ,)
def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] ):
lowerCamelCase__ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 )
if args.do_filter_by_confidence:
lowerCamelCase__ = dataset.filter(lambda __lowerCAmelCase : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
lowerCamelCase__ = int(eval_result * len(__lowerCAmelCase ) )
print(__lowerCAmelCase )
lowerCamelCase__ = dataset.sort("""probability""" , reverse=__lowerCAmelCase )
lowerCamelCase__ = dataset.select(range(__lowerCAmelCase ) )
lowerCamelCase__ = dataset.remove_columns(["""label""", """probability"""] )
lowerCamelCase__ = dataset.rename_column("""prediction""" , """label""" )
lowerCamelCase__ = dataset.map(lambda __lowerCAmelCase : {"label": idalabel[example["label"]]} )
lowerCamelCase__ = dataset.shuffle(seed=args.seed )
lowerCamelCase__ = os.path.join(__lowerCAmelCase , F'''train_pseudo.{args.data_file_extension}''' )
if args.data_file_extension == "csv":
dataset.to_csv(__lowerCAmelCase , index=__lowerCAmelCase )
else:
dataset.to_json(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , **__lowerCAmelCase : str ):
lowerCamelCase__ = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
lowerCamelCase__ = STModelArguments(model_name_or_path=__lowerCAmelCase )
lowerCamelCase__ = STDataArguments(train_file=__lowerCAmelCase , infer_file=__lowerCAmelCase )
lowerCamelCase__ = STTrainingArguments(output_dir=__lowerCAmelCase )
lowerCamelCase__ = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(__lowerCAmelCase ).items():
setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for key, value in kwargs.items():
if hasattr(__lowerCAmelCase , __lowerCAmelCase ):
setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Sanity checks
lowerCamelCase__ = {}
lowerCamelCase__ = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
lowerCamelCase__ = args.train_file
lowerCamelCase__ = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
lowerCamelCase__ = args.eval_file
for key in data_files:
lowerCamelCase__ = data_files[key].split(""".""" )[-1]
assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.'''
if args.data_file_extension is None:
lowerCamelCase__ = extension
else:
assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.'''
assert (
args.eval_metric in datasets.list_metrics()
), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.'''
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info("""Creating the initial data directory for self-training...""" )
lowerCamelCase__ = F'''{args.output_dir}/self-train_iter-{{}}'''.format
lowerCamelCase__ = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
accelerator.wait_for_everyone()
lowerCamelCase__ = None
lowerCamelCase__ = None
lowerCamelCase__ = 0
lowerCamelCase__ = False
# Show the progress bar
lowerCamelCase__ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations ) ):
lowerCamelCase__ = data_dir_format(__lowerCAmelCase )
assert os.path.exists(__lowerCAmelCase )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """stage-1""" )
lowerCamelCase__ = {
"""accelerator""": accelerator,
"""model_name_or_path""": args.model_name_or_path,
"""cache_dir""": args.cache_dir,
"""do_train""": True,
"""train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""],
"""do_eval""": True if args.eval_file is not None else False,
"""eval_file""": data_files["""eval"""],
"""do_predict""": True,
"""infer_file""": data_files["""infer"""],
"""task_name""": args.task_name,
"""label_list""": args.label_list,
"""output_dir""": current_output_dir,
"""eval_metric""": args.eval_metric,
"""evaluation_strategy""": args.evaluation_strategy,
"""early_stopping_patience""": args.early_stopping_patience,
"""early_stopping_threshold""": args.early_stopping_threshold,
"""seed""": args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(__lowerCAmelCase , __lowerCAmelCase ):
arguments_dict.update({key: value} )
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """best-checkpoint""" , __lowerCAmelCase )
if os.path.exists(__lowerCAmelCase ):
logger.info(
"""Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , __lowerCAmelCase , __lowerCAmelCase , )
else:
logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , __lowerCAmelCase )
finetune(**__lowerCAmelCase )
accelerator.wait_for_everyone()
assert os.path.exists(__lowerCAmelCase )
logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , __lowerCAmelCase )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """best-checkpoint""" )
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """stage-2""" )
# Update arguments_dict
lowerCamelCase__ = model_path
lowerCamelCase__ = data_files["""train"""]
lowerCamelCase__ = current_output_dir
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """best-checkpoint""" , __lowerCAmelCase )
if os.path.exists(__lowerCAmelCase ):
logger.info(
"""Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , __lowerCAmelCase , __lowerCAmelCase , )
else:
logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , __lowerCAmelCase )
finetune(**__lowerCAmelCase )
accelerator.wait_for_everyone()
assert os.path.exists(__lowerCAmelCase )
logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , __lowerCAmelCase )
lowerCamelCase__ = iteration
lowerCamelCase__ = data_dir_format(iteration + 1 )
lowerCamelCase__ = AutoConfig.from_pretrained(os.path.join(__lowerCAmelCase , """best-checkpoint""" ) )
lowerCamelCase__ = config.idalabel
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """eval_results_best-checkpoint.json""" )
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """test_results_best-checkpoint.json""" )
assert os.path.exists(__lowerCAmelCase )
with open(__lowerCAmelCase , """r""" ) as f:
lowerCamelCase__ = float(json.load(__lowerCAmelCase )[args.eval_metric] )
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """infer_output_best-checkpoint.csv""" )
assert os.path.exists(__lowerCAmelCase )
# Loading the dataset from local csv or json files.
lowerCamelCase__ = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""]
lowerCamelCase__ = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""]
if accelerator.is_main_process:
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
shutil.copy(__lowerCAmelCase , os.path.join(__lowerCAmelCase , F'''eval_results_iter-{iteration}.json''' ) )
if os.path.exists(__lowerCAmelCase ):
shutil.copy(__lowerCAmelCase , os.path.join(__lowerCAmelCase , F'''test_results_iter-{iteration}.json''' ) )
create_pseudo_labeled_data(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
accelerator.wait_for_everyone()
lowerCamelCase__ = os.path.join(__lowerCAmelCase , F'''train_pseudo.{args.data_file_extension}''' )
if args.evaluation_strategy != IntervalStrategy.NO.value:
lowerCamelCase__ = eval_result
if best_iteration is None:
lowerCamelCase__ = new_iteration
lowerCamelCase__ = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
lowerCamelCase__ = new_iteration
lowerCamelCase__ = new_eval_result
lowerCamelCase__ = 0
else:
if new_eval_result == best_eval_result:
lowerCamelCase__ = new_iteration
lowerCamelCase__ = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
lowerCamelCase__ = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info("""Best iteration: %d""" , __lowerCAmelCase )
logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , __lowerCAmelCase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(__lowerCAmelCase , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(__lowerCAmelCase , """eval_results_best-iteration.json""" ) , )
else:
# Assume that the last iteration is the best
logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 )
logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , __lowerCAmelCase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(__lowerCAmelCase , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(__lowerCAmelCase , """eval_results_best-iteration.json""" ) , )
| 9 |
'''simple docstring'''
from manim import *
class UpperCamelCase__ (a ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = Rectangle(height=0.5 ,width=0.5 )
lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 )
lowerCamelCase__ = [mem.copy() for i in range(6 )]
lowerCamelCase__ = [mem.copy() for i in range(6 )]
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = VGroup(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = Text("""CPU""" ,font_size=24 )
lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_lowerCAmelCase )
lowerCamelCase__ = [mem.copy() for i in range(1 )]
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = Text("""GPU""" ,font_size=24 )
lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase )
gpu.align_to(_lowerCAmelCase ,_lowerCAmelCase )
gpu.set_x(gpu.get_x() - 1 )
self.add(_lowerCAmelCase )
lowerCamelCase__ = [mem.copy() for i in range(6 )]
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = Text("""Model""" ,font_size=24 )
lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase )
model.move_to([3, -1.0, 0] )
self.play(
Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,)
lowerCamelCase__ = MarkupText(
F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,)
lowerCamelCase__ = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
lowerCamelCase__ = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,)
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(_lowerCAmelCase ,run_time=2.5 ) ,Write(_lowerCAmelCase ) ,Write(_lowerCAmelCase ) )
self.add(_lowerCAmelCase )
lowerCamelCase__ = []
lowerCamelCase__ = []
lowerCamelCase__ = []
for i, rect in enumerate(_lowerCAmelCase ):
lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase ,opacity=0.7 )
cpu_target.move_to(_lowerCAmelCase )
cpu_target.generate_target()
lowerCamelCase__ = 0.46 / 4
lowerCamelCase__ = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_lowerCAmelCase )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target ,direction=_lowerCAmelCase ,buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=_lowerCAmelCase ,buff=0.0 )
cpu_targs.append(_lowerCAmelCase )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCAmelCase ) )
second_animations.append(MoveToTarget(_lowerCAmelCase ,run_time=1.5 ) )
self.play(*_lowerCAmelCase )
self.play(*_lowerCAmelCase )
self.wait()
| 9 | 1 |
'''simple docstring'''
from __future__ import annotations
from math import pow, sqrt
def A__ ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ):
if (resistance, reactance, impedance).count(0 ) != 1:
raise ValueError("""One and only one argument must be 0""" )
if resistance == 0:
return {"resistance": sqrt(pow(__lowerCAmelCase , 2 ) - pow(__lowerCAmelCase , 2 ) )}
elif reactance == 0:
return {"reactance": sqrt(pow(__lowerCAmelCase , 2 ) - pow(__lowerCAmelCase , 2 ) )}
elif impedance == 0:
return {"impedance": sqrt(pow(__lowerCAmelCase , 2 ) + pow(__lowerCAmelCase , 2 ) )}
else:
raise ValueError("""Exactly one argument must be 0""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
'''simple docstring'''
UpperCamelCase : Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)]
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000]
number //= 10_0000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
UpperCamelCase : list[bool | None] = [None] * 10_00_00_00
UpperCamelCase : Tuple = True
UpperCamelCase : Optional[int] = False
def A__ ( __lowerCAmelCase : int ):
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
lowerCamelCase__ = chain(next_number(__lowerCAmelCase ) )
lowerCamelCase__ = number_chain
while number < 1000_0000:
lowerCamelCase__ = number_chain
number *= 10
return number_chain
def A__ ( __lowerCAmelCase : int = 1000_0000 ):
for i in range(1 , __lowerCAmelCase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'{solution() = }')
| 9 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : List[str] = {
'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json',
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'donut-swin'
_UpperCamelCase = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self ,_lowerCAmelCase=2_24 ,_lowerCAmelCase=4 ,_lowerCAmelCase=3 ,_lowerCAmelCase=96 ,_lowerCAmelCase=[2, 2, 6, 2] ,_lowerCAmelCase=[3, 6, 12, 24] ,_lowerCAmelCase=7 ,_lowerCAmelCase=4.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=False ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,**_lowerCAmelCase ,):
super().__init__(**_lowerCAmelCase )
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = embed_dim
lowerCamelCase__ = depths
lowerCamelCase__ = len(_lowerCAmelCase )
lowerCamelCase__ = num_heads
lowerCamelCase__ = window_size
lowerCamelCase__ = mlp_ratio
lowerCamelCase__ = qkv_bias
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = drop_path_rate
lowerCamelCase__ = hidden_act
lowerCamelCase__ = use_absolute_embeddings
lowerCamelCase__ = layer_norm_eps
lowerCamelCase__ = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCamelCase__ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
| 9 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : List[str] = {
'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json',
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'donut-swin'
_UpperCamelCase = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self ,_lowerCAmelCase=2_24 ,_lowerCAmelCase=4 ,_lowerCAmelCase=3 ,_lowerCAmelCase=96 ,_lowerCAmelCase=[2, 2, 6, 2] ,_lowerCAmelCase=[3, 6, 12, 24] ,_lowerCAmelCase=7 ,_lowerCAmelCase=4.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=False ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,**_lowerCAmelCase ,):
super().__init__(**_lowerCAmelCase )
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = embed_dim
lowerCamelCase__ = depths
lowerCamelCase__ = len(_lowerCAmelCase )
lowerCamelCase__ = num_heads
lowerCamelCase__ = window_size
lowerCamelCase__ = mlp_ratio
lowerCamelCase__ = qkv_bias
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = drop_path_rate
lowerCamelCase__ = hidden_act
lowerCamelCase__ = use_absolute_embeddings
lowerCamelCase__ = layer_norm_eps
lowerCamelCase__ = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCamelCase__ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
| 9 | 1 |
'''simple docstring'''
from __future__ import annotations
def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int ):
lowerCamelCase__ = list(range(len(__lowerCAmelCase ) ) )
lowerCamelCase__ = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )]
index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase )
lowerCamelCase__ = 0
lowerCamelCase__ = [0] * len(__lowerCAmelCase )
for i in index:
if weight[i] <= capacity:
lowerCamelCase__ = 1
max_value += value[i]
capacity -= weight[i]
else:
lowerCamelCase__ = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
UpperCamelCase : Optional[Any] = ['small', 'medium', 'large']
UpperCamelCase : Dict = 'lm_head.decoder.weight'
UpperCamelCase : int = 'lm_head.weight'
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ):
lowerCamelCase__ = torch.load(__lowerCAmelCase )
lowerCamelCase__ = d.pop(__lowerCAmelCase )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) )
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
parser.add_argument('--dialogpt_path', default='.', type=str)
UpperCamelCase : Dict = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
UpperCamelCase : Any = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl')
UpperCamelCase : str = F'./DialoGPT-{MODEL}'
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 9 | 1 |
'''simple docstring'''
import collections
import os
import re
from pathlib import Path
UpperCamelCase : Optional[Any] = 'src/transformers'
# Matches is_xxx_available()
UpperCamelCase : int = re.compile(r'is\_([a-z_]*)_available()')
# Catches a one-line _import_struct = {xxx}
UpperCamelCase : int = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
UpperCamelCase : List[str] = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]')
# Catches a line if not is_foo_available
UpperCamelCase : str = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)')
# Catches a line _import_struct["bla"].append("foo")
UpperCamelCase : Optional[Any] = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
UpperCamelCase : Optional[Any] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]')
# Catches a line with an object between quotes and a comma: "MyModel",
UpperCamelCase : Optional[Any] = re.compile(r'^\s+"([^"]+)",')
# Catches a line with objects between brackets only: ["foo", "bar"],
UpperCamelCase : Any = re.compile(r'^\s+\[([^\]]+)\]')
# Catches a line with from foo import bar, bla, boo
UpperCamelCase : List[str] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
# Catches a line with try:
UpperCamelCase : Union[str, Any] = re.compile(r'^\s*try:')
# Catches a line with else:
UpperCamelCase : List[Any] = re.compile(r'^\s*else:')
def A__ ( __lowerCAmelCase : Optional[int] ):
if _re_test_backend.search(__lowerCAmelCase ) is None:
return None
lowerCamelCase__ = [b[0] for b in _re_backend.findall(__lowerCAmelCase )]
backends.sort()
return "_and_".join(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : Tuple ):
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.readlines()
lowerCamelCase__ = 0
while line_index < len(__lowerCAmelCase ) and not lines[line_index].startswith("""_import_structure = {""" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(__lowerCAmelCase ):
return None
# First grab the objects without a specific backend in _import_structure
lowerCamelCase__ = []
while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None:
lowerCamelCase__ = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(__lowerCAmelCase ):
lowerCamelCase__ = _re_one_line_import_struct.search(__lowerCAmelCase ).groups()[0]
lowerCamelCase__ = re.findall(R"""\[([^\]]+)\]""" , __lowerCAmelCase )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(""", """ )] )
line_index += 1
continue
lowerCamelCase__ = _re_import_struct_key_value.search(__lowerCAmelCase )
if single_line_import_search is not None:
lowerCamelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(__lowerCAmelCase ) > 0]
objects.extend(__lowerCAmelCase )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
line_index += 1
lowerCamelCase__ = {"""none""": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("""if TYPE_CHECKING""" ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowerCamelCase__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCamelCase__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCamelCase__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ):
lowerCamelCase__ = lines[line_index]
if _re_import_struct_add_one.search(__lowerCAmelCase ) is not None:
objects.append(_re_import_struct_add_one.search(__lowerCAmelCase ).groups()[0] )
elif _re_import_struct_add_many.search(__lowerCAmelCase ) is not None:
lowerCamelCase__ = _re_import_struct_add_many.search(__lowerCAmelCase ).groups()[0].split(""", """ )
lowerCamelCase__ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0]
objects.extend(__lowerCAmelCase )
elif _re_between_brackets.search(__lowerCAmelCase ) is not None:
lowerCamelCase__ = _re_between_brackets.search(__lowerCAmelCase ).groups()[0].split(""", """ )
lowerCamelCase__ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0]
objects.extend(__lowerCAmelCase )
elif _re_quote_object.search(__lowerCAmelCase ) is not None:
objects.append(_re_quote_object.search(__lowerCAmelCase ).groups()[0] )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
elif line.startswith(""" """ * 12 + """\"""" ):
objects.append(line[13:-3] )
line_index += 1
lowerCamelCase__ = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowerCamelCase__ = []
while (
line_index < len(__lowerCAmelCase )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("""else""" )
):
lowerCamelCase__ = lines[line_index]
lowerCamelCase__ = _re_import.search(__lowerCAmelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowerCamelCase__ = {"""none""": objects}
# Let's continue with backend-specific objects
while line_index < len(__lowerCAmelCase ):
# If the line is an if is_backend_available, we grab all objects associated.
lowerCamelCase__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCamelCase__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCamelCase__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ):
lowerCamelCase__ = lines[line_index]
lowerCamelCase__ = _re_import.search(__lowerCAmelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 12 ):
objects.append(line[12:-2] )
line_index += 1
lowerCamelCase__ = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : str ):
def find_duplicates(__lowerCAmelCase : Any ):
return [k for k, v in collections.Counter(__lowerCAmelCase ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowerCamelCase__ = []
for key in import_dict_objects.keys():
lowerCamelCase__ = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' )
lowerCamelCase__ = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowerCamelCase__ = """base imports""" if key == """none""" else F'''{key} backend'''
errors.append(F'''Differences for {name}:''' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' )
return errors
def A__ ( ):
lowerCamelCase__ = []
for root, _, files in os.walk(__lowerCAmelCase ):
if "__init__.py" in files:
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """__init__.py""" )
lowerCamelCase__ = parse_init(__lowerCAmelCase )
if objects is not None:
lowerCamelCase__ = analyze_results(*__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
lowerCamelCase__ = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'''
failures.append("""\n""".join(__lowerCAmelCase ) )
if len(__lowerCAmelCase ) > 0:
raise ValueError("""\n\n""".join(__lowerCAmelCase ) )
def A__ ( ):
lowerCamelCase__ = []
for path, directories, files in os.walk(__lowerCAmelCase ):
for folder in directories:
# Ignore private modules
if folder.startswith("""_""" ):
directories.remove(__lowerCAmelCase )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(__lowerCAmelCase ) / folder).glob("""*.py""" ) ) ) == 0:
continue
lowerCamelCase__ = str((Path(__lowerCAmelCase ) / folder).relative_to(__lowerCAmelCase ) )
lowerCamelCase__ = short_path.replace(os.path.sep , """.""" )
submodules.append(__lowerCAmelCase )
for fname in files:
if fname == "__init__.py":
continue
lowerCamelCase__ = str((Path(__lowerCAmelCase ) / fname).relative_to(__lowerCAmelCase ) )
lowerCamelCase__ = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" )
if len(submodule.split(""".""" ) ) == 1:
submodules.append(__lowerCAmelCase )
return submodules
UpperCamelCase : Union[str, Any] = [
'convert_pytorch_checkpoint_to_tf2',
'modeling_flax_pytorch_utils',
'models.esm.openfold_utils',
]
def A__ ( ):
# This is to make sure the transformers module imported is the one in the repo.
from transformers.utils import direct_transformers_import
lowerCamelCase__ = direct_transformers_import(__lowerCAmelCase )
lowerCamelCase__ = set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" ) as f:
lowerCamelCase__ = f.read()
import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , __lowerCAmelCase ) ) )
lowerCamelCase__ = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(__lowerCAmelCase ) > 0:
lowerCamelCase__ = """\n""".join(F'''- {module}''' for module in module_not_registered )
raise ValueError(
"""The following submodules are not properly registed in the main init of Transformers:\n"""
F'''{list_of_modules}\n'''
"""Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 9 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=30 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=10 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=0.6 ,_lowerCAmelCase=None ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = is_training
lowerCamelCase__ = use_labels
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = type_sequence_label_size
lowerCamelCase__ = initializer_range
lowerCamelCase__ = mask_ratio
lowerCamelCase__ = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
lowerCamelCase__ = (image_size // patch_size) ** 2
lowerCamelCase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowerCamelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self ):
return ViTMAEConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = TFViTMAEModel(config=_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
# expected sequence length = num_patches
lowerCamelCase__ = (self.image_size // self.patch_size) ** 2
lowerCamelCase__ = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
lowerCamelCase__ = 1
lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase )
lowerCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
lowerCamelCase__ = self.patch_size**2
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs
lowerCamelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
_UpperCamelCase = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {}
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFViTMAEModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 )
def UpperCamelCase_ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
lowerCamelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase ,tf.keras.layers.Layer ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
# make the mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = copy.deepcopy(self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = outputs_dict[0].numpy()
lowerCamelCase__ = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1E-6 )
def UpperCamelCase_ ( self ):
# make the mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(_lowerCAmelCase ):
lowerCamelCase__ = {}
for k, v in inputs_dict.items():
if tf.is_tensor(_lowerCAmelCase ):
lowerCamelCase__ = v.numpy()
else:
lowerCamelCase__ = np.array(_lowerCAmelCase )
return inputs_np_dict
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = prepare_numpy_arrays(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
# make masks reproducible
np.random.seed(2 )
lowerCamelCase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowerCamelCase__ = tf.constant(_lowerCAmelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
lowerCamelCase__ = tf_noise
super().check_pt_tf_models(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(_lowerCAmelCase )
if module_member_name.endswith("""MainLayer""" )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )]
for module_member in (getattr(_lowerCAmelCase ,_lowerCAmelCase ),)
if isinstance(_lowerCAmelCase ,_lowerCAmelCase )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(_lowerCAmelCase ,"""_keras_serializable""" ,_lowerCAmelCase )
}
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowerCamelCase__ = tf.convert_to_tensor(_lowerCAmelCase )
inputs_dict.update({"""noise""": noise} )
for main_layer_class in tf_main_layer_classes:
lowerCamelCase__ = main_layer_class(_lowerCAmelCase )
lowerCamelCase__ = {
name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
lowerCamelCase__ = tf.keras.Model(_lowerCAmelCase ,outputs=main_layer(_lowerCAmelCase ) )
lowerCamelCase__ = model(_lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCamelCase__ = os.path.join(_lowerCAmelCase ,"""keras_model.h5""" )
model.save(_lowerCAmelCase )
lowerCamelCase__ = tf.keras.models.load_model(
_lowerCAmelCase ,custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(_lowerCAmelCase ,tf.keras.Model )
lowerCamelCase__ = model(_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
lowerCamelCase__ = outputs.last_hidden_state.numpy()
lowerCamelCase__ = 0
else:
lowerCamelCase__ = outputs.logits.numpy()
lowerCamelCase__ = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_lowerCAmelCase ,saved_model=_lowerCAmelCase )
lowerCamelCase__ = model_class.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
lowerCamelCase__ = after_outputs["""last_hidden_state"""].numpy()
lowerCamelCase__ = 0
else:
lowerCamelCase__ = after_outputs["""logits"""].numpy()
lowerCamelCase__ = 0
lowerCamelCase__ = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_lowerCAmelCase ,1E-5 )
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(_lowerCAmelCase )
lowerCamelCase__ = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
lowerCamelCase__ = model_class.from_config(model.config )
lowerCamelCase__ = new_model(_lowerCAmelCase ) # Build model
new_model.set_weights(model.get_weights() )
lowerCamelCase__ = new_model(_lowerCAmelCase ,noise=_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def UpperCamelCase_ ( self ):
pass
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" )
self.assertIsNotNone(_lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
lowerCamelCase__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" )
lowerCamelCase__ = self.default_image_processor
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""tf""" )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
lowerCamelCase__ = ViTMAEConfig()
lowerCamelCase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(1, num_patches) )
# forward pass
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
# verify the logits
lowerCamelCase__ = tf.convert_to_tensor([1, 1_96, 7_68] )
self.assertEqual(outputs.logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = tf.convert_to_tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] ,_lowerCAmelCase ,atol=1E-4 )
| 9 | 1 |
'''simple docstring'''
from queue import PriorityQueue
from typing import Any
import numpy as np
def A__ ( __lowerCAmelCase : dict , __lowerCAmelCase : str , __lowerCAmelCase : set , __lowerCAmelCase : set , __lowerCAmelCase : dict , __lowerCAmelCase : dict , __lowerCAmelCase : PriorityQueue , __lowerCAmelCase : dict , __lowerCAmelCase : float | int , ):
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
lowerCamelCase__ = cst_fwd.get(__lowerCAmelCase , np.inf )
lowerCamelCase__ = cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
lowerCamelCase__ = new_cost_f
lowerCamelCase__ = v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
lowerCamelCase__ = cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : dict , __lowerCAmelCase : dict ):
lowerCamelCase__ = -1
lowerCamelCase__ = set()
lowerCamelCase__ = set()
lowerCamelCase__ = {source: 0}
lowerCamelCase__ = {destination: 0}
lowerCamelCase__ = {source: None}
lowerCamelCase__ = {destination: None}
lowerCamelCase__ = PriorityQueue()
lowerCamelCase__ = PriorityQueue()
lowerCamelCase__ = np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
lowerCamelCase__ , lowerCamelCase__ = queue_forward.get()
visited_forward.add(__lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ = queue_backward.get()
visited_backward.add(__lowerCAmelCase )
lowerCamelCase__ = pass_and_relaxation(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , )
lowerCamelCase__ = pass_and_relaxation(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , )
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
lowerCamelCase__ = shortest_distance
return shortest_path_distance
UpperCamelCase : List[str] = {
'B': [['C', 1]],
'C': [['D', 1]],
'D': [['F', 1]],
'E': [['B', 1], ['G', 2]],
'F': [],
'G': [['F', 1]],
}
UpperCamelCase : Dict = {
'B': [['E', 1]],
'C': [['B', 1]],
'D': [['C', 1]],
'F': [['D', 1], ['G', 1]],
'E': [[None, np.inf]],
'G': [['E', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=7 ,_lowerCAmelCase=3 ,_lowerCAmelCase=18 ,_lowerCAmelCase=30 ,_lowerCAmelCase=4_00 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,):
lowerCamelCase__ = size if size is not None else {"""shortest_edge""": 18}
lowerCamelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = image_size
lowerCamelCase__ = min_resolution
lowerCamelCase__ = max_resolution
lowerCamelCase__ = do_resize
lowerCamelCase__ = size
lowerCamelCase__ = do_center_crop
lowerCamelCase__ = crop_size
lowerCamelCase__ = do_normalize
lowerCamelCase__ = image_mean
lowerCamelCase__ = image_std
def UpperCamelCase_ ( self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = LevitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
lowerCamelCase__ = LevitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""image_std""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_center_crop""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""size""" ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} )
self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} )
lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,Image.Image )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,numpify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,np.ndarray )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,torchify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,torch.Tensor )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
| 9 | 1 |
'''simple docstring'''
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from random import randint
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import DatasetDict, load_dataset
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForAudioClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
UpperCamelCase : List[Any] = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt')
def A__ ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : float , __lowerCAmelCase : int = 1_6000 ):
lowerCamelCase__ = int(round(sample_rate * max_length ) )
if len(__lowerCAmelCase ) <= sample_length:
return wav
lowerCamelCase__ = randint(0 , len(__lowerCAmelCase ) - sample_length - 1 )
return wav[random_offset : random_offset + sample_length]
@dataclass
class UpperCamelCase__ :
'''simple docstring'''
_UpperCamelCase = field(default=a ,metadata={'help': 'Name of a dataset from the datasets package'} )
_UpperCamelCase = field(
default=a ,metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} )
_UpperCamelCase = field(
default=a ,metadata={'help': 'A file containing the training audio paths and labels.'} )
_UpperCamelCase = field(
default=a ,metadata={'help': 'A file containing the validation audio paths and labels.'} )
_UpperCamelCase = field(
default='train' ,metadata={
'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\''
} ,)
_UpperCamelCase = field(
default='validation' ,metadata={
'help': (
'The name of the training data set split to use (via the datasets library). Defaults to \'validation\''
)
} ,)
_UpperCamelCase = field(
default='audio' ,metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} ,)
_UpperCamelCase = field(
default='label' ,metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} )
_UpperCamelCase = field(
default=a ,metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} ,)
_UpperCamelCase = field(
default=a ,metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} ,)
_UpperCamelCase = field(
default=20 ,metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} ,)
@dataclass
class UpperCamelCase__ :
'''simple docstring'''
_UpperCamelCase = field(
default='facebook/wav2vec2-base' ,metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ,)
_UpperCamelCase = field(
default=a ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
_UpperCamelCase = field(
default=a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} )
_UpperCamelCase = field(
default='main' ,metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} ,)
_UpperCamelCase = field(
default=a ,metadata={'help': 'Name or path of preprocessor config.'} )
_UpperCamelCase = field(
default=a ,metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} )
_UpperCamelCase = field(
default=a ,metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} )
_UpperCamelCase = field(
default=a ,metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} ,)
_UpperCamelCase = field(
default=a ,metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} )
_UpperCamelCase = field(
default=a ,metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} ,)
def UpperCamelCase_ ( self ):
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
warnings.warn(
"""The argument `--freeze_feature_extractor` is deprecated and """
"""will be removed in a future version. Use `--freeze_feature_encoder`"""
"""instead. Setting `freeze_feature_encoder==True`.""" ,_lowerCAmelCase ,)
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
raise ValueError(
"""The argument `--freeze_feature_extractor` is deprecated and """
"""should not be used in combination with `--freeze_feature_encoder`."""
"""Only make use of `--freeze_feature_encoder`.""" )
def A__ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowerCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_audio_classification""" , __lowerCAmelCase , __lowerCAmelCase )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowerCamelCase__ = training_args.get_process_log_level()
logger.setLevel(__lowerCAmelCase )
transformers.utils.logging.set_verbosity(__lowerCAmelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} '''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Detecting last checkpoint.
lowerCamelCase__ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase__ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to train from scratch.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Initialize our dataset and prepare it for the audio classification task.
lowerCamelCase__ = DatasetDict()
lowerCamelCase__ = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase__ = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , )
if data_args.audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
F'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. '''
"""Make sure to set `--audio_column_name` to the correct audio column - one of """
F'''{", ".join(raw_datasets["train"].column_names )}.''' )
if data_args.label_column_name not in raw_datasets["train"].column_names:
raise ValueError(
F'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. '''
"""Make sure to set `--label_column_name` to the correct text column - one of """
F'''{", ".join(raw_datasets["train"].column_names )}.''' )
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
lowerCamelCase__ = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
lowerCamelCase__ = raw_datasets.cast_column(
data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) )
lowerCamelCase__ = feature_extractor.model_input_names[0]
def train_transforms(__lowerCAmelCase : Any ):
lowerCamelCase__ = []
for audio in batch[data_args.audio_column_name]:
lowerCamelCase__ = random_subsample(
audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate )
subsampled_wavs.append(__lowerCAmelCase )
lowerCamelCase__ = feature_extractor(__lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate )
lowerCamelCase__ = {model_input_name: inputs.get(__lowerCAmelCase )}
lowerCamelCase__ = list(batch[data_args.label_column_name] )
return output_batch
def val_transforms(__lowerCAmelCase : Any ):
lowerCamelCase__ = [audio["""array"""] for audio in batch[data_args.audio_column_name]]
lowerCamelCase__ = feature_extractor(__lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate )
lowerCamelCase__ = {model_input_name: inputs.get(__lowerCAmelCase )}
lowerCamelCase__ = list(batch[data_args.label_column_name] )
return output_batch
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
lowerCamelCase__ = raw_datasets["""train"""].features[data_args.label_column_name].names
lowerCamelCase__ , lowerCamelCase__ = {}, {}
for i, label in enumerate(__lowerCAmelCase ):
lowerCamelCase__ = str(__lowerCAmelCase )
lowerCamelCase__ = label
# Load the accuracy metric from the datasets package
lowerCamelCase__ = evaluate.load("""accuracy""" )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
# `predictions` and `label_ids` fields) and has to return a dictionary string to float.
def compute_metrics(__lowerCAmelCase : List[Any] ):
lowerCamelCase__ = np.argmax(eval_pred.predictions , axis=1 )
return metric.compute(predictions=__lowerCAmelCase , references=eval_pred.label_ids )
lowerCamelCase__ = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase__ = AutoModelForAudioClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# freeze the convolutional waveform encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
if training_args.do_train:
if data_args.max_train_samples is not None:
lowerCamelCase__ = (
raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
raw_datasets["train"].set_transform(__lowerCAmelCase , output_all_columns=__lowerCAmelCase )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
lowerCamelCase__ = (
raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
raw_datasets["eval"].set_transform(__lowerCAmelCase , output_all_columns=__lowerCAmelCase )
# Initialize our trainer
lowerCamelCase__ = Trainer(
model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , )
# Training
if training_args.do_train:
lowerCamelCase__ = None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase__ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase__ = last_checkpoint
lowerCamelCase__ = trainer.train(resume_from_checkpoint=__lowerCAmelCase )
trainer.save_model()
trainer.log_metrics("""train""" , train_result.metrics )
trainer.save_metrics("""train""" , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
lowerCamelCase__ = trainer.evaluate()
trainer.log_metrics("""eval""" , __lowerCAmelCase )
trainer.save_metrics("""eval""" , __lowerCAmelCase )
# Write model card and (optionally) push to hub
lowerCamelCase__ = {
"""finetuned_from""": model_args.model_name_or_path,
"""tasks""": """audio-classification""",
"""dataset""": data_args.dataset_name,
"""tags""": ["""audio-classification"""],
}
if training_args.push_to_hub:
trainer.push_to_hub(**__lowerCAmelCase )
else:
trainer.create_model_card(**__lowerCAmelCase )
if __name__ == "__main__":
main()
| 9 |
'''simple docstring'''
import numpy
# List of input, output pairs
UpperCamelCase : List[Any] = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
UpperCamelCase : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50))
UpperCamelCase : int = [2, 4, 1, 5]
UpperCamelCase : int = len(train_data)
UpperCamelCase : Dict = 0.009
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : str="train" ):
return calculate_hypothesis_value(__lowerCAmelCase , __lowerCAmelCase ) - output(
__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : Any ):
lowerCamelCase__ = 0
for i in range(len(__lowerCAmelCase ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=m ):
lowerCamelCase__ = 0
for i in range(__lowerCAmelCase ):
if index == -1:
summation_value += _error(__lowerCAmelCase )
else:
summation_value += _error(__lowerCAmelCase ) * train_data[i][0][index]
return summation_value
def A__ ( __lowerCAmelCase : List[Any] ):
lowerCamelCase__ = summation_of_cost_derivative(__lowerCAmelCase , __lowerCAmelCase ) / m
return cost_derivative_value
def A__ ( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
lowerCamelCase__ = 0.00_0002
lowerCamelCase__ = 0
lowerCamelCase__ = 0
while True:
j += 1
lowerCamelCase__ = [0, 0, 0, 0]
for i in range(0 , len(__lowerCAmelCase ) ):
lowerCamelCase__ = get_cost_derivative(i - 1 )
lowerCamelCase__ = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
__lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase , rtol=__lowerCAmelCase , ):
break
lowerCamelCase__ = temp_parameter_vector
print(("""Number of iterations:""", j) )
def A__ ( ):
for i in range(len(__lowerCAmelCase ) ):
print(("""Actual output value:""", output(__lowerCAmelCase , """test""" )) )
print(("""Hypothesis output:""", calculate_hypothesis_value(__lowerCAmelCase , """test""" )) )
if __name__ == "__main__":
run_gradient_descent()
print('\nTesting gradient descent for a linear hypothesis function.\n')
test_gradient_descent()
| 9 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
from packaging import version
if TYPE_CHECKING:
from ... import PreTrainedTokenizer, TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import is_torch_available, logging
UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
UpperCamelCase : int = {
'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json',
'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json',
'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json',
'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json',
'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json',
'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json',
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'bloom'
_UpperCamelCase = ['past_key_values']
_UpperCamelCase = {
'num_hidden_layers': 'n_layer',
'num_attention_heads': 'n_head',
}
def __init__( self ,_lowerCAmelCase=25_08_80 ,_lowerCAmelCase=64 ,_lowerCAmelCase=2 ,_lowerCAmelCase=8 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=1 ,_lowerCAmelCase=2 ,_lowerCAmelCase=False ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=1 ,_lowerCAmelCase=False ,**_lowerCAmelCase ,):
lowerCamelCase__ = vocab_size
# Backward compatibility with n_embed kwarg
lowerCamelCase__ = kwargs.pop("""n_embed""" ,_lowerCAmelCase )
lowerCamelCase__ = hidden_size if n_embed is None else n_embed
lowerCamelCase__ = n_layer
lowerCamelCase__ = n_head
lowerCamelCase__ = layer_norm_epsilon
lowerCamelCase__ = initializer_range
lowerCamelCase__ = use_cache
lowerCamelCase__ = pretraining_tp
lowerCamelCase__ = apply_residual_connection_post_layernorm
lowerCamelCase__ = hidden_dropout
lowerCamelCase__ = attention_dropout
lowerCamelCase__ = bos_token_id
lowerCamelCase__ = eos_token_id
lowerCamelCase__ = slow_but_exact
super().__init__(bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = version.parse('1.12' )
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase = "default" ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,):
super().__init__(_lowerCAmelCase ,task=_lowerCAmelCase ,patching_specs=_lowerCAmelCase ,use_past=_lowerCAmelCase )
if not getattr(self._config ,"""pad_token_id""" ,_lowerCAmelCase ):
# TODO: how to do that better?
lowerCamelCase__ = 0
@property
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" ,inverted_values_shape=_lowerCAmelCase )
lowerCamelCase__ = {0: """batch""", 1: """past_sequence + sequence"""}
else:
lowerCamelCase__ = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def UpperCamelCase_ ( self ):
return self._config.n_layer
@property
def UpperCamelCase_ ( self ):
return self._config.n_head
@property
def UpperCamelCase_ ( self ):
return 1E-3
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,):
lowerCamelCase__ = super(_lowerCAmelCase ,self ).generate_dummy_inputs(
_lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase )
# We need to order the input in the way they appears in the forward()
lowerCamelCase__ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCamelCase__ = seqlen + 2
lowerCamelCase__ = self._config.hidden_size // self.num_attention_heads
lowerCamelCase__ = (
batch * self.num_attention_heads,
head_dim,
past_key_values_length,
)
lowerCamelCase__ = (
batch * self.num_attention_heads,
past_key_values_length,
head_dim,
)
lowerCamelCase__ = [
(torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers )
]
lowerCamelCase__ = common_inputs["""attention_mask"""]
if self.use_past:
lowerCamelCase__ = ordered_inputs["""attention_mask"""].dtype
lowerCamelCase__ = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 )
return ordered_inputs
@property
def UpperCamelCase_ ( self ):
return 13
| 9 |
'''simple docstring'''
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ):
lowerCamelCase__ = OmegaConf.load(__lowerCAmelCase )
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""model"""]
lowerCamelCase__ = list(state_dict.keys() )
# extract state_dict for VQVAE
lowerCamelCase__ = {}
lowerCamelCase__ = """first_stage_model."""
for key in keys:
if key.startswith(__lowerCAmelCase ):
lowerCamelCase__ = state_dict[key]
# extract state_dict for UNetLDM
lowerCamelCase__ = {}
lowerCamelCase__ = """model.diffusion_model."""
for key in keys:
if key.startswith(__lowerCAmelCase ):
lowerCamelCase__ = state_dict[key]
lowerCamelCase__ = config.model.params.first_stage_config.params
lowerCamelCase__ = config.model.params.unet_config.params
lowerCamelCase__ = VQModel(**__lowerCAmelCase ).eval()
vqvae.load_state_dict(__lowerCAmelCase )
lowerCamelCase__ = UNetLDMModel(**__lowerCAmelCase ).eval()
unet.load_state_dict(__lowerCAmelCase )
lowerCamelCase__ = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__lowerCAmelCase , )
lowerCamelCase__ = LDMPipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
pipeline.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', type=str, required=True)
parser.add_argument('--config_path', type=str, required=True)
parser.add_argument('--output_path', type=str, required=True)
UpperCamelCase : List[Any] = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 9 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = DiTPipeline
_UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
_UpperCamelCase = PipelineTesterMixin.required_optional_params - {
'latents',
'num_images_per_prompt',
'callback',
'callback_steps',
}
_UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
torch.manual_seed(0 )
lowerCamelCase__ = TransformeraDModel(
sample_size=16 ,num_layers=2 ,patch_size=4 ,attention_head_dim=8 ,num_attention_heads=2 ,in_channels=4 ,out_channels=8 ,attention_bias=_lowerCAmelCase ,activation_fn="""gelu-approximate""" ,num_embeds_ada_norm=10_00 ,norm_type="""ada_norm_zero""" ,norm_elementwise_affine=_lowerCAmelCase ,)
lowerCamelCase__ = AutoencoderKL()
lowerCamelCase__ = DDIMScheduler()
lowerCamelCase__ = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler}
return components
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=0 ):
if str(_lowerCAmelCase ).startswith("""mps""" ):
lowerCamelCase__ = torch.manual_seed(_lowerCAmelCase )
else:
lowerCamelCase__ = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
lowerCamelCase__ = {
"""class_labels""": [1],
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """cpu"""
lowerCamelCase__ = self.get_dummy_components()
lowerCamelCase__ = self.pipeline_class(**_lowerCAmelCase )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
lowerCamelCase__ = self.get_dummy_inputs(_lowerCAmelCase )
lowerCamelCase__ = pipe(**_lowerCAmelCase ).images
lowerCamelCase__ = image[0, -3:, -3:, -1]
self.assertEqual(image.shape ,(1, 16, 16, 3) )
lowerCamelCase__ = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] )
lowerCamelCase__ = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_lowerCAmelCase ,1E-3 )
def UpperCamelCase_ ( self ):
self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase ,expected_max_diff=1E-3 )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,)
def UpperCamelCase_ ( self ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@require_torch_gpu
@slow
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = torch.manual_seed(0 )
lowerCamelCase__ = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" )
pipe.to("""cuda""" )
lowerCamelCase__ = ["""vase""", """umbrella""", """white shark""", """white wolf"""]
lowerCamelCase__ = pipe.get_label_ids(_lowerCAmelCase )
lowerCamelCase__ = pipe(_lowerCAmelCase ,generator=_lowerCAmelCase ,num_inference_steps=40 ,output_type="""np""" ).images
for word, image in zip(_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = load_numpy(
F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' )
assert np.abs((expected_image - image).max() ) < 1E-2
def UpperCamelCase_ ( self ):
lowerCamelCase__ = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" )
lowerCamelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to("""cuda""" )
lowerCamelCase__ = ["""vase""", """umbrella"""]
lowerCamelCase__ = pipe.get_label_ids(_lowerCAmelCase )
lowerCamelCase__ = torch.manual_seed(0 )
lowerCamelCase__ = pipe(_lowerCAmelCase ,generator=_lowerCAmelCase ,num_inference_steps=25 ,output_type="""np""" ).images
for word, image in zip(_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
F'''/dit/{word}_512.npy''' )
assert np.abs((expected_image - image).max() ) < 1E-1
| 9 |
'''simple docstring'''
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
UpperCamelCase : str = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase]
UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS}
UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"]
def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : tuple[int, ...] ):
lowerCamelCase__ = ""
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = 42
for keychar, cipherchar in zip(cycle(__lowerCAmelCase ) , __lowerCAmelCase ):
lowerCamelCase__ = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(__lowerCAmelCase )
return decoded
def A__ ( __lowerCAmelCase : list[int] ):
lowerCamelCase__ = []
for key in product(__lowerCAmelCase , repeat=3 ):
lowerCamelCase__ = try_key(__lowerCAmelCase , __lowerCAmelCase )
if encoded is not None:
possibles.append(__lowerCAmelCase )
return possibles
def A__ ( __lowerCAmelCase : list[str] , __lowerCAmelCase : str ):
return [possible for possible in possibles if common_word in possible.lower()]
def A__ ( __lowerCAmelCase : str = "p059_cipher.txt" ):
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = Path(__lowerCAmelCase ).parent.joinpath(__lowerCAmelCase ).read_text(encoding="""utf-8""" )
lowerCamelCase__ = [int(__lowerCAmelCase ) for number in data.strip().split(""",""" )]
lowerCamelCase__ = filter_valid_chars(__lowerCAmelCase )
for common_word in COMMON_WORDS:
lowerCamelCase__ = filter_common_word(__lowerCAmelCase , __lowerCAmelCase )
if len(__lowerCAmelCase ) == 1:
break
lowerCamelCase__ = possibles[0]
return sum(ord(__lowerCAmelCase ) for char in decoded_text )
if __name__ == "__main__":
print(F'{solution() = }')
| 9 | 1 |
'''simple docstring'''
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('TEST_SAGEMAKER' ,'False' ) ) is not True ,reason='Skipping test because should only be run when releasing minor transformers version' ,)
@pytest.mark.usefixtures('sm_env' )
@parameterized_class(
[
{
'framework': 'pytorch',
'script': 'run_glue_model_parallelism.py',
'model_name_or_path': 'roberta-large',
'instance_type': 'ml.p3dn.24xlarge',
'results': {'train_runtime': 1600, 'eval_accuracy': 0.3, 'eval_loss': 1.2},
},
{
'framework': 'pytorch',
'script': 'run_glue.py',
'model_name_or_path': 'roberta-large',
'instance_type': 'ml.p3dn.24xlarge',
'results': {'train_runtime': 1600, 'eval_accuracy': 0.3, 'eval_loss': 1.2},
},
] )
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
if self.framework == "pytorch":
subprocess.run(
F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() ,encoding="""utf-8""" ,check=_lowerCAmelCase ,)
assert hasattr(self ,"""env""" )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
# configuration for running training on smdistributed Model Parallel
lowerCamelCase__ = {
"""enabled""": True,
"""processes_per_host""": 8,
}
lowerCamelCase__ = {
"""enabled""": True,
"""parameters""": {
"""microbatches""": 4,
"""placement_strategy""": """spread""",
"""pipeline""": """interleaved""",
"""optimize""": """speed""",
"""partitions""": 4,
"""ddp""": True,
},
}
lowerCamelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options}
lowerCamelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer"""
# creates estimator
return HuggingFace(
entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=F'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' ,instance_count=_lowerCAmelCase ,instance_type=self.instance_type ,debugger_hook_config=_lowerCAmelCase ,hyperparameters={
**self.env.hyperparameters,
"""model_name_or_path""": self.model_name_or_path,
"""max_steps""": 5_00,
} ,metric_definitions=self.env.metric_definitions ,distribution=_lowerCAmelCase ,py_version="""py36""" ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
TrainingJobAnalytics(_lowerCAmelCase ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' )
@parameterized.expand([(1,)] )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
# create estimator
lowerCamelCase__ = self.create_estimator(_lowerCAmelCase )
# run training
estimator.fit()
# result dataframe
lowerCamelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
lowerCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] )
lowerCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
lowerCamelCase__ = (
Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" ,99_99_99 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy )
assert all(t <= self.results["""eval_loss"""] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F'''{estimator.latest_training_job.name}.json''' ,"""w""" ) as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} ,_lowerCAmelCase )
| 9 |
'''simple docstring'''
import argparse
import struct
import unittest
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ):
lowerCamelCase__ = data
# Initialize hash values
lowerCamelCase__ = [
0x6a_09_e6_67,
0xbb_67_ae_85,
0x3c_6e_f3_72,
0xa5_4f_f5_3a,
0x51_0e_52_7f,
0x9b_05_68_8c,
0x1f_83_d9_ab,
0x5b_e0_cd_19,
]
# Initialize round constants
lowerCamelCase__ = [
0x42_8a_2f_98,
0x71_37_44_91,
0xb5_c0_fb_cf,
0xe9_b5_db_a5,
0x39_56_c2_5b,
0x59_f1_11_f1,
0x92_3f_82_a4,
0xab_1c_5e_d5,
0xd8_07_aa_98,
0x12_83_5b_01,
0x24_31_85_be,
0x55_0c_7d_c3,
0x72_be_5d_74,
0x80_de_b1_fe,
0x9b_dc_06_a7,
0xc1_9b_f1_74,
0xe4_9b_69_c1,
0xef_be_47_86,
0x0f_c1_9d_c6,
0x24_0c_a1_cc,
0x2d_e9_2c_6f,
0x4a_74_84_aa,
0x5c_b0_a9_dc,
0x76_f9_88_da,
0x98_3e_51_52,
0xa8_31_c6_6d,
0xb0_03_27_c8,
0xbf_59_7f_c7,
0xc6_e0_0b_f3,
0xd5_a7_91_47,
0x06_ca_63_51,
0x14_29_29_67,
0x27_b7_0a_85,
0x2e_1b_21_38,
0x4d_2c_6d_fc,
0x53_38_0d_13,
0x65_0a_73_54,
0x76_6a_0a_bb,
0x81_c2_c9_2e,
0x92_72_2c_85,
0xa2_bf_e8_a1,
0xa8_1a_66_4b,
0xc2_4b_8b_70,
0xc7_6c_51_a3,
0xd1_92_e8_19,
0xd6_99_06_24,
0xf4_0e_35_85,
0x10_6a_a0_70,
0x19_a4_c1_16,
0x1e_37_6c_08,
0x27_48_77_4c,
0x34_b0_bc_b5,
0x39_1c_0c_b3,
0x4e_d8_aa_4a,
0x5b_9c_ca_4f,
0x68_2e_6f_f3,
0x74_8f_82_ee,
0x78_a5_63_6f,
0x84_c8_78_14,
0x8c_c7_02_08,
0x90_be_ff_fa,
0xa4_50_6c_eb,
0xbe_f9_a3_f7,
0xc6_71_78_f2,
]
lowerCamelCase__ = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def UpperCamelCase_ ( _lowerCAmelCase ):
lowerCamelCase__ = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowerCAmelCase ) + 8) % 64))
lowerCamelCase__ = struct.pack(""">Q""" ,(len(_lowerCAmelCase ) * 8) )
return data + padding + big_endian_integer
def UpperCamelCase_ ( self ):
# Convert into blocks of 64 bytes
lowerCamelCase__ = [
self.preprocessed_data[x : x + 64]
for x in range(0 ,len(self.preprocessed_data ) ,64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
lowerCamelCase__ = list(struct.unpack(""">16L""" ,_lowerCAmelCase ) )
# add 48 0-ed integers
words += [0] * 48
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.hashes
for index in range(0 ,64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
lowerCamelCase__ = (
self.ror(words[index - 15] ,7 )
^ self.ror(words[index - 15] ,18 )
^ (words[index - 15] >> 3)
)
lowerCamelCase__ = (
self.ror(words[index - 2] ,17 )
^ self.ror(words[index - 2] ,19 )
^ (words[index - 2] >> 10)
)
lowerCamelCase__ = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_00_00_00_00
# Compression
lowerCamelCase__ = self.ror(_lowerCAmelCase ,6 ) ^ self.ror(_lowerCAmelCase ,11 ) ^ self.ror(_lowerCAmelCase ,25 )
lowerCamelCase__ = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g)
lowerCamelCase__ = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_00_00_00_00
lowerCamelCase__ = self.ror(_lowerCAmelCase ,2 ) ^ self.ror(_lowerCAmelCase ,13 ) ^ self.ror(_lowerCAmelCase ,22 )
lowerCamelCase__ = (a & b) ^ (a & c) ^ (b & c)
lowerCamelCase__ = (sa + maj) % 0x1_00_00_00_00
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = (
g,
f,
e,
((d + tempa) % 0x1_00_00_00_00),
c,
b,
a,
((tempa + tempa) % 0x1_00_00_00_00),
)
lowerCamelCase__ = [a, b, c, d, e, f, g, h]
# Modify final values
lowerCamelCase__ = [
((element + mutated_hash_values[index]) % 0x1_00_00_00_00)
for index, element in enumerate(self.hashes )
]
lowerCamelCase__ = """""".join([hex(_lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations)
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
import hashlib
lowerCamelCase__ = bytes("""Test String""" ,"""utf-8""" )
self.assertEqual(SHAaaa(_lowerCAmelCase ).hash ,hashlib.shaaaa(_lowerCAmelCase ).hexdigest() )
def A__ ( ):
import doctest
doctest.testmod()
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument(
"""-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , )
parser.add_argument(
"""-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" )
lowerCamelCase__ = parser.parse_args()
lowerCamelCase__ = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , """rb""" ) as f:
lowerCamelCase__ = f.read()
else:
lowerCamelCase__ = bytes(__lowerCAmelCase , """utf-8""" )
print(SHAaaa(__lowerCAmelCase ).hash )
if __name__ == "__main__":
main()
| 9 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=7 ,_lowerCAmelCase=3 ,_lowerCAmelCase=18 ,_lowerCAmelCase=30 ,_lowerCAmelCase=4_00 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,):
lowerCamelCase__ = size if size is not None else {"""shortest_edge""": 18}
lowerCamelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = image_size
lowerCamelCase__ = min_resolution
lowerCamelCase__ = max_resolution
lowerCamelCase__ = do_resize
lowerCamelCase__ = size
lowerCamelCase__ = do_center_crop
lowerCamelCase__ = crop_size
lowerCamelCase__ = do_normalize
lowerCamelCase__ = image_mean
lowerCamelCase__ = image_std
def UpperCamelCase_ ( self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = LevitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
lowerCamelCase__ = LevitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""image_std""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_center_crop""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""size""" ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} )
self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} )
lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,Image.Image )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,numpify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,np.ndarray )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,torchify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,torch.Tensor )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
| 9 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def A__ ( __lowerCAmelCase : Union[str, Any] ):
lowerCamelCase__ = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""encoder.embed_positions._float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : Tuple ):
lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape
lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase )
lowerCamelCase__ = emb.weight.data
return lin_layer
def A__ ( __lowerCAmelCase : Dict ):
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )
lowerCamelCase__ = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""]
lowerCamelCase__ = mam_aaa["""model"""]
remove_ignore_keys_(__lowerCAmelCase )
lowerCamelCase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0]
lowerCamelCase__ = MaMaaaConfig(
vocab_size=__lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , )
lowerCamelCase__ = state_dict["""decoder.embed_tokens.weight"""]
lowerCamelCase__ = MaMaaaForConditionalGeneration(__lowerCAmelCase )
model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
lowerCamelCase__ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
UpperCamelCase : Tuple = parser.parse_args()
UpperCamelCase : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 9 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] ,model_result["""ss"""] ):
lowerCamelCase__ = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sgugger/tiny-distilbert-classification"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,only_pretrain_model=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """patrickvonplaten/t5-tiny-random"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,configs=[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,"""Cannot do xla on CPU.""" )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=_lowerCAmelCase ,save_to_csv=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ,inference_memory_csv_file=os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ,env_info_csv_file=os.path.join(_lowerCAmelCase ,"""env.csv""" ) ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""env.csv""" ) ).exists() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(_lowerCAmelCase ):
self.assertTrue(hasattr(_lowerCAmelCase ,"""sequential""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""cumulative""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""current""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(_lowerCAmelCase ,"""log.txt""" ) ,log_print=_lowerCAmelCase ,trace_memory_line_by_line=_lowerCAmelCase ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""log.txt""" ) ).exists() )
| 9 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = tempfile.mkdtemp()
lowerCamelCase__ = BlipImageProcessor()
lowerCamelCase__ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
lowerCamelCase__ = BlipProcessor(_lowerCAmelCase ,_lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).tokenizer
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).image_processor
def UpperCamelCase_ ( self ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self ):
lowerCamelCase__ = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" )
lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 )
lowerCamelCase__ = BlipProcessor.from_pretrained(
self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = self.prepare_image_inputs()
lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" )
lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = processor(text=_lowerCAmelCase )
lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = self.prepare_image_inputs()
lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase )
self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(_lowerCAmelCase ):
processor()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase )
lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = self.prepare_image_inputs()
lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
| 9 | 1 |
'''simple docstring'''
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
UpperCamelCase : Dict = '__DUMMY_TRANSFORMERS_USER__'
UpperCamelCase : Tuple = 'Dummy User'
UpperCamelCase : Tuple = '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'
UpperCamelCase : List[Any] = 'https://hub-ci.huggingface.co'
UpperCamelCase : Optional[int] = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}'
UpperCamelCase : List[Any] = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}'
UpperCamelCase : int = Path('~/.huggingface/hub_ci_token').expanduser()
@pytest.fixture
def A__ ( __lowerCAmelCase : Any ):
monkeypatch.setattr(
"""huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __lowerCAmelCase )
@pytest.fixture
def A__ ( __lowerCAmelCase : List[str] ):
monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __lowerCAmelCase )
monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __lowerCAmelCase )
@pytest.fixture
def A__ ( __lowerCAmelCase : List[str] ):
monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __lowerCAmelCase )
@pytest.fixture
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ):
HfFolder.save_token(__lowerCAmelCase )
yield
HfFolder.delete_token()
@pytest.fixture(scope="""session""" )
def A__ ( ):
return HfApi(endpoint=__lowerCAmelCase )
@pytest.fixture(scope="""session""" )
def A__ ( __lowerCAmelCase : HfApi ):
lowerCamelCase__ = HfFolder.get_token()
HfFolder.save_token(__lowerCAmelCase )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(__lowerCAmelCase )
@pytest.fixture
def A__ ( __lowerCAmelCase : Tuple ):
def _cleanup_repo(__lowerCAmelCase : Optional[int] ):
hf_api.delete_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" )
return _cleanup_repo
@pytest.fixture
def A__ ( __lowerCAmelCase : Any ):
@contextmanager
def _temporary_repo(__lowerCAmelCase : Optional[int] ):
try:
yield repo_id
finally:
cleanup_repo(__lowerCAmelCase )
return _temporary_repo
@pytest.fixture(scope="""session""" )
def A__ ( __lowerCAmelCase : HfApi , __lowerCAmelCase : int , __lowerCAmelCase : str ):
lowerCamelCase__ = F'''repo_txt_data-{int(time.time() * 10e3 )}'''
lowerCamelCase__ = F'''{CI_HUB_USER}/{repo_name}'''
hf_api.create_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" , private=__lowerCAmelCase )
hf_api.upload_file(
token=__lowerCAmelCase , path_or_fileobj=str(__lowerCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__lowerCAmelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ):
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="""session""" )
def A__ ( __lowerCAmelCase : HfApi , __lowerCAmelCase : Dict , __lowerCAmelCase : int ):
lowerCamelCase__ = F'''repo_zipped_txt_data-{int(time.time() * 10e3 )}'''
lowerCamelCase__ = F'''{CI_HUB_USER}/{repo_name}'''
hf_api.create_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" , private=__lowerCAmelCase )
hf_api.upload_file(
token=__lowerCAmelCase , path_or_fileobj=str(__lowerCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__lowerCAmelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ):
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="""session""" )
def A__ ( __lowerCAmelCase : HfApi , __lowerCAmelCase : str , __lowerCAmelCase : Any ):
lowerCamelCase__ = F'''repo_zipped_img_data-{int(time.time() * 10e3 )}'''
lowerCamelCase__ = F'''{CI_HUB_USER}/{repo_name}'''
hf_api.create_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" , private=__lowerCAmelCase )
hf_api.upload_file(
token=__lowerCAmelCase , path_or_fileobj=str(__lowerCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__lowerCAmelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__lowerCAmelCase , token=__lowerCAmelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def A__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] ):
return hf_private_dataset_repo_zipped_img_data_
| 9 |
'''simple docstring'''
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True)
os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True)
os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True)
def A__ ( __lowerCAmelCase : Union[str, Any] ):
if hor == 128:
lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
lowerCamelCase__ = (32, 128, 256)
lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""")
elif hor == 32:
lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
lowerCamelCase__ = (32, 64, 128, 256)
lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""")
lowerCamelCase__ = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' )
lowerCamelCase__ = model.state_dict()
lowerCamelCase__ = {
"""down_block_types""": down_block_types,
"""block_out_channels""": block_out_channels,
"""up_block_types""": up_block_types,
"""layers_per_block""": 1,
"""use_timestep_embedding""": True,
"""out_block_type""": """OutConv1DBlock""",
"""norm_num_groups""": 8,
"""downsample_each_block""": False,
"""in_channels""": 14,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""sample_size""": 6_5536,
"""mid_block_type""": """MidResTemporalBlock1D""",
"""act_fn""": """mish""",
}
lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase )
print(F'''length of state dict: {len(state_dict.keys() )}''' )
print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' )
lowerCamelCase__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
hf_value_function.load_state_dict(__lowerCAmelCase )
torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' )
with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = {
"""in_channels""": 14,
"""down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""),
"""up_block_types""": (),
"""out_block_type""": """ValueFunction""",
"""mid_block_type""": """ValueFunctionMidBlock1D""",
"""block_out_channels""": (32, 64, 128, 256),
"""layers_per_block""": 1,
"""downsample_each_block""": True,
"""sample_size""": 6_5536,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""use_timestep_embedding""": True,
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""norm_num_groups""": 8,
"""act_fn""": """mish""",
}
lowerCamelCase__ = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" )
lowerCamelCase__ = model
lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase )
print(F'''length of state dict: {len(state_dict.keys() )}''' )
print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' )
lowerCamelCase__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
hf_value_function.load_state_dict(__lowerCAmelCase )
torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" )
with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
unet(32)
# unet(128)
value_function()
| 9 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['flax']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['flax']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['flax']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['flax']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['flax']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['flax']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['flax']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['flax']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['flax']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['flax']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['flax']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['flax']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
class UpperCamelCase__ (metaclass=a ):
'''simple docstring'''
_UpperCamelCase = ['flax']
def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(self ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
@classmethod
def UpperCamelCase_ ( cls ,*_lowerCAmelCase ,**_lowerCAmelCase ):
requires_backends(cls ,["""flax"""] )
| 9 |
'''simple docstring'''
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase = "▁" ,_lowerCAmelCase = True ,_lowerCAmelCase = "<unk>" ,_lowerCAmelCase = "</s>" ,_lowerCAmelCase = "<pad>" ,):
lowerCamelCase__ = {
"""pad""": {"""id""": 0, """token""": pad_token},
"""eos""": {"""id""": 1, """token""": eos_token},
"""unk""": {"""id""": 2, """token""": unk_token},
}
lowerCamelCase__ = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
lowerCamelCase__ = token_dict["""token"""]
lowerCamelCase__ = Tokenizer(Unigram() )
lowerCamelCase__ = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(""" {2,}""" ) ,""" """ ),
normalizers.Lowercase(),
] )
lowerCamelCase__ = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ),
pre_tokenizers.Digits(individual_digits=_lowerCAmelCase ),
pre_tokenizers.Punctuation(),
] )
lowerCamelCase__ = decoders.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase )
lowerCamelCase__ = TemplateProcessing(
single=F'''$A {self.special_tokens["eos"]["token"]}''' ,special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] ,)
lowerCamelCase__ = {
"""model""": """SentencePieceUnigram""",
"""replacement""": replacement,
"""add_prefix_space""": add_prefix_space,
}
super().__init__(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,):
lowerCamelCase__ = trainers.UnigramTrainer(
vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,)
if isinstance(_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = [files]
self._tokenizer.train(_lowerCAmelCase ,trainer=_lowerCAmelCase )
self.add_unk_id()
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,):
lowerCamelCase__ = trainers.UnigramTrainer(
vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,)
self._tokenizer.train_from_iterator(_lowerCAmelCase ,trainer=_lowerCAmelCase )
self.add_unk_id()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = json.loads(self._tokenizer.to_str() )
lowerCamelCase__ = self.special_tokens["""unk"""]["""id"""]
lowerCamelCase__ = Tokenizer.from_str(json.dumps(_lowerCAmelCase ) )
| 9 | 1 |
'''simple docstring'''
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase = "▁" ,_lowerCAmelCase = True ,_lowerCAmelCase = "<unk>" ,_lowerCAmelCase = "</s>" ,_lowerCAmelCase = "<pad>" ,):
lowerCamelCase__ = {
"""pad""": {"""id""": 0, """token""": pad_token},
"""eos""": {"""id""": 1, """token""": eos_token},
"""unk""": {"""id""": 2, """token""": unk_token},
}
lowerCamelCase__ = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
lowerCamelCase__ = token_dict["""token"""]
lowerCamelCase__ = Tokenizer(Unigram() )
lowerCamelCase__ = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(""" {2,}""" ) ,""" """ ),
normalizers.Lowercase(),
] )
lowerCamelCase__ = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ),
pre_tokenizers.Digits(individual_digits=_lowerCAmelCase ),
pre_tokenizers.Punctuation(),
] )
lowerCamelCase__ = decoders.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase )
lowerCamelCase__ = TemplateProcessing(
single=F'''$A {self.special_tokens["eos"]["token"]}''' ,special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] ,)
lowerCamelCase__ = {
"""model""": """SentencePieceUnigram""",
"""replacement""": replacement,
"""add_prefix_space""": add_prefix_space,
}
super().__init__(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,):
lowerCamelCase__ = trainers.UnigramTrainer(
vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,)
if isinstance(_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = [files]
self._tokenizer.train(_lowerCAmelCase ,trainer=_lowerCAmelCase )
self.add_unk_id()
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,):
lowerCamelCase__ = trainers.UnigramTrainer(
vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,)
self._tokenizer.train_from_iterator(_lowerCAmelCase ,trainer=_lowerCAmelCase )
self.add_unk_id()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = json.loads(self._tokenizer.to_str() )
lowerCamelCase__ = self.special_tokens["""unk"""]["""id"""]
lowerCamelCase__ = Tokenizer.from_str(json.dumps(_lowerCAmelCase ) )
| 9 |
'''simple docstring'''
from __future__ import annotations
import math
def A__ ( __lowerCAmelCase : int ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
UpperCamelCase : str = [num for num in range(3, 10_00_01, 2) if not is_prime(num)]
def A__ ( __lowerCAmelCase : int ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""n must be an integer""" )
if n <= 0:
raise ValueError("""n must be >= 0""" )
lowerCamelCase__ = []
for num in range(len(__lowerCAmelCase ) ):
lowerCamelCase__ = 0
while 2 * i * i <= odd_composites[num]:
lowerCamelCase__ = odd_composites[num] - 2 * i * i
if is_prime(__lowerCAmelCase ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(__lowerCAmelCase ) == n:
return list_nums
return []
def A__ ( ):
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F'{solution() = }')
| 9 | 1 |
'''simple docstring'''
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
UpperCamelCase : Optional[int] = logging.get_logger(__name__)
UpperCamelCase : Dict = 'T5Config'
def A__ ( __lowerCAmelCase : jnp.array , __lowerCAmelCase : int , __lowerCAmelCase : int ):
lowerCamelCase__ = jnp.zeros_like(__lowerCAmelCase )
lowerCamelCase__ = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
lowerCamelCase__ = shifted_input_ids.at[:, 0].set(__lowerCAmelCase )
lowerCamelCase__ = jnp.where(shifted_input_ids == -100 , __lowerCAmelCase , __lowerCAmelCase )
return shifted_input_ids
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'mt5'
_UpperCamelCase = MTaConfig
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'mt5'
_UpperCamelCase = MTaConfig
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'mt5'
_UpperCamelCase = MTaConfig
| 9 |
'''simple docstring'''
def A__ ( ):
return [
a * b * (1000 - a - b)
for a in range(1 , 999 )
for b in range(__lowerCAmelCase , 999 )
if (a * a + b * b == (1000 - a - b) ** 2)
][0]
if __name__ == "__main__":
print(F'{solution() = }')
| 9 | 1 |
'''simple docstring'''
import re
from filelock import FileLock
try:
import nltk
UpperCamelCase : Dict = True
except (ImportError, ModuleNotFoundError):
UpperCamelCase : Dict = False
if NLTK_AVAILABLE:
with FileLock('.lock') as lock:
nltk.download('punkt', quiet=True)
def A__ ( __lowerCAmelCase : str ):
re.sub("""<n>""" , """""" , __lowerCAmelCase ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(__lowerCAmelCase ) )
| 9 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase : int = logging.get_logger(__name__)
UpperCamelCase : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'}
UpperCamelCase : Dict = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
}
}
UpperCamelCase : List[Any] = {
'camembert-base': 5_12,
}
UpperCamelCase : List[str] = '▁'
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = VOCAB_FILES_NAMES
_UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase = ['input_ids', 'attention_mask']
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] ,_lowerCAmelCase = None ,**_lowerCAmelCase ,):
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token
lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,additional_special_tokens=_lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCAmelCase ,)
lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_lowerCAmelCase ) )
lowerCamelCase__ = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
lowerCamelCase__ = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3}
lowerCamelCase__ = len(self.fairseq_tokens_to_ids )
lowerCamelCase__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
lowerCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
lowerCamelCase__ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(_lowerCAmelCase )) + [1]
return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1]
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCamelCase_ ( self ):
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return self.sp_model.encode(_lowerCAmelCase ,out_type=_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(_lowerCAmelCase ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = []
lowerCamelCase__ = """"""
lowerCamelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_lowerCAmelCase ) + token
lowerCamelCase__ = True
lowerCamelCase__ = []
else:
current_sub_tokens.append(_lowerCAmelCase )
lowerCamelCase__ = False
out_string += self.sp_model.decode(_lowerCAmelCase )
return out_string.strip()
def __getstate__( self ):
lowerCamelCase__ = self.__dict__.copy()
lowerCamelCase__ = None
return state
def __setstate__( self ,_lowerCAmelCase ):
lowerCamelCase__ = d
# for backward compatibility
if not hasattr(self ,"""sp_model_kwargs""" ):
lowerCamelCase__ = {}
lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
if not os.path.isdir(_lowerCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCamelCase__ = os.path.join(
_lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,_lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCAmelCase ,"""wb""" ) as fi:
lowerCamelCase__ = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (out_vocab_file,)
| 9 | 1 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class UpperCamelCase__ :
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( *_lowerCAmelCase ,**_lowerCAmelCase ):
pass
@is_pipeline_test
@require_torch
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = pipeline("""visual-question-answering""" ,model="""hf-internal-testing/tiny-vilt-random-vqa""" )
lowerCamelCase__ = [
{
"""image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ),
"""question""": """How many cats are there?""",
},
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""question""": """How many cats are there?""",
},
]
return vqa_pipeline, examples
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = vqa_pipeline(_lowerCAmelCase ,top_k=1 )
self.assertEqual(
_lowerCAmelCase ,[
[{"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}],
[{"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}],
] ,)
@require_torch
def UpperCamelCase_ ( self ):
lowerCamelCase__ = pipeline("""visual-question-answering""" ,model="""hf-internal-testing/tiny-vilt-random-vqa""" )
lowerCamelCase__ = """./tests/fixtures/tests_samples/COCO/000000039769.png"""
lowerCamelCase__ = """How many cats are there?"""
lowerCamelCase__ = vqa_pipeline(image=_lowerCAmelCase ,question="""How many cats are there?""" ,top_k=2 )
self.assertEqual(
_lowerCAmelCase ,[{"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}, {"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}] )
lowerCamelCase__ = vqa_pipeline({"""image""": image, """question""": question} ,top_k=2 )
self.assertEqual(
_lowerCAmelCase ,[{"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}, {"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}] )
@slow
@require_torch
def UpperCamelCase_ ( self ):
lowerCamelCase__ = pipeline("""visual-question-answering""" ,model="""dandelin/vilt-b32-finetuned-vqa""" )
lowerCamelCase__ = """./tests/fixtures/tests_samples/COCO/000000039769.png"""
lowerCamelCase__ = """How many cats are there?"""
lowerCamelCase__ = vqa_pipeline(image=_lowerCAmelCase ,question=_lowerCAmelCase ,top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase ,decimals=4 ) ,[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] )
lowerCamelCase__ = vqa_pipeline({"""image""": image, """question""": question} ,top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase ,decimals=4 ) ,[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] )
lowerCamelCase__ = vqa_pipeline(
[{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] ,top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase ,decimals=4 ) ,[[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 ,)
@require_tf
@unittest.skip("""Visual question answering not implemented in TF""" )
def UpperCamelCase_ ( self ):
pass
| 9 |
'''simple docstring'''
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = R"""\w+[.]\d+"""
lowerCamelCase__ = re.findall(__lowerCAmelCase , __lowerCAmelCase )
for pat in pats:
lowerCamelCase__ = key.replace(__lowerCAmelCase , """_""".join(pat.split(""".""" ) ) )
return key
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ):
lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",)
if (
any("""norm""" in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
lowerCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
lowerCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",)
if pt_tuple_key[-1] == "weight":
lowerCamelCase__ = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
lowerCamelCase__ = pt_tuple_key[:-1] + ("""weight""",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
lowerCamelCase__ = pt_tuple_key[:-1] + ("""bias""",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=42 ):
# Step 1: Convert pytorch tensor to numpy
lowerCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
lowerCamelCase__ = flax_model.init_weights(PRNGKey(__lowerCAmelCase ) )
lowerCamelCase__ = flatten_dict(__lowerCAmelCase )
lowerCamelCase__ = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowerCamelCase__ = rename_key(__lowerCAmelCase )
lowerCamelCase__ = tuple(renamed_pt_key.split(""".""" ) )
# Correctly rename weight parameters
lowerCamelCase__ , lowerCamelCase__ = rename_key_and_reshape_tensor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '''
F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
# also add unexpected weight so that warning is thrown
lowerCamelCase__ = jnp.asarray(__lowerCAmelCase )
return unflatten_dict(__lowerCAmelCase )
| 9 | 1 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass
from typing import List, Optional, Union
import tqdm
from filelock import FileLock
from transformers import (
BartTokenizer,
BartTokenizerFast,
DataProcessor,
PreTrainedTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
is_tf_available,
is_torch_available,
)
UpperCamelCase : List[Any] = logging.getLogger(__name__)
@dataclass(frozen=a )
class UpperCamelCase__ :
'''simple docstring'''
_UpperCamelCase = 42
_UpperCamelCase = 42
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = None
@dataclass(frozen=a )
class UpperCamelCase__ :
'''simple docstring'''
_UpperCamelCase = 42
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = None
if is_torch_available():
import torch
from torch.utils.data import Dataset
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 42
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase=False ,_lowerCAmelCase = False ,):
lowerCamelCase__ = hans_processors[task]()
lowerCamelCase__ = os.path.join(
_lowerCAmelCase ,"""cached_{}_{}_{}_{}""".format(
"""dev""" if evaluate else """train""" ,tokenizer.__class__.__name__ ,str(_lowerCAmelCase ) ,_lowerCAmelCase ,) ,)
lowerCamelCase__ = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
lowerCamelCase__ , lowerCamelCase__ = label_list[2], label_list[1]
lowerCamelCase__ = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase__ = cached_features_file + """.lock"""
with FileLock(_lowerCAmelCase ):
if os.path.exists(_lowerCAmelCase ) and not overwrite_cache:
logger.info(F'''Loading features from cached file {cached_features_file}''' )
lowerCamelCase__ = torch.load(_lowerCAmelCase )
else:
logger.info(F'''Creating features from dataset file at {data_dir}''' )
lowerCamelCase__ = (
processor.get_dev_examples(_lowerCAmelCase ) if evaluate else processor.get_train_examples(_lowerCAmelCase )
)
logger.info("""Training examples: %s""" ,len(_lowerCAmelCase ) )
lowerCamelCase__ = hans_convert_examples_to_features(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
logger.info("""Saving features into cached file %s""" ,_lowerCAmelCase )
torch.save(self.features ,_lowerCAmelCase )
def __len__( self ):
return len(self.features )
def __getitem__( self ,_lowerCAmelCase ):
return self.features[i]
def UpperCamelCase_ ( self ):
return self.label_list
if is_tf_available():
import tensorflow as tf
class UpperCamelCase__ :
'''simple docstring'''
_UpperCamelCase = 42
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = 1_28 ,_lowerCAmelCase=False ,_lowerCAmelCase = False ,):
lowerCamelCase__ = hans_processors[task]()
lowerCamelCase__ = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
lowerCamelCase__ , lowerCamelCase__ = label_list[2], label_list[1]
lowerCamelCase__ = label_list
lowerCamelCase__ = processor.get_dev_examples(_lowerCAmelCase ) if evaluate else processor.get_train_examples(_lowerCAmelCase )
lowerCamelCase__ = hans_convert_examples_to_features(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
def gen():
for ex_index, ex in tqdm.tqdm(enumerate(self.features ) ,desc="""convert examples to features""" ):
if ex_index % 1_00_00 == 0:
logger.info("""Writing example %d of %d""" % (ex_index, len(_lowerCAmelCase )) )
yield (
{
"example_id": 0,
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
lowerCamelCase__ = tf.data.Dataset.from_generator(
_lowerCAmelCase ,(
{
"""example_id""": tf.intaa,
"""input_ids""": tf.intaa,
"""attention_mask""": tf.intaa,
"""token_type_ids""": tf.intaa,
},
tf.intaa,
) ,(
{
"""example_id""": tf.TensorShape([] ),
"""input_ids""": tf.TensorShape([None, None] ),
"""attention_mask""": tf.TensorShape([None, None] ),
"""token_type_ids""": tf.TensorShape([None, None] ),
},
tf.TensorShape([] ),
) ,)
def UpperCamelCase_ ( self ):
return self.dataset
def __len__( self ):
return len(self.features )
def __getitem__( self ,_lowerCAmelCase ):
return self.features[i]
def UpperCamelCase_ ( self ):
return self.label_list
class UpperCamelCase__ (a ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return self._create_examples(self._read_tsv(os.path.join(_lowerCAmelCase ,"""heuristics_train_set.txt""" ) ) ,"""train""" )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return self._create_examples(self._read_tsv(os.path.join(_lowerCAmelCase ,"""heuristics_evaluation_set.txt""" ) ) ,"""dev""" )
def UpperCamelCase_ ( self ):
return ["contradiction", "entailment", "neutral"]
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = []
for i, line in enumerate(_lowerCAmelCase ):
if i == 0:
continue
lowerCamelCase__ = """%s-%s""" % (set_type, line[0])
lowerCamelCase__ = line[5]
lowerCamelCase__ = line[6]
lowerCamelCase__ = line[7][2:] if line[7].startswith("""ex""" ) else line[7]
lowerCamelCase__ = line[0]
examples.append(InputExample(guid=_lowerCAmelCase ,text_a=_lowerCAmelCase ,text_b=_lowerCAmelCase ,label=_lowerCAmelCase ,pairID=_lowerCAmelCase ) )
return examples
def A__ ( __lowerCAmelCase : List[InputExample] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : PreTrainedTokenizer , ):
lowerCamelCase__ = {label: i for i, label in enumerate(__lowerCAmelCase )}
lowerCamelCase__ = []
for ex_index, example in tqdm.tqdm(enumerate(__lowerCAmelCase ) , desc="""convert examples to features""" ):
if ex_index % 1_0000 == 0:
logger.info("""Writing example %d""" % (ex_index) )
lowerCamelCase__ = tokenizer(
example.text_a , example.text_b , add_special_tokens=__lowerCAmelCase , max_length=__lowerCAmelCase , padding="""max_length""" , truncation=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , )
lowerCamelCase__ = label_map[example.label] if example.label in label_map else 0
lowerCamelCase__ = int(example.pairID )
features.append(InputFeatures(**__lowerCAmelCase , label=__lowerCAmelCase , pairID=__lowerCAmelCase ) )
for i, example in enumerate(examples[:5] ):
logger.info("""*** Example ***""" )
logger.info(F'''guid: {example}''' )
logger.info(F'''features: {features[i]}''' )
return features
UpperCamelCase : List[Any] = {
'hans': 3,
}
UpperCamelCase : Tuple = {
'hans': HansProcessor,
}
| 9 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] ,model_result["""ss"""] ):
lowerCamelCase__ = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sgugger/tiny-distilbert-classification"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,only_pretrain_model=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """patrickvonplaten/t5-tiny-random"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,configs=[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,"""Cannot do xla on CPU.""" )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=_lowerCAmelCase ,save_to_csv=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ,inference_memory_csv_file=os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ,env_info_csv_file=os.path.join(_lowerCAmelCase ,"""env.csv""" ) ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""env.csv""" ) ).exists() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(_lowerCAmelCase ):
self.assertTrue(hasattr(_lowerCAmelCase ,"""sequential""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""cumulative""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""current""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(_lowerCAmelCase ,"""log.txt""" ) ,log_print=_lowerCAmelCase ,trace_memory_line_by_line=_lowerCAmelCase ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""log.txt""" ) ).exists() )
| 9 | 1 |
'''simple docstring'''
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
class UpperCamelCase__ :
'''simple docstring'''
_UpperCamelCase = 42
_UpperCamelCase = None
@staticmethod
def UpperCamelCase_ ( ):
raise NotImplementedError
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ):
raise NotImplementedError
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
raise NotImplementedError
def UpperCamelCase_ ( self ):
if not self.is_available():
raise RuntimeError(
F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' )
@classmethod
def UpperCamelCase_ ( cls ):
return F'''`pip install {cls.pip_package or cls.name}`'''
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'optuna'
@staticmethod
def UpperCamelCase_ ( ):
return is_optuna_available()
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ):
return run_hp_search_optuna(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return default_hp_space_optuna(_lowerCAmelCase )
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'ray'
_UpperCamelCase = '\'ray[tune]\''
@staticmethod
def UpperCamelCase_ ( ):
return is_ray_available()
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ):
return run_hp_search_ray(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return default_hp_space_ray(_lowerCAmelCase )
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'sigopt'
@staticmethod
def UpperCamelCase_ ( ):
return is_sigopt_available()
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ):
return run_hp_search_sigopt(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return default_hp_space_sigopt(_lowerCAmelCase )
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'wandb'
@staticmethod
def UpperCamelCase_ ( ):
return is_wandb_available()
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ):
return run_hp_search_wandb(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return default_hp_space_wandb(_lowerCAmelCase )
UpperCamelCase : Union[str, Any] = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def A__ ( ):
lowerCamelCase__ = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(__lowerCAmelCase ) > 0:
lowerCamelCase__ = available_backends[0].name
if len(__lowerCAmelCase ) > 1:
logger.info(
F'''{len(__lowerCAmelCase )} hyperparameter search backends available. Using {name} as the default.''' )
return name
raise RuntimeError(
"""No hyperparameter search backend available.\n"""
+ """\n""".join(
F''' - To install {backend.name} run {backend.pip_install()}'''
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 9 |
'''simple docstring'''
from math import factorial
UpperCamelCase : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)}
def A__ ( __lowerCAmelCase : int ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError("""Parameter number must be int""" )
if number < 0:
raise ValueError("""Parameter number must be greater than or equal to 0""" )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowerCAmelCase ) )
def A__ ( __lowerCAmelCase : int = 60 , __lowerCAmelCase : int = 100_0000 ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError("""Parameters chain_length and number_limit must be int""" )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
"""Parameters chain_length and number_limit must be greater than 0""" )
# the counter for the chains with the exact desired length
lowerCamelCase__ = 0
# the cached sizes of the previous chains
lowerCamelCase__ = {}
for start_chain_element in range(1 , __lowerCAmelCase ):
# The temporary set will contain the elements of the chain
lowerCamelCase__ = set()
lowerCamelCase__ = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
lowerCamelCase__ = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(__lowerCAmelCase )
chain_set_length += 1
lowerCamelCase__ = digit_factorial_sum(__lowerCAmelCase )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
lowerCamelCase__ = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'{solution()}')
| 9 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : str ):
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
'''simple docstring'''
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
UpperCamelCase : Optional[Any] = 'src/diffusers'
# Matches is_xxx_available()
UpperCamelCase : Union[str, Any] = re.compile(r'is\_([a-z_]*)_available\(\)')
# Matches from xxx import bla
UpperCamelCase : Optional[Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
UpperCamelCase : Optional[int] = '\n{0} = None\n'
UpperCamelCase : Optional[Any] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n'
UpperCamelCase : Any = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n'
def A__ ( __lowerCAmelCase : Union[str, Any] ):
lowerCamelCase__ = _re_backend.findall(__lowerCAmelCase )
if len(__lowerCAmelCase ) == 0:
return None
return "_and_".join(__lowerCAmelCase )
def A__ ( ):
with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.readlines()
# Get to the point we do the actual imports for type checking
lowerCamelCase__ = 0
lowerCamelCase__ = {}
# Go through the end of the file
while line_index < len(__lowerCAmelCase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
lowerCamelCase__ = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("""else:""" ):
line_index += 1
line_index += 1
lowerCamelCase__ = []
# Until we unindent, add backend objects to the list
while line_index < len(__lowerCAmelCase ) and len(lines[line_index] ) > 1:
lowerCamelCase__ = lines[line_index]
lowerCamelCase__ = _re_single_line_import.search(__lowerCAmelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__lowerCAmelCase ) > 0:
lowerCamelCase__ = objects
else:
line_index += 1
return backend_specific_objects
def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict ):
if name.isupper():
return DUMMY_CONSTANT.format(__lowerCAmelCase )
elif name.islower():
return DUMMY_FUNCTION.format(__lowerCAmelCase , __lowerCAmelCase )
else:
return DUMMY_CLASS.format(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : Optional[int]=None ):
if backend_specific_objects is None:
lowerCamelCase__ = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
lowerCamelCase__ = {}
for backend, objects in backend_specific_objects.items():
lowerCamelCase__ = """[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]"""
lowerCamelCase__ = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n"""
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__lowerCAmelCase , __lowerCAmelCase ) for o in objects] )
lowerCamelCase__ = dummy_file
return dummy_files
def A__ ( __lowerCAmelCase : List[str]=False ):
lowerCamelCase__ = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
lowerCamelCase__ = {"""torch""": """pt"""}
# Locate actual dummy modules and read their content.
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """utils""" )
lowerCamelCase__ = {
backend: os.path.join(__lowerCAmelCase , F'''dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py''' )
for backend in dummy_files.keys()
}
lowerCamelCase__ = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__lowerCAmelCase ):
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.read()
else:
lowerCamelCase__ = """"""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'''Updating diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py as the main '''
"""__init__ has new objects.""" )
with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"""The main __init__ has objects that are not present in """
F'''diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py. Run `make fix-copies` '''
"""to fix this.""" )
if __name__ == "__main__":
UpperCamelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
UpperCamelCase : Any = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 9 | 1 |
'''simple docstring'''
import os
import posixpath
import uuid
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
is_remote_filesystem,
rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils.py_utils import convert_file_size_to_int
UpperCamelCase : List[str] = datasets.utils.logging.get_logger(__name__)
if TYPE_CHECKING:
import pyspark
@dataclass
class UpperCamelCase__ (datasets.BuilderConfig ):
'''simple docstring'''
_UpperCamelCase = None
def A__ ( __lowerCAmelCase : "pyspark.sql.DataFrame" , __lowerCAmelCase : List[int] , ):
import pyspark
def generate_fn():
lowerCamelCase__ = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) )
for partition_id in partition_order:
lowerCamelCase__ = df_with_partition_id.select("""*""" ).where(F'''part_id = {partition_id}''' ).drop("""part_id""" )
lowerCamelCase__ = partition_df.collect()
lowerCamelCase__ = 0
for row in rows:
yield F'''{partition_id}_{row_id}''', row.asDict()
row_id += 1
return generate_fn
class UpperCamelCase__ (_BaseExamplesIterable ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=None ,):
lowerCamelCase__ = df
lowerCamelCase__ = partition_order or range(self.df.rdd.getNumPartitions() )
lowerCamelCase__ = _generate_iterable_examples(self.df ,self.partition_order )
def __iter__( self ):
yield from self.generate_examples_fn()
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = list(range(self.df.rdd.getNumPartitions() ) )
generator.shuffle(_lowerCAmelCase )
return SparkExamplesIterable(self.df ,partition_order=_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = self.split_shard_indices_by_worker(_lowerCAmelCase ,_lowerCAmelCase )
return SparkExamplesIterable(self.df ,partition_order=_lowerCAmelCase )
@property
def UpperCamelCase_ ( self ):
return len(self.partition_order )
class UpperCamelCase__ (datasets.DatasetBuilder ):
'''simple docstring'''
_UpperCamelCase = SparkConfig
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,**_lowerCAmelCase ,):
import pyspark
lowerCamelCase__ = pyspark.sql.SparkSession.builder.getOrCreate()
lowerCamelCase__ = df
lowerCamelCase__ = working_dir
super().__init__(
cache_dir=_lowerCAmelCase ,config_name=str(self.df.semanticHash() ) ,**_lowerCAmelCase ,)
def UpperCamelCase_ ( self ):
# Returns the path of the created file.
def create_cache_and_write_probe(_lowerCAmelCase ):
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
# already exist.
os.makedirs(self._cache_dir ,exist_ok=_lowerCAmelCase )
lowerCamelCase__ = os.path.join(self._cache_dir ,"""fs_test""" + uuid.uuida().hex )
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
# change the file contents.
open(_lowerCAmelCase ,"""a""" )
return [probe_file]
if self._spark.conf.get("""spark.master""" ,"""""" ).startswith("""local""" ):
return
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
# accessible to the driver.
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
if self._cache_dir:
lowerCamelCase__ = (
self._spark.sparkContext.parallelize(range(1 ) ,1 ).mapPartitions(_lowerCAmelCase ).collect()
)
if os.path.isfile(probe[0] ):
return
raise ValueError(
"""When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" )
def UpperCamelCase_ ( self ):
return datasets.DatasetInfo(features=self.config.features )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return [datasets.SplitGenerator(name=datasets.Split.TRAIN )]
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
import pyspark
def get_arrow_batch_size(_lowerCAmelCase ):
for batch in it:
yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} )
lowerCamelCase__ = self.df.count()
lowerCamelCase__ = df_num_rows if df_num_rows <= 1_00 else 1_00
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
lowerCamelCase__ = (
self.df.limit(_lowerCAmelCase )
.repartition(1 )
.mapInArrow(_lowerCAmelCase ,"""batch_bytes: long""" )
.agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) )
.collect()[0]
.sample_bytes
/ sample_num_rows
)
lowerCamelCase__ = approx_bytes_per_row * df_num_rows
if approx_total_size > max_shard_size:
# Make sure there is at least one row per partition.
lowerCamelCase__ = min(_lowerCAmelCase ,int(approx_total_size / max_shard_size ) )
lowerCamelCase__ = self.df.repartition(_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,):
import pyspark
lowerCamelCase__ = ParquetWriter if file_format == """parquet""" else ArrowWriter
lowerCamelCase__ = os.path.join(self._working_dir ,os.path.basename(_lowerCAmelCase ) ) if self._working_dir else fpath
lowerCamelCase__ = file_format == """parquet"""
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
# pickling the SparkContext.
lowerCamelCase__ = self.config.features
lowerCamelCase__ = self._writer_batch_size
lowerCamelCase__ = self._fs.storage_options
def write_arrow(_lowerCAmelCase ):
# Within the same SparkContext, no two task attempts will share the same attempt ID.
lowerCamelCase__ = pyspark.TaskContext().taskAttemptId()
lowerCamelCase__ = next(_lowerCAmelCase ,_lowerCAmelCase )
if first_batch is None:
# Some partitions might not receive any data.
return pa.RecordBatch.from_arrays(
[[task_id], [0], [0]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,)
lowerCamelCase__ = 0
lowerCamelCase__ = writer_class(
features=_lowerCAmelCase ,path=working_fpath.replace("""SSSSS""" ,F'''{shard_id:05d}''' ).replace("""TTTTT""" ,F'''{task_id:05d}''' ) ,writer_batch_size=_lowerCAmelCase ,storage_options=_lowerCAmelCase ,embed_local_files=_lowerCAmelCase ,)
lowerCamelCase__ = pa.Table.from_batches([first_batch] )
writer.write_table(_lowerCAmelCase )
for batch in it:
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
lowerCamelCase__ , lowerCamelCase__ = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,)
shard_id += 1
lowerCamelCase__ = writer_class(
features=writer._features ,path=working_fpath.replace("""SSSSS""" ,F'''{shard_id:05d}''' ).replace("""TTTTT""" ,F'''{task_id:05d}''' ) ,writer_batch_size=_lowerCAmelCase ,storage_options=_lowerCAmelCase ,embed_local_files=_lowerCAmelCase ,)
lowerCamelCase__ = pa.Table.from_batches([batch] )
writer.write_table(_lowerCAmelCase )
if writer._num_bytes > 0:
lowerCamelCase__ , lowerCamelCase__ = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,)
if working_fpath != fpath:
for file in os.listdir(os.path.dirname(_lowerCAmelCase ) ):
lowerCamelCase__ = os.path.join(os.path.dirname(_lowerCAmelCase ) ,os.path.basename(_lowerCAmelCase ) )
shutil.move(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = (
self.df.mapInArrow(_lowerCAmelCase ,"""task_id: long, num_examples: long, num_bytes: long""" )
.groupBy("""task_id""" )
.agg(
pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) ,pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) ,pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) ,pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) ,)
.collect()
)
for row in stats:
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = "arrow" ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,**_lowerCAmelCase ,):
self._validate_cache_dir()
lowerCamelCase__ = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE )
self._repartition_df_if_needed(_lowerCAmelCase )
lowerCamelCase__ = not is_remote_filesystem(self._fs )
lowerCamelCase__ = os.path.join if is_local else posixpath.join
lowerCamelCase__ = """-TTTTT-SSSSS-of-NNNNN"""
lowerCamelCase__ = F'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}'''
lowerCamelCase__ = path_join(self._output_dir ,_lowerCAmelCase )
lowerCamelCase__ = 0
lowerCamelCase__ = 0
lowerCamelCase__ = 0
lowerCamelCase__ = []
lowerCamelCase__ = []
for task_id, content in self._prepare_split_single(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) = content
if num_bytes > 0:
total_num_examples += num_examples
total_num_bytes += num_bytes
total_shards += num_shards
task_id_and_num_shards.append((task_id, num_shards) )
all_shard_lengths.extend(_lowerCAmelCase )
lowerCamelCase__ = total_num_examples
lowerCamelCase__ = total_num_bytes
# should rename everything at the end
logger.debug(F'''Renaming {total_shards} shards.''' )
if total_shards > 1:
lowerCamelCase__ = all_shard_lengths
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
# pickling error due to pickling the SparkContext.
lowerCamelCase__ = self._fs
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(
_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,):
rename(
_lowerCAmelCase ,fpath.replace("""SSSSS""" ,F'''{shard_id:05d}''' ).replace("""TTTTT""" ,F'''{task_id:05d}''' ) ,fpath.replace("""TTTTT-SSSSS""" ,F'''{global_shard_id:05d}''' ).replace("""NNNNN""" ,F'''{total_shards:05d}''' ) ,)
lowerCamelCase__ = []
lowerCamelCase__ = 0
for i in range(len(_lowerCAmelCase ) ):
lowerCamelCase__ , lowerCamelCase__ = task_id_and_num_shards[i]
for shard_id in range(_lowerCAmelCase ):
args.append([task_id, shard_id, global_shard_id] )
global_shard_id += 1
self._spark.sparkContext.parallelize(_lowerCAmelCase ,len(_lowerCAmelCase ) ).map(lambda _lowerCAmelCase : _rename_shard(*_lowerCAmelCase ) ).collect()
else:
# don't use any pattern
lowerCamelCase__ = 0
lowerCamelCase__ = task_id_and_num_shards[0][0]
self._rename(
fpath.replace("""SSSSS""" ,F'''{shard_id:05d}''' ).replace("""TTTTT""" ,F'''{task_id:05d}''' ) ,fpath.replace(_lowerCAmelCase ,"""""" ) ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,):
return SparkExamplesIterable(self.df )
| 9 |
'''simple docstring'''
import unittest
from transformers import GPTSwaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
UpperCamelCase : List[Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model')
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = GPTSwaTokenizer
_UpperCamelCase = False
_UpperCamelCase = True
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ,eos_token="""<unk>""" ,bos_token="""<unk>""" ,pad_token="""<unk>""" )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = """This is a test"""
lowerCamelCase__ = """This is a test"""
return input_text, output_text
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """<s>"""
lowerCamelCase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) ,_lowerCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,"""<unk>""" )
self.assertEqual(vocab_keys[1] ,"""<s>""" )
self.assertEqual(vocab_keys[-1] ,"""j""" )
self.assertEqual(len(_lowerCAmelCase ) ,20_00 )
def UpperCamelCase_ ( self ):
self.assertEqual(self.get_tokenizer().vocab_size ,20_00 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase )
lowerCamelCase__ = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(_lowerCAmelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,[4_65, 2_87, 2_65, 6_31, 8_42] )
lowerCamelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
# fmt: off
self.assertListEqual(
_lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ,)
# fmt: on
lowerCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase )
self.assertListEqual(
_lowerCAmelCase ,[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] ,)
lowerCamelCase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase )
# fmt: off
self.assertListEqual(
_lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] )
# fmt: on
def UpperCamelCase_ ( self ):
lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase )
lowerCamelCase__ = ["""This is a test""", """I was born in 92000, and this is falsé."""]
lowerCamelCase__ = [
[4_65, 2_87, 2_65, 6_31, 8_42],
[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60],
]
# Test that encode_fast returns the same as tokenize + convert_tokens_to_ids
for text, expected_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ):
self.assertListEqual(tokenizer.encode_fast(_lowerCAmelCase ) ,_lowerCAmelCase )
# Test that decode_fast returns the input text
for text, token_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ):
self.assertEqual(tokenizer.decode_fast(_lowerCAmelCase ) ,_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = [
"""<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""",
"""Hey there, how are you doing this fine day?""",
"""This is a text with a trailing spaces followed by a dot .""",
"""Häj sväjs lillebrör! =)""",
"""Det är inget fel på Mr. Cool""",
]
# fmt: off
lowerCamelCase__ = {"""input_ids""": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowerCAmelCase ,model_name="""AI-Sweden/gpt-sw3-126m""" ,sequences=_lowerCAmelCase ,)
| 9 | 1 |
'''simple docstring'''
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
UpperCamelCase : List[Any] = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8')
UpperCamelCase : List[Any] = subprocess.check_output(F'git diff --name-only {fork_point_sha}'.split()).decode('utf-8').split()
UpperCamelCase : List[Any] = '|'.join(sys.argv[1:])
UpperCamelCase : str = re.compile(rF'^({joined_dirs}).*?\.py$')
UpperCamelCase : Any = [x for x in modified_files if regex.match(x)]
print(' '.join(relevant_modified_files), end='')
| 9 |
'''simple docstring'''
from manim import *
class UpperCamelCase__ (a ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = Rectangle(height=0.5 ,width=0.5 )
lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 )
lowerCamelCase__ = [mem.copy() for i in range(6 )]
lowerCamelCase__ = [mem.copy() for i in range(6 )]
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = VGroup(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = Text("""CPU""" ,font_size=24 )
lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_lowerCAmelCase )
lowerCamelCase__ = [mem.copy() for i in range(1 )]
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = Text("""GPU""" ,font_size=24 )
lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase )
gpu.align_to(_lowerCAmelCase ,_lowerCAmelCase )
gpu.set_x(gpu.get_x() - 1 )
self.add(_lowerCAmelCase )
lowerCamelCase__ = [mem.copy() for i in range(6 )]
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = Text("""Model""" ,font_size=24 )
lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase )
model.move_to([3, -1.0, 0] )
self.play(
Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,)
lowerCamelCase__ = MarkupText(
F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,)
lowerCamelCase__ = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
lowerCamelCase__ = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,)
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(_lowerCAmelCase ,run_time=2.5 ) ,Write(_lowerCAmelCase ) ,Write(_lowerCAmelCase ) )
self.add(_lowerCAmelCase )
lowerCamelCase__ = []
lowerCamelCase__ = []
lowerCamelCase__ = []
for i, rect in enumerate(_lowerCAmelCase ):
lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase ,opacity=0.7 )
cpu_target.move_to(_lowerCAmelCase )
cpu_target.generate_target()
lowerCamelCase__ = 0.46 / 4
lowerCamelCase__ = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_lowerCAmelCase )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target ,direction=_lowerCAmelCase ,buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=_lowerCAmelCase ,buff=0.0 )
cpu_targs.append(_lowerCAmelCase )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCAmelCase ) )
second_animations.append(MoveToTarget(_lowerCAmelCase ,run_time=1.5 ) )
self.play(*_lowerCAmelCase )
self.play(*_lowerCAmelCase )
self.wait()
| 9 | 1 |
'''simple docstring'''
import argparse
from collections import defaultdict
import yaml
UpperCamelCase : Optional[int] = 'docs/source/en/_toctree.yml'
def A__ ( __lowerCAmelCase : Union[str, Any] ):
lowerCamelCase__ = defaultdict(__lowerCAmelCase )
for doc in model_doc:
counts[doc["local"]] += 1
lowerCamelCase__ = [key for key, value in counts.items() if value > 1]
lowerCamelCase__ = []
for duplicate_key in duplicates:
lowerCamelCase__ = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} )
if len(__lowerCAmelCase ) > 1:
raise ValueError(
F'''{duplicate_key} is present several times in the documentation table of content at '''
"""`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """
"""others.""" )
# Only add this once
new_doc.append({"""local""": duplicate_key, """title""": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] )
# Sort
return sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : s["title"].lower() )
def A__ ( __lowerCAmelCase : Dict=False ):
with open(__lowerCAmelCase , encoding="""utf-8""" ) as f:
lowerCamelCase__ = yaml.safe_load(f.read() )
# Get to the API doc
lowerCamelCase__ = 0
while content[api_idx]["title"] != "API":
api_idx += 1
lowerCamelCase__ = content[api_idx]["""sections"""]
# Then to the model doc
lowerCamelCase__ = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
lowerCamelCase__ = api_doc[model_idx]["""sections"""]
lowerCamelCase__ = [(idx, section) for idx, section in enumerate(__lowerCAmelCase ) if """sections""" in section]
lowerCamelCase__ = False
for idx, modality_doc in modalities_docs:
lowerCamelCase__ = modality_doc["""sections"""]
lowerCamelCase__ = clean_model_doc_toc(__lowerCAmelCase )
if old_modality_doc != new_modality_doc:
lowerCamelCase__ = True
if overwrite:
lowerCamelCase__ = new_modality_doc
if diff:
if overwrite:
lowerCamelCase__ = model_doc
lowerCamelCase__ = api_doc
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(yaml.dump(__lowerCAmelCase , allow_unicode=__lowerCAmelCase ) )
else:
raise ValueError(
"""The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" )
if __name__ == "__main__":
UpperCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
UpperCamelCase : str = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 9 |
'''simple docstring'''
UpperCamelCase : Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)]
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000]
number //= 10_0000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
UpperCamelCase : list[bool | None] = [None] * 10_00_00_00
UpperCamelCase : Tuple = True
UpperCamelCase : Optional[int] = False
def A__ ( __lowerCAmelCase : int ):
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
lowerCamelCase__ = chain(next_number(__lowerCAmelCase ) )
lowerCamelCase__ = number_chain
while number < 1000_0000:
lowerCamelCase__ = number_chain
number *= 10
return number_chain
def A__ ( __lowerCAmelCase : int = 1000_0000 ):
for i in range(1 , __lowerCAmelCase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'{solution() = }')
| 9 | 1 |
'''simple docstring'''
# limitations under the License.
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
from .utils import deprecate
deprecate(
'pipelines_utils',
'0.22.0',
'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.',
standard_warn=False,
stacklevel=3,
)
| 9 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : List[str] = {
'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json',
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'donut-swin'
_UpperCamelCase = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self ,_lowerCAmelCase=2_24 ,_lowerCAmelCase=4 ,_lowerCAmelCase=3 ,_lowerCAmelCase=96 ,_lowerCAmelCase=[2, 2, 6, 2] ,_lowerCAmelCase=[3, 6, 12, 24] ,_lowerCAmelCase=7 ,_lowerCAmelCase=4.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=False ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,**_lowerCAmelCase ,):
super().__init__(**_lowerCAmelCase )
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = embed_dim
lowerCamelCase__ = depths
lowerCamelCase__ = len(_lowerCAmelCase )
lowerCamelCase__ = num_heads
lowerCamelCase__ = window_size
lowerCamelCase__ = mlp_ratio
lowerCamelCase__ = qkv_bias
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = drop_path_rate
lowerCamelCase__ = hidden_act
lowerCamelCase__ = use_absolute_embeddings
lowerCamelCase__ = layer_norm_eps
lowerCamelCase__ = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCamelCase__ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
| 9 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""iterations must be defined as integers""" )
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not number >= 1:
raise ValueError(
"""starting number must be
and integer and be more than 0""" )
if not iterations >= 1:
raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" )
lowerCamelCase__ = """"""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(__lowerCAmelCase )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
UpperCamelCase : Optional[Any] = ['small', 'medium', 'large']
UpperCamelCase : Dict = 'lm_head.decoder.weight'
UpperCamelCase : int = 'lm_head.weight'
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ):
lowerCamelCase__ = torch.load(__lowerCAmelCase )
lowerCamelCase__ = d.pop(__lowerCAmelCase )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) )
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
parser.add_argument('--dialogpt_path', default='.', type=str)
UpperCamelCase : Dict = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
UpperCamelCase : Any = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl')
UpperCamelCase : str = F'./DialoGPT-{MODEL}'
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 9 | 1 |
'''simple docstring'''
import numpy
# List of input, output pairs
UpperCamelCase : List[Any] = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
UpperCamelCase : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50))
UpperCamelCase : int = [2, 4, 1, 5]
UpperCamelCase : int = len(train_data)
UpperCamelCase : Dict = 0.009
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : str="train" ):
return calculate_hypothesis_value(__lowerCAmelCase , __lowerCAmelCase ) - output(
__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : Any ):
lowerCamelCase__ = 0
for i in range(len(__lowerCAmelCase ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=m ):
lowerCamelCase__ = 0
for i in range(__lowerCAmelCase ):
if index == -1:
summation_value += _error(__lowerCAmelCase )
else:
summation_value += _error(__lowerCAmelCase ) * train_data[i][0][index]
return summation_value
def A__ ( __lowerCAmelCase : List[Any] ):
lowerCamelCase__ = summation_of_cost_derivative(__lowerCAmelCase , __lowerCAmelCase ) / m
return cost_derivative_value
def A__ ( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
lowerCamelCase__ = 0.00_0002
lowerCamelCase__ = 0
lowerCamelCase__ = 0
while True:
j += 1
lowerCamelCase__ = [0, 0, 0, 0]
for i in range(0 , len(__lowerCAmelCase ) ):
lowerCamelCase__ = get_cost_derivative(i - 1 )
lowerCamelCase__ = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
__lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase , rtol=__lowerCAmelCase , ):
break
lowerCamelCase__ = temp_parameter_vector
print(("""Number of iterations:""", j) )
def A__ ( ):
for i in range(len(__lowerCAmelCase ) ):
print(("""Actual output value:""", output(__lowerCAmelCase , """test""" )) )
print(("""Hypothesis output:""", calculate_hypothesis_value(__lowerCAmelCase , """test""" )) )
if __name__ == "__main__":
run_gradient_descent()
print('\nTesting gradient descent for a linear hypothesis function.\n')
test_gradient_descent()
| 9 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=30 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=10 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=0.6 ,_lowerCAmelCase=None ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = is_training
lowerCamelCase__ = use_labels
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = type_sequence_label_size
lowerCamelCase__ = initializer_range
lowerCamelCase__ = mask_ratio
lowerCamelCase__ = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
lowerCamelCase__ = (image_size // patch_size) ** 2
lowerCamelCase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowerCamelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self ):
return ViTMAEConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = TFViTMAEModel(config=_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
# expected sequence length = num_patches
lowerCamelCase__ = (self.image_size // self.patch_size) ** 2
lowerCamelCase__ = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
lowerCamelCase__ = 1
lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase )
lowerCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
lowerCamelCase__ = self.patch_size**2
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs
lowerCamelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
_UpperCamelCase = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {}
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFViTMAEModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 )
def UpperCamelCase_ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
lowerCamelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase ,tf.keras.layers.Layer ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
# make the mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = copy.deepcopy(self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = outputs_dict[0].numpy()
lowerCamelCase__ = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1E-6 )
def UpperCamelCase_ ( self ):
# make the mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(_lowerCAmelCase ):
lowerCamelCase__ = {}
for k, v in inputs_dict.items():
if tf.is_tensor(_lowerCAmelCase ):
lowerCamelCase__ = v.numpy()
else:
lowerCamelCase__ = np.array(_lowerCAmelCase )
return inputs_np_dict
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = prepare_numpy_arrays(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
# make masks reproducible
np.random.seed(2 )
lowerCamelCase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowerCamelCase__ = tf.constant(_lowerCAmelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
lowerCamelCase__ = tf_noise
super().check_pt_tf_models(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(_lowerCAmelCase )
if module_member_name.endswith("""MainLayer""" )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )]
for module_member in (getattr(_lowerCAmelCase ,_lowerCAmelCase ),)
if isinstance(_lowerCAmelCase ,_lowerCAmelCase )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(_lowerCAmelCase ,"""_keras_serializable""" ,_lowerCAmelCase )
}
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowerCamelCase__ = tf.convert_to_tensor(_lowerCAmelCase )
inputs_dict.update({"""noise""": noise} )
for main_layer_class in tf_main_layer_classes:
lowerCamelCase__ = main_layer_class(_lowerCAmelCase )
lowerCamelCase__ = {
name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
lowerCamelCase__ = tf.keras.Model(_lowerCAmelCase ,outputs=main_layer(_lowerCAmelCase ) )
lowerCamelCase__ = model(_lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCamelCase__ = os.path.join(_lowerCAmelCase ,"""keras_model.h5""" )
model.save(_lowerCAmelCase )
lowerCamelCase__ = tf.keras.models.load_model(
_lowerCAmelCase ,custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(_lowerCAmelCase ,tf.keras.Model )
lowerCamelCase__ = model(_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
lowerCamelCase__ = outputs.last_hidden_state.numpy()
lowerCamelCase__ = 0
else:
lowerCamelCase__ = outputs.logits.numpy()
lowerCamelCase__ = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_lowerCAmelCase ,saved_model=_lowerCAmelCase )
lowerCamelCase__ = model_class.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
lowerCamelCase__ = after_outputs["""last_hidden_state"""].numpy()
lowerCamelCase__ = 0
else:
lowerCamelCase__ = after_outputs["""logits"""].numpy()
lowerCamelCase__ = 0
lowerCamelCase__ = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_lowerCAmelCase ,1E-5 )
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(_lowerCAmelCase )
lowerCamelCase__ = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
lowerCamelCase__ = model_class.from_config(model.config )
lowerCamelCase__ = new_model(_lowerCAmelCase ) # Build model
new_model.set_weights(model.get_weights() )
lowerCamelCase__ = new_model(_lowerCAmelCase ,noise=_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def UpperCamelCase_ ( self ):
pass
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" )
self.assertIsNotNone(_lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
lowerCamelCase__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" )
lowerCamelCase__ = self.default_image_processor
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""tf""" )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
lowerCamelCase__ = ViTMAEConfig()
lowerCamelCase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(1, num_patches) )
# forward pass
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
# verify the logits
lowerCamelCase__ = tf.convert_to_tensor([1, 1_96, 7_68] )
self.assertEqual(outputs.logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = tf.convert_to_tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] ,_lowerCAmelCase ,atol=1E-4 )
| 9 | 1 |
'''simple docstring'''
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
UpperCamelCase : int = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.'
def A__ ( __lowerCAmelCase : List[str]=None ):
if subparsers is not None:
lowerCamelCase__ = subparsers.add_parser("""tpu-config""" , description=_description )
else:
lowerCamelCase__ = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description )
# Core arguments
lowerCamelCase__ = parser.add_argument_group(
"""Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" )
config_args.add_argument(
"""--config_file""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""Path to the config file to use for accelerate.""" , )
config_args.add_argument(
"""--tpu_name""" , default=__lowerCAmelCase , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , )
config_args.add_argument(
"""--tpu_zone""" , default=__lowerCAmelCase , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , )
lowerCamelCase__ = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" )
pod_args.add_argument(
"""--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , )
pod_args.add_argument(
"""--command_file""" , default=__lowerCAmelCase , help="""The path to the file containing the commands to run on the pod on startup.""" , )
pod_args.add_argument(
"""--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , )
pod_args.add_argument(
"""--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , )
pod_args.add_argument(
"""--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , )
pod_args.add_argument(
"""--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" )
if subparsers is not None:
parser.set_defaults(func=__lowerCAmelCase )
return parser
def A__ ( __lowerCAmelCase : Union[str, Any] ):
lowerCamelCase__ = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(__lowerCAmelCase ):
lowerCamelCase__ = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
lowerCamelCase__ = defaults.command_file
if not args.command and defaults.commands is not None:
lowerCamelCase__ = defaults.commands
if not args.tpu_name:
lowerCamelCase__ = defaults.tpu_name
if not args.tpu_zone:
lowerCamelCase__ = defaults.tpu_zone
if args.accelerate_version == "dev":
lowerCamelCase__ = """git+https://github.com/huggingface/accelerate.git"""
elif args.accelerate_version == "latest":
lowerCamelCase__ = """accelerate -U"""
elif isinstance(parse(args.accelerate_version ) , __lowerCAmelCase ):
lowerCamelCase__ = F'''accelerate=={args.accelerate_version}'''
if not args.command_file and not args.command:
raise ValueError("""You must specify either a command file or a command to run on the pod.""" )
if args.command_file:
with open(args.command_file , """r""" ) as f:
lowerCamelCase__ = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , __lowerCAmelCase ):
lowerCamelCase__ = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
lowerCamelCase__ = ["""cd /usr/share"""]
if args.install_accelerate:
new_cmd += [F'''pip install {args.accelerate_version}''']
new_cmd += args.command
lowerCamelCase__ = """; """.join(__lowerCAmelCase )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
lowerCamelCase__ = ["""gcloud"""]
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(F'''Running {" ".join(__lowerCAmelCase )}''' )
return
subprocess.run(__lowerCAmelCase )
print("""Successfully setup pod.""" )
def A__ ( ):
lowerCamelCase__ = tpu_command_parser()
lowerCamelCase__ = parser.parse_args()
tpu_command_launcher(__lowerCAmelCase )
| 9 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=7 ,_lowerCAmelCase=3 ,_lowerCAmelCase=18 ,_lowerCAmelCase=30 ,_lowerCAmelCase=4_00 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,):
lowerCamelCase__ = size if size is not None else {"""shortest_edge""": 18}
lowerCamelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = image_size
lowerCamelCase__ = min_resolution
lowerCamelCase__ = max_resolution
lowerCamelCase__ = do_resize
lowerCamelCase__ = size
lowerCamelCase__ = do_center_crop
lowerCamelCase__ = crop_size
lowerCamelCase__ = do_normalize
lowerCamelCase__ = image_mean
lowerCamelCase__ = image_std
def UpperCamelCase_ ( self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = LevitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
lowerCamelCase__ = LevitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""image_std""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_center_crop""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""size""" ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} )
self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} )
lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,Image.Image )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,numpify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,np.ndarray )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,torchify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,torch.Tensor )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
| 9 | 1 |
'''simple docstring'''
from math import factorial
UpperCamelCase : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)}
def A__ ( __lowerCAmelCase : int ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError("""Parameter number must be int""" )
if number < 0:
raise ValueError("""Parameter number must be greater than or equal to 0""" )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowerCAmelCase ) )
def A__ ( __lowerCAmelCase : int = 60 , __lowerCAmelCase : int = 100_0000 ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError("""Parameters chain_length and number_limit must be int""" )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
"""Parameters chain_length and number_limit must be greater than 0""" )
# the counter for the chains with the exact desired length
lowerCamelCase__ = 0
# the cached sizes of the previous chains
lowerCamelCase__ = {}
for start_chain_element in range(1 , __lowerCAmelCase ):
# The temporary set will contain the elements of the chain
lowerCamelCase__ = set()
lowerCamelCase__ = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
lowerCamelCase__ = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(__lowerCAmelCase )
chain_set_length += 1
lowerCamelCase__ = digit_factorial_sum(__lowerCAmelCase )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
lowerCamelCase__ = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'{solution()}')
| 9 |
'''simple docstring'''
import numpy
# List of input, output pairs
UpperCamelCase : List[Any] = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
UpperCamelCase : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50))
UpperCamelCase : int = [2, 4, 1, 5]
UpperCamelCase : int = len(train_data)
UpperCamelCase : Dict = 0.009
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : str="train" ):
return calculate_hypothesis_value(__lowerCAmelCase , __lowerCAmelCase ) - output(
__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : Any ):
lowerCamelCase__ = 0
for i in range(len(__lowerCAmelCase ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=m ):
lowerCamelCase__ = 0
for i in range(__lowerCAmelCase ):
if index == -1:
summation_value += _error(__lowerCAmelCase )
else:
summation_value += _error(__lowerCAmelCase ) * train_data[i][0][index]
return summation_value
def A__ ( __lowerCAmelCase : List[Any] ):
lowerCamelCase__ = summation_of_cost_derivative(__lowerCAmelCase , __lowerCAmelCase ) / m
return cost_derivative_value
def A__ ( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
lowerCamelCase__ = 0.00_0002
lowerCamelCase__ = 0
lowerCamelCase__ = 0
while True:
j += 1
lowerCamelCase__ = [0, 0, 0, 0]
for i in range(0 , len(__lowerCAmelCase ) ):
lowerCamelCase__ = get_cost_derivative(i - 1 )
lowerCamelCase__ = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
__lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase , rtol=__lowerCAmelCase , ):
break
lowerCamelCase__ = temp_parameter_vector
print(("""Number of iterations:""", j) )
def A__ ( ):
for i in range(len(__lowerCAmelCase ) ):
print(("""Actual output value:""", output(__lowerCAmelCase , """test""" )) )
print(("""Hypothesis output:""", calculate_hypothesis_value(__lowerCAmelCase , """test""" )) )
if __name__ == "__main__":
run_gradient_descent()
print('\nTesting gradient descent for a linear hypothesis function.\n')
test_gradient_descent()
| 9 | 1 |
'''simple docstring'''
import functools
import gc
import inspect
import torch
from .imports import is_npu_available, is_xpu_available
def A__ ( *__lowerCAmelCase : int ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowerCamelCase__ = list(__lowerCAmelCase )
for i in range(len(__lowerCAmelCase ) ):
lowerCamelCase__ = None
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
return objects
def A__ ( __lowerCAmelCase : Exception ):
lowerCamelCase__ = [
"""CUDA out of memory.""", # CUDA OOM
"""cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU
"""DefaultCPUAllocator: can't allocate memory""", # CPU OOM
]
if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(exception.args ) == 1:
return any(err in exception.args[0] for err in _statements )
return False
def A__ ( __lowerCAmelCase : callable = None , __lowerCAmelCase : int = 128 ):
if function is None:
return functools.partial(__lowerCAmelCase , starting_batch_size=__lowerCAmelCase )
lowerCamelCase__ = starting_batch_size
def decorator(*__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : int ):
nonlocal batch_size
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
lowerCamelCase__ = list(inspect.signature(__lowerCAmelCase ).parameters.keys() )
# Guard against user error
if len(__lowerCAmelCase ) < (len(__lowerCAmelCase ) + 1):
lowerCamelCase__ = """, """.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] )
raise TypeError(
F'''Batch size was passed into `{function.__name__}` as the first argument when called.'''
F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' )
while True:
if batch_size == 0:
raise RuntimeError("""No executable batch size found, reached zero.""" )
try:
return function(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase )
except Exception as e:
if should_reduce_batch_size(__lowerCAmelCase ):
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
batch_size //= 2
else:
raise
return decorator
| 9 |
'''simple docstring'''
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ):
lowerCamelCase__ = OmegaConf.load(__lowerCAmelCase )
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""model"""]
lowerCamelCase__ = list(state_dict.keys() )
# extract state_dict for VQVAE
lowerCamelCase__ = {}
lowerCamelCase__ = """first_stage_model."""
for key in keys:
if key.startswith(__lowerCAmelCase ):
lowerCamelCase__ = state_dict[key]
# extract state_dict for UNetLDM
lowerCamelCase__ = {}
lowerCamelCase__ = """model.diffusion_model."""
for key in keys:
if key.startswith(__lowerCAmelCase ):
lowerCamelCase__ = state_dict[key]
lowerCamelCase__ = config.model.params.first_stage_config.params
lowerCamelCase__ = config.model.params.unet_config.params
lowerCamelCase__ = VQModel(**__lowerCAmelCase ).eval()
vqvae.load_state_dict(__lowerCAmelCase )
lowerCamelCase__ = UNetLDMModel(**__lowerCAmelCase ).eval()
unet.load_state_dict(__lowerCAmelCase )
lowerCamelCase__ = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__lowerCAmelCase , )
lowerCamelCase__ = LDMPipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
pipeline.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', type=str, required=True)
parser.add_argument('--config_path', type=str, required=True)
parser.add_argument('--output_path', type=str, required=True)
UpperCamelCase : List[Any] = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 9 | 1 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ):
if len(__lowerCAmelCase ) != len(__lowerCAmelCase ):
raise ValueError("""String lengths must match!""" )
lowerCamelCase__ = 0
for chara, chara in zip(__lowerCAmelCase , __lowerCAmelCase ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 9 |
'''simple docstring'''
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
UpperCamelCase : str = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase]
UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS}
UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"]
def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : tuple[int, ...] ):
lowerCamelCase__ = ""
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = 42
for keychar, cipherchar in zip(cycle(__lowerCAmelCase ) , __lowerCAmelCase ):
lowerCamelCase__ = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(__lowerCAmelCase )
return decoded
def A__ ( __lowerCAmelCase : list[int] ):
lowerCamelCase__ = []
for key in product(__lowerCAmelCase , repeat=3 ):
lowerCamelCase__ = try_key(__lowerCAmelCase , __lowerCAmelCase )
if encoded is not None:
possibles.append(__lowerCAmelCase )
return possibles
def A__ ( __lowerCAmelCase : list[str] , __lowerCAmelCase : str ):
return [possible for possible in possibles if common_word in possible.lower()]
def A__ ( __lowerCAmelCase : str = "p059_cipher.txt" ):
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = Path(__lowerCAmelCase ).parent.joinpath(__lowerCAmelCase ).read_text(encoding="""utf-8""" )
lowerCamelCase__ = [int(__lowerCAmelCase ) for number in data.strip().split(""",""" )]
lowerCamelCase__ = filter_valid_chars(__lowerCAmelCase )
for common_word in COMMON_WORDS:
lowerCamelCase__ = filter_common_word(__lowerCAmelCase , __lowerCAmelCase )
if len(__lowerCAmelCase ) == 1:
break
lowerCamelCase__ = possibles[0]
return sum(ord(__lowerCAmelCase ) for char in decoded_text )
if __name__ == "__main__":
print(F'{solution() = }')
| 9 | 1 |
'''simple docstring'''
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,):
lowerCamelCase__ = parent
lowerCamelCase__ = 13
lowerCamelCase__ = 7
lowerCamelCase__ = 30
lowerCamelCase__ = self.seq_length + self.mem_len
lowerCamelCase__ = 15
lowerCamelCase__ = True
lowerCamelCase__ = True
lowerCamelCase__ = 99
lowerCamelCase__ = [10, 50, 80]
lowerCamelCase__ = 32
lowerCamelCase__ = 32
lowerCamelCase__ = 4
lowerCamelCase__ = 8
lowerCamelCase__ = 1_28
lowerCamelCase__ = 2
lowerCamelCase__ = 2
lowerCamelCase__ = None
lowerCamelCase__ = 1
lowerCamelCase__ = 0
lowerCamelCase__ = 3
lowerCamelCase__ = self.vocab_size - 1
lowerCamelCase__ = 0.01
def UpperCamelCase_ ( self ):
lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowerCamelCase__ = TransfoXLConfig(
vocab_size=self.vocab_size ,mem_len=self.mem_len ,clamp_len=self.clamp_len ,cutoffs=self.cutoffs ,d_model=self.hidden_size ,d_embed=self.d_embed ,n_head=self.num_attention_heads ,d_head=self.d_head ,d_inner=self.d_inner ,div_val=self.div_val ,n_layer=self.num_hidden_layers ,eos_token_id=self.eos_token_id ,pad_token_id=self.vocab_size - 1 ,init_range=self.init_range ,num_labels=self.num_labels ,)
return (config, input_ids_a, input_ids_a, lm_labels)
def UpperCamelCase_ ( self ):
random.seed(self.seed )
tf.random.set_seed(self.seed )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = TFTransfoXLModel(_lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ = model(_lowerCAmelCase ).to_tuple()
lowerCamelCase__ = {"""input_ids""": input_ids_a, """mems""": mems_a}
lowerCamelCase__ , lowerCamelCase__ = model(_lowerCAmelCase ).to_tuple()
self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,)
self.parent.assertListEqual(
[mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = TFTransfoXLLMHeadModel(_lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ = model(_lowerCAmelCase ).to_tuple()
lowerCamelCase__ = {"""input_ids""": input_ids_a, """labels""": lm_labels}
lowerCamelCase__ , lowerCamelCase__ = model(_lowerCAmelCase ).to_tuple()
lowerCamelCase__ , lowerCamelCase__ = model([input_ids_a, mems_a] ).to_tuple()
lowerCamelCase__ = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels}
lowerCamelCase__ , lowerCamelCase__ = model(_lowerCAmelCase ).to_tuple()
self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,)
self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = TFTransfoXLForSequenceClassification(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs
lowerCamelCase__ = {"""input_ids""": input_ids_a}
return config, inputs_dict
@require_tf
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
_UpperCamelCase = () if is_tf_available() else ()
_UpperCamelCase = (
{
'feature-extraction': TFTransfoXLModel,
'text-classification': TFTransfoXLForSequenceClassification,
'text-generation': TFTransfoXLLMHeadModel,
'zero-shot': TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFTransfoXLModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,d_embed=37 )
def UpperCamelCase_ ( self ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self ):
self.model_tester.set_seed()
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
self.model_tester.set_seed()
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer )
if model_class in list_other_models_with_output_ebd:
lowerCamelCase__ = model.get_output_embeddings()
assert isinstance(_lowerCAmelCase ,tf.keras.layers.Layer )
lowerCamelCase__ = model.get_bias()
assert name is None
else:
lowerCamelCase__ = model.get_output_embeddings()
assert x is None
lowerCamelCase__ = model.get_bias()
assert name is None
def UpperCamelCase_ ( self ):
# TODO JP: Make TransfoXL XLA compliant
pass
@slow
def UpperCamelCase_ ( self ):
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ = TFTransfoXLModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
@unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" )
def UpperCamelCase_ ( self ):
pass
@require_tf
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@unittest.skip("""Skip test until #12651 is resolved.""" )
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" )
# fmt: off
lowerCamelCase__ = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] ,dtype=tf.intaa ) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
lowerCamelCase__ = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
lowerCamelCase__ = model.generate(_lowerCAmelCase ,max_length=2_00 ,do_sample=_lowerCAmelCase )
self.assertListEqual(output_ids[0].numpy().tolist() ,_lowerCAmelCase )
| 9 |
'''simple docstring'''
import argparse
import struct
import unittest
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ):
lowerCamelCase__ = data
# Initialize hash values
lowerCamelCase__ = [
0x6a_09_e6_67,
0xbb_67_ae_85,
0x3c_6e_f3_72,
0xa5_4f_f5_3a,
0x51_0e_52_7f,
0x9b_05_68_8c,
0x1f_83_d9_ab,
0x5b_e0_cd_19,
]
# Initialize round constants
lowerCamelCase__ = [
0x42_8a_2f_98,
0x71_37_44_91,
0xb5_c0_fb_cf,
0xe9_b5_db_a5,
0x39_56_c2_5b,
0x59_f1_11_f1,
0x92_3f_82_a4,
0xab_1c_5e_d5,
0xd8_07_aa_98,
0x12_83_5b_01,
0x24_31_85_be,
0x55_0c_7d_c3,
0x72_be_5d_74,
0x80_de_b1_fe,
0x9b_dc_06_a7,
0xc1_9b_f1_74,
0xe4_9b_69_c1,
0xef_be_47_86,
0x0f_c1_9d_c6,
0x24_0c_a1_cc,
0x2d_e9_2c_6f,
0x4a_74_84_aa,
0x5c_b0_a9_dc,
0x76_f9_88_da,
0x98_3e_51_52,
0xa8_31_c6_6d,
0xb0_03_27_c8,
0xbf_59_7f_c7,
0xc6_e0_0b_f3,
0xd5_a7_91_47,
0x06_ca_63_51,
0x14_29_29_67,
0x27_b7_0a_85,
0x2e_1b_21_38,
0x4d_2c_6d_fc,
0x53_38_0d_13,
0x65_0a_73_54,
0x76_6a_0a_bb,
0x81_c2_c9_2e,
0x92_72_2c_85,
0xa2_bf_e8_a1,
0xa8_1a_66_4b,
0xc2_4b_8b_70,
0xc7_6c_51_a3,
0xd1_92_e8_19,
0xd6_99_06_24,
0xf4_0e_35_85,
0x10_6a_a0_70,
0x19_a4_c1_16,
0x1e_37_6c_08,
0x27_48_77_4c,
0x34_b0_bc_b5,
0x39_1c_0c_b3,
0x4e_d8_aa_4a,
0x5b_9c_ca_4f,
0x68_2e_6f_f3,
0x74_8f_82_ee,
0x78_a5_63_6f,
0x84_c8_78_14,
0x8c_c7_02_08,
0x90_be_ff_fa,
0xa4_50_6c_eb,
0xbe_f9_a3_f7,
0xc6_71_78_f2,
]
lowerCamelCase__ = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def UpperCamelCase_ ( _lowerCAmelCase ):
lowerCamelCase__ = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowerCAmelCase ) + 8) % 64))
lowerCamelCase__ = struct.pack(""">Q""" ,(len(_lowerCAmelCase ) * 8) )
return data + padding + big_endian_integer
def UpperCamelCase_ ( self ):
# Convert into blocks of 64 bytes
lowerCamelCase__ = [
self.preprocessed_data[x : x + 64]
for x in range(0 ,len(self.preprocessed_data ) ,64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
lowerCamelCase__ = list(struct.unpack(""">16L""" ,_lowerCAmelCase ) )
# add 48 0-ed integers
words += [0] * 48
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.hashes
for index in range(0 ,64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
lowerCamelCase__ = (
self.ror(words[index - 15] ,7 )
^ self.ror(words[index - 15] ,18 )
^ (words[index - 15] >> 3)
)
lowerCamelCase__ = (
self.ror(words[index - 2] ,17 )
^ self.ror(words[index - 2] ,19 )
^ (words[index - 2] >> 10)
)
lowerCamelCase__ = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_00_00_00_00
# Compression
lowerCamelCase__ = self.ror(_lowerCAmelCase ,6 ) ^ self.ror(_lowerCAmelCase ,11 ) ^ self.ror(_lowerCAmelCase ,25 )
lowerCamelCase__ = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g)
lowerCamelCase__ = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_00_00_00_00
lowerCamelCase__ = self.ror(_lowerCAmelCase ,2 ) ^ self.ror(_lowerCAmelCase ,13 ) ^ self.ror(_lowerCAmelCase ,22 )
lowerCamelCase__ = (a & b) ^ (a & c) ^ (b & c)
lowerCamelCase__ = (sa + maj) % 0x1_00_00_00_00
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = (
g,
f,
e,
((d + tempa) % 0x1_00_00_00_00),
c,
b,
a,
((tempa + tempa) % 0x1_00_00_00_00),
)
lowerCamelCase__ = [a, b, c, d, e, f, g, h]
# Modify final values
lowerCamelCase__ = [
((element + mutated_hash_values[index]) % 0x1_00_00_00_00)
for index, element in enumerate(self.hashes )
]
lowerCamelCase__ = """""".join([hex(_lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations)
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
import hashlib
lowerCamelCase__ = bytes("""Test String""" ,"""utf-8""" )
self.assertEqual(SHAaaa(_lowerCAmelCase ).hash ,hashlib.shaaaa(_lowerCAmelCase ).hexdigest() )
def A__ ( ):
import doctest
doctest.testmod()
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument(
"""-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , )
parser.add_argument(
"""-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" )
lowerCamelCase__ = parser.parse_args()
lowerCamelCase__ = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , """rb""" ) as f:
lowerCamelCase__ = f.read()
else:
lowerCamelCase__ = bytes(__lowerCAmelCase , """utf-8""" )
print(SHAaaa(__lowerCAmelCase ).hash )
if __name__ == "__main__":
main()
| 9 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=64 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=32 ,_lowerCAmelCase=5 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=10 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=[1, 16, 4, 4] ,_lowerCAmelCase=None ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = is_training
lowerCamelCase__ = use_labels
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = type_sequence_label_size
lowerCamelCase__ = initializer_range
lowerCamelCase__ = scope
lowerCamelCase__ = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
lowerCamelCase__ = (self.image_size // 32) ** 2
lowerCamelCase__ = num_patches + 1
def UpperCamelCase_ ( self ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowerCamelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self ):
lowerCamelCase__ = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [4, 8, 16, 32],
"""num_groups""": 2,
}
return ViTHybridConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,backbone_featmap_shape=self.backbone_featmap_shape ,backbone_config=_lowerCAmelCase ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = ViTHybridModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = self.type_sequence_label_size
lowerCamelCase__ = ViTHybridForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs
lowerCamelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
_UpperCamelCase = (
{'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification}
if is_torch_available()
else {}
)
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = ViTHybridModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 )
def UpperCamelCase_ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViT does not use inputs_embeds""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
lowerCamelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase ,nn.Linear ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = _config_zero_init(_lowerCAmelCase )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(config=_lowerCAmelCase )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
lowerCamelCase__ = [F'''{name}.{key}''' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,)
@slow
def UpperCamelCase_ ( self ):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ = ViTHybridModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
_lowerCAmelCase )
lowerCamelCase__ = self.default_image_processor
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
lowerCamelCase__ = model(**_lowerCAmelCase )
# verify the logits
lowerCamelCase__ = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_lowerCAmelCase ,atol=1E-4 ) )
@slow
@require_accelerate
def UpperCamelCase_ ( self ):
lowerCamelCase__ = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" )
lowerCamelCase__ = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" ,device_map="""auto""" )
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" )
lowerCamelCase__ = model(**_lowerCAmelCase )
lowerCamelCase__ = outputs.logits
# model predicts one of the 1000 ImageNet classes
lowerCamelCase__ = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] ,"""tabby, tabby cat""" )
| 9 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def A__ ( __lowerCAmelCase : Union[str, Any] ):
lowerCamelCase__ = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""encoder.embed_positions._float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : Tuple ):
lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape
lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase )
lowerCamelCase__ = emb.weight.data
return lin_layer
def A__ ( __lowerCAmelCase : Dict ):
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )
lowerCamelCase__ = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""]
lowerCamelCase__ = mam_aaa["""model"""]
remove_ignore_keys_(__lowerCAmelCase )
lowerCamelCase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0]
lowerCamelCase__ = MaMaaaConfig(
vocab_size=__lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , )
lowerCamelCase__ = state_dict["""decoder.embed_tokens.weight"""]
lowerCamelCase__ = MaMaaaForConditionalGeneration(__lowerCAmelCase )
model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
lowerCamelCase__ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
UpperCamelCase : Tuple = parser.parse_args()
UpperCamelCase : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 9 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=7 ,_lowerCAmelCase=3 ,_lowerCAmelCase=18 ,_lowerCAmelCase=30 ,_lowerCAmelCase=4_00 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=[0.4814_5466, 0.457_8275, 0.4082_1073] ,_lowerCAmelCase=[0.2686_2954, 0.2613_0258, 0.2757_7711] ,_lowerCAmelCase=True ,):
lowerCamelCase__ = size if size is not None else {"""height""": 2_24, """width""": 2_24}
lowerCamelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = image_size
lowerCamelCase__ = min_resolution
lowerCamelCase__ = max_resolution
lowerCamelCase__ = do_resize
lowerCamelCase__ = size
lowerCamelCase__ = do_center_crop
lowerCamelCase__ = crop_size
lowerCamelCase__ = do_normalize
lowerCamelCase__ = image_mean
lowerCamelCase__ = image_std
lowerCamelCase__ = do_convert_rgb
def UpperCamelCase_ ( self ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def UpperCamelCase_ ( self ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=False ):
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
lowerCamelCase__ = []
for i in range(self.batch_size ):
image_inputs.append(
np.random.randint(
2_55 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) )
else:
lowerCamelCase__ = []
for i in range(self.batch_size ):
lowerCamelCase__ , lowerCamelCase__ = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 )
image_inputs.append(np.random.randint(2_55 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) )
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs]
if torchify:
lowerCamelCase__ = [torch.from_numpy(_lowerCAmelCase ) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
lowerCamelCase__ = ChineseCLIPImageProcessingTester(self ,do_center_crop=_lowerCAmelCase )
@property
def UpperCamelCase_ ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""size""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_center_crop""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""center_crop""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""image_std""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_convert_rgb""" ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""height""": 2_24, """width""": 2_24} )
self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} )
lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase__ = self.image_processor_tester.prepare_inputs(equal_resolution=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,Image.Image )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase__ = self.image_processor_tester.prepare_inputs(equal_resolution=_lowerCAmelCase ,numpify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,np.ndarray )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase__ = self.image_processor_tester.prepare_inputs(equal_resolution=_lowerCAmelCase ,torchify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,torch.Tensor )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
@require_torch
@require_vision
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
lowerCamelCase__ = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=_lowerCAmelCase )
lowerCamelCase__ = 3
@property
def UpperCamelCase_ ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""size""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_center_crop""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""center_crop""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""image_std""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_convert_rgb""" ) )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase__ = self.image_processor_tester.prepare_inputs(equal_resolution=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,Image.Image )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
| 9 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = tempfile.mkdtemp()
lowerCamelCase__ = BlipImageProcessor()
lowerCamelCase__ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
lowerCamelCase__ = BlipProcessor(_lowerCAmelCase ,_lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).tokenizer
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).image_processor
def UpperCamelCase_ ( self ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self ):
lowerCamelCase__ = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" )
lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 )
lowerCamelCase__ = BlipProcessor.from_pretrained(
self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = self.prepare_image_inputs()
lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" )
lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = processor(text=_lowerCAmelCase )
lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = self.prepare_image_inputs()
lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase )
self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(_lowerCAmelCase ):
processor()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase )
lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = self.prepare_image_inputs()
lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
| 9 | 1 |
'''simple docstring'''
import cva
import numpy as np
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ):
if k in (0.04, 0.06):
lowerCamelCase__ = k
lowerCamelCase__ = window_size
else:
raise ValueError("""invalid k value""" )
def __str__( self ):
return str(self.k )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = cva.imread(_lowerCAmelCase ,0 )
lowerCamelCase__ , lowerCamelCase__ = img.shape
lowerCamelCase__ = []
lowerCamelCase__ = img.copy()
lowerCamelCase__ = cva.cvtColor(_lowerCAmelCase ,cva.COLOR_GRAY2RGB )
lowerCamelCase__ , lowerCamelCase__ = np.gradient(_lowerCAmelCase )
lowerCamelCase__ = dx**2
lowerCamelCase__ = dy**2
lowerCamelCase__ = dx * dy
lowerCamelCase__ = 0.04
lowerCamelCase__ = self.window_size // 2
for y in range(_lowerCAmelCase ,h - offset ):
for x in range(_lowerCAmelCase ,w - offset ):
lowerCamelCase__ = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ = (wxx * wyy) - (wxy**2)
lowerCamelCase__ = wxx + wyy
lowerCamelCase__ = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) ,0 )
color_img.itemset((y, x, 1) ,0 )
color_img.itemset((y, x, 2) ,2_55 )
return color_img, corner_list
if __name__ == "__main__":
UpperCamelCase : Optional[Any] = HarrisCorner(0.04, 3)
UpperCamelCase , UpperCamelCase : Tuple = edge_detect.detect('path_to_image')
cva.imwrite('detect.png', color_img)
| 9 |
'''simple docstring'''
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True)
os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True)
os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True)
def A__ ( __lowerCAmelCase : Union[str, Any] ):
if hor == 128:
lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
lowerCamelCase__ = (32, 128, 256)
lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""")
elif hor == 32:
lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
lowerCamelCase__ = (32, 64, 128, 256)
lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""")
lowerCamelCase__ = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' )
lowerCamelCase__ = model.state_dict()
lowerCamelCase__ = {
"""down_block_types""": down_block_types,
"""block_out_channels""": block_out_channels,
"""up_block_types""": up_block_types,
"""layers_per_block""": 1,
"""use_timestep_embedding""": True,
"""out_block_type""": """OutConv1DBlock""",
"""norm_num_groups""": 8,
"""downsample_each_block""": False,
"""in_channels""": 14,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""sample_size""": 6_5536,
"""mid_block_type""": """MidResTemporalBlock1D""",
"""act_fn""": """mish""",
}
lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase )
print(F'''length of state dict: {len(state_dict.keys() )}''' )
print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' )
lowerCamelCase__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
hf_value_function.load_state_dict(__lowerCAmelCase )
torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' )
with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = {
"""in_channels""": 14,
"""down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""),
"""up_block_types""": (),
"""out_block_type""": """ValueFunction""",
"""mid_block_type""": """ValueFunctionMidBlock1D""",
"""block_out_channels""": (32, 64, 128, 256),
"""layers_per_block""": 1,
"""downsample_each_block""": True,
"""sample_size""": 6_5536,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""use_timestep_embedding""": True,
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""norm_num_groups""": 8,
"""act_fn""": """mish""",
}
lowerCamelCase__ = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" )
lowerCamelCase__ = model
lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase )
print(F'''length of state dict: {len(state_dict.keys() )}''' )
print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' )
lowerCamelCase__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
lowerCamelCase__ = state_dict.pop(__lowerCAmelCase )
hf_value_function.load_state_dict(__lowerCAmelCase )
torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" )
with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
unet(32)
# unet(128)
value_function()
| 9 | 1 |
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
UpperCamelCase : Any = logging.getLogger(__name__)
class UpperCamelCase__ (_lowerCamelCase ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase=-1 ):
# in NER datasets, the last column is usually reserved for NER label
lowerCamelCase__ = label_idx
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
if isinstance(A__ ,A__ ):
lowerCamelCase__ = mode.value
lowerCamelCase__ = os.path.join(A__ ,F'''{mode}.txt''' )
lowerCamelCase__ = 1
lowerCamelCase__ = []
with open(A__ ,encoding="""utf-8""" ) as f:
lowerCamelCase__ = []
lowerCamelCase__ = []
for line in f:
if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=F'''{mode}-{guid_index}''' ,words=A__ ,labels=A__ ) )
guid_index += 1
lowerCamelCase__ = []
lowerCamelCase__ = []
else:
lowerCamelCase__ = line.split(""" """ )
words.append(splits[0] )
if len(A__ ) > 1:
labels.append(splits[self.label_idx].replace("""\n""" ,"""""" ) )
else:
# Examples could have no label for mode = "test"
labels.append("""O""" )
if words:
examples.append(InputExample(guid=F'''{mode}-{guid_index}''' ,words=A__ ,labels=A__ ) )
return examples
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = 0
for line in test_input_reader:
if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n":
writer.write(A__ )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
lowerCamelCase__ = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n"""
writer.write(A__ )
else:
logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" ,line.split()[0] )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
if path:
with open(A__ ,"""r""" ) as f:
lowerCamelCase__ = f.read().splitlines()
if "O" not in labels:
lowerCamelCase__ = ["""O"""] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class UpperCamelCase__ (_lowerCamelCase ):
'''simple docstring'''
def __init__( self ):
# in CONLL2003 dataset chunk column is second-to-last
super().__init__(label_idx=-2 )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
if path:
with open(A__ ,"""r""" ) as f:
lowerCamelCase__ = f.read().splitlines()
if "O" not in labels:
lowerCamelCase__ = ["""O"""] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class UpperCamelCase__ (_lowerCamelCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
if isinstance(A__ ,A__ ):
lowerCamelCase__ = mode.value
lowerCamelCase__ = os.path.join(A__ ,F'''{mode}.txt''' )
lowerCamelCase__ = 1
lowerCamelCase__ = []
with open(A__ ,encoding="""utf-8""" ) as f:
for sentence in parse_incr(A__ ):
lowerCamelCase__ = []
lowerCamelCase__ = []
for token in sentence:
words.append(token["""form"""] )
labels.append(token["""upos"""] )
assert len(A__ ) == len(A__ )
if words:
examples.append(InputExample(guid=F'''{mode}-{guid_index}''' ,words=A__ ,labels=A__ ) )
guid_index += 1
return examples
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = 0
for sentence in parse_incr(A__ ):
lowerCamelCase__ = preds_list[example_id]
lowerCamelCase__ = """"""
for token in sentence:
out += F'''{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) '''
out += "\n"
writer.write(A__ )
example_id += 1
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
if path:
with open(A__ ,"""r""" ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 700 |
'''simple docstring'''
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class UpperCamelCase__ (a ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase = "▁" ,_lowerCAmelCase = True ,_lowerCAmelCase = "<unk>" ,_lowerCAmelCase = "</s>" ,_lowerCAmelCase = "<pad>" ,):
lowerCamelCase__ = {
"""pad""": {"""id""": 0, """token""": pad_token},
"""eos""": {"""id""": 1, """token""": eos_token},
"""unk""": {"""id""": 2, """token""": unk_token},
}
lowerCamelCase__ = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
lowerCamelCase__ = token_dict["""token"""]
lowerCamelCase__ = Tokenizer(Unigram() )
lowerCamelCase__ = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(""" {2,}""" ) ,""" """ ),
normalizers.Lowercase(),
] )
lowerCamelCase__ = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ),
pre_tokenizers.Digits(individual_digits=_lowerCAmelCase ),
pre_tokenizers.Punctuation(),
] )
lowerCamelCase__ = decoders.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase )
lowerCamelCase__ = TemplateProcessing(
single=F'''$A {self.special_tokens["eos"]["token"]}''' ,special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] ,)
lowerCamelCase__ = {
"""model""": """SentencePieceUnigram""",
"""replacement""": replacement,
"""add_prefix_space""": add_prefix_space,
}
super().__init__(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,):
lowerCamelCase__ = trainers.UnigramTrainer(
vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,)
if isinstance(_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = [files]
self._tokenizer.train(_lowerCAmelCase ,trainer=_lowerCAmelCase )
self.add_unk_id()
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,):
lowerCamelCase__ = trainers.UnigramTrainer(
vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,)
self._tokenizer.train_from_iterator(_lowerCAmelCase ,trainer=_lowerCAmelCase )
self.add_unk_id()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = json.loads(self._tokenizer.to_str() )
lowerCamelCase__ = self.special_tokens["""unk"""]["""id"""]
lowerCamelCase__ = Tokenizer.from_str(json.dumps(_lowerCAmelCase ) )
| 9 | 0 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 10
def UpperCamelCase_ ( self ):
lowerCamelCase__ = [1, 2, 3, 4]
lowerCamelCase__ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(lowerCAmelCase__ ,self.block_size ,0 ) ,lowerCAmelCase__ )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
lowerCamelCase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(lowerCAmelCase__ ,self.block_size ,0 ) ,lowerCAmelCase__ )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
lowerCamelCase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(lowerCAmelCase__ ,self.block_size ,0 ) ,lowerCAmelCase__ )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this."""
lowerCamelCase__ , lowerCamelCase__ = process_story(lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ ,[] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """"""
lowerCamelCase__ , lowerCamelCase__ = process_story(lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ ,[] )
self.assertEqual(lowerCAmelCase__ ,[] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = (
"""It was the year of Our Lord one thousand seven hundred and """
"""seventy-five\n\nSpiritual revelations were conceded to England """
"""at that favoured period, as at this.\n@highlight\n\nIt was the best of times"""
)
lowerCamelCase__ , lowerCamelCase__ = process_story(lowerCAmelCase__ )
lowerCamelCase__ = [
"""It was the year of Our Lord one thousand seven hundred and seventy-five.""",
"""Spiritual revelations were conceded to England at that favoured period, as at this.""",
]
self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase__ = ["""It was the best of times."""]
self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = torch.tensor([1, 2, 3, 4] )
lowerCamelCase__ = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(lowerCAmelCase__ ,0 ).numpy() ,expected.numpy() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
lowerCamelCase__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(lowerCAmelCase__ ,23 ).numpy() ,expected.numpy() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
lowerCamelCase__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(lowerCAmelCase__ ,1 ).numpy() ,expected.numpy() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = 1_01
lowerCamelCase__ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_01, 5, 6], [1, 1_01, 3, 4, 1_01, 6]] )
lowerCamelCase__ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
lowerCamelCase__ = compute_token_type_ids(lowerCAmelCase__ ,lowerCAmelCase__ )
np.testing.assert_array_equal(lowerCAmelCase__ ,lowerCAmelCase__ )
| 701 |
'''simple docstring'''
from __future__ import annotations
import math
def A__ ( __lowerCAmelCase : int ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
UpperCamelCase : str = [num for num in range(3, 10_00_01, 2) if not is_prime(num)]
def A__ ( __lowerCAmelCase : int ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""n must be an integer""" )
if n <= 0:
raise ValueError("""n must be >= 0""" )
lowerCamelCase__ = []
for num in range(len(__lowerCAmelCase ) ):
lowerCamelCase__ = 0
while 2 * i * i <= odd_composites[num]:
lowerCamelCase__ = odd_composites[num] - 2 * i * i
if is_prime(__lowerCAmelCase ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(__lowerCAmelCase ) == n:
return list_nums
return []
def A__ ( ):
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F'{solution() = }')
| 9 | 0 |
'''simple docstring'''
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class UpperCamelCase__ (snake_case__ ):
'''simple docstring'''
_UpperCamelCase = 42
_UpperCamelCase = None
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int=0.999 , __lowerCAmelCase : List[str]="cosine" , ):
if alpha_transform_type == "cosine":
def alpha_bar_fn(__lowerCAmelCase : str ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__lowerCAmelCase : List[str] ):
return math.exp(t * -12.0 )
else:
raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
lowerCamelCase__ = []
for i in range(_SCREAMING_SNAKE_CASE ):
lowerCamelCase__ = i / num_diffusion_timesteps
lowerCamelCase__ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) )
return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa )
class UpperCamelCase__ (snake_case__ ,snake_case__ ):
'''simple docstring'''
@register_to_config
def __init__( self ,_lowerCAmelCase = 10_00 ,_lowerCAmelCase = "fixed_small_log" ,_lowerCAmelCase = True ,_lowerCAmelCase = 1.0 ,_lowerCAmelCase = "epsilon" ,_lowerCAmelCase = "squaredcos_cap_v2" ,):
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" )
lowerCamelCase__ = betas_for_alpha_bar(UpperCAmelCase_ )
lowerCamelCase__ = 1.0 - self.betas
lowerCamelCase__ = torch.cumprod(self.alphas ,dim=0 )
lowerCamelCase__ = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
lowerCamelCase__ = 1.0
# setable values
lowerCamelCase__ = None
lowerCamelCase__ = torch.from_numpy(np.arange(0 ,UpperCAmelCase_ )[::-1].copy() )
lowerCamelCase__ = variance_type
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
return sample
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = num_inference_steps
lowerCamelCase__ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
lowerCamelCase__ = (np.arange(0 ,UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(np.intaa )
lowerCamelCase__ = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ):
if prev_timestep is None:
lowerCamelCase__ = t - 1
lowerCamelCase__ = self.alphas_cumprod[t]
lowerCamelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
lowerCamelCase__ = 1 - alpha_prod_t
lowerCamelCase__ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
lowerCamelCase__ = self.betas[t]
else:
lowerCamelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
lowerCamelCase__ = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
lowerCamelCase__ = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
lowerCamelCase__ = torch.log(torch.clamp(UpperCAmelCase_ ,min=1E-20 ) )
lowerCamelCase__ = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
lowerCamelCase__ = variance.log()
lowerCamelCase__ = beta.log()
lowerCamelCase__ = (predicted_variance + 1) / 2
lowerCamelCase__ = frac * max_log + (1 - frac) * min_log
return variance
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase=None ,_lowerCAmelCase = True ,):
lowerCamelCase__ = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
lowerCamelCase__ , lowerCamelCase__ = torch.split(UpperCAmelCase_ ,sample.shape[1] ,dim=1 )
else:
lowerCamelCase__ = None
# 1. compute alphas, betas
if prev_timestep is None:
lowerCamelCase__ = t - 1
lowerCamelCase__ = self.alphas_cumprod[t]
lowerCamelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
lowerCamelCase__ = 1 - alpha_prod_t
lowerCamelCase__ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
lowerCamelCase__ = self.betas[t]
lowerCamelCase__ = self.alphas[t]
else:
lowerCamelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev
lowerCamelCase__ = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
lowerCamelCase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
lowerCamelCase__ = model_output
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'''
""" for the UnCLIPScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
lowerCamelCase__ = torch.clamp(
UpperCAmelCase_ ,-self.config.clip_sample_range ,self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
lowerCamelCase__ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
lowerCamelCase__ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
lowerCamelCase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
lowerCamelCase__ = 0
if t > 0:
lowerCamelCase__ = randn_tensor(
model_output.shape ,dtype=model_output.dtype ,generator=UpperCAmelCase_ ,device=model_output.device )
lowerCamelCase__ = self._get_variance(
UpperCAmelCase_ ,predicted_variance=UpperCAmelCase_ ,prev_timestep=UpperCAmelCase_ ,)
if self.variance_type == "fixed_small_log":
lowerCamelCase__ = variance
elif self.variance_type == "learned_range":
lowerCamelCase__ = (0.5 * variance).exp()
else:
raise ValueError(
F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'''
""" for the UnCLIPScheduler.""" )
lowerCamelCase__ = variance * variance_noise
lowerCamelCase__ = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase_ ,pred_original_sample=UpperCAmelCase_ )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,):
lowerCamelCase__ = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype )
lowerCamelCase__ = timesteps.to(original_samples.device )
lowerCamelCase__ = alphas_cumprod[timesteps] ** 0.5
lowerCamelCase__ = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
lowerCamelCase__ = sqrt_alpha_prod.unsqueeze(-1 )
lowerCamelCase__ = (1 - alphas_cumprod[timesteps]) ** 0.5
lowerCamelCase__ = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
lowerCamelCase__ = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
lowerCamelCase__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 702 |
'''simple docstring'''
def A__ ( ):
return [
a * b * (1000 - a - b)
for a in range(1 , 999 )
for b in range(__lowerCAmelCase , 999 )
if (a * a + b * b == (1000 - a - b) ** 2)
][0]
if __name__ == "__main__":
print(F'{solution() = }')
| 9 | 0 |
'''simple docstring'''
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
UpperCamelCase : str = logging.getLogger(__name__)
UpperCamelCase : List[str] = "pytorch_model.bin"
@dataclasses.dataclass
class UpperCamelCase__ :
'''simple docstring'''
_UpperCamelCase = dataclasses.field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} )
_UpperCamelCase = dataclasses.field(
default=_SCREAMING_SNAKE_CASE ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} ,)
@dataclasses.dataclass
class UpperCamelCase__ :
'''simple docstring'''
_UpperCamelCase = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} )
_UpperCamelCase = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} )
_UpperCamelCase = dataclasses.field(
default=_SCREAMING_SNAKE_CASE ,metadata={'help': 'A csv or a json file containing the validation data.'} )
_UpperCamelCase = dataclasses.field(
default=_SCREAMING_SNAKE_CASE ,metadata={'help': 'The name of the task to train on.'} ,)
_UpperCamelCase = dataclasses.field(
default=_SCREAMING_SNAKE_CASE ,metadata={'help': 'The list of labels for the task.'} )
@dataclasses.dataclass
class UpperCamelCase__ :
'''simple docstring'''
_UpperCamelCase = dataclasses.field(
metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} )
_UpperCamelCase = dataclasses.field(
default='accuracy' ,metadata={'help': 'The evaluation metric used for the task.'} )
_UpperCamelCase = dataclasses.field(
default='no' ,metadata={
'help': 'The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]'
} ,)
_UpperCamelCase = dataclasses.field(
default=10 ,metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} ,)
_UpperCamelCase = dataclasses.field(
default=0.0 ,metadata={
'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.'
} ,)
_UpperCamelCase = dataclasses.field(
default=_SCREAMING_SNAKE_CASE ,metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} ,)
_UpperCamelCase = dataclasses.field(
default=_SCREAMING_SNAKE_CASE ,metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} ,)
_UpperCamelCase = dataclasses.field(
default=_SCREAMING_SNAKE_CASE ,metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} ,)
_UpperCamelCase = dataclasses.field(
default=0.0 ,metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} ,)
_UpperCamelCase = dataclasses.field(
default=100 ,metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} ,)
_UpperCamelCase = dataclasses.field(
default=_SCREAMING_SNAKE_CASE ,metadata={'help': 'Random seed for initialization.'} ,)
def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] ):
lowerCamelCase__ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 )
if args.do_filter_by_confidence:
lowerCamelCase__ = dataset.filter(lambda __lowerCAmelCase : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
lowerCamelCase__ = int(eval_result * len(__lowerCAmelCase ) )
print(__lowerCAmelCase )
lowerCamelCase__ = dataset.sort("""probability""" , reverse=__lowerCAmelCase )
lowerCamelCase__ = dataset.select(range(__lowerCAmelCase ) )
lowerCamelCase__ = dataset.remove_columns(["""label""", """probability"""] )
lowerCamelCase__ = dataset.rename_column("""prediction""" , """label""" )
lowerCamelCase__ = dataset.map(lambda __lowerCAmelCase : {"label": idalabel[example["label"]]} )
lowerCamelCase__ = dataset.shuffle(seed=args.seed )
lowerCamelCase__ = os.path.join(__lowerCAmelCase , F'''train_pseudo.{args.data_file_extension}''' )
if args.data_file_extension == "csv":
dataset.to_csv(__lowerCAmelCase , index=__lowerCAmelCase )
else:
dataset.to_json(__lowerCAmelCase )
def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , **__lowerCAmelCase : List[Any] ):
lowerCamelCase__ = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
lowerCamelCase__ = STModelArguments(model_name_or_path=__lowerCAmelCase )
lowerCamelCase__ = STDataArguments(train_file=__lowerCAmelCase , infer_file=__lowerCAmelCase )
lowerCamelCase__ = STTrainingArguments(output_dir=__lowerCAmelCase )
lowerCamelCase__ = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(__lowerCAmelCase ).items():
setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for key, value in kwargs.items():
if hasattr(__lowerCAmelCase , __lowerCAmelCase ):
setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Sanity checks
lowerCamelCase__ = {}
lowerCamelCase__ = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
lowerCamelCase__ = args.train_file
lowerCamelCase__ = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
lowerCamelCase__ = args.eval_file
for key in data_files:
lowerCamelCase__ = data_files[key].split(""".""" )[-1]
assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.'''
if args.data_file_extension is None:
lowerCamelCase__ = extension
else:
assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.'''
assert (
args.eval_metric in datasets.list_metrics()
), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.'''
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info("""Creating the initial data directory for self-training...""" )
lowerCamelCase__ = F'''{args.output_dir}/self-train_iter-{{}}'''.format
lowerCamelCase__ = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
accelerator.wait_for_everyone()
lowerCamelCase__ = None
lowerCamelCase__ = None
lowerCamelCase__ = 0
lowerCamelCase__ = False
# Show the progress bar
lowerCamelCase__ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations ) ):
lowerCamelCase__ = data_dir_format(__lowerCAmelCase )
assert os.path.exists(__lowerCAmelCase )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """stage-1""" )
lowerCamelCase__ = {
"""accelerator""": accelerator,
"""model_name_or_path""": args.model_name_or_path,
"""cache_dir""": args.cache_dir,
"""do_train""": True,
"""train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""],
"""do_eval""": True if args.eval_file is not None else False,
"""eval_file""": data_files["""eval"""],
"""do_predict""": True,
"""infer_file""": data_files["""infer"""],
"""task_name""": args.task_name,
"""label_list""": args.label_list,
"""output_dir""": current_output_dir,
"""eval_metric""": args.eval_metric,
"""evaluation_strategy""": args.evaluation_strategy,
"""early_stopping_patience""": args.early_stopping_patience,
"""early_stopping_threshold""": args.early_stopping_threshold,
"""seed""": args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(__lowerCAmelCase , __lowerCAmelCase ):
arguments_dict.update({key: value} )
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """best-checkpoint""" , __lowerCAmelCase )
if os.path.exists(__lowerCAmelCase ):
logger.info(
"""Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , __lowerCAmelCase , __lowerCAmelCase , )
else:
logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , __lowerCAmelCase )
finetune(**__lowerCAmelCase )
accelerator.wait_for_everyone()
assert os.path.exists(__lowerCAmelCase )
logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , __lowerCAmelCase )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """best-checkpoint""" )
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """stage-2""" )
# Update arguments_dict
lowerCamelCase__ = model_path
lowerCamelCase__ = data_files["""train"""]
lowerCamelCase__ = current_output_dir
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """best-checkpoint""" , __lowerCAmelCase )
if os.path.exists(__lowerCAmelCase ):
logger.info(
"""Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , __lowerCAmelCase , __lowerCAmelCase , )
else:
logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , __lowerCAmelCase )
finetune(**__lowerCAmelCase )
accelerator.wait_for_everyone()
assert os.path.exists(__lowerCAmelCase )
logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , __lowerCAmelCase )
lowerCamelCase__ = iteration
lowerCamelCase__ = data_dir_format(iteration + 1 )
lowerCamelCase__ = AutoConfig.from_pretrained(os.path.join(__lowerCAmelCase , """best-checkpoint""" ) )
lowerCamelCase__ = config.idalabel
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """eval_results_best-checkpoint.json""" )
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """test_results_best-checkpoint.json""" )
assert os.path.exists(__lowerCAmelCase )
with open(__lowerCAmelCase , """r""" ) as f:
lowerCamelCase__ = float(json.load(__lowerCAmelCase )[args.eval_metric] )
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """infer_output_best-checkpoint.csv""" )
assert os.path.exists(__lowerCAmelCase )
# Loading the dataset from local csv or json files.
lowerCamelCase__ = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""]
lowerCamelCase__ = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""]
if accelerator.is_main_process:
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
shutil.copy(__lowerCAmelCase , os.path.join(__lowerCAmelCase , F'''eval_results_iter-{iteration}.json''' ) )
if os.path.exists(__lowerCAmelCase ):
shutil.copy(__lowerCAmelCase , os.path.join(__lowerCAmelCase , F'''test_results_iter-{iteration}.json''' ) )
create_pseudo_labeled_data(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
accelerator.wait_for_everyone()
lowerCamelCase__ = os.path.join(__lowerCAmelCase , F'''train_pseudo.{args.data_file_extension}''' )
if args.evaluation_strategy != IntervalStrategy.NO.value:
lowerCamelCase__ = eval_result
if best_iteration is None:
lowerCamelCase__ = new_iteration
lowerCamelCase__ = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
lowerCamelCase__ = new_iteration
lowerCamelCase__ = new_eval_result
lowerCamelCase__ = 0
else:
if new_eval_result == best_eval_result:
lowerCamelCase__ = new_iteration
lowerCamelCase__ = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
lowerCamelCase__ = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info("""Best iteration: %d""" , __lowerCAmelCase )
logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , __lowerCAmelCase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(__lowerCAmelCase , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(__lowerCAmelCase , """eval_results_best-iteration.json""" ) , )
else:
# Assume that the last iteration is the best
logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 )
logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , __lowerCAmelCase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(__lowerCAmelCase , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(__lowerCAmelCase , """eval_results_best-iteration.json""" ) , )
| 703 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase : int = logging.get_logger(__name__)
UpperCamelCase : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'}
UpperCamelCase : Dict = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
}
}
UpperCamelCase : List[Any] = {
'camembert-base': 5_12,
}
UpperCamelCase : List[str] = '▁'
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = VOCAB_FILES_NAMES
_UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
_UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCamelCase = ['input_ids', 'attention_mask']
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] ,_lowerCAmelCase = None ,**_lowerCAmelCase ,):
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token
lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,additional_special_tokens=_lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCAmelCase ,)
lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_lowerCAmelCase ) )
lowerCamelCase__ = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
lowerCamelCase__ = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3}
lowerCamelCase__ = len(self.fairseq_tokens_to_ids )
lowerCamelCase__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
lowerCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
lowerCamelCase__ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(_lowerCAmelCase )) + [1]
return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1]
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCamelCase_ ( self ):
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return self.sp_model.encode(_lowerCAmelCase ,out_type=_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(_lowerCAmelCase ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = []
lowerCamelCase__ = """"""
lowerCamelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_lowerCAmelCase ) + token
lowerCamelCase__ = True
lowerCamelCase__ = []
else:
current_sub_tokens.append(_lowerCAmelCase )
lowerCamelCase__ = False
out_string += self.sp_model.decode(_lowerCAmelCase )
return out_string.strip()
def __getstate__( self ):
lowerCamelCase__ = self.__dict__.copy()
lowerCamelCase__ = None
return state
def __setstate__( self ,_lowerCAmelCase ):
lowerCamelCase__ = d
# for backward compatibility
if not hasattr(self ,"""sp_model_kwargs""" ):
lowerCamelCase__ = {}
lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ):
if not os.path.isdir(_lowerCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCamelCase__ = os.path.join(
_lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,_lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCAmelCase ,"""wb""" ) as fi:
lowerCamelCase__ = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (out_vocab_file,)
| 9 | 0 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=7 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=False ,_lowerCAmelCase=True ,_lowerCAmelCase=99 ,_lowerCAmelCase=32 ,_lowerCAmelCase=5 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=5_12 ,_lowerCAmelCase=16 ,_lowerCAmelCase=2 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=4 ,_lowerCAmelCase=None ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = seq_length
lowerCamelCase__ = is_training
lowerCamelCase__ = use_input_mask
lowerCamelCase__ = use_token_type_ids
lowerCamelCase__ = use_labels
lowerCamelCase__ = vocab_size
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = max_position_embeddings
lowerCamelCase__ = type_vocab_size
lowerCamelCase__ = type_sequence_label_size
lowerCamelCase__ = initializer_range
lowerCamelCase__ = num_labels
lowerCamelCase__ = num_choices
lowerCamelCase__ = scope
def UpperCamelCase_ ( self ):
lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowerCamelCase__ = None
if self.use_input_mask:
lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase__ = None
if self.use_token_type_ids:
lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
lowerCamelCase__ = None
lowerCamelCase__ = None
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.num_choices )
lowerCamelCase__ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase_ ( self ):
return OpenLlamaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=UpperCamelCase_ ,initializer_range=self.initializer_range ,use_stable_embedding=UpperCamelCase_ ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = OpenLlamaModel(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCamelCase__ = model(UpperCamelCase_ ,attention_mask=UpperCamelCase_ )
lowerCamelCase__ = model(UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,):
lowerCamelCase__ = True
lowerCamelCase__ = OpenLlamaModel(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCamelCase__ = model(
UpperCamelCase_ ,attention_mask=UpperCamelCase_ ,encoder_hidden_states=UpperCamelCase_ ,encoder_attention_mask=UpperCamelCase_ ,)
lowerCamelCase__ = model(
UpperCamelCase_ ,attention_mask=UpperCamelCase_ ,encoder_hidden_states=UpperCamelCase_ ,)
lowerCamelCase__ = model(UpperCamelCase_ ,attention_mask=UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,):
lowerCamelCase__ = OpenLlamaForCausalLM(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCamelCase__ = model(UpperCamelCase_ ,attention_mask=UpperCamelCase_ ,labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,):
lowerCamelCase__ = True
lowerCamelCase__ = True
lowerCamelCase__ = OpenLlamaForCausalLM(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
# first forward pass
lowerCamelCase__ = model(
UpperCamelCase_ ,attention_mask=UpperCamelCase_ ,encoder_hidden_states=UpperCamelCase_ ,encoder_attention_mask=UpperCamelCase_ ,use_cache=UpperCamelCase_ ,)
lowerCamelCase__ = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
lowerCamelCase__ = ids_tensor((self.batch_size, 3) ,config.vocab_size )
lowerCamelCase__ = ids_tensor((self.batch_size, 3) ,vocab_size=2 )
# append to next input_ids and
lowerCamelCase__ = torch.cat([input_ids, next_tokens] ,dim=-1 )
lowerCamelCase__ = torch.cat([input_mask, next_mask] ,dim=-1 )
lowerCamelCase__ = model(
UpperCamelCase_ ,attention_mask=UpperCamelCase_ ,encoder_hidden_states=UpperCamelCase_ ,encoder_attention_mask=UpperCamelCase_ ,output_hidden_states=UpperCamelCase_ ,)['hidden_states'][0]
lowerCamelCase__ = model(
UpperCamelCase_ ,attention_mask=UpperCamelCase_ ,encoder_hidden_states=UpperCamelCase_ ,encoder_attention_mask=UpperCamelCase_ ,past_key_values=UpperCamelCase_ ,output_hidden_states=UpperCamelCase_ ,)['hidden_states'][0]
# select random slice
lowerCamelCase__ = ids_tensor((1,) ,output_from_past.shape[-1] ).item()
lowerCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach()
lowerCamelCase__ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(UpperCamelCase_ ,UpperCamelCase_ ,atol=1E-3 ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
(
lowerCamelCase__
) = config_and_inputs
lowerCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase__ (a ,a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
_UpperCamelCase = (OpenLlamaForCausalLM,) if is_torch_available() else ()
_UpperCamelCase = (
{
'feature-extraction': OpenLlamaModel,
'text-classification': OpenLlamaForSequenceClassification,
'text-generation': OpenLlamaForCausalLM,
'zero-shot': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = OpenLlamaModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=UpperCamelCase_ ,hidden_size=37 )
def UpperCamelCase_ ( self ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCamelCase__ = type
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = 3
lowerCamelCase__ = input_dict['input_ids']
lowerCamelCase__ = input_ids.ne(1 ).to(UpperCamelCase_ )
lowerCamelCase__ = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size )
lowerCamelCase__ = OpenLlamaForSequenceClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCamelCase__ = model(UpperCamelCase_ ,attention_mask=UpperCamelCase_ ,labels=UpperCamelCase_ )
self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = 3
lowerCamelCase__ = 'single_label_classification'
lowerCamelCase__ = input_dict['input_ids']
lowerCamelCase__ = input_ids.ne(1 ).to(UpperCamelCase_ )
lowerCamelCase__ = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size )
lowerCamelCase__ = OpenLlamaForSequenceClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCamelCase__ = model(UpperCamelCase_ ,attention_mask=UpperCamelCase_ ,labels=UpperCamelCase_ )
self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = 3
lowerCamelCase__ = 'multi_label_classification'
lowerCamelCase__ = input_dict['input_ids']
lowerCamelCase__ = input_ids.ne(1 ).to(UpperCamelCase_ )
lowerCamelCase__ = ids_tensor(
[self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float )
lowerCamelCase__ = OpenLlamaForSequenceClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCamelCase__ = model(UpperCamelCase_ ,attention_mask=UpperCamelCase_ ,labels=UpperCamelCase_ )
self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" )
def UpperCamelCase_ ( self ):
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = ids_tensor([1, 10] ,config.vocab_size )
lowerCamelCase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowerCamelCase__ = OpenLlamaModel(UpperCamelCase_ )
original_model.to(UpperCamelCase_ )
original_model.eval()
lowerCamelCase__ = original_model(UpperCamelCase_ ).last_hidden_state
lowerCamelCase__ = original_model(UpperCamelCase_ ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
lowerCamelCase__ = {'type': scaling_type, 'factor': 10.0}
lowerCamelCase__ = OpenLlamaModel(UpperCamelCase_ )
scaled_model.to(UpperCamelCase_ )
scaled_model.eval()
lowerCamelCase__ = scaled_model(UpperCamelCase_ ).last_hidden_state
lowerCamelCase__ = scaled_model(UpperCamelCase_ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(UpperCamelCase_ ,UpperCamelCase_ ,atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(UpperCamelCase_ ,UpperCamelCase_ ,atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(UpperCamelCase_ ,UpperCamelCase_ ,atol=1E-5 ) )
| 704 |
'''simple docstring'''
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = R"""\w+[.]\d+"""
lowerCamelCase__ = re.findall(__lowerCAmelCase , __lowerCAmelCase )
for pat in pats:
lowerCamelCase__ = key.replace(__lowerCAmelCase , """_""".join(pat.split(""".""" ) ) )
return key
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ):
lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",)
if (
any("""norm""" in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
lowerCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
lowerCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",)
if pt_tuple_key[-1] == "weight":
lowerCamelCase__ = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
lowerCamelCase__ = pt_tuple_key[:-1] + ("""weight""",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
lowerCamelCase__ = pt_tuple_key[:-1] + ("""bias""",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=42 ):
# Step 1: Convert pytorch tensor to numpy
lowerCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
lowerCamelCase__ = flax_model.init_weights(PRNGKey(__lowerCAmelCase ) )
lowerCamelCase__ = flatten_dict(__lowerCAmelCase )
lowerCamelCase__ = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowerCamelCase__ = rename_key(__lowerCAmelCase )
lowerCamelCase__ = tuple(renamed_pt_key.split(""".""" ) )
# Correctly rename weight parameters
lowerCamelCase__ , lowerCamelCase__ = rename_key_and_reshape_tensor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '''
F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
# also add unexpected weight so that warning is thrown
lowerCamelCase__ = jnp.asarray(__lowerCAmelCase )
return unflatten_dict(__lowerCAmelCase )
| 9 | 0 |
'''simple docstring'''
from math import factorial
UpperCamelCase : Tuple = {str(d): factorial(d) for d in range(10)}
def A__ ( __lowerCAmelCase : int ):
return sum(DIGIT_FACTORIAL[d] for d in str(_A ) )
def A__ ( ):
lowerCamelCase__ = 7 * factorial(9 ) + 1
return sum(i for i in range(3 , _A ) if sum_of_digit_factorial(_A ) == i )
if __name__ == "__main__":
print(F'{solution() = }')
| 705 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] ,model_result["""ss"""] ):
lowerCamelCase__ = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sgugger/tiny-distilbert-classification"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,only_pretrain_model=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """patrickvonplaten/t5-tiny-random"""
lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,configs=[config] )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,"""Cannot do xla on CPU.""" )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=_lowerCAmelCase ,save_to_csv=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ,inference_memory_csv_file=os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ,env_info_csv_file=os.path.join(_lowerCAmelCase ,"""env.csv""" ) ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""env.csv""" ) ).exists() )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(_lowerCAmelCase ):
self.assertTrue(hasattr(_lowerCAmelCase ,"""sequential""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""cumulative""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""current""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase__ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(_lowerCAmelCase ,"""log.txt""" ) ,log_print=_lowerCAmelCase ,trace_memory_line_by_line=_lowerCAmelCase ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,)
lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase )
lowerCamelCase__ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""log.txt""" ) ).exists() )
| 9 | 0 |
'''simple docstring'''
import argparse
from torch import nn
# transformers_old should correspond to branch `save_old_prophetnet_model_structure` here
# original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively
from transformers_old.modeling_prophetnet import (
ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld,
)
from transformers_old.modeling_xlm_prophetnet import (
XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld,
)
from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging
UpperCamelCase : int = logging.get_logger(__name__)
logging.set_verbosity_info()
def A__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] ):
if "xprophetnet" in prophetnet_checkpoint_path:
lowerCamelCase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCamelCase_ )
lowerCamelCase__ = XLMProphetNetForConditionalGeneration.from_pretrained(
lowerCamelCase_ , output_loading_info=lowerCamelCase_ )
else:
lowerCamelCase__ = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCamelCase_ )
lowerCamelCase__ = ProphetNetForConditionalGeneration.from_pretrained(
lowerCamelCase_ , output_loading_info=lowerCamelCase_ )
lowerCamelCase__ = ['key_proj', 'value_proj', 'query_proj']
lowerCamelCase__ = {
'self_attn': 'ngram_self_attn',
'cross_attn': 'encoder_attn',
'cross_attn_layer_norm': 'encoder_attn_layer_norm',
'feed_forward_layer_norm': 'final_layer_norm',
'feed_forward': '',
'intermediate': 'fc1',
'output': 'fc2',
'key_proj': 'k_proj',
'query_proj': 'q_proj',
'value_proj': 'v_proj',
'word_embeddings': 'embed_tokens',
'embeddings_layer_norm': 'emb_layer_norm',
'relative_pos_embeddings': 'relative_linear',
'ngram_embeddings': 'ngram_input_embed',
'position_embeddings': 'embed_positions',
}
for key in loading_info["missing_keys"]:
lowerCamelCase__ = key.split(""".""" )
if attributes[0] == "lm_head":
lowerCamelCase__ = prophet
lowerCamelCase__ = prophet_old
else:
lowerCamelCase__ = prophet.prophetnet
lowerCamelCase__ = prophet_old.model
lowerCamelCase__ = False
for attribute in attributes:
if attribute in mapping:
lowerCamelCase__ = mapping[attribute]
if not hasattr(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) > 0:
lowerCamelCase__ = attribute
elif hasattr(lowerCamelCase_ , lowerCamelCase_ ):
lowerCamelCase__ = attribute
if attribute == "weight":
assert old_model.weight.shape == model.weight.shape, "Shapes have to match!"
lowerCamelCase__ = old_model.weight
logger.info(F'''{attribute} is initialized.''' )
lowerCamelCase__ = True
break
elif attribute == "bias":
assert old_model.bias.shape == model.bias.shape, "Shapes have to match!"
lowerCamelCase__ = old_model.bias
logger.info(F'''{attribute} is initialized''' )
lowerCamelCase__ = True
break
elif attribute in special_keys and hasattr(lowerCamelCase_ , """in_proj_weight""" ):
lowerCamelCase__ = old_model.in_proj_weight.shape[0] // 3
lowerCamelCase__ = getattr(lowerCamelCase_ , lowerCamelCase_ )
param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match"
param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match"
if attribute == "query_proj":
lowerCamelCase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] )
lowerCamelCase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] )
elif attribute == "key_proj":
lowerCamelCase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] )
lowerCamelCase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] )
elif attribute == "value_proj":
lowerCamelCase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] )
lowerCamelCase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] )
lowerCamelCase__ = True
break
elif attribute == "position_embeddings":
assert (
model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1]
), "Hidden size has to match"
assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings."
lowerCamelCase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] )
lowerCamelCase__ = True
break
if attribute.isdigit():
lowerCamelCase__ = model[int(lowerCamelCase_ )]
lowerCamelCase__ = old_model[int(lowerCamelCase_ )]
else:
lowerCamelCase__ = getattr(lowerCamelCase_ , lowerCamelCase_ )
if old_attribute == "":
lowerCamelCase__ = old_model
else:
if not hasattr(lowerCamelCase_ , lowerCamelCase_ ):
raise ValueError(F'''{old_model} does not have {old_attribute}''' )
lowerCamelCase__ = getattr(lowerCamelCase_ , lowerCamelCase_ )
if not is_key_init:
raise ValueError(F'''{key} was not correctly initialized!''' )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
prophet.save_pretrained(lowerCamelCase_ )
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
UpperCamelCase : Any = parser.parse_args()
convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
| 706 |
'''simple docstring'''
from math import factorial
UpperCamelCase : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)}
def A__ ( __lowerCAmelCase : int ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError("""Parameter number must be int""" )
if number < 0:
raise ValueError("""Parameter number must be greater than or equal to 0""" )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowerCAmelCase ) )
def A__ ( __lowerCAmelCase : int = 60 , __lowerCAmelCase : int = 100_0000 ):
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError("""Parameters chain_length and number_limit must be int""" )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
"""Parameters chain_length and number_limit must be greater than 0""" )
# the counter for the chains with the exact desired length
lowerCamelCase__ = 0
# the cached sizes of the previous chains
lowerCamelCase__ = {}
for start_chain_element in range(1 , __lowerCAmelCase ):
# The temporary set will contain the elements of the chain
lowerCamelCase__ = set()
lowerCamelCase__ = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
lowerCamelCase__ = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(__lowerCAmelCase )
chain_set_length += 1
lowerCamelCase__ = digit_factorial_sum(__lowerCAmelCase )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
lowerCamelCase__ = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'{solution()}')
| 9 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase : Optional[int] = {
"configuration_upernet": ["UperNetConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Optional[Any] = [
"UperNetForSemanticSegmentation",
"UperNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 707 |
'''simple docstring'''
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
UpperCamelCase : Optional[Any] = 'src/diffusers'
# Matches is_xxx_available()
UpperCamelCase : Union[str, Any] = re.compile(r'is\_([a-z_]*)_available\(\)')
# Matches from xxx import bla
UpperCamelCase : Optional[Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
UpperCamelCase : Optional[int] = '\n{0} = None\n'
UpperCamelCase : Optional[Any] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n'
UpperCamelCase : Any = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n'
def A__ ( __lowerCAmelCase : Union[str, Any] ):
lowerCamelCase__ = _re_backend.findall(__lowerCAmelCase )
if len(__lowerCAmelCase ) == 0:
return None
return "_and_".join(__lowerCAmelCase )
def A__ ( ):
with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.readlines()
# Get to the point we do the actual imports for type checking
lowerCamelCase__ = 0
lowerCamelCase__ = {}
# Go through the end of the file
while line_index < len(__lowerCAmelCase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
lowerCamelCase__ = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("""else:""" ):
line_index += 1
line_index += 1
lowerCamelCase__ = []
# Until we unindent, add backend objects to the list
while line_index < len(__lowerCAmelCase ) and len(lines[line_index] ) > 1:
lowerCamelCase__ = lines[line_index]
lowerCamelCase__ = _re_single_line_import.search(__lowerCAmelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__lowerCAmelCase ) > 0:
lowerCamelCase__ = objects
else:
line_index += 1
return backend_specific_objects
def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict ):
if name.isupper():
return DUMMY_CONSTANT.format(__lowerCAmelCase )
elif name.islower():
return DUMMY_FUNCTION.format(__lowerCAmelCase , __lowerCAmelCase )
else:
return DUMMY_CLASS.format(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : Optional[int]=None ):
if backend_specific_objects is None:
lowerCamelCase__ = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
lowerCamelCase__ = {}
for backend, objects in backend_specific_objects.items():
lowerCamelCase__ = """[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]"""
lowerCamelCase__ = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n"""
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__lowerCAmelCase , __lowerCAmelCase ) for o in objects] )
lowerCamelCase__ = dummy_file
return dummy_files
def A__ ( __lowerCAmelCase : List[str]=False ):
lowerCamelCase__ = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
lowerCamelCase__ = {"""torch""": """pt"""}
# Locate actual dummy modules and read their content.
lowerCamelCase__ = os.path.join(__lowerCAmelCase , """utils""" )
lowerCamelCase__ = {
backend: os.path.join(__lowerCAmelCase , F'''dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py''' )
for backend in dummy_files.keys()
}
lowerCamelCase__ = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__lowerCAmelCase ):
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowerCamelCase__ = f.read()
else:
lowerCamelCase__ = """"""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
F'''Updating diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py as the main '''
"""__init__ has new objects.""" )
with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"""The main __init__ has objects that are not present in """
F'''diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py. Run `make fix-copies` '''
"""to fix this.""" )
if __name__ == "__main__":
UpperCamelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
UpperCamelCase : Any = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 9 | 0 |
'''simple docstring'''
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase : List[Any] = logging.get_logger(__name__)
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ):
lowerCamelCase__ = RobertaPreLayerNormConfig.from_pretrained(
__A , architectures=["""RobertaPreLayerNormForMaskedLM"""] )
# convert state_dict
lowerCamelCase__ = torch.load(hf_hub_download(repo_id=__A , filename="""pytorch_model.bin""" ) )
lowerCamelCase__ = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("""roberta.""" ):
lowerCamelCase__ = '''roberta_prelayernorm.''' + tensor_key[len("""roberta.""" ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ):
continue
lowerCamelCase__ = tensor_value
lowerCamelCase__ = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=__A , config=__A , state_dict=__A )
model.save_pretrained(__A )
# convert tokenizer
lowerCamelCase__ = AutoTokenizer.from_pretrained(__A )
tokenizer.save_pretrained(__A )
if __name__ == "__main__":
UpperCamelCase : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint-repo',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
UpperCamelCase : Union[str, Any] = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 708 |
'''simple docstring'''
import unittest
from transformers import GPTSwaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
UpperCamelCase : List[Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model')
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = GPTSwaTokenizer
_UpperCamelCase = False
_UpperCamelCase = True
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ,eos_token="""<unk>""" ,bos_token="""<unk>""" ,pad_token="""<unk>""" )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = """This is a test"""
lowerCamelCase__ = """This is a test"""
return input_text, output_text
def UpperCamelCase_ ( self ):
lowerCamelCase__ = """<s>"""
lowerCamelCase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) ,_lowerCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,"""<unk>""" )
self.assertEqual(vocab_keys[1] ,"""<s>""" )
self.assertEqual(vocab_keys[-1] ,"""j""" )
self.assertEqual(len(_lowerCAmelCase ) ,20_00 )
def UpperCamelCase_ ( self ):
self.assertEqual(self.get_tokenizer().vocab_size ,20_00 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase )
lowerCamelCase__ = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(_lowerCAmelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,[4_65, 2_87, 2_65, 6_31, 8_42] )
lowerCamelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
# fmt: off
self.assertListEqual(
_lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ,)
# fmt: on
lowerCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase )
self.assertListEqual(
_lowerCAmelCase ,[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] ,)
lowerCamelCase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase )
# fmt: off
self.assertListEqual(
_lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] )
# fmt: on
def UpperCamelCase_ ( self ):
lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase )
lowerCamelCase__ = ["""This is a test""", """I was born in 92000, and this is falsé."""]
lowerCamelCase__ = [
[4_65, 2_87, 2_65, 6_31, 8_42],
[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60],
]
# Test that encode_fast returns the same as tokenize + convert_tokens_to_ids
for text, expected_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ):
self.assertListEqual(tokenizer.encode_fast(_lowerCAmelCase ) ,_lowerCAmelCase )
# Test that decode_fast returns the input text
for text, token_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ):
self.assertEqual(tokenizer.decode_fast(_lowerCAmelCase ) ,_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = [
"""<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""",
"""Hey there, how are you doing this fine day?""",
"""This is a text with a trailing spaces followed by a dot .""",
"""Häj sväjs lillebrör! =)""",
"""Det är inget fel på Mr. Cool""",
]
# fmt: off
lowerCamelCase__ = {"""input_ids""": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowerCAmelCase ,model_name="""AI-Sweden/gpt-sw3-126m""" ,sequences=_lowerCAmelCase ,)
| 9 | 0 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
UpperCamelCase : List[Any] = logging.get_logger(__name__)
UpperCamelCase : Union[str, Any] = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "ctc_proj",
"mask_emb": "masked_spec_embed",
}
UpperCamelCase : Optional[int] = [
"ctc_proj",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ):
for attribute in key.split(""".""" ):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
lowerCamelCase__ = "lm_head"
lowerCamelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ )
if weight_type is not None:
lowerCamelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape
else:
lowerCamelCase__ = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
lowerCamelCase__ = value
elif weight_type == "weight_g":
lowerCamelCase__ = value
elif weight_type == "weight_v":
lowerCamelCase__ = value
elif weight_type == "bias":
lowerCamelCase__ = value
else:
lowerCamelCase__ = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] ):
lowerCamelCase__ = []
lowerCamelCase__ = fairseq_model.state_dict()
lowerCamelCase__ = hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
lowerCamelCase__ = False
if "conv_layers" in name:
load_conv_layer(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == """group""" , )
lowerCamelCase__ = True
else:
for key, mapped_key in MAPPING.items():
lowerCamelCase__ = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
lowerCamelCase__ = True
if "*" in mapped_key:
lowerCamelCase__ = name.split(lowerCamelCase__ )[0].split(""".""" )[-2]
lowerCamelCase__ = mapped_key.replace("""*""" , lowerCamelCase__ )
if "weight_g" in name:
lowerCamelCase__ = "weight_g"
elif "weight_v" in name:
lowerCamelCase__ = "weight_v"
elif "bias" in name:
lowerCamelCase__ = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowerCamelCase__ = "weight"
else:
lowerCamelCase__ = None
set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
continue
if not is_used:
unused_weights.append(lowerCamelCase__ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ):
lowerCamelCase__ = full_name.split("""conv_layers.""" )[-1]
lowerCamelCase__ = name.split(""".""" )
lowerCamelCase__ = int(items[0] )
lowerCamelCase__ = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
lowerCamelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
lowerCamelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
lowerCamelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
lowerCamelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(lowerCamelCase__ )
@torch.no_grad()
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : str=True ):
if config_path is not None:
lowerCamelCase__ = UniSpeechConfig.from_pretrained(lowerCamelCase__ )
else:
lowerCamelCase__ = UniSpeechConfig()
if is_finetuned:
if dict_path:
lowerCamelCase__ = Dictionary.load_from_json(lowerCamelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowerCamelCase__ = target_dict.pad_index
lowerCamelCase__ = target_dict.bos_index
lowerCamelCase__ = target_dict.eos_index
lowerCamelCase__ = len(target_dict.symbols )
lowerCamelCase__ = os.path.join(lowerCamelCase__ , """vocab.json""" )
if not os.path.isdir(lowerCamelCase__ ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCamelCase__ ) )
return
os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ )
lowerCamelCase__ = target_dict.indices
# fairseq has the <pad> and <s> switched
lowerCamelCase__ = 42
lowerCamelCase__ = 43
with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(lowerCamelCase__ , lowerCamelCase__ )
lowerCamelCase__ = WavaVecaPhonemeCTCTokenizer(
lowerCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCamelCase__ , )
lowerCamelCase__ = True if config.feat_extract_norm == "layer" else False
lowerCamelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , )
lowerCamelCase__ = WavaVecaProcessor(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ )
processor.save_pretrained(lowerCamelCase__ )
lowerCamelCase__ = UniSpeechForCTC(lowerCamelCase__ )
else:
lowerCamelCase__ = UniSpeechForPreTraining(lowerCamelCase__ )
if is_finetuned:
lowerCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} )
else:
lowerCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
lowerCamelCase__ = model[0].eval()
recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
hf_unispeech.save_pretrained(lowerCamelCase__ )
if __name__ == "__main__":
UpperCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
UpperCamelCase : Optional[int] = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 709 |
'''simple docstring'''
from manim import *
class UpperCamelCase__ (a ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = Rectangle(height=0.5 ,width=0.5 )
lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 )
lowerCamelCase__ = [mem.copy() for i in range(6 )]
lowerCamelCase__ = [mem.copy() for i in range(6 )]
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = VGroup(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = Text("""CPU""" ,font_size=24 )
lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_lowerCAmelCase )
lowerCamelCase__ = [mem.copy() for i in range(1 )]
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = Text("""GPU""" ,font_size=24 )
lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase )
gpu.align_to(_lowerCAmelCase ,_lowerCAmelCase )
gpu.set_x(gpu.get_x() - 1 )
self.add(_lowerCAmelCase )
lowerCamelCase__ = [mem.copy() for i in range(6 )]
lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 )
lowerCamelCase__ = Text("""Model""" ,font_size=24 )
lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase )
model.move_to([3, -1.0, 0] )
self.play(
Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,)
lowerCamelCase__ = MarkupText(
F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,)
lowerCamelCase__ = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
lowerCamelCase__ = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,)
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(_lowerCAmelCase ,run_time=2.5 ) ,Write(_lowerCAmelCase ) ,Write(_lowerCAmelCase ) )
self.add(_lowerCAmelCase )
lowerCamelCase__ = []
lowerCamelCase__ = []
lowerCamelCase__ = []
for i, rect in enumerate(_lowerCAmelCase ):
lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase ,opacity=0.7 )
cpu_target.move_to(_lowerCAmelCase )
cpu_target.generate_target()
lowerCamelCase__ = 0.46 / 4
lowerCamelCase__ = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_lowerCAmelCase )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target ,direction=_lowerCAmelCase ,buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=_lowerCAmelCase ,buff=0.0 )
cpu_targs.append(_lowerCAmelCase )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCAmelCase ) )
second_animations.append(MoveToTarget(_lowerCAmelCase ,run_time=1.5 ) )
self.play(*_lowerCAmelCase )
self.play(*_lowerCAmelCase )
self.wait()
| 9 | 0 |
'''simple docstring'''
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
UpperCamelCase : Dict = logging.get_logger(__name__)
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'AutoTokenizer'
_UpperCamelCase = ['tokenizer']
_UpperCamelCase = {
'semantic_prompt': 1,
'coarse_prompt': 2,
'fine_prompt': 2,
}
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=None ):
super().__init__(__A )
lowerCamelCase__ = speaker_embeddings
@classmethod
def UpperCamelCase_ ( cls ,_lowerCAmelCase ,_lowerCAmelCase="speaker_embeddings_path.json" ,**_lowerCAmelCase ):
if speaker_embeddings_dict_path is not None:
lowerCamelCase__ = get_file_from_repo(
__A ,__A ,subfolder=kwargs.pop("""subfolder""" ,__A ) ,cache_dir=kwargs.pop("""cache_dir""" ,__A ) ,force_download=kwargs.pop("""force_download""" ,__A ) ,proxies=kwargs.pop("""proxies""" ,__A ) ,resume_download=kwargs.pop("""resume_download""" ,__A ) ,local_files_only=kwargs.pop("""local_files_only""" ,__A ) ,use_auth_token=kwargs.pop("""use_auth_token""" ,__A ) ,revision=kwargs.pop("""revision""" ,__A ) ,)
if speaker_embeddings_path is None:
logger.warning(
F'''`{os.path.join(__A ,__A )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' )
lowerCamelCase__ = None
else:
with open(__A ) as speaker_embeddings_json:
lowerCamelCase__ = json.load(__A )
else:
lowerCamelCase__ = None
lowerCamelCase__ = AutoTokenizer.from_pretrained(__A ,**__A )
return cls(tokenizer=__A ,speaker_embeddings=__A )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase="speaker_embeddings_path.json" ,_lowerCAmelCase="speaker_embeddings" ,_lowerCAmelCase = False ,**_lowerCAmelCase ,):
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(__A ,__A ,"""v2""" ) ,exist_ok=__A )
lowerCamelCase__ = {}
lowerCamelCase__ = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
lowerCamelCase__ = self._load_voice_preset(__A )
lowerCamelCase__ = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict["""repo_or_path"""] ,__A ,F'''{prompt_key}_{key}''' ) ,voice_preset[key] ,allow_pickle=__A ,)
lowerCamelCase__ = os.path.join(__A ,F'''{prompt_key}_{key}.npy''' )
lowerCamelCase__ = tmp_dict
with open(os.path.join(__A ,__A ) ,"""w""" ) as fp:
json.dump(__A ,__A )
super().save_pretrained(__A ,__A ,**__A )
def UpperCamelCase_ ( self ,_lowerCAmelCase = None ,**_lowerCAmelCase ):
lowerCamelCase__ = self.speaker_embeddings[voice_preset]
lowerCamelCase__ = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' )
lowerCamelCase__ = get_file_from_repo(
self.speaker_embeddings.get("""repo_or_path""" ,"""/""" ) ,voice_preset_paths[key] ,subfolder=kwargs.pop("""subfolder""" ,__A ) ,cache_dir=kwargs.pop("""cache_dir""" ,__A ) ,force_download=kwargs.pop("""force_download""" ,__A ) ,proxies=kwargs.pop("""proxies""" ,__A ) ,resume_download=kwargs.pop("""resume_download""" ,__A ) ,local_files_only=kwargs.pop("""local_files_only""" ,__A ) ,use_auth_token=kwargs.pop("""use_auth_token""" ,__A ) ,revision=kwargs.pop("""revision""" ,__A ) ,)
if path is None:
raise ValueError(
F'''`{os.path.join(self.speaker_embeddings.get("repo_or_path" ,"/" ) ,voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.''' )
lowerCamelCase__ = np.load(__A )
return voice_preset_dict
def UpperCamelCase_ ( self ,_lowerCAmelCase = None ):
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' )
if not isinstance(voice_preset[key] ,np.ndarray ):
raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
def __call__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase="pt" ,_lowerCAmelCase=2_56 ,_lowerCAmelCase=False ,_lowerCAmelCase=True ,_lowerCAmelCase=False ,**_lowerCAmelCase ,):
if voice_preset is not None and not isinstance(__A ,__A ):
if (
isinstance(__A ,__A )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
lowerCamelCase__ = self._load_voice_preset(__A )
else:
if isinstance(__A ,__A ) and not voice_preset.endswith(""".npz""" ):
lowerCamelCase__ = voice_preset + ".npz"
lowerCamelCase__ = np.load(__A )
if voice_preset is not None:
self._validate_voice_preset_dict(__A ,**__A )
lowerCamelCase__ = BatchFeature(data=__A ,tensor_type=__A )
lowerCamelCase__ = self.tokenizer(
__A ,return_tensors=__A ,padding="""max_length""" ,max_length=__A ,return_attention_mask=__A ,return_token_type_ids=__A ,add_special_tokens=__A ,**__A ,)
if voice_preset is not None:
lowerCamelCase__ = voice_preset
return encoded_text
| 710 |
'''simple docstring'''
UpperCamelCase : Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)]
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000]
number //= 10_0000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
UpperCamelCase : list[bool | None] = [None] * 10_00_00_00
UpperCamelCase : Tuple = True
UpperCamelCase : Optional[int] = False
def A__ ( __lowerCAmelCase : int ):
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
lowerCamelCase__ = chain(next_number(__lowerCAmelCase ) )
lowerCamelCase__ = number_chain
while number < 1000_0000:
lowerCamelCase__ = number_chain
number *= 10
return number_chain
def A__ ( __lowerCAmelCase : int = 1000_0000 ):
for i in range(1 , __lowerCAmelCase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'{solution() = }')
| 9 | 0 |
'''simple docstring'''
from unittest import TestCase
from datasets import Sequence, Value
from datasets.arrow_dataset import Dataset
class UpperCamelCase__ (UpperCamelCase_ ):
def UpperCamelCase_ ( self ):
return [
{"col_1": 3, "col_2": "a"},
{"col_1": 2, "col_2": "b"},
{"col_1": 1, "col_2": "c"},
{"col_1": 0, "col_2": "d"},
]
def UpperCamelCase_ ( self ):
lowerCamelCase__ = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]}
return Dataset.from_dict(_a )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self._create_example_records()
lowerCamelCase__ = Dataset.from_list(_a )
self.assertListEqual(dset.column_names ,["""col_1""", """col_2"""] )
for i, r in enumerate(_a ):
self.assertDictEqual(_a ,example_records[i] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self._create_example_records()
lowerCamelCase__ = Dataset.from_list(_a )
lowerCamelCase__ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} )
self.assertEqual(dset.info ,dset_from_dict.info )
def UpperCamelCase_ ( self ): # checks what happens with missing columns
lowerCamelCase__ = [{"""col_1""": 1}, {"""col_2""": """x"""}]
lowerCamelCase__ = Dataset.from_list(_a )
self.assertDictEqual(dset[0] ,{"""col_1""": 1} )
self.assertDictEqual(dset[1] ,{"""col_1""": None} ) # NB: first record is used for columns
def UpperCamelCase_ ( self ): # checks if the type can be inferred from the second record
lowerCamelCase__ = [{"""col_1""": []}, {"""col_1""": [1, 2]}]
lowerCamelCase__ = Dataset.from_list(_a )
self.assertEqual(dset.info.features["""col_1"""] ,Sequence(Value("""int64""" ) ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = Dataset.from_list([] )
self.assertEqual(len(_a ) ,0 )
self.assertListEqual(dset.column_names ,[] )
| 711 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : List[str] = {
'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json',
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'donut-swin'
_UpperCamelCase = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self ,_lowerCAmelCase=2_24 ,_lowerCAmelCase=4 ,_lowerCAmelCase=3 ,_lowerCAmelCase=96 ,_lowerCAmelCase=[2, 2, 6, 2] ,_lowerCAmelCase=[3, 6, 12, 24] ,_lowerCAmelCase=7 ,_lowerCAmelCase=4.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=False ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,**_lowerCAmelCase ,):
super().__init__(**_lowerCAmelCase )
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = embed_dim
lowerCamelCase__ = depths
lowerCamelCase__ = len(_lowerCAmelCase )
lowerCamelCase__ = num_heads
lowerCamelCase__ = window_size
lowerCamelCase__ = mlp_ratio
lowerCamelCase__ = qkv_bias
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = drop_path_rate
lowerCamelCase__ = hidden_act
lowerCamelCase__ = use_absolute_embeddings
lowerCamelCase__ = layer_norm_eps
lowerCamelCase__ = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCamelCase__ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
| 9 | 0 |
'''simple docstring'''
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class UpperCamelCase__ (_snake_case ):
'''simple docstring'''
_UpperCamelCase = 'char'
_UpperCamelCase = 'bpe'
_UpperCamelCase = 'wp'
UpperCamelCase : int = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class UpperCamelCase__ (_snake_case ):
'''simple docstring'''
_UpperCamelCase = ['image_processor', 'char_tokenizer']
_UpperCamelCase = 'ViTImageProcessor'
_UpperCamelCase = 'MgpstrTokenizer'
def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,**_lowerCAmelCase ):
lowerCamelCase__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" ,_lowerCAmelCase ,)
lowerCamelCase__ = kwargs.pop("""feature_extractor""" )
lowerCamelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
lowerCamelCase__ = tokenizer
lowerCamelCase__ = AutoTokenizer.from_pretrained("""gpt2""" )
lowerCamelCase__ = AutoTokenizer.from_pretrained("""bert-base-uncased""" )
super().__init__(_lowerCAmelCase ,_lowerCAmelCase )
def __call__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,**_lowerCAmelCase ):
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""" )
if images is not None:
lowerCamelCase__ = self.image_processor(_lowerCAmelCase ,return_tensors=_lowerCAmelCase ,**_lowerCAmelCase )
if text is not None:
lowerCamelCase__ = self.char_tokenizer(_lowerCAmelCase ,return_tensors=_lowerCAmelCase ,**_lowerCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
lowerCamelCase__ = encodings["""input_ids"""]
return inputs
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = sequences
lowerCamelCase__ = char_preds.size(0 )
lowerCamelCase__ , lowerCamelCase__ = self._decode_helper(_lowerCAmelCase ,"""char""" )
lowerCamelCase__ , lowerCamelCase__ = self._decode_helper(_lowerCAmelCase ,"""bpe""" )
lowerCamelCase__ , lowerCamelCase__ = self._decode_helper(_lowerCAmelCase ,"""wp""" )
lowerCamelCase__ = []
lowerCamelCase__ = []
for i in range(_lowerCAmelCase ):
lowerCamelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]]
lowerCamelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]]
lowerCamelCase__ = scores.index(max(_lowerCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
lowerCamelCase__ = {}
lowerCamelCase__ = final_strs
lowerCamelCase__ = final_scores
lowerCamelCase__ = char_strs
lowerCamelCase__ = bpe_strs
lowerCamelCase__ = wp_strs
return out
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
if format == DecodeType.CHARACTER:
lowerCamelCase__ = self.char_decode
lowerCamelCase__ = 1
lowerCamelCase__ = """[s]"""
elif format == DecodeType.BPE:
lowerCamelCase__ = self.bpe_decode
lowerCamelCase__ = 2
lowerCamelCase__ = """#"""
elif format == DecodeType.WORDPIECE:
lowerCamelCase__ = self.wp_decode
lowerCamelCase__ = 1_02
lowerCamelCase__ = """[SEP]"""
else:
raise ValueError(F'''Format {format} is not supported.''' )
lowerCamelCase__ , lowerCamelCase__ = [], []
lowerCamelCase__ = pred_logits.size(0 )
lowerCamelCase__ = pred_logits.size(1 )
lowerCamelCase__ , lowerCamelCase__ = pred_logits.topk(1 ,dim=-1 ,largest=_lowerCAmelCase ,sorted=_lowerCAmelCase )
lowerCamelCase__ = preds_index.view(-1 ,_lowerCAmelCase )[:, 1:]
lowerCamelCase__ = decoder(_lowerCAmelCase )
lowerCamelCase__ , lowerCamelCase__ = torch.nn.functional.softmax(_lowerCAmelCase ,dim=2 ).max(dim=2 )
lowerCamelCase__ = preds_max_prob[:, 1:]
for index in range(_lowerCAmelCase ):
lowerCamelCase__ = preds_str[index].find(_lowerCAmelCase )
lowerCamelCase__ = preds_str[index][:pred_eos]
lowerCamelCase__ = preds_index[index].cpu().tolist()
lowerCamelCase__ = pred_index.index(_lowerCAmelCase ) if eos_token in pred_index else -1
lowerCamelCase__ = preds_max_prob[index][: pred_eos_index + 1]
lowerCamelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(_lowerCAmelCase )
conf_scores.append(_lowerCAmelCase )
return dec_strs, conf_scores
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = [seq.replace(""" """ ,"""""" ) for seq in self.char_tokenizer.batch_decode(_lowerCAmelCase )]
return decode_strs
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
return self.bpe_tokenizer.batch_decode(_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = [seq.replace(""" """ ,"""""" ) for seq in self.wp_tokenizer.batch_decode(_lowerCAmelCase )]
return decode_strs
| 712 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
UpperCamelCase : Optional[Any] = ['small', 'medium', 'large']
UpperCamelCase : Dict = 'lm_head.decoder.weight'
UpperCamelCase : int = 'lm_head.weight'
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ):
lowerCamelCase__ = torch.load(__lowerCAmelCase )
lowerCamelCase__ = d.pop(__lowerCAmelCase )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) )
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
parser.add_argument('--dialogpt_path', default='.', type=str)
UpperCamelCase : Dict = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
UpperCamelCase : Any = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl')
UpperCamelCase : str = F'./DialoGPT-{MODEL}'
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 9 | 0 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : Any ):
lowerCamelCase__ = [0] * len(lowerCAmelCase__ )
lowerCamelCase__ = []
lowerCamelCase__ = [1] * len(lowerCAmelCase__ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(lowerCAmelCase__ ) ):
if indegree[i] == 0:
queue.append(lowerCAmelCase__ )
while queue:
lowerCamelCase__ = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
lowerCamelCase__ = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(lowerCAmelCase__ )
print(max(lowerCAmelCase__ ) )
# Adjacency list of Graph
UpperCamelCase : Optional[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 713 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=30 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=10 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=0.6 ,_lowerCAmelCase=None ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = is_training
lowerCamelCase__ = use_labels
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = type_sequence_label_size
lowerCamelCase__ = initializer_range
lowerCamelCase__ = mask_ratio
lowerCamelCase__ = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
lowerCamelCase__ = (image_size // patch_size) ** 2
lowerCamelCase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowerCamelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self ):
return ViTMAEConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = TFViTMAEModel(config=_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
# expected sequence length = num_patches
lowerCamelCase__ = (self.image_size // self.patch_size) ** 2
lowerCamelCase__ = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
lowerCamelCase__ = 1
lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase )
lowerCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase )
lowerCamelCase__ = self.patch_size**2
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.prepare_config_and_inputs()
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs
lowerCamelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase__ (a ,a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
_UpperCamelCase = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {}
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFViTMAEModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 )
def UpperCamelCase_ ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
lowerCamelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase ,tf.keras.layers.Layer ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase )
def UpperCamelCase_ ( self ):
# make the mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = copy.deepcopy(self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = outputs_dict[0].numpy()
lowerCamelCase__ = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1E-6 )
def UpperCamelCase_ ( self ):
# make the mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(_lowerCAmelCase ):
lowerCamelCase__ = {}
for k, v in inputs_dict.items():
if tf.is_tensor(_lowerCAmelCase ):
lowerCamelCase__ = v.numpy()
else:
lowerCamelCase__ = np.array(_lowerCAmelCase )
return inputs_np_dict
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = prepare_numpy_arrays(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
# make masks reproducible
np.random.seed(2 )
lowerCamelCase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowerCamelCase__ = tf.constant(_lowerCAmelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
lowerCamelCase__ = tf_noise
super().check_pt_tf_models(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(_lowerCAmelCase )
if module_member_name.endswith("""MainLayer""" )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )]
for module_member in (getattr(_lowerCAmelCase ,_lowerCAmelCase ),)
if isinstance(_lowerCAmelCase ,_lowerCAmelCase )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(_lowerCAmelCase ,"""_keras_serializable""" ,_lowerCAmelCase )
}
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowerCamelCase__ = tf.convert_to_tensor(_lowerCAmelCase )
inputs_dict.update({"""noise""": noise} )
for main_layer_class in tf_main_layer_classes:
lowerCamelCase__ = main_layer_class(_lowerCAmelCase )
lowerCamelCase__ = {
name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
lowerCamelCase__ = tf.keras.Model(_lowerCAmelCase ,outputs=main_layer(_lowerCAmelCase ) )
lowerCamelCase__ = model(_lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCamelCase__ = os.path.join(_lowerCAmelCase ,"""keras_model.h5""" )
model.save(_lowerCAmelCase )
lowerCamelCase__ = tf.keras.models.load_model(
_lowerCAmelCase ,custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(_lowerCAmelCase ,tf.keras.Model )
lowerCamelCase__ = model(_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
lowerCamelCase__ = outputs.last_hidden_state.numpy()
lowerCamelCase__ = 0
else:
lowerCamelCase__ = outputs.logits.numpy()
lowerCamelCase__ = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_lowerCAmelCase ,saved_model=_lowerCAmelCase )
lowerCamelCase__ = model_class.from_pretrained(_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
lowerCamelCase__ = after_outputs["""last_hidden_state"""].numpy()
lowerCamelCase__ = 0
else:
lowerCamelCase__ = after_outputs["""logits"""].numpy()
lowerCamelCase__ = 0
lowerCamelCase__ = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_lowerCAmelCase ,1E-5 )
def UpperCamelCase_ ( self ):
# make mask reproducible
np.random.seed(2 )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(_lowerCAmelCase )
lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase )
lowerCamelCase__ = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(_lowerCAmelCase )
lowerCamelCase__ = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
lowerCamelCase__ = model_class.from_config(model.config )
lowerCamelCase__ = new_model(_lowerCAmelCase ) # Build model
new_model.set_weights(model.get_weights() )
lowerCamelCase__ = new_model(_lowerCAmelCase ,noise=_lowerCAmelCase )
self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def UpperCamelCase_ ( self ):
pass
@slow
def UpperCamelCase_ ( self ):
lowerCamelCase__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" )
self.assertIsNotNone(_lowerCAmelCase )
def A__ ( ):
lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self ):
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
lowerCamelCase__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" )
lowerCamelCase__ = self.default_image_processor
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""tf""" )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
lowerCamelCase__ = ViTMAEConfig()
lowerCamelCase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
lowerCamelCase__ = np.random.uniform(size=(1, num_patches) )
# forward pass
lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase )
# verify the logits
lowerCamelCase__ = tf.convert_to_tensor([1, 1_96, 7_68] )
self.assertEqual(outputs.logits.shape ,_lowerCAmelCase )
lowerCamelCase__ = tf.convert_to_tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] ,_lowerCAmelCase ,atol=1E-4 )
| 9 | 0 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def A__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ):
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
lowerCamelCase__ = flax_key_tuple[:-1] + ("""weight""",)
lowerCamelCase__ = torch.permute(__A , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__A ):
# linear layer
lowerCamelCase__ = flax_key_tuple[:-1] + ("""weight""",)
lowerCamelCase__ = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
lowerCamelCase__ = flax_key_tuple[:-1] + ("""weight""",)
return flax_key_tuple, flax_tensor
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] ):
if "metadata" in layer:
lowerCamelCase__ = layer.split("""metadata""" )
lowerCamelCase__ = """""".join(split_layer[0] )[:-1]
lowerCamelCase__ = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )]
elif "kvstore" in layer:
lowerCamelCase__ = layer.split("""kvstore""" )
lowerCamelCase__ = """""".join(split_layer[0] )[:-1]
lowerCamelCase__ = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )]
else:
lowerCamelCase__ = layer.split("""/""" )
lowerCamelCase__ = """/""".join(split_layer[:-1] )
lowerCamelCase__ = (split_layer[-1],)
if "kvstore/path" in layer:
lowerCamelCase__ = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}'''
elif "kvstore/driver" in layer:
lowerCamelCase__ = """file"""
else:
lowerCamelCase__ = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ):
lowerCamelCase__ = rename_keys(__A )
lowerCamelCase__ = {}
for k, v in current_block.items():
lowerCamelCase__ = v
lowerCamelCase__ = new_current_block
torch.save(__A , __A )
def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : str = WEIGHTS_NAME ):
lowerCamelCase__ = convert_file_size_to_int(__A )
lowerCamelCase__ = []
lowerCamelCase__ = {}
lowerCamelCase__ = 0
lowerCamelCase__ = 0
os.makedirs(__A , exist_ok=__A )
with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp:
lowerCamelCase__ = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""]
lowerCamelCase__ = flatten_dict(__A , sep="""/""" )
lowerCamelCase__ = {}
for layer in checkpoint_info.keys():
lowerCamelCase__ = get_key_and_tensorstore_dict(
__A , __A , __A )
if curr_real_layer_name in all_layers:
lowerCamelCase__ = content
else:
lowerCamelCase__ = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
lowerCamelCase__ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
lowerCamelCase__ = torch.tensor(__A )
lowerCamelCase__ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
lowerCamelCase__ = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __A )
lowerCamelCase__ = """/""".join(__A )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
lowerCamelCase__ = os.path.join(
__A , weights_name.replace(""".bin""" , F'''-{len(__A )+1:05d}-of-???.bin''' ) )
rename_and_save_block(__A , __A )
sharded_state_dicts.append(current_block.keys() )
del current_block
lowerCamelCase__ = {}
lowerCamelCase__ = 0
lowerCamelCase__ = raw_weights.to(getattr(__A , __A ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
lowerCamelCase__ = os.path.join(__A , weights_name.replace(""".bin""" , F'''-{len(__A )+1:05d}-of-???.bin''' ) )
rename_and_save_block(__A , __A )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(__A ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
lowerCamelCase__ = {}
lowerCamelCase__ = {}
for idx, shard in enumerate(__A ):
lowerCamelCase__ = weights_name.replace(
""".bin""" , F'''-{idx+1:05d}-of-{len(__A ):05d}.bin''' ) # len(sharded_state_dicts):05d}
lowerCamelCase__ = os.path.join(__A , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(__A , os.path.join(__A , __A ) )
lowerCamelCase__ = shard
for key in shard:
lowerCamelCase__ = shard_file
# Add the metadata
lowerCamelCase__ = {"""total_size""": total_size}
lowerCamelCase__ = {"""metadata""": metadata, """weight_map""": weight_map}
with open(os.path.join(__A , __A ) , """w""" , encoding="""utf-8""" ) as f:
lowerCamelCase__ = json.dumps(__A , indent=2 , sort_keys=__A ) + """\n"""
f.write(__A )
return metadata, index
if __name__ == "__main__":
UpperCamelCase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--switch_t5x_checkpoint_path',
default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size')
parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted',
type=str,
required=False,
help='Path to the output pytorch model.',
)
UpperCamelCase : str = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def A__ ( ):
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
lowerCamelCase__ = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" )
config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" )
lowerCamelCase__ = SwitchTransformersForConditionalGeneration.from_pretrained(
"""/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" )
lowerCamelCase__ = TaTokenizer.from_pretrained("""t5-small""" )
lowerCamelCase__ = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."""
lowerCamelCase__ = tokenizer(__A , return_tensors="""pt""" ).input_ids
lowerCamelCase__ = model.generate(__A , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 714 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=7 ,_lowerCAmelCase=3 ,_lowerCAmelCase=18 ,_lowerCAmelCase=30 ,_lowerCAmelCase=4_00 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,):
lowerCamelCase__ = size if size is not None else {"""shortest_edge""": 18}
lowerCamelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = image_size
lowerCamelCase__ = min_resolution
lowerCamelCase__ = max_resolution
lowerCamelCase__ = do_resize
lowerCamelCase__ = size
lowerCamelCase__ = do_center_crop
lowerCamelCase__ = crop_size
lowerCamelCase__ = do_normalize
lowerCamelCase__ = image_mean
lowerCamelCase__ = image_std
def UpperCamelCase_ ( self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class UpperCamelCase__ (a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = LevitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self ):
lowerCamelCase__ = LevitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""image_std""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""do_center_crop""" ) )
self.assertTrue(hasattr(_lowerCAmelCase ,"""size""" ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} )
self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} )
lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,Image.Image )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,numpify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,np.ndarray )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCamelCase_ ( self ):
# Initialize image_processing
lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,torchify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase ,torch.Tensor )
# Test not batched input
lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
| 9 | 0 |
def A__ ( __lowerCAmelCase : int ):
lowerCamelCase__ = 1
for i in range(1 , num + 1 ):
fact *= i
return fact
def A__ ( __lowerCAmelCase : Optional[Any] ):
lowerCamelCase__ = 0
while number > 0:
lowerCamelCase__ = number % 10
sum_of_digits += last_digit
lowerCamelCase__ = number // 10 # Removing the last_digit from the given number
return sum_of_digits
def A__ ( __lowerCAmelCase : str = 100 ):
lowerCamelCase__ = factorial(_lowerCamelCase )
lowerCamelCase__ = split_and_add(_lowerCamelCase )
return result
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 715 |
'''simple docstring'''
import numpy
# List of input, output pairs
UpperCamelCase : List[Any] = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
UpperCamelCase : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50))
UpperCamelCase : int = [2, 4, 1, 5]
UpperCamelCase : int = len(train_data)
UpperCamelCase : Dict = 0.009
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : str="train" ):
return calculate_hypothesis_value(__lowerCAmelCase , __lowerCAmelCase ) - output(
__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : Any ):
lowerCamelCase__ = 0
for i in range(len(__lowerCAmelCase ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=m ):
lowerCamelCase__ = 0
for i in range(__lowerCAmelCase ):
if index == -1:
summation_value += _error(__lowerCAmelCase )
else:
summation_value += _error(__lowerCAmelCase ) * train_data[i][0][index]
return summation_value
def A__ ( __lowerCAmelCase : List[Any] ):
lowerCamelCase__ = summation_of_cost_derivative(__lowerCAmelCase , __lowerCAmelCase ) / m
return cost_derivative_value
def A__ ( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
lowerCamelCase__ = 0.00_0002
lowerCamelCase__ = 0
lowerCamelCase__ = 0
while True:
j += 1
lowerCamelCase__ = [0, 0, 0, 0]
for i in range(0 , len(__lowerCAmelCase ) ):
lowerCamelCase__ = get_cost_derivative(i - 1 )
lowerCamelCase__ = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
__lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase , rtol=__lowerCAmelCase , ):
break
lowerCamelCase__ = temp_parameter_vector
print(("""Number of iterations:""", j) )
def A__ ( ):
for i in range(len(__lowerCAmelCase ) ):
print(("""Actual output value:""", output(__lowerCAmelCase , """test""" )) )
print(("""Hypothesis output:""", calculate_hypothesis_value(__lowerCAmelCase , """test""" )) )
if __name__ == "__main__":
run_gradient_descent()
print('\nTesting gradient descent for a linear hypothesis function.\n')
test_gradient_descent()
| 9 | 0 |
'''simple docstring'''
import datasets
UpperCamelCase : Any = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n"
UpperCamelCase : Union[str, Any] = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n"
UpperCamelCase : str = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n"
def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] ):
return (preds == labels).mean()
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class UpperCamelCase__ (datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
"""predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ),
"""references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ),
} ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" ,)
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
return {"accuracy": simple_accuracy(__lowerCamelCase ,__lowerCamelCase )}
| 716 |
'''simple docstring'''
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ):
lowerCamelCase__ = OmegaConf.load(__lowerCAmelCase )
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""model"""]
lowerCamelCase__ = list(state_dict.keys() )
# extract state_dict for VQVAE
lowerCamelCase__ = {}
lowerCamelCase__ = """first_stage_model."""
for key in keys:
if key.startswith(__lowerCAmelCase ):
lowerCamelCase__ = state_dict[key]
# extract state_dict for UNetLDM
lowerCamelCase__ = {}
lowerCamelCase__ = """model.diffusion_model."""
for key in keys:
if key.startswith(__lowerCAmelCase ):
lowerCamelCase__ = state_dict[key]
lowerCamelCase__ = config.model.params.first_stage_config.params
lowerCamelCase__ = config.model.params.unet_config.params
lowerCamelCase__ = VQModel(**__lowerCAmelCase ).eval()
vqvae.load_state_dict(__lowerCAmelCase )
lowerCamelCase__ = UNetLDMModel(**__lowerCAmelCase ).eval()
unet.load_state_dict(__lowerCAmelCase )
lowerCamelCase__ = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__lowerCAmelCase , )
lowerCamelCase__ = LDMPipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
pipeline.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', type=str, required=True)
parser.add_argument('--config_path', type=str, required=True)
parser.add_argument('--output_path', type=str, required=True)
UpperCamelCase : List[Any] = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 9 | 0 |
def A__ ( __lowerCAmelCase : int = 1 , __lowerCAmelCase : int = 1000 ):
lowerCamelCase__ = 1
lowerCamelCase__ = 0
for divide_by_number in range(a_ , digit + 1 ):
lowerCamelCase__ = []
lowerCamelCase__ = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(a_ ):
lowerCamelCase__ = len(a_ )
lowerCamelCase__ = divide_by_number
else:
has_been_divided.append(a_ )
lowerCamelCase__ = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 717 |
'''simple docstring'''
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
UpperCamelCase : str = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase]
UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS}
UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"]
def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : tuple[int, ...] ):
lowerCamelCase__ = ""
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = 42
for keychar, cipherchar in zip(cycle(__lowerCAmelCase ) , __lowerCAmelCase ):
lowerCamelCase__ = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(__lowerCAmelCase )
return decoded
def A__ ( __lowerCAmelCase : list[int] ):
lowerCamelCase__ = []
for key in product(__lowerCAmelCase , repeat=3 ):
lowerCamelCase__ = try_key(__lowerCAmelCase , __lowerCAmelCase )
if encoded is not None:
possibles.append(__lowerCAmelCase )
return possibles
def A__ ( __lowerCAmelCase : list[str] , __lowerCAmelCase : str ):
return [possible for possible in possibles if common_word in possible.lower()]
def A__ ( __lowerCAmelCase : str = "p059_cipher.txt" ):
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = Path(__lowerCAmelCase ).parent.joinpath(__lowerCAmelCase ).read_text(encoding="""utf-8""" )
lowerCamelCase__ = [int(__lowerCAmelCase ) for number in data.strip().split(""",""" )]
lowerCamelCase__ = filter_valid_chars(__lowerCAmelCase )
for common_word in COMMON_WORDS:
lowerCamelCase__ = filter_common_word(__lowerCAmelCase , __lowerCAmelCase )
if len(__lowerCAmelCase ) == 1:
break
lowerCamelCase__ = possibles[0]
return sum(ord(__lowerCAmelCase ) for char in decoded_text )
if __name__ == "__main__":
print(F'{solution() = }')
| 9 | 0 |
'''simple docstring'''
UpperCamelCase : List[Any] = '''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
UpperCamelCase : Union[str, Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
UpperCamelCase : Union[str, Any] = {
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 718 |
'''simple docstring'''
import argparse
import struct
import unittest
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ):
lowerCamelCase__ = data
# Initialize hash values
lowerCamelCase__ = [
0x6a_09_e6_67,
0xbb_67_ae_85,
0x3c_6e_f3_72,
0xa5_4f_f5_3a,
0x51_0e_52_7f,
0x9b_05_68_8c,
0x1f_83_d9_ab,
0x5b_e0_cd_19,
]
# Initialize round constants
lowerCamelCase__ = [
0x42_8a_2f_98,
0x71_37_44_91,
0xb5_c0_fb_cf,
0xe9_b5_db_a5,
0x39_56_c2_5b,
0x59_f1_11_f1,
0x92_3f_82_a4,
0xab_1c_5e_d5,
0xd8_07_aa_98,
0x12_83_5b_01,
0x24_31_85_be,
0x55_0c_7d_c3,
0x72_be_5d_74,
0x80_de_b1_fe,
0x9b_dc_06_a7,
0xc1_9b_f1_74,
0xe4_9b_69_c1,
0xef_be_47_86,
0x0f_c1_9d_c6,
0x24_0c_a1_cc,
0x2d_e9_2c_6f,
0x4a_74_84_aa,
0x5c_b0_a9_dc,
0x76_f9_88_da,
0x98_3e_51_52,
0xa8_31_c6_6d,
0xb0_03_27_c8,
0xbf_59_7f_c7,
0xc6_e0_0b_f3,
0xd5_a7_91_47,
0x06_ca_63_51,
0x14_29_29_67,
0x27_b7_0a_85,
0x2e_1b_21_38,
0x4d_2c_6d_fc,
0x53_38_0d_13,
0x65_0a_73_54,
0x76_6a_0a_bb,
0x81_c2_c9_2e,
0x92_72_2c_85,
0xa2_bf_e8_a1,
0xa8_1a_66_4b,
0xc2_4b_8b_70,
0xc7_6c_51_a3,
0xd1_92_e8_19,
0xd6_99_06_24,
0xf4_0e_35_85,
0x10_6a_a0_70,
0x19_a4_c1_16,
0x1e_37_6c_08,
0x27_48_77_4c,
0x34_b0_bc_b5,
0x39_1c_0c_b3,
0x4e_d8_aa_4a,
0x5b_9c_ca_4f,
0x68_2e_6f_f3,
0x74_8f_82_ee,
0x78_a5_63_6f,
0x84_c8_78_14,
0x8c_c7_02_08,
0x90_be_ff_fa,
0xa4_50_6c_eb,
0xbe_f9_a3_f7,
0xc6_71_78_f2,
]
lowerCamelCase__ = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def UpperCamelCase_ ( _lowerCAmelCase ):
lowerCamelCase__ = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowerCAmelCase ) + 8) % 64))
lowerCamelCase__ = struct.pack(""">Q""" ,(len(_lowerCAmelCase ) * 8) )
return data + padding + big_endian_integer
def UpperCamelCase_ ( self ):
# Convert into blocks of 64 bytes
lowerCamelCase__ = [
self.preprocessed_data[x : x + 64]
for x in range(0 ,len(self.preprocessed_data ) ,64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
lowerCamelCase__ = list(struct.unpack(""">16L""" ,_lowerCAmelCase ) )
# add 48 0-ed integers
words += [0] * 48
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.hashes
for index in range(0 ,64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
lowerCamelCase__ = (
self.ror(words[index - 15] ,7 )
^ self.ror(words[index - 15] ,18 )
^ (words[index - 15] >> 3)
)
lowerCamelCase__ = (
self.ror(words[index - 2] ,17 )
^ self.ror(words[index - 2] ,19 )
^ (words[index - 2] >> 10)
)
lowerCamelCase__ = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_00_00_00_00
# Compression
lowerCamelCase__ = self.ror(_lowerCAmelCase ,6 ) ^ self.ror(_lowerCAmelCase ,11 ) ^ self.ror(_lowerCAmelCase ,25 )
lowerCamelCase__ = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g)
lowerCamelCase__ = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_00_00_00_00
lowerCamelCase__ = self.ror(_lowerCAmelCase ,2 ) ^ self.ror(_lowerCAmelCase ,13 ) ^ self.ror(_lowerCAmelCase ,22 )
lowerCamelCase__ = (a & b) ^ (a & c) ^ (b & c)
lowerCamelCase__ = (sa + maj) % 0x1_00_00_00_00
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = (
g,
f,
e,
((d + tempa) % 0x1_00_00_00_00),
c,
b,
a,
((tempa + tempa) % 0x1_00_00_00_00),
)
lowerCamelCase__ = [a, b, c, d, e, f, g, h]
# Modify final values
lowerCamelCase__ = [
((element + mutated_hash_values[index]) % 0x1_00_00_00_00)
for index, element in enumerate(self.hashes )
]
lowerCamelCase__ = """""".join([hex(_lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations)
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
import hashlib
lowerCamelCase__ = bytes("""Test String""" ,"""utf-8""" )
self.assertEqual(SHAaaa(_lowerCAmelCase ).hash ,hashlib.shaaaa(_lowerCAmelCase ).hexdigest() )
def A__ ( ):
import doctest
doctest.testmod()
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument(
"""-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , )
parser.add_argument(
"""-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" )
lowerCamelCase__ = parser.parse_args()
lowerCamelCase__ = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , """rb""" ) as f:
lowerCamelCase__ = f.read()
else:
lowerCamelCase__ = bytes(__lowerCAmelCase , """utf-8""" )
print(SHAaaa(__lowerCAmelCase ).hash )
if __name__ == "__main__":
main()
| 9 | 0 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=2 ,_lowerCAmelCase=True ,_lowerCAmelCase=False ,_lowerCAmelCase=10 ,_lowerCAmelCase=3 ,_lowerCAmelCase=32 * 8 ,_lowerCAmelCase=32 * 8 ,_lowerCAmelCase=4 ,_lowerCAmelCase=64 ,):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = is_training
lowerCamelCase__ = use_auxiliary_loss
lowerCamelCase__ = num_queries
lowerCamelCase__ = num_channels
lowerCamelCase__ = min_size
lowerCamelCase__ = max_size
lowerCamelCase__ = num_labels
lowerCamelCase__ = hidden_dim
lowerCamelCase__ = hidden_dim
def UpperCamelCase_ ( self ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
snake_case_ )
lowerCamelCase__ = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=snake_case_ )
lowerCamelCase__ = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=snake_case_ ) > 0.5
).float()
lowerCamelCase__ = (torch.rand((self.batch_size, self.num_labels) ,device=snake_case_ ) > 0.5).long()
lowerCamelCase__ = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def UpperCamelCase_ ( self ):
lowerCamelCase__ = MaskaFormerConfig(
hidden_size=self.hidden_dim ,)
lowerCamelCase__ = self.num_queries
lowerCamelCase__ = self.num_labels
lowerCamelCase__ = [1, 1, 1, 1]
lowerCamelCase__ = self.num_channels
lowerCamelCase__ = 64
lowerCamelCase__ = 1_28
lowerCamelCase__ = self.hidden_dim
lowerCamelCase__ = self.hidden_dim
lowerCamelCase__ = self.hidden_dim
return config
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.prepare_config_and_inputs()
lowerCamelCase__ = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = output.encoder_hidden_states
lowerCamelCase__ = output.pixel_decoder_hidden_states
lowerCamelCase__ = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(snake_case_ ) ,len(config.backbone_config.depths ) )
self.parent.assertTrue(len(snake_case_ ) ,len(config.backbone_config.depths ) )
self.parent.assertTrue(len(snake_case_ ) ,config.decoder_layers )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=False ):
with torch.no_grad():
lowerCamelCase__ = MaskaFormerModel(config=snake_case_ )
model.to(snake_case_ )
model.eval()
lowerCamelCase__ = model(pixel_values=snake_case_ ,pixel_mask=snake_case_ )
lowerCamelCase__ = model(snake_case_ ,output_hidden_states=snake_case_ )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,)
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(snake_case_ ,snake_case_ )
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
lowerCamelCase__ = MaskaFormerForUniversalSegmentation(config=snake_case_ )
model.to(snake_case_ )
model.eval()
def comm_check_on_output(_lowerCAmelCase ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,)
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
lowerCamelCase__ = model(pixel_values=snake_case_ ,pixel_mask=snake_case_ )
lowerCamelCase__ = model(snake_case_ )
comm_check_on_output(snake_case_ )
lowerCamelCase__ = model(
pixel_values=snake_case_ ,pixel_mask=snake_case_ ,mask_labels=snake_case_ ,class_labels=snake_case_ )
comm_check_on_output(snake_case_ )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) )
@require_torch
class UpperCamelCase__ (_a ,_a ,unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
_UpperCamelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {}
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
_UpperCamelCase = False
def UpperCamelCase_ ( self ):
lowerCamelCase__ = MaskaFormerModelTester(self )
lowerCamelCase__ = ConfigTester(self ,config_class=snake_case_ ,has_text_modality=snake_case_ )
def UpperCamelCase_ ( self ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(snake_case_ ,**snake_case_ ,output_hidden_states=snake_case_ )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*snake_case_ )
@unittest.skip(reason="""Mask2Former does not use inputs_embeds""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""Mask2Former is not a generative model""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip(reason="""Mask2Former does not use token embeddings""" )
def UpperCamelCase_ ( self ):
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`""" )
def UpperCamelCase_ ( self ):
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def UpperCamelCase_ ( self ):
pass
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(snake_case_ )
lowerCamelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,snake_case_ )
@slow
def UpperCamelCase_ ( self ):
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
lowerCamelCase__ = MaskaFormerModel.from_pretrained(snake_case_ )
self.assertIsNotNone(snake_case_ )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = (self.model_tester.min_size,) * 2
lowerCamelCase__ = {
"""pixel_values""": torch.randn((2, 3, *size) ,device=snake_case_ ),
"""mask_labels""": torch.randn((2, 10, *size) ,device=snake_case_ ),
"""class_labels""": torch.zeros(2 ,10 ,device=snake_case_ ).long(),
}
lowerCamelCase__ = self.model_tester.get_config()
lowerCamelCase__ = MaskaFormerForUniversalSegmentation(snake_case_ ).to(snake_case_ )
lowerCamelCase__ = model(**snake_case_ )
self.assertTrue(outputs.loss is not None )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(snake_case_ ,**snake_case_ ,output_hidden_states=snake_case_ )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(snake_case_ ).to(snake_case_ )
lowerCamelCase__ = model(**snake_case_ ,output_attentions=snake_case_ )
self.assertTrue(outputs.attentions is not None )
def UpperCamelCase_ ( self ):
if not self.model_tester.is_training:
return
lowerCamelCase__ = self.all_model_classes[1]
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
lowerCamelCase__ = model_class(snake_case_ )
model.to(snake_case_ )
model.train()
lowerCamelCase__ = model(snake_case_ ,mask_labels=snake_case_ ,class_labels=snake_case_ ).loss
loss.backward()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.all_model_classes[1]
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
lowerCamelCase__ = True
lowerCamelCase__ = True
lowerCamelCase__ = model_class(snake_case_ ).to(snake_case_ )
model.train()
lowerCamelCase__ = model(snake_case_ ,mask_labels=snake_case_ ,class_labels=snake_case_ )
lowerCamelCase__ = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
lowerCamelCase__ = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
lowerCamelCase__ = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
lowerCamelCase__ = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=snake_case_ )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
UpperCamelCase : List[str] = 1E-4
def A__ ( ):
lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self ):
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def UpperCamelCase_ ( self ):
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def UpperCamelCase_ ( self ):
lowerCamelCase__ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(snake_case_ )
lowerCamelCase__ = self.default_image_processor
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(snake_case_ ,return_tensors="""pt""" ).to(snake_case_ )
lowerCamelCase__ = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(snake_case_ ,(1, 3, 3_84, 3_84) )
with torch.no_grad():
lowerCamelCase__ = model(**snake_case_ )
lowerCamelCase__ = torch.tensor(
[[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(snake_case_ )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] ,snake_case_ ,atol=snake_case_ ) )
lowerCamelCase__ = torch.tensor(
[[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(snake_case_ )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,snake_case_ ,atol=snake_case_ ) )
lowerCamelCase__ = torch.tensor(
[[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(snake_case_ )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,snake_case_ ,atol=snake_case_ ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case_ ).eval()
lowerCamelCase__ = self.default_image_processor
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = image_processor(snake_case_ ,return_tensors="""pt""" ).to(snake_case_ )
lowerCamelCase__ = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(snake_case_ ,(1, 3, 3_84, 3_84) )
with torch.no_grad():
lowerCamelCase__ = model(**snake_case_ )
# masks_queries_logits
lowerCamelCase__ = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
lowerCamelCase__ = [
[-8.7839, -9.0056, -8.8121],
[-7.4104, -7.0313, -6.5401],
[-6.6105, -6.3427, -6.4675],
]
lowerCamelCase__ = torch.tensor(snake_case_ ).to(snake_case_ )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,snake_case_ ,atol=snake_case_ ) )
# class_queries_logits
lowerCamelCase__ = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) )
lowerCamelCase__ = torch.tensor(
[
[1.8324, -8.0835, -4.1922],
[0.8450, -9.0050, -3.6053],
[0.3045, -7.7293, -3.0275],
] ).to(snake_case_ )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,snake_case_ ,atol=snake_case_ ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case_ ).eval()
lowerCamelCase__ = self.default_image_processor
lowerCamelCase__ = image_processor(
[np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] ,segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] ,return_tensors="""pt""" ,)
lowerCamelCase__ = inputs["""pixel_values"""].to(snake_case_ )
lowerCamelCase__ = [el.to(snake_case_ ) for el in inputs["""mask_labels"""]]
lowerCamelCase__ = [el.to(snake_case_ ) for el in inputs["""class_labels"""]]
with torch.no_grad():
lowerCamelCase__ = model(**snake_case_ )
self.assertTrue(outputs.loss is not None )
| 719 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def A__ ( __lowerCAmelCase : Union[str, Any] ):
lowerCamelCase__ = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""encoder.embed_positions._float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( __lowerCAmelCase : Tuple ):
lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape
lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase )
lowerCamelCase__ = emb.weight.data
return lin_layer
def A__ ( __lowerCAmelCase : Dict ):
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )
lowerCamelCase__ = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""]
lowerCamelCase__ = mam_aaa["""model"""]
remove_ignore_keys_(__lowerCAmelCase )
lowerCamelCase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0]
lowerCamelCase__ = MaMaaaConfig(
vocab_size=__lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , )
lowerCamelCase__ = state_dict["""decoder.embed_tokens.weight"""]
lowerCamelCase__ = MaMaaaForConditionalGeneration(__lowerCAmelCase )
model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
lowerCamelCase__ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
UpperCamelCase : Tuple = parser.parse_args()
UpperCamelCase : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 9 | 0 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , ):
lowerCamelCase__ = [redshift, radiation_density, matter_density, dark_energy]
if any(p < 0 for p in parameters ):
raise ValueError("""All input parameters must be positive""" )
if any(p > 1 for p in parameters[1:4] ):
raise ValueError("""Relative densities cannot be greater than one""" )
else:
lowerCamelCase__ = 1 - (matter_density + radiation_density + dark_energy)
lowerCamelCase__ = (
radiation_density * (redshift + 1) ** 4
+ matter_density * (redshift + 1) ** 3
+ curvature * (redshift + 1) ** 2
+ dark_energy
)
lowerCamelCase__ = hubble_constant * e_a ** (1 / 2)
return hubble
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# demo LCDM approximation
UpperCamelCase : Any = 0.3
print(
hubble_parameter(
hubble_constant=68.3,
radiation_density=1E-4,
matter_density=matter_density,
dark_energy=1 - matter_density,
redshift=0,
)
)
| 720 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
lowerCamelCase__ = tempfile.mkdtemp()
lowerCamelCase__ = BlipImageProcessor()
lowerCamelCase__ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" )
lowerCamelCase__ = BlipProcessor(_lowerCAmelCase ,_lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).tokenizer
def UpperCamelCase_ ( self ,**_lowerCAmelCase ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).image_processor
def UpperCamelCase_ ( self ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self ):
lowerCamelCase__ = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" )
lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 )
lowerCamelCase__ = BlipProcessor.from_pretrained(
self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = self.prepare_image_inputs()
lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" )
lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = processor(text=_lowerCAmelCase )
lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = self.prepare_image_inputs()
lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase )
self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(_lowerCAmelCase ):
processor()
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase )
lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = self.get_image_processor()
lowerCamelCase__ = self.get_tokenizer()
lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase )
lowerCamelCase__ = """lower newer"""
lowerCamelCase__ = self.prepare_image_inputs()
lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
| 9 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.