code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer UpperCamelCase : List[Any] = ['bert-base-uncased', 'bert-base-cased'] UpperCamelCase : List[str] = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class UpperCamelCase__ (tf.keras.Model ): def __init__( self ,_lowerCAmelCase ): super().__init__() lowerCamelCase__ = tokenizer lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TFAutoModel.from_config(_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = self.tokenizer(_lowerCAmelCase ) lowerCamelCase__ = self.bert(**_lowerCAmelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class UpperCamelCase__ (unittest.TestCase ): def UpperCamelCase_ ( self ): super().setUp() lowerCamelCase__ = [ BertTokenizer.from_pretrained(_lowerCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false lowerCamelCase__ = [TFBertTokenizer.from_pretrained(_lowerCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_lowerCAmelCase ,use_fast_bert_tokenizer=_lowerCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowerCamelCase__ = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] lowerCamelCase__ = list(zip(self.test_sentences ,self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self ): for tokenizer, tf_tokenizer in zip(self.tokenizers ,self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_tensors="""tf""" ,padding="""longest""" ) lowerCamelCase__ = tf_tokenizer(_lowerCAmelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] ,tf.intaa ) == tf_outputs[key] ) ) @slow def UpperCamelCase_ ( self ): for tf_tokenizer in self.tf_tokenizers: lowerCamelCase__ = tf_tokenizer(self.paired_sentences ) lowerCamelCase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] ,text_pair=[sentence[1] for sentence in self.paired_sentences] ,) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] ,tf.intaa ) == separated_outputs[key] ) ) @slow def UpperCamelCase_ ( self ): for tf_tokenizer in self.tf_tokenizers: lowerCamelCase__ = tf.function(_lowerCAmelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): lowerCamelCase__ = tf.constant(_lowerCAmelCase ) lowerCamelCase__ = compiled_tokenizer(_lowerCAmelCase ) lowerCamelCase__ = tf_tokenizer(_lowerCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self ): for tf_tokenizer in self.tf_tokenizers: lowerCamelCase__ = ModelToSave(tokenizer=_lowerCAmelCase ) lowerCamelCase__ = tf.convert_to_tensor(self.test_sentences ) lowerCamelCase__ = model(_lowerCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCamelCase__ = Path(_lowerCAmelCase ) / """saved.model""" model.save(_lowerCAmelCase ) lowerCamelCase__ = tf.keras.models.load_model(_lowerCAmelCase ) lowerCamelCase__ = loaded_model(_lowerCAmelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) ,1E-5 )
711
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : List[str] = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'donut-swin' _UpperCamelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self ,_lowerCAmelCase=2_24 ,_lowerCAmelCase=4 ,_lowerCAmelCase=3 ,_lowerCAmelCase=96 ,_lowerCAmelCase=[2, 2, 6, 2] ,_lowerCAmelCase=[3, 6, 12, 24] ,_lowerCAmelCase=7 ,_lowerCAmelCase=4.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=False ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = embed_dim lowerCamelCase__ = depths lowerCamelCase__ = len(_lowerCAmelCase ) lowerCamelCase__ = num_heads lowerCamelCase__ = window_size lowerCamelCase__ = mlp_ratio lowerCamelCase__ = qkv_bias lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = drop_path_rate lowerCamelCase__ = hidden_act lowerCamelCase__ = use_absolute_embeddings lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
9
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase : Optional[Any] = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = ['DeiTFeatureExtractor'] UpperCamelCase : List[str] = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : int = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
712
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME UpperCamelCase : Optional[Any] = ['small', 'medium', 'large'] UpperCamelCase : Dict = 'lm_head.decoder.weight' UpperCamelCase : int = 'lm_head.weight' def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): lowerCamelCase__ = torch.load(__lowerCAmelCase ) lowerCamelCase__ = d.pop(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) UpperCamelCase : Dict = parser.parse_args() for MODEL in DIALOGPT_MODELS: UpperCamelCase : Any = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl') UpperCamelCase : str = F'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
9
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor UpperCamelCase : List[str] = logging.get_logger(__name__) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" ,_lowerCAmelCase ,) super().__init__(*_lowerCAmelCase ,**_lowerCAmelCase )
713
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=30 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=10 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=0.6 ,_lowerCAmelCase=None ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = mask_ratio lowerCamelCase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCamelCase__ = (image_size // patch_size) ** 2 lowerCamelCase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFViTMAEModel(config=_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) # expected sequence length = num_patches lowerCamelCase__ = (self.image_size // self.patch_size) ** 2 lowerCamelCase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCamelCase__ = 1 lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase ) lowerCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) lowerCamelCase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _UpperCamelCase = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = TFViTMAEModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) lowerCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase ,tf.keras.layers.Layer ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): # make the mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = copy.deepcopy(self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = outputs_dict[0].numpy() lowerCamelCase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1E-6 ) def UpperCamelCase_ ( self ): # make the mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_lowerCAmelCase ): lowerCamelCase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(_lowerCAmelCase ): lowerCamelCase__ = v.numpy() else: lowerCamelCase__ = np.array(_lowerCAmelCase ) return inputs_np_dict for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = prepare_numpy_arrays(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): # make masks reproducible np.random.seed(2 ) lowerCamelCase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ = tf.constant(_lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCamelCase__ = tf_noise super().check_pt_tf_models(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_lowerCAmelCase ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(_lowerCAmelCase ,_lowerCAmelCase ),) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_lowerCAmelCase ,"""_keras_serializable""" ,_lowerCAmelCase ) } lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ = tf.convert_to_tensor(_lowerCAmelCase ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: lowerCamelCase__ = main_layer_class(_lowerCAmelCase ) lowerCamelCase__ = { name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowerCamelCase__ = tf.keras.Model(_lowerCAmelCase ,outputs=main_layer(_lowerCAmelCase ) ) lowerCamelCase__ = model(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ = os.path.join(_lowerCAmelCase ,"""keras_model.h5""" ) model.save(_lowerCAmelCase ) lowerCamelCase__ = tf.keras.models.load_model( _lowerCAmelCase ,custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_lowerCAmelCase ,tf.keras.Model ) lowerCamelCase__ = model(_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": lowerCamelCase__ = outputs.last_hidden_state.numpy() lowerCamelCase__ = 0 else: lowerCamelCase__ = outputs.logits.numpy() lowerCamelCase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ,saved_model=_lowerCAmelCase ) lowerCamelCase__ = model_class.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": lowerCamelCase__ = after_outputs["""last_hidden_state"""].numpy() lowerCamelCase__ = 0 else: lowerCamelCase__ = after_outputs["""logits"""].numpy() lowerCamelCase__ = 0 lowerCamelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase ,1E-5 ) def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_lowerCAmelCase ) lowerCamelCase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowerCamelCase__ = model_class.from_config(model.config ) lowerCamelCase__ = new_model(_lowerCAmelCase ) # Build model new_model.set_weights(model.get_weights() ) lowerCamelCase__ = new_model(_lowerCAmelCase ,noise=_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def UpperCamelCase_ ( self ): pass @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(_lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCamelCase__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCamelCase__ = ViTMAEConfig() lowerCamelCase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) # verify the logits lowerCamelCase__ = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape ,_lowerCAmelCase ) lowerCamelCase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] ,_lowerCAmelCase ,atol=1E-4 )
9
0
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCamelCase : Optional[int] = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' UpperCamelCase : Dict = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' UpperCamelCase : List[Any] = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def A__ ( __lowerCAmelCase : Optional[int] ): def remove_articles(__lowerCAmelCase : Optional[Any] ): lowerCamelCase__ = re.compile(R"""\b(a|an|the)\b""" , re.UNICODE ) return re.sub(__lowerCAmelCase , """ """ , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase : int ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase : Optional[Any] ): lowerCamelCase__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : int ): return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) ) def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] ): lowerCamelCase__ = [any(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for ref in refs ) for pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase )] return (sum(__lowerCAmelCase ) / len(__lowerCAmelCase )) * 100 def A__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str ): lowerCamelCase__ = [rgram for rgrams in rgramslist for rgram in rgrams] lowerCamelCase__ = Counter(__lowerCAmelCase ) lowerCamelCase__ = Counter(__lowerCAmelCase ) lowerCamelCase__ = Counter() for sgram, scount in sgramcounter.items(): lowerCamelCase__ = scount * numref lowerCamelCase__ = Counter(__lowerCAmelCase ) lowerCamelCase__ = Counter() for cgram, ccount in cgramcounter.items(): lowerCamelCase__ = ccount * numref # KEEP lowerCamelCase__ = sgramcounter_rep & cgramcounter_rep lowerCamelCase__ = keepgramcounter_rep & rgramcounter lowerCamelCase__ = sgramcounter_rep & rgramcounter lowerCamelCase__ = 0 lowerCamelCase__ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCamelCase__ = 1 lowerCamelCase__ = 1 if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = keeptmpscorea / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) lowerCamelCase__ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) lowerCamelCase__ = 0 if keepscore_precision > 0 or keepscore_recall > 0: lowerCamelCase__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION lowerCamelCase__ = sgramcounter_rep - cgramcounter_rep lowerCamelCase__ = delgramcounter_rep - rgramcounter lowerCamelCase__ = sgramcounter_rep - rgramcounter lowerCamelCase__ = 0 lowerCamelCase__ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCamelCase__ = 1 if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = deltmpscorea / len(__lowerCAmelCase ) # ADDITION lowerCamelCase__ = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) lowerCamelCase__ = set(__lowerCAmelCase ) & set(__lowerCAmelCase ) lowerCamelCase__ = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) lowerCamelCase__ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCamelCase__ = 1 lowerCamelCase__ = 1 if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = addtmpscore / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = addtmpscore / len(__lowerCAmelCase ) lowerCamelCase__ = 0 if addscore_precision > 0 or addscore_recall > 0: lowerCamelCase__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : int ): lowerCamelCase__ = len(__lowerCAmelCase ) lowerCamelCase__ = ssent.split(""" """ ) lowerCamelCase__ = csent.split(""" """ ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] for rsent in rsents: lowerCamelCase__ = rsent.split(""" """ ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: lowerCamelCase__ = ragrams[i] + """ """ + ragrams[i + 1] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: lowerCamelCase__ = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: lowerCamelCase__ = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3] ragrams.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: lowerCamelCase__ = sagrams[i] + """ """ + sagrams[i + 1] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: lowerCamelCase__ = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: lowerCamelCase__ = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3] sagrams.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: lowerCamelCase__ = cagrams[i] + """ """ + cagrams[i + 1] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: lowerCamelCase__ = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: lowerCamelCase__ = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3] cagrams.append(__lowerCAmelCase ) ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 lowerCamelCase__ = sum([delascore, delascore, delascore, delascore] ) / 4 lowerCamelCase__ = sum([addascore, addascore, addascore, addascore] ) / 4 lowerCamelCase__ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : bool = True , __lowerCAmelCase : str = "13a" , __lowerCAmelCase : bool = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: lowerCamelCase__ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: lowerCamelCase__ = sacrebleu.metrics.bleu._get_tokenizer(__lowerCAmelCase )()(__lowerCAmelCase ) else: lowerCamelCase__ = sacrebleu.TOKENIZERS[tokenizer]()(__lowerCAmelCase ) elif tokenizer == "moses": lowerCamelCase__ = sacremoses.MosesTokenizer().tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase , escape=__lowerCAmelCase ) elif tokenizer == "penn": lowerCamelCase__ = sacremoses.MosesTokenizer().penn_tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase ) else: lowerCamelCase__ = sentence if not return_str: lowerCamelCase__ = normalized_sent.split() return normalized_sent def A__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ): if not (len(__lowerCAmelCase ) == len(__lowerCAmelCase ) == len(__lowerCAmelCase )): raise ValueError("""Sources length must match predictions and references lengths.""" ) lowerCamelCase__ = 0 for src, pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): sari_score += SARIsent(normalize(__lowerCAmelCase ) , normalize(__lowerCAmelCase ) , [normalize(__lowerCAmelCase ) for sent in refs] ) lowerCamelCase__ = sari_score / len(__lowerCAmelCase ) return 100 * sari_score def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]="exp" , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Dict=False , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : str=False , ): lowerCamelCase__ = len(references[0] ) if any(len(__lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowerCamelCase__ = [[refs[i] for refs in references] for i in range(__lowerCAmelCase )] lowerCamelCase__ = sacrebleu.corpus_bleu( __lowerCAmelCase , __lowerCAmelCase , smooth_method=__lowerCAmelCase , smooth_value=__lowerCAmelCase , force=__lowerCAmelCase , lowercase=__lowerCAmelCase , use_effective_order=__lowerCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCamelCase__ (datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ,id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" ,id="""sequence""" ) ,id="""references""" ), } ) ,codebase_urls=[ """https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""", """https://github.com/cocoxu/simplification/blob/master/SARI.py""", """https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""", """https://github.com/mjpost/sacreBLEU""", ] ,reference_urls=[ """https://www.aclweb.org/anthology/Q16-1029.pdf""", """https://github.com/mjpost/sacreBLEU""", """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = {} result.update({"""sari""": compute_sari(sources=_lowerCAmelCase ,predictions=_lowerCAmelCase ,references=_lowerCAmelCase )} ) result.update({"""sacrebleu""": compute_sacrebleu(predictions=_lowerCAmelCase ,references=_lowerCAmelCase )} ) result.update({"""exact""": compute_em(predictions=_lowerCAmelCase ,references=_lowerCAmelCase )} ) return result
714
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=7 ,_lowerCAmelCase=3 ,_lowerCAmelCase=18 ,_lowerCAmelCase=30 ,_lowerCAmelCase=4_00 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,): lowerCamelCase__ = size if size is not None else {"""shortest_edge""": 18} lowerCamelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = num_channels lowerCamelCase__ = image_size lowerCamelCase__ = min_resolution lowerCamelCase__ = max_resolution lowerCamelCase__ = do_resize lowerCamelCase__ = size lowerCamelCase__ = do_center_crop lowerCamelCase__ = crop_size lowerCamelCase__ = do_normalize lowerCamelCase__ = image_mean lowerCamelCase__ = image_std def UpperCamelCase_ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = LevitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): lowerCamelCase__ = LevitImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""image_std""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""size""" ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,Image.Image ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,np.ndarray ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,torch.Tensor ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
9
0
def A__ ( __lowerCAmelCase : int | float | str ): try: lowerCamelCase__ = float(__lowerCAmelCase ) except ValueError: raise ValueError("""Please enter a valid number""" ) lowerCamelCase__ = decimal - int(__lowerCAmelCase ) if fractional_part == 0: return int(__lowerCAmelCase ), 1 else: lowerCamelCase__ = len(str(__lowerCAmelCase ).split(""".""" )[1] ) lowerCamelCase__ = int(decimal * (10**number_of_frac_digits) ) lowerCamelCase__ = 10**number_of_frac_digits lowerCamelCase__ , lowerCamelCase__ = denominator, numerator while True: lowerCamelCase__ = dividend % divisor if remainder == 0: break lowerCamelCase__ , lowerCamelCase__ = divisor, remainder lowerCamelCase__ , lowerCamelCase__ = numerator / divisor, denominator / divisor return int(__lowerCAmelCase ), int(__lowerCAmelCase ) if __name__ == "__main__": print(F'{decimal_to_fraction(2) = }') print(F'{decimal_to_fraction(89.0) = }') print(F'{decimal_to_fraction("67") = }') print(F'{decimal_to_fraction("45.0") = }') print(F'{decimal_to_fraction(1.5) = }') print(F'{decimal_to_fraction("6.25") = }') print(F'{decimal_to_fraction("78td") = }')
715
'''simple docstring''' import numpy # List of input, output pairs UpperCamelCase : List[Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCamelCase : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) UpperCamelCase : int = [2, 4, 1, 5] UpperCamelCase : int = len(train_data) UpperCamelCase : Dict = 0.009 def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : str="train" ): return calculate_hypothesis_value(__lowerCAmelCase , __lowerCAmelCase ) - output( __lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Any ): lowerCamelCase__ = 0 for i in range(len(__lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=m ): lowerCamelCase__ = 0 for i in range(__lowerCAmelCase ): if index == -1: summation_value += _error(__lowerCAmelCase ) else: summation_value += _error(__lowerCAmelCase ) * train_data[i][0][index] return summation_value def A__ ( __lowerCAmelCase : List[Any] ): lowerCamelCase__ = summation_of_cost_derivative(__lowerCAmelCase , __lowerCAmelCase ) / m return cost_derivative_value def A__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase__ = 0.00_0002 lowerCamelCase__ = 0 lowerCamelCase__ = 0 while True: j += 1 lowerCamelCase__ = [0, 0, 0, 0] for i in range(0 , len(__lowerCAmelCase ) ): lowerCamelCase__ = get_cost_derivative(i - 1 ) lowerCamelCase__ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase , rtol=__lowerCAmelCase , ): break lowerCamelCase__ = temp_parameter_vector print(("""Number of iterations:""", j) ) def A__ ( ): for i in range(len(__lowerCAmelCase ) ): print(("""Actual output value:""", output(__lowerCAmelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__lowerCAmelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
9
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase : int = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } UpperCamelCase : Optional[Any] = { 'facebook/bart-base': 10_24, 'facebook/bart-large': 10_24, 'facebook/bart-large-mnli': 10_24, 'facebook/bart-large-cnn': 10_24, 'facebook/bart-large-xsum': 10_24, 'yjernite/bart_eli5': 10_24, } @lru_cache() def A__ ( ): lowerCamelCase__ = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) lowerCamelCase__ = bs[:] lowerCamelCase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCAmelCase ) cs.append(2**8 + n ) n += 1 lowerCamelCase__ = [chr(__lowerCAmelCase ) for n in cs] return dict(zip(__lowerCAmelCase , __lowerCAmelCase ) ) def A__ ( __lowerCAmelCase : str ): lowerCamelCase__ = set() lowerCamelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase__ = char return pairs class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase="replace" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase=False ,**_lowerCAmelCase ,): lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else bos_token lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else eos_token lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else sep_token lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else cls_token lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else unk_token lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token super().__init__( errors=_lowerCAmelCase ,bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,**_lowerCAmelCase ,) with open(_lowerCAmelCase ,encoding="""utf-8""" ) as vocab_handle: lowerCamelCase__ = json.load(_lowerCAmelCase ) lowerCamelCase__ = {v: k for k, v in self.encoder.items()} lowerCamelCase__ = errors # how to handle errors in decoding lowerCamelCase__ = bytes_to_unicode() lowerCamelCase__ = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCAmelCase ,encoding="""utf-8""" ) as merges_handle: lowerCamelCase__ = merges_handle.read().split("""\n""" )[1:-1] lowerCamelCase__ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase__ = dict(zip(_lowerCAmelCase ,range(len(_lowerCAmelCase ) ) ) ) lowerCamelCase__ = {} lowerCamelCase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase__ = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def UpperCamelCase_ ( self ): return len(self.encoder ) def UpperCamelCase_ ( self ): return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if token in self.cache: return self.cache[token] lowerCamelCase__ = tuple(_lowerCAmelCase ) lowerCamelCase__ = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: lowerCamelCase__ = min(_lowerCAmelCase ,key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase__ , lowerCamelCase__ = bigram lowerCamelCase__ = [] lowerCamelCase__ = 0 while i < len(_lowerCAmelCase ): try: lowerCamelCase__ = word.index(_lowerCAmelCase ,_lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase__ = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase__ = tuple(_lowerCAmelCase ) lowerCamelCase__ = new_word if len(_lowerCAmelCase ) == 1: break else: lowerCamelCase__ = get_pairs(_lowerCAmelCase ) lowerCamelCase__ = """ """.join(_lowerCAmelCase ) lowerCamelCase__ = word return word def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = [] for token in re.findall(self.pat ,_lowerCAmelCase ): lowerCamelCase__ = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCAmelCase ).split(""" """ ) ) return bpe_tokens def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self.encoder.get(_lowerCAmelCase ,self.encoder.get(self.unk_token ) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self.decoder.get(_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = """""".join(_lowerCAmelCase ) lowerCamelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ = os.path.join( _lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase__ = os.path.join( _lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowerCAmelCase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_lowerCAmelCase ,ensure_ascii=_lowerCAmelCase ) + """\n""" ) lowerCamelCase__ = 0 with open(_lowerCAmelCase ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) lowerCamelCase__ = token_index writer.write(""" """.join(_lowerCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] lowerCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=False ,**_lowerCAmelCase ): lowerCamelCase__ = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCAmelCase ) > 0 and not text[0].isspace()): lowerCamelCase__ = """ """ + text return (text, kwargs)
716
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ): lowerCamelCase__ = OmegaConf.load(__lowerCAmelCase ) lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""model"""] lowerCamelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCamelCase__ = {} lowerCamelCase__ = """first_stage_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] # extract state_dict for UNetLDM lowerCamelCase__ = {} lowerCamelCase__ = """model.diffusion_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] lowerCamelCase__ = config.model.params.first_stage_config.params lowerCamelCase__ = config.model.params.unet_config.params lowerCamelCase__ = VQModel(**__lowerCAmelCase ).eval() vqvae.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = UNetLDMModel(**__lowerCAmelCase ).eval() unet.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__lowerCAmelCase , ) lowerCamelCase__ = LDMPipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipeline.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) UpperCamelCase : List[Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
9
0
from __future__ import annotations def A__ ( __lowerCAmelCase : list[list[int]] ): lowerCamelCase__ = len(__lowerCAmelCase ) # We need to create solution object to save path. lowerCamelCase__ = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] lowerCamelCase__ = run_maze(__lowerCAmelCase , 0 , 0 , __lowerCAmelCase ) if solved: print("""\n""".join(str(__lowerCAmelCase ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def A__ ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : list[list[int]] ): lowerCamelCase__ = len(__lowerCAmelCase ) # Final check point. if i == j == (size - 1): lowerCamelCase__ = 1 return True lowerCamelCase__ = (not i < 0) and (not j < 0) # Check lower bounds lowerCamelCase__ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowerCamelCase__ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowerCamelCase__ = 1 # check for directions if ( run_maze(__lowerCAmelCase , i + 1 , __lowerCAmelCase , __lowerCAmelCase ) or run_maze(__lowerCAmelCase , __lowerCAmelCase , j + 1 , __lowerCAmelCase ) or run_maze(__lowerCAmelCase , i - 1 , __lowerCAmelCase , __lowerCAmelCase ) or run_maze(__lowerCAmelCase , __lowerCAmelCase , j - 1 , __lowerCAmelCase ) ): return True lowerCamelCase__ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : tuple[int, ...] ): lowerCamelCase__ = "" lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 for keychar, cipherchar in zip(cycle(__lowerCAmelCase ) , __lowerCAmelCase ): lowerCamelCase__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__lowerCAmelCase ) return decoded def A__ ( __lowerCAmelCase : list[int] ): lowerCamelCase__ = [] for key in product(__lowerCAmelCase , repeat=3 ): lowerCamelCase__ = try_key(__lowerCAmelCase , __lowerCAmelCase ) if encoded is not None: possibles.append(__lowerCAmelCase ) return possibles def A__ ( __lowerCAmelCase : list[str] , __lowerCAmelCase : str ): return [possible for possible in possibles if common_word in possible.lower()] def A__ ( __lowerCAmelCase : str = "p059_cipher.txt" ): lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = Path(__lowerCAmelCase ).parent.joinpath(__lowerCAmelCase ).read_text(encoding="""utf-8""" ) lowerCamelCase__ = [int(__lowerCAmelCase ) for number in data.strip().split(""",""" )] lowerCamelCase__ = filter_valid_chars(__lowerCAmelCase ) for common_word in COMMON_WORDS: lowerCamelCase__ = filter_common_word(__lowerCAmelCase , __lowerCAmelCase ) if len(__lowerCAmelCase ) == 1: break lowerCamelCase__ = possibles[0] return sum(ord(__lowerCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
9
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = KandinskyInpaintPipeline _UpperCamelCase = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _UpperCamelCase = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _UpperCamelCase = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _UpperCamelCase = False @property def UpperCamelCase_ ( self ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase_ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase_ ( self ): '''simple docstring''' return 1_00 @property def UpperCamelCase_ ( self ): '''simple docstring''' lowerCamelCase__ = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ = MCLIPConfig( numDims=self.cross_attention_dim ,transformerDimensions=self.text_embedder_hidden_size ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=10_05 ,) lowerCamelCase__ = MultilingualCLIP(_lowerCAmelCase ) lowerCamelCase__ = text_encoder.eval() return text_encoder @property def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowerCamelCase__ = UNetaDConditionModel(**_lowerCAmelCase ) return model @property def UpperCamelCase_ ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase_ ( self ): '''simple docstring''' lowerCamelCase__ = self.dummy_text_encoder lowerCamelCase__ = self.dummy_tokenizer lowerCamelCase__ = self.dummy_unet lowerCamelCase__ = self.dummy_movq lowerCamelCase__ = DDIMScheduler( num_train_timesteps=10_00 ,beta_schedule="""linear""" ,beta_start=0.0_0085 ,beta_end=0.012 ,clip_sample=_lowerCAmelCase ,set_alpha_to_one=_lowerCAmelCase ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=_lowerCAmelCase ,) lowerCamelCase__ = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=0 ): '''simple docstring''' lowerCamelCase__ = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) lowerCamelCase__ = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(seed + 1 ) ).to(_lowerCAmelCase ) # create init_image lowerCamelCase__ = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) lowerCamelCase__ = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowerCamelCase__ = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask lowerCamelCase__ = np.ones((64, 64) ,dtype=np.floataa ) lowerCamelCase__ = 0 if str(_lowerCAmelCase ).startswith("""mps""" ): lowerCamelCase__ = torch.manual_seed(_lowerCAmelCase ) else: lowerCamelCase__ = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) lowerCamelCase__ = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' lowerCamelCase__ = """cpu""" lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**_lowerCAmelCase ) lowerCamelCase__ = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCamelCase__ = pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) lowerCamelCase__ = output.images lowerCamelCase__ = pipe( **self.get_dummy_inputs(_lowerCAmelCase ) ,return_dict=_lowerCAmelCase ,)[0] lowerCamelCase__ = image[0, -3:, -3:, -1] lowerCamelCase__ = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) lowerCamelCase__ = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def UpperCamelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ): '''simple docstring''' lowerCamelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowerCamelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowerCamelCase__ = np.ones((7_68, 7_68) ,dtype=np.floataa ) lowerCamelCase__ = 0 lowerCamelCase__ = """a hat""" lowerCamelCase__ = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) lowerCamelCase__ = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" ,torch_dtype=torch.floataa ) lowerCamelCase__ = pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) lowerCamelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ = pipe_prior( _lowerCAmelCase ,generator=_lowerCAmelCase ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() lowerCamelCase__ = pipeline( _lowerCAmelCase ,image=_lowerCAmelCase ,mask_image=_lowerCAmelCase ,image_embeds=_lowerCAmelCase ,negative_image_embeds=_lowerCAmelCase ,generator=_lowerCAmelCase ,num_inference_steps=1_00 ,height=7_68 ,width=7_68 ,output_type="""np""" ,) lowerCamelCase__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowerCAmelCase ,_lowerCAmelCase )
718
'''simple docstring''' import argparse import struct import unittest class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ): lowerCamelCase__ = data # Initialize hash values lowerCamelCase__ = [ 0x6a_09_e6_67, 0xbb_67_ae_85, 0x3c_6e_f3_72, 0xa5_4f_f5_3a, 0x51_0e_52_7f, 0x9b_05_68_8c, 0x1f_83_d9_ab, 0x5b_e0_cd_19, ] # Initialize round constants lowerCamelCase__ = [ 0x42_8a_2f_98, 0x71_37_44_91, 0xb5_c0_fb_cf, 0xe9_b5_db_a5, 0x39_56_c2_5b, 0x59_f1_11_f1, 0x92_3f_82_a4, 0xab_1c_5e_d5, 0xd8_07_aa_98, 0x12_83_5b_01, 0x24_31_85_be, 0x55_0c_7d_c3, 0x72_be_5d_74, 0x80_de_b1_fe, 0x9b_dc_06_a7, 0xc1_9b_f1_74, 0xe4_9b_69_c1, 0xef_be_47_86, 0x0f_c1_9d_c6, 0x24_0c_a1_cc, 0x2d_e9_2c_6f, 0x4a_74_84_aa, 0x5c_b0_a9_dc, 0x76_f9_88_da, 0x98_3e_51_52, 0xa8_31_c6_6d, 0xb0_03_27_c8, 0xbf_59_7f_c7, 0xc6_e0_0b_f3, 0xd5_a7_91_47, 0x06_ca_63_51, 0x14_29_29_67, 0x27_b7_0a_85, 0x2e_1b_21_38, 0x4d_2c_6d_fc, 0x53_38_0d_13, 0x65_0a_73_54, 0x76_6a_0a_bb, 0x81_c2_c9_2e, 0x92_72_2c_85, 0xa2_bf_e8_a1, 0xa8_1a_66_4b, 0xc2_4b_8b_70, 0xc7_6c_51_a3, 0xd1_92_e8_19, 0xd6_99_06_24, 0xf4_0e_35_85, 0x10_6a_a0_70, 0x19_a4_c1_16, 0x1e_37_6c_08, 0x27_48_77_4c, 0x34_b0_bc_b5, 0x39_1c_0c_b3, 0x4e_d8_aa_4a, 0x5b_9c_ca_4f, 0x68_2e_6f_f3, 0x74_8f_82_ee, 0x78_a5_63_6f, 0x84_c8_78_14, 0x8c_c7_02_08, 0x90_be_ff_fa, 0xa4_50_6c_eb, 0xbe_f9_a3_f7, 0xc6_71_78_f2, ] lowerCamelCase__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCamelCase_ ( _lowerCAmelCase ): lowerCamelCase__ = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowerCAmelCase ) + 8) % 64)) lowerCamelCase__ = struct.pack(""">Q""" ,(len(_lowerCAmelCase ) * 8) ) return data + padding + big_endian_integer def UpperCamelCase_ ( self ): # Convert into blocks of 64 bytes lowerCamelCase__ = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCamelCase__ = list(struct.unpack(""">16L""" ,_lowerCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCamelCase__ = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) lowerCamelCase__ = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) lowerCamelCase__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression lowerCamelCase__ = self.ror(_lowerCAmelCase ,6 ) ^ self.ror(_lowerCAmelCase ,11 ) ^ self.ror(_lowerCAmelCase ,25 ) lowerCamelCase__ = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g) lowerCamelCase__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 lowerCamelCase__ = self.ror(_lowerCAmelCase ,2 ) ^ self.ror(_lowerCAmelCase ,13 ) ^ self.ror(_lowerCAmelCase ,22 ) lowerCamelCase__ = (a & b) ^ (a & c) ^ (b & c) lowerCamelCase__ = (sa + maj) % 0x1_00_00_00_00 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) lowerCamelCase__ = [a, b, c, d, e, f, g, h] # Modify final values lowerCamelCase__ = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowerCamelCase__ = """""".join([hex(_lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): import hashlib lowerCamelCase__ = bytes("""Test String""" ,"""utf-8""" ) self.assertEqual(SHAaaa(_lowerCAmelCase ).hash ,hashlib.shaaaa(_lowerCAmelCase ).hexdigest() ) def A__ ( ): import doctest doctest.testmod() lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = bytes(__lowerCAmelCase , """utf-8""" ) print(SHAaaa(__lowerCAmelCase ).hash ) if __name__ == "__main__": main()
9
0
'''simple docstring''' UpperCamelCase : Any = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
719
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def A__ ( __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Tuple ): lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) lowerCamelCase__ = emb.weight.data return lin_layer def A__ ( __lowerCAmelCase : Dict ): lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) lowerCamelCase__ = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] lowerCamelCase__ = mam_aaa["""model"""] remove_ignore_keys_(__lowerCAmelCase ) lowerCamelCase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowerCamelCase__ = MaMaaaConfig( vocab_size=__lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) lowerCamelCase__ = state_dict["""decoder.embed_tokens.weight"""] lowerCamelCase__ = MaMaaaForConditionalGeneration(__lowerCAmelCase ) model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowerCamelCase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase : Tuple = parser.parse_args() UpperCamelCase : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
9
0
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=7 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=99 ,_lowerCAmelCase=32 ,_lowerCAmelCase=5 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=5_12 ,_lowerCAmelCase=16 ,_lowerCAmelCase=2 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=4 ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_attention_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_choices def UpperCamelCase_ ( self ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCamelCase__ = None if self.use_attention_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCamelCase__ = RoFormerConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = True _UpperCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self ): lowerCamelCase__ = FlaxRoFormerModelTester(self ) @slow def UpperCamelCase_ ( self ): for model_class_name in self.all_model_classes: lowerCamelCase__ = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" ,from_pt=_lowerCAmelCase ) lowerCamelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase ) @require_flax class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) lowerCamelCase__ = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase__ = model(_lowerCAmelCase )[0] lowerCamelCase__ = 5_00_00 lowerCamelCase__ = (1, 6, vocab_size) self.assertEqual(output.shape ,_lowerCAmelCase ) lowerCamelCase__ = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] ,_lowerCAmelCase ,atol=1E-4 ) )
720
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = BlipImageProcessor() lowerCamelCase__ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowerCamelCase__ = BlipProcessor(_lowerCAmelCase ,_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).tokenizer def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).image_processor def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self ): lowerCamelCase__ = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 ) lowerCamelCase__ = BlipProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = processor(text=_lowerCAmelCase ) lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
9
0
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=7 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=99 ,_lowerCAmelCase=64 ,_lowerCAmelCase=32 ,_lowerCAmelCase=5 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=5_12 ,_lowerCAmelCase=16 ,_lowerCAmelCase=2 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=4 ,_lowerCAmelCase=None ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = embedding_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope def UpperCamelCase_ ( self ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] ,self.num_choices ) lowerCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self ): return MegatronBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = MegatronBertModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = MegatronBertForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ,labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = MegatronBertForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ,labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = MegatronBertForNextSentencePrediction(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model( _lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ,labels=_lowerCAmelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = MegatronBertForPreTraining(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model( _lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ,labels=_lowerCAmelCase ,next_sentence_label=_lowerCAmelCase ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = MegatronBertForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model( _lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ,start_positions=_lowerCAmelCase ,end_positions=_lowerCAmelCase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = MegatronBertForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ,labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = MegatronBertForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ,labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.num_choices lowerCamelCase__ = MegatronBertForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowerCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowerCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowerCamelCase__ = model( _lowerCAmelCase ,attention_mask=_lowerCAmelCase ,token_type_ids=_lowerCAmelCase ,labels=_lowerCAmelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _UpperCamelCase = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase = True # test_resize_embeddings = False _UpperCamelCase = False def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=False ): lowerCamelCase__ = super()._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): lowerCamelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=_lowerCAmelCase ) lowerCamelCase__ = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_lowerCAmelCase ) return inputs_dict def UpperCamelCase_ ( self ): lowerCamelCase__ = MegatronBertModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,hidden_size=37 ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_lowerCAmelCase ) def A__ ( __lowerCAmelCase : Optional[int] ): return torch.tensor( __lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , ) UpperCamelCase : Dict = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @slow @unittest.skip("""Model is not available.""" ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: lowerCamelCase__ = os.path.join(os.environ["""MYDIR"""] ,_lowerCAmelCase ) lowerCamelCase__ = MegatronBertModel.from_pretrained(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.half() lowerCamelCase__ = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): lowerCamelCase__ = model(_lowerCAmelCase )[0] lowerCamelCase__ = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape ,_lowerCAmelCase ) lowerCamelCase__ = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): lowerCamelCase__ = output[0, ii, jj] lowerCamelCase__ = expected[3 * ii + jj] lowerCamelCase__ = """ii={} jj={} a={} b={}""".format(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) self.assertTrue(math.isclose(_lowerCAmelCase ,_lowerCAmelCase ,rel_tol=_lowerCAmelCase ,abs_tol=_lowerCAmelCase ) ,msg=_lowerCAmelCase )
721
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def A__ ( __lowerCAmelCase : Union[str, Any] ): if hor == 128: lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase__ = (32, 128, 256) lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase__ = (32, 64, 128, 256) lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") lowerCamelCase__ = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) lowerCamelCase__ = model.state_dict() lowerCamelCase__ = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_5536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_5536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } lowerCamelCase__ = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) lowerCamelCase__ = model lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
9
0
import collections import os import re from pathlib import Path UpperCamelCase : Optional[Any] = 'src/transformers' # Matches is_xxx_available() UpperCamelCase : int = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} UpperCamelCase : int = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCamelCase : List[str] = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available UpperCamelCase : str = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") UpperCamelCase : Optional[Any] = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCamelCase : Optional[Any] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", UpperCamelCase : Optional[Any] = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], UpperCamelCase : Any = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo UpperCamelCase : List[str] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: UpperCamelCase : Union[str, Any] = re.compile(r'^\s*try:') # Catches a line with else: UpperCamelCase : List[Any] = re.compile(r'^\s*else:') def A__ ( __lowerCAmelCase : Optional[int] ): if _re_test_backend.search(__lowerCAmelCase ) is None: return None lowerCamelCase__ = [b[0] for b in _re_backend.findall(__lowerCAmelCase )] backends.sort() return "_and_".join(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : Tuple ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() lowerCamelCase__ = 0 while line_index < len(__lowerCAmelCase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__lowerCAmelCase ): return None # First grab the objects without a specific backend in _import_structure lowerCamelCase__ = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: lowerCamelCase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__lowerCAmelCase ): lowerCamelCase__ = _re_one_line_import_struct.search(__lowerCAmelCase ).groups()[0] lowerCamelCase__ = re.findall(R"""\[([^\]]+)\]""" , __lowerCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue lowerCamelCase__ = _re_import_struct_key_value.search(__lowerCAmelCase ) if single_line_import_search is not None: lowerCamelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 lowerCamelCase__ = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCamelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCamelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCamelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): lowerCamelCase__ = lines[line_index] if _re_import_struct_add_one.search(__lowerCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__lowerCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__lowerCAmelCase ) is not None: lowerCamelCase__ = _re_import_struct_add_many.search(__lowerCAmelCase ).groups()[0].split(""", """ ) lowerCamelCase__ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_between_brackets.search(__lowerCAmelCase ) is not None: lowerCamelCase__ = _re_between_brackets.search(__lowerCAmelCase ).groups()[0].split(""", """ ) lowerCamelCase__ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_quote_object.search(__lowerCAmelCase ) is not None: objects.append(_re_quote_object.search(__lowerCAmelCase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 lowerCamelCase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCamelCase__ = [] while ( line_index < len(__lowerCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): lowerCamelCase__ = lines[line_index] lowerCamelCase__ = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCamelCase__ = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(__lowerCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. lowerCamelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCamelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCamelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): lowerCamelCase__ = lines[line_index] lowerCamelCase__ = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCamelCase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : str ): def find_duplicates(__lowerCAmelCase : Any ): return [k for k, v in collections.Counter(__lowerCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCamelCase__ = [] for key in import_dict_objects.keys(): lowerCamelCase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCamelCase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCamelCase__ = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def A__ ( ): lowerCamelCase__ = [] for root, _, files in os.walk(__lowerCAmelCase ): if "__init__.py" in files: lowerCamelCase__ = os.path.join(__lowerCAmelCase , """__init__.py""" ) lowerCamelCase__ = parse_init(__lowerCAmelCase ) if objects is not None: lowerCamelCase__ = analyze_results(*__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(__lowerCAmelCase ) ) if len(__lowerCAmelCase ) > 0: raise ValueError("""\n\n""".join(__lowerCAmelCase ) ) def A__ ( ): lowerCamelCase__ = [] for path, directories, files in os.walk(__lowerCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(__lowerCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__lowerCAmelCase ) / folder).glob("""*.py""" ) ) ) == 0: continue lowerCamelCase__ = str((Path(__lowerCAmelCase ) / folder).relative_to(__lowerCAmelCase ) ) lowerCamelCase__ = short_path.replace(os.path.sep , """.""" ) submodules.append(__lowerCAmelCase ) for fname in files: if fname == "__init__.py": continue lowerCamelCase__ = str((Path(__lowerCAmelCase ) / fname).relative_to(__lowerCAmelCase ) ) lowerCamelCase__ = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(__lowerCAmelCase ) return submodules UpperCamelCase : Union[str, Any] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def A__ ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import lowerCamelCase__ = direct_transformers_import(__lowerCAmelCase ) lowerCamelCase__ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" ) as f: lowerCamelCase__ = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , __lowerCAmelCase ) ) ) lowerCamelCase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = """\n""".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
700
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase = "▁" ,_lowerCAmelCase = True ,_lowerCAmelCase = "<unk>" ,_lowerCAmelCase = "</s>" ,_lowerCAmelCase = "<pad>" ,): lowerCamelCase__ = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } lowerCamelCase__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowerCamelCase__ = token_dict["""token"""] lowerCamelCase__ = Tokenizer(Unigram() ) lowerCamelCase__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) ,""" """ ), normalizers.Lowercase(), ] ) lowerCamelCase__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ), pre_tokenizers.Digits(individual_digits=_lowerCAmelCase ), pre_tokenizers.Punctuation(), ] ) lowerCamelCase__ = decoders.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ) lowerCamelCase__ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' ,special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] ,) lowerCamelCase__ = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,): lowerCamelCase__ = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = [files] self._tokenizer.train(_lowerCAmelCase ,trainer=_lowerCAmelCase ) self.add_unk_id() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,): lowerCamelCase__ = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,) self._tokenizer.train_from_iterator(_lowerCAmelCase ,trainer=_lowerCAmelCase ) self.add_unk_id() def UpperCamelCase_ ( self ): lowerCamelCase__ = json.loads(self._tokenizer.to_str() ) lowerCamelCase__ = self.special_tokens["""unk"""]["""id"""] lowerCamelCase__ = Tokenizer.from_str(json.dumps(_lowerCAmelCase ) )
9
0
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup UpperCamelCase : List[str] = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def A__ ( __lowerCAmelCase : str = "dhaka" , __lowerCAmelCase : int = 5 ): lowerCamelCase__ = min(__lowerCAmelCase , 50 ) # Prevent abuse! lowerCamelCase__ = { """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } lowerCamelCase__ = requests.get("""https://www.google.com/search""" , params=__lowerCAmelCase , headers=__lowerCAmelCase ) lowerCamelCase__ = BeautifulSoup(html.text , """html.parser""" ) lowerCamelCase__ = """""".join( re.findall(R"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""" ) ) ) ) lowerCamelCase__ = json.dumps(__lowerCAmelCase ) lowerCamelCase__ = json.loads(__lowerCAmelCase ) lowerCamelCase__ = re.findall( R"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , __lowerCAmelCase , ) if not matched_google_image_data: return 0 lowerCamelCase__ = re.sub( R"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(__lowerCAmelCase ) , ) lowerCamelCase__ = re.findall( R"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , __lowerCAmelCase , ) for index, fixed_full_res_image in enumerate(__lowerCAmelCase ): if index >= max_images: return index lowerCamelCase__ = bytes(__lowerCAmelCase , """ascii""" ).decode( """unicode-escape""" ) lowerCamelCase__ = bytes(__lowerCAmelCase , """ascii""" ).decode( """unicode-escape""" ) lowerCamelCase__ = urllib.request.build_opener() lowerCamelCase__ = [ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(__lowerCAmelCase ) lowerCamelCase__ = F'''query_{query.replace(" " , "_" )}''' if not os.path.exists(__lowerCAmelCase ): os.makedirs(__lowerCAmelCase ) urllib.request.urlretrieve( # noqa: S310 __lowerCAmelCase , F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: UpperCamelCase : Optional[Any] = download_images_from_google_query(sys.argv[1]) print(F'{image_count} images were downloaded to disk.') except IndexError: print('Please provide a search term.') raise
701
'''simple docstring''' from __future__ import annotations import math def A__ ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCamelCase : str = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def A__ ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) lowerCamelCase__ = [] for num in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ = odd_composites[num] - 2 * i * i if is_prime(__lowerCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__lowerCAmelCase ) == n: return list_nums return [] def A__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
9
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : List[Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = XLNetTokenizer _UpperCamelCase = XLNetTokenizerFast _UpperCamelCase = True _UpperCamelCase = True def UpperCamelCase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ = XLNetTokenizer(_lowerCAmelCase ,keep_accents=_lowerCAmelCase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """<s>""" lowerCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) ,_lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""<eod>""" ) self.assertEqual(len(_lowerCAmelCase ) ,10_06 ) def UpperCamelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,10_00 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = XLNetTokenizer(_lowerCAmelCase ,keep_accents=_lowerCAmelCase ) lowerCamelCase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,[2_85, 46, 10, 1_70, 3_82] ) lowerCamelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCAmelCase ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) lowerCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,[8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def UpperCamelCase_ ( self ): lowerCamelCase__ = XLNetTokenizer(_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ) lowerCamelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCAmelCase ,[ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""▁he""", """ll""", """o"""] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = XLNetTokenizer(_lowerCAmelCase ,do_lower_case=_lowerCAmelCase ) lowerCamelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCAmelCase ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) lowerCamelCase__ = tokenizer.encode("""sequence builders""" ,add_special_tokens=_lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=_lowerCAmelCase ) lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ,_lowerCAmelCase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def UpperCamelCase_ ( self ): # fmt: off lowerCamelCase__ = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase ,model_name="""xlnet-base-cased""" ,revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" ,)
702
'''simple docstring''' def A__ ( ): return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(__lowerCAmelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
9
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'Speech2TextFeatureExtractor' _UpperCamelCase = 'Speech2TextTokenizer' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ): super().__init__(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self.feature_extractor lowerCamelCase__ = False def __call__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCAmelCase ,**_lowerCAmelCase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) lowerCamelCase__ = kwargs.pop("""raw_speech""" ) else: lowerCamelCase__ = kwargs.pop("""audio""" ,_lowerCAmelCase ) lowerCamelCase__ = kwargs.pop("""sampling_rate""" ,_lowerCAmelCase ) lowerCamelCase__ = kwargs.pop("""text""" ,_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: lowerCamelCase__ = args[0] lowerCamelCase__ = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: lowerCamelCase__ = self.feature_extractor(_lowerCAmelCase ,*_lowerCAmelCase ,sampling_rate=_lowerCAmelCase ,**_lowerCAmelCase ) if text is not None: lowerCamelCase__ = self.tokenizer(_lowerCAmelCase ,**_lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ = encodings["""input_ids"""] return inputs def UpperCamelCase_ ( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase ,**_lowerCAmelCase ) @contextmanager def UpperCamelCase_ ( self ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) lowerCamelCase__ = True lowerCamelCase__ = self.tokenizer yield lowerCamelCase__ = self.feature_extractor lowerCamelCase__ = False
703
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'} UpperCamelCase : Dict = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } UpperCamelCase : List[Any] = { 'camembert-base': 5_12, } UpperCamelCase : List[str] = '▁' class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,additional_special_tokens=_lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCAmelCase ,) lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) lowerCamelCase__ = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowerCamelCase__ = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} lowerCamelCase__ = len(self.fairseq_tokens_to_ids ) lowerCamelCase__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowerCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] lowerCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCamelCase_ ( self ): lowerCamelCase__ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self.sp_model.encode(_lowerCAmelCase ,out_type=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_lowerCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = [] lowerCamelCase__ = """""" lowerCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowerCamelCase__ = True lowerCamelCase__ = [] else: current_sub_tokens.append(_lowerCAmelCase ) lowerCamelCase__ = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def __getstate__( self ): lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None return state def __setstate__( self ,_lowerCAmelCase ): lowerCamelCase__ = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ = os.path.join( _lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase ,"""wb""" ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
9
0
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) UpperCamelCase : Tuple = {'vocab_file': 'spiece.model'} UpperCamelCase : Dict = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 UpperCamelCase : Union[str, Any] = { 't5-small': 5_12, 't5-base': 5_12, 't5-large': 5_12, 't5-3b': 5_12, 't5-11b': 5_12, } UpperCamelCase : Union[str, Any] = '▁' class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase=1_00 ,_lowerCAmelCase=None ,_lowerCAmelCase = None ,_lowerCAmelCase=True ,**_lowerCAmelCase ,): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowerCamelCase__ = [F'''<extra_id_{i}>''' for i in range(_lowerCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowerCamelCase__ = len(set(filter(lambda _lowerCAmelCase : bool("""extra_id""" in str(_lowerCAmelCase ) ) ,_lowerCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) if legacy: logger.warning_once( F'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' """ read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" ) lowerCamelCase__ = legacy lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,extra_ids=_lowerCAmelCase ,additional_special_tokens=_lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,legacy=_lowerCAmelCase ,**_lowerCAmelCase ,) lowerCamelCase__ = vocab_file lowerCamelCase__ = extra_ids lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @staticmethod def UpperCamelCase_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: lowerCamelCase__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" ,_lowerCAmelCase ,) return max_model_length @property def UpperCamelCase_ ( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase_ ( self ): lowerCamelCase__ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + [1] return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1] def UpperCamelCase_ ( self ): return list( set(filter(lambda _lowerCAmelCase : bool(re.search(R"""<extra_id_\d+>""" ,_lowerCAmelCase ) ) is not None ,self.additional_special_tokens ) ) ) def UpperCamelCase_ ( self ): return [self._convert_token_to_id(_lowerCAmelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase_ ( self ,_lowerCAmelCase ): if len(_lowerCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = self._add_eos_if_not_present(_lowerCAmelCase ) if token_ids_a is None: return token_ids_a else: lowerCamelCase__ = self._add_eos_if_not_present(_lowerCAmelCase ) return token_ids_a + token_ids_a def __getstate__( self ): lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None return state def __setstate__( self ,_lowerCAmelCase ): lowerCamelCase__ = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,**_lowerCAmelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: lowerCamelCase__ = SPIECE_UNDERLINE + text.replace(_lowerCAmelCase ,""" """ ) return super().tokenize(_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,**_lowerCAmelCase ): if not self.legacy: lowerCamelCase__ = text.startswith(_lowerCAmelCase ) if is_first: lowerCamelCase__ = text[1:] lowerCamelCase__ = self.sp_model.encode(_lowerCAmelCase ,out_type=_lowerCAmelCase ) if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(_lowerCAmelCase ): lowerCamelCase__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase_ ( self ,_lowerCAmelCase ): if token.startswith("""<extra_id_""" ): lowerCamelCase__ = re.match(R"""<extra_id_(\d+)>""" ,_lowerCAmelCase ) lowerCamelCase__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if index < self.sp_model.get_piece_size(): lowerCamelCase__ = self.sp_model.IdToPiece(_lowerCAmelCase ) else: lowerCamelCase__ = F'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = [] lowerCamelCase__ = """""" lowerCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowerCamelCase__ = True lowerCamelCase__ = [] else: current_sub_tokens.append(_lowerCAmelCase ) lowerCamelCase__ = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ = os.path.join( _lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase ,"""wb""" ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
704
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = R"""\w+[.]\d+""" lowerCamelCase__ = re.findall(__lowerCAmelCase , __lowerCAmelCase ) for pat in pats: lowerCamelCase__ = key.replace(__lowerCAmelCase , """_""".join(pat.split(""".""" ) ) ) return key def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": lowerCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase__ = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase__ = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=42 ): # Step 1: Convert pytorch tensor to numpy lowerCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCamelCase__ = flax_model.init_weights(PRNGKey(__lowerCAmelCase ) ) lowerCamelCase__ = flatten_dict(__lowerCAmelCase ) lowerCamelCase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase__ = rename_key(__lowerCAmelCase ) lowerCamelCase__ = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters lowerCamelCase__ , lowerCamelCase__ = rename_key_and_reshape_tensor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowerCamelCase__ = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase )
9
0
'''simple docstring''' from collections import defaultdict def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): lowerCamelCase__ = first_str.lower().strip() lowerCamelCase__ = second_str.lower().strip() # Remove whitespace lowerCamelCase__ = first_str.replace(""" """ , """""" ) lowerCamelCase__ = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): return False # Default values for count should be 0 lowerCamelCase__ = defaultdict(__lowerCAmelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(__lowerCAmelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase : List[Any] = input('Enter the first string ').strip() UpperCamelCase : List[str] = input('Enter the second string ').strip() UpperCamelCase : Union[str, Any] = check_anagrams(input_a, input_b) print(F'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
705
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] ,model_result["""ss"""] ): lowerCamelCase__ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sgugger/tiny-distilbert-classification""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,only_pretrain_model=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """patrickvonplaten/t5-tiny-random""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,configs=[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,"""Cannot do xla on CPU.""" ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,save_to_csv=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ,inference_memory_csv_file=os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ,env_info_csv_file=os.path.join(_lowerCAmelCase ,"""env.csv""" ) ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""env.csv""" ) ).exists() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(_lowerCAmelCase ): self.assertTrue(hasattr(_lowerCAmelCase ,"""sequential""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""cumulative""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""current""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(_lowerCAmelCase ,"""log.txt""" ) ,log_print=_lowerCAmelCase ,trace_memory_line_by_line=_lowerCAmelCase ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""log.txt""" ) ).exists() )
9
0
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = { 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'align_text_model' def __init__( self ,_lowerCAmelCase=3_05_22 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=30_72 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=5_12 ,_lowerCAmelCase=2 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-12 ,_lowerCAmelCase=0 ,_lowerCAmelCase="absolute" ,_lowerCAmelCase=True ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = position_embedding_type lowerCamelCase__ = use_cache lowerCamelCase__ = pad_token_id @classmethod def UpperCamelCase_ ( cls ,_lowerCAmelCase ,**_lowerCAmelCase ): cls._set_token_in_kwargs(_lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = cls.get_config_dict(_lowerCAmelCase ,**_lowerCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": lowerCamelCase__ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowerCAmelCase ,**_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'align_vision_model' def __init__( self ,_lowerCAmelCase = 3 ,_lowerCAmelCase = 6_00 ,_lowerCAmelCase = 2.0 ,_lowerCAmelCase = 3.1 ,_lowerCAmelCase = 8 ,_lowerCAmelCase = [3, 3, 5, 3, 5, 5, 3] ,_lowerCAmelCase = [32, 16, 24, 40, 80, 1_12, 1_92] ,_lowerCAmelCase = [16, 24, 40, 80, 1_12, 1_92, 3_20] ,_lowerCAmelCase = [] ,_lowerCAmelCase = [1, 2, 2, 2, 1, 2, 1] ,_lowerCAmelCase = [1, 2, 2, 3, 3, 4, 1] ,_lowerCAmelCase = [1, 6, 6, 6, 6, 6, 6] ,_lowerCAmelCase = 0.25 ,_lowerCAmelCase = "swish" ,_lowerCAmelCase = 25_60 ,_lowerCAmelCase = "mean" ,_lowerCAmelCase = 0.02 ,_lowerCAmelCase = 0.001 ,_lowerCAmelCase = 0.99 ,_lowerCAmelCase = 0.2 ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = num_channels lowerCamelCase__ = image_size lowerCamelCase__ = width_coefficient lowerCamelCase__ = depth_coefficient lowerCamelCase__ = depth_divisor lowerCamelCase__ = kernel_sizes lowerCamelCase__ = in_channels lowerCamelCase__ = out_channels lowerCamelCase__ = depthwise_padding lowerCamelCase__ = strides lowerCamelCase__ = num_block_repeats lowerCamelCase__ = expand_ratios lowerCamelCase__ = squeeze_expansion_ratio lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dim lowerCamelCase__ = pooling_type lowerCamelCase__ = initializer_range lowerCamelCase__ = batch_norm_eps lowerCamelCase__ = batch_norm_momentum lowerCamelCase__ = drop_connect_rate lowerCamelCase__ = sum(_lowerCAmelCase ) * 4 @classmethod def UpperCamelCase_ ( cls ,_lowerCAmelCase ,**_lowerCAmelCase ): cls._set_token_in_kwargs(_lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = cls.get_config_dict(_lowerCAmelCase ,**_lowerCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": lowerCamelCase__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowerCAmelCase ,**_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'align' _UpperCamelCase = True def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=6_40 ,_lowerCAmelCase=1.0 ,_lowerCAmelCase=0.02 ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) if text_config is None: lowerCamelCase__ = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: lowerCamelCase__ = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) lowerCamelCase__ = AlignTextConfig(**_lowerCAmelCase ) lowerCamelCase__ = AlignVisionConfig(**_lowerCAmelCase ) lowerCamelCase__ = projection_dim lowerCamelCase__ = temperature_init_value lowerCamelCase__ = initializer_range @classmethod def UpperCamelCase_ ( cls ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ): return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = copy.deepcopy(self.__dict__ ) lowerCamelCase__ = self.text_config.to_dict() lowerCamelCase__ = self.vision_config.to_dict() lowerCamelCase__ = self.__class__.model_type return output
706
'''simple docstring''' from math import factorial UpperCamelCase : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def A__ ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowerCAmelCase ) ) def A__ ( __lowerCAmelCase : int = 60 , __lowerCAmelCase : int = 100_0000 ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length lowerCamelCase__ = 0 # the cached sizes of the previous chains lowerCamelCase__ = {} for start_chain_element in range(1 , __lowerCAmelCase ): # The temporary set will contain the elements of the chain lowerCamelCase__ = set() lowerCamelCase__ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCamelCase__ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__lowerCAmelCase ) chain_set_length += 1 lowerCamelCase__ = digit_factorial_sum(__lowerCAmelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCamelCase__ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution()}')
9
0
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def A__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Path , __lowerCAmelCase : str = None , __lowerCAmelCase : str = None , __lowerCAmelCase : str = None , ): if config_name_or_path is None: lowerCamelCase__ = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: lowerCamelCase__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCamelCase__ = question_encoder_name_or_path lowerCamelCase__ = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. lowerCamelCase__ = RagConfig.from_pretrained(__lowerCAmelCase ) lowerCamelCase__ = AutoConfig.from_pretrained(__lowerCAmelCase ) lowerCamelCase__ = AutoConfig.from_pretrained(__lowerCAmelCase ) lowerCamelCase__ = gen_config lowerCamelCase__ = question_encoder_config lowerCamelCase__ = model_class.from_pretrained_question_encoder_generator( __lowerCAmelCase , __lowerCAmelCase , config=__lowerCAmelCase ) rag_model.save_pretrained(__lowerCAmelCase ) # Sanity check. model_class.from_pretrained(__lowerCAmelCase ) # Save tokenizers. lowerCamelCase__ = AutoTokenizer.from_pretrained(__lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) lowerCamelCase__ = AutoTokenizer.from_pretrained(__lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) UpperCamelCase : List[str] = parser.parse_args() UpperCamelCase : Any = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
707
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCamelCase : Optional[Any] = 'src/diffusers' # Matches is_xxx_available() UpperCamelCase : Union[str, Any] = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla UpperCamelCase : Optional[Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') UpperCamelCase : Optional[int] = '\n{0} = None\n' UpperCamelCase : Optional[Any] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' UpperCamelCase : Any = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def A__ ( __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = _re_backend.findall(__lowerCAmelCase ) if len(__lowerCAmelCase ) == 0: return None return "_and_".join(__lowerCAmelCase ) def A__ ( ): with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase__ = 0 lowerCamelCase__ = {} # Go through the end of the file while line_index < len(__lowerCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 lowerCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(__lowerCAmelCase ) and len(lines[line_index] ) > 1: lowerCamelCase__ = lines[line_index] lowerCamelCase__ = _re_single_line_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = objects else: line_index += 1 return backend_specific_objects def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict ): if name.isupper(): return DUMMY_CONSTANT.format(__lowerCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__lowerCAmelCase , __lowerCAmelCase ) else: return DUMMY_CLASS.format(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Optional[int]=None ): if backend_specific_objects is None: lowerCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase__ = {} for backend, objects in backend_specific_objects.items(): lowerCamelCase__ = """[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]""" lowerCamelCase__ = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__lowerCAmelCase , __lowerCAmelCase ) for o in objects] ) lowerCamelCase__ = dummy_file return dummy_files def A__ ( __lowerCAmelCase : List[str]=False ): lowerCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase__ = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. lowerCamelCase__ = os.path.join(__lowerCAmelCase , """utils""" ) lowerCamelCase__ = { backend: os.path.join(__lowerCAmelCase , F'''dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py as the main ''' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F'''diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py. Run `make fix-copies` ''' """to fix this.""" ) if __name__ == "__main__": UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase : Any = parser.parse_args() check_dummies(args.fix_and_overwrite)
9
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor UpperCamelCase : Any = logging.get_logger(__name__) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" ,_lowerCAmelCase ,) super().__init__(*_lowerCAmelCase ,**_lowerCAmelCase )
708
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : List[Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = GPTSwaTokenizer _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = False def UpperCamelCase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ,eos_token="""<unk>""" ,bos_token="""<unk>""" ,pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = """This is a test""" lowerCamelCase__ = """This is a test""" return input_text, output_text def UpperCamelCase_ ( self ): lowerCamelCase__ = """<s>""" lowerCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) ,_lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""j""" ) self.assertEqual(len(_lowerCAmelCase ) ,20_00 ) def UpperCamelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,20_00 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,[4_65, 2_87, 2_65, 6_31, 8_42] ) lowerCamelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( _lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ,) # fmt: on lowerCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase ,[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] ,) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) # fmt: off self.assertListEqual( _lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def UpperCamelCase_ ( self ): lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ) lowerCamelCase__ = ["""This is a test""", """I was born in 92000, and this is falsé."""] lowerCamelCase__ = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ): self.assertListEqual(tokenizer.encode_fast(_lowerCAmelCase ) ,_lowerCAmelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ): self.assertEqual(tokenizer.decode_fast(_lowerCAmelCase ) ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off lowerCamelCase__ = {"""input_ids""": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase ,model_name="""AI-Sweden/gpt-sw3-126m""" ,sequences=_lowerCAmelCase ,)
9
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'audio-spectrogram-transformer' def __init__( self ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=30_72 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-12 ,_lowerCAmelCase=16 ,_lowerCAmelCase=True ,_lowerCAmelCase=10 ,_lowerCAmelCase=10 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=1_28 ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = patch_size lowerCamelCase__ = qkv_bias lowerCamelCase__ = frequency_stride lowerCamelCase__ = time_stride lowerCamelCase__ = max_length lowerCamelCase__ = num_mel_bins
709
'''simple docstring''' from manim import * class UpperCamelCase__ (a ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = Rectangle(height=0.5 ,width=0.5 ) lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""CPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(1 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""GPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) gpu.align_to(_lowerCAmelCase ,_lowerCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""Model""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,) lowerCamelCase__ = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) lowerCamelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase ,run_time=2.5 ) ,Write(_lowerCAmelCase ) ,Write(_lowerCAmelCase ) ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] for i, rect in enumerate(_lowerCAmelCase ): lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase ,opacity=0.7 ) cpu_target.move_to(_lowerCAmelCase ) cpu_target.generate_target() lowerCamelCase__ = 0.46 / 4 lowerCamelCase__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_lowerCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=_lowerCAmelCase ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=_lowerCAmelCase ,buff=0.0 ) cpu_targs.append(_lowerCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCAmelCase ) ) second_animations.append(MoveToTarget(_lowerCAmelCase ,run_time=1.5 ) ) self.play(*_lowerCAmelCase ) self.play(*_lowerCAmelCase ) self.wait()
9
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Tuple = logging.get_logger(__name__) def A__ ( __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False ): lowerCamelCase__ = """backbone.""" if is_semantic else """""" lowerCamelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', """beit.embeddings.cls_token"""), (F'''{prefix}patch_embed.proj.weight''', """beit.embeddings.patch_embeddings.projection.weight"""), (F'''{prefix}patch_embed.proj.bias''', """beit.embeddings.patch_embeddings.projection.bias"""), (F'''{prefix}pos_embed''', """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def A__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False ): for i in range(config.num_hidden_layers ): lowerCamelCase__ = """backbone.""" if is_semantic else """""" # queries, keys and values lowerCamelCase__ = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) lowerCamelCase__ = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) lowerCamelCase__ = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) lowerCamelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase__ = q_bias lowerCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowerCamelCase__ = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) lowerCamelCase__ = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) lowerCamelCase__ = gamma_a lowerCamelCase__ = gamma_a def A__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = dct.pop(__lowerCAmelCase ) lowerCamelCase__ = val def A__ ( ): lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def A__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): lowerCamelCase__ = False if """rvlcdip""" in checkpoint_url else True lowerCamelCase__ = BeitConfig(use_absolute_position_embeddings=__lowerCAmelCase , use_mask_token=__lowerCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowerCamelCase__ = 1024 lowerCamelCase__ = 4096 lowerCamelCase__ = 24 lowerCamelCase__ = 16 # labels if "rvlcdip" in checkpoint_url: lowerCamelCase__ = 16 lowerCamelCase__ = """huggingface/label-files""" lowerCamelCase__ = """rvlcdip-id2label.json""" lowerCamelCase__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ = idalabel lowerCamelCase__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowerCamelCase__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""model"""] lowerCamelCase__ = create_rename_keys(__lowerCAmelCase , has_lm_head=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , has_lm_head=__lowerCAmelCase ) # load HuggingFace model lowerCamelCase__ = BeitForMaskedImageModeling(__lowerCAmelCase ) if has_lm_head else BeitForImageClassification(__lowerCAmelCase ) model.eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image lowerCamelCase__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCAmelCase ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ) lowerCamelCase__ = encoding["""pixel_values"""] lowerCamelCase__ = model(__lowerCAmelCase ) lowerCamelCase__ = outputs.logits # verify logits lowerCamelCase__ = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(__lowerCAmelCase ), "Shape of logits not as expected" Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: if has_lm_head: lowerCamelCase__ = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: lowerCamelCase__ = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=__lowerCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=__lowerCAmelCase , ) if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', ) UpperCamelCase : Optional[int] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
710
'''simple docstring''' UpperCamelCase : Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCamelCase : list[bool | None] = [None] * 10_00_00_00 UpperCamelCase : Tuple = True UpperCamelCase : Optional[int] = False def A__ ( __lowerCAmelCase : int ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase__ = chain(next_number(__lowerCAmelCase ) ) lowerCamelCase__ = number_chain while number < 1000_0000: lowerCamelCase__ = number_chain number *= 10 return number_chain def A__ ( __lowerCAmelCase : int = 1000_0000 ): for i in range(1 , __lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution() = }')
9
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : List[Any] = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : int = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
711
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : List[str] = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'donut-swin' _UpperCamelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self ,_lowerCAmelCase=2_24 ,_lowerCAmelCase=4 ,_lowerCAmelCase=3 ,_lowerCAmelCase=96 ,_lowerCAmelCase=[2, 2, 6, 2] ,_lowerCAmelCase=[3, 6, 12, 24] ,_lowerCAmelCase=7 ,_lowerCAmelCase=4.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=False ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = embed_dim lowerCamelCase__ = depths lowerCamelCase__ = len(_lowerCAmelCase ) lowerCamelCase__ = num_heads lowerCamelCase__ = window_size lowerCamelCase__ = mlp_ratio lowerCamelCase__ = qkv_bias lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = drop_path_rate lowerCamelCase__ = hidden_act lowerCamelCase__ = use_absolute_embeddings lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
9
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva UpperCamelCase : Dict = '' UpperCamelCase : Any = '' UpperCamelCase : Optional[Any] = '' UpperCamelCase : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def A__ ( ): lowerCamelCase__ , lowerCamelCase__ = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print("""Processing...""" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCamelCase__ = random_chars(32 ) lowerCamelCase__ = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] lowerCamelCase__ = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(F'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) lowerCamelCase__ = [] for anno in new_annos[index]: lowerCamelCase__ = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(F'''/{file_root}.txt''' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): lowerCamelCase__ = [] lowerCamelCase__ = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , """*.txt""" ) ): lowerCamelCase__ = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(__lowerCAmelCase ) as in_file: lowerCamelCase__ = in_file.readlines() lowerCamelCase__ = os.path.join(__lowerCAmelCase , F'''{label_name}.jpg''' ) lowerCamelCase__ = [] for obj_list in obj_lists: lowerCamelCase__ = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int = 1 ): lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] for idx in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = [] lowerCamelCase__ = img_list[idx] path_list.append(__lowerCAmelCase ) lowerCamelCase__ = anno_list[idx] lowerCamelCase__ = cva.imread(__lowerCAmelCase ) if flip_type == 1: lowerCamelCase__ = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: lowerCamelCase__ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: lowerCamelCase__ = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: lowerCamelCase__ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def A__ ( __lowerCAmelCase : int = 32 ): assert number_char > 1, "The number of character should greater than 1" lowerCamelCase__ = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print('DONE ✅')
712
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME UpperCamelCase : Optional[Any] = ['small', 'medium', 'large'] UpperCamelCase : Dict = 'lm_head.decoder.weight' UpperCamelCase : int = 'lm_head.weight' def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): lowerCamelCase__ = torch.load(__lowerCAmelCase ) lowerCamelCase__ = d.pop(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) UpperCamelCase : Dict = parser.parse_args() for MODEL in DIALOGPT_MODELS: UpperCamelCase : Any = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl') UpperCamelCase : str = F'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
9
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Any = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
713
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=30 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=10 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=0.6 ,_lowerCAmelCase=None ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = mask_ratio lowerCamelCase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCamelCase__ = (image_size // patch_size) ** 2 lowerCamelCase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFViTMAEModel(config=_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) # expected sequence length = num_patches lowerCamelCase__ = (self.image_size // self.patch_size) ** 2 lowerCamelCase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCamelCase__ = 1 lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase ) lowerCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) lowerCamelCase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _UpperCamelCase = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = TFViTMAEModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) lowerCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase ,tf.keras.layers.Layer ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): # make the mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = copy.deepcopy(self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = outputs_dict[0].numpy() lowerCamelCase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1E-6 ) def UpperCamelCase_ ( self ): # make the mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_lowerCAmelCase ): lowerCamelCase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(_lowerCAmelCase ): lowerCamelCase__ = v.numpy() else: lowerCamelCase__ = np.array(_lowerCAmelCase ) return inputs_np_dict for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = prepare_numpy_arrays(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): # make masks reproducible np.random.seed(2 ) lowerCamelCase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ = tf.constant(_lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCamelCase__ = tf_noise super().check_pt_tf_models(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_lowerCAmelCase ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(_lowerCAmelCase ,_lowerCAmelCase ),) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_lowerCAmelCase ,"""_keras_serializable""" ,_lowerCAmelCase ) } lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ = tf.convert_to_tensor(_lowerCAmelCase ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: lowerCamelCase__ = main_layer_class(_lowerCAmelCase ) lowerCamelCase__ = { name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowerCamelCase__ = tf.keras.Model(_lowerCAmelCase ,outputs=main_layer(_lowerCAmelCase ) ) lowerCamelCase__ = model(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ = os.path.join(_lowerCAmelCase ,"""keras_model.h5""" ) model.save(_lowerCAmelCase ) lowerCamelCase__ = tf.keras.models.load_model( _lowerCAmelCase ,custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_lowerCAmelCase ,tf.keras.Model ) lowerCamelCase__ = model(_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": lowerCamelCase__ = outputs.last_hidden_state.numpy() lowerCamelCase__ = 0 else: lowerCamelCase__ = outputs.logits.numpy() lowerCamelCase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ,saved_model=_lowerCAmelCase ) lowerCamelCase__ = model_class.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": lowerCamelCase__ = after_outputs["""last_hidden_state"""].numpy() lowerCamelCase__ = 0 else: lowerCamelCase__ = after_outputs["""logits"""].numpy() lowerCamelCase__ = 0 lowerCamelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase ,1E-5 ) def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_lowerCAmelCase ) lowerCamelCase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowerCamelCase__ = model_class.from_config(model.config ) lowerCamelCase__ = new_model(_lowerCAmelCase ) # Build model new_model.set_weights(model.get_weights() ) lowerCamelCase__ = new_model(_lowerCAmelCase ,noise=_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def UpperCamelCase_ ( self ): pass @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(_lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCamelCase__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCamelCase__ = ViTMAEConfig() lowerCamelCase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) # verify the logits lowerCamelCase__ = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape ,_lowerCAmelCase ) lowerCamelCase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] ,_lowerCAmelCase ,atol=1E-4 )
9
0
def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = [[0 for _ in range(__lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): lowerCamelCase__ = 1 for n in range(m + 1 ): for k in range(1 , __lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCamelCase : Optional[int] = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCamelCase : int = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
714
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=7 ,_lowerCAmelCase=3 ,_lowerCAmelCase=18 ,_lowerCAmelCase=30 ,_lowerCAmelCase=4_00 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,): lowerCamelCase__ = size if size is not None else {"""shortest_edge""": 18} lowerCamelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = num_channels lowerCamelCase__ = image_size lowerCamelCase__ = min_resolution lowerCamelCase__ = max_resolution lowerCamelCase__ = do_resize lowerCamelCase__ = size lowerCamelCase__ = do_center_crop lowerCamelCase__ = crop_size lowerCamelCase__ = do_normalize lowerCamelCase__ = image_mean lowerCamelCase__ = image_std def UpperCamelCase_ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = LevitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): lowerCamelCase__ = LevitImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""image_std""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""size""" ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,Image.Image ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,np.ndarray ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,torch.Tensor ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
9
0
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration UpperCamelCase : Dict = 50_00_00 UpperCamelCase : Optional[int] = os.path.split(__file__) UpperCamelCase : str = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def A__ ( __lowerCAmelCase : datasets.Dataset , **__lowerCAmelCase : Optional[Any] ): lowerCamelCase__ = dataset.map(**__lowerCAmelCase ) @get_duration def A__ ( __lowerCAmelCase : datasets.Dataset , **__lowerCAmelCase : Dict ): lowerCamelCase__ = dataset.filter(**__lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowerCamelCase__ = generate_example_dataset( os.path.join(__lowerCAmelCase , """dataset.arrow""" ) , __lowerCAmelCase , num_examples=__lowerCAmelCase ) lowerCamelCase__ = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=__lowerCAmelCase ) def tokenize(__lowerCAmelCase : Any ): return tokenizer(examples["""text"""] ) lowerCamelCase__ = map(__lowerCAmelCase ) lowerCamelCase__ = map(__lowerCAmelCase , batched=__lowerCAmelCase ) lowerCamelCase__ = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type="""numpy""" ): lowerCamelCase__ = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type="""pandas""" ): lowerCamelCase__ = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): lowerCamelCase__ = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): lowerCamelCase__ = map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) lowerCamelCase__ = map(__lowerCAmelCase , function=__lowerCAmelCase , batched=__lowerCAmelCase ) lowerCamelCase__ = filter(__lowerCAmelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__lowerCAmelCase , """wb""" ) as f: f.write(json.dumps(__lowerCAmelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
715
'''simple docstring''' import numpy # List of input, output pairs UpperCamelCase : List[Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCamelCase : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) UpperCamelCase : int = [2, 4, 1, 5] UpperCamelCase : int = len(train_data) UpperCamelCase : Dict = 0.009 def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : str="train" ): return calculate_hypothesis_value(__lowerCAmelCase , __lowerCAmelCase ) - output( __lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Any ): lowerCamelCase__ = 0 for i in range(len(__lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=m ): lowerCamelCase__ = 0 for i in range(__lowerCAmelCase ): if index == -1: summation_value += _error(__lowerCAmelCase ) else: summation_value += _error(__lowerCAmelCase ) * train_data[i][0][index] return summation_value def A__ ( __lowerCAmelCase : List[Any] ): lowerCamelCase__ = summation_of_cost_derivative(__lowerCAmelCase , __lowerCAmelCase ) / m return cost_derivative_value def A__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase__ = 0.00_0002 lowerCamelCase__ = 0 lowerCamelCase__ = 0 while True: j += 1 lowerCamelCase__ = [0, 0, 0, 0] for i in range(0 , len(__lowerCAmelCase ) ): lowerCamelCase__ = get_cost_derivative(i - 1 ) lowerCamelCase__ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase , rtol=__lowerCAmelCase , ): break lowerCamelCase__ = temp_parameter_vector print(("""Number of iterations:""", j) ) def A__ ( ): for i in range(len(__lowerCAmelCase ) ): print(("""Actual output value:""", output(__lowerCAmelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__lowerCAmelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
9
0
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCamelCase : int = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCamelCase : Dict = [0, 25, 50] UpperCamelCase : Optional[int] = [25, 50, 75] UpperCamelCase : List[Any] = fuzz.membership.trimf(X, abca) UpperCamelCase : Union[str, Any] = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCamelCase : int = np.ones(75) UpperCamelCase : str = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCamelCase : Any = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCamelCase : Any = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCamelCase : Optional[int] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCamelCase : Any = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCamelCase : List[str] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCamelCase : Union[str, Any] = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCamelCase : List[str] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCamelCase : str = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("Young") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("Middle aged") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("union") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("intersection") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("complement_a") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("difference a/b") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("alg_sum") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("alg_product") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("bdd_sum") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("bdd_difference") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
716
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ): lowerCamelCase__ = OmegaConf.load(__lowerCAmelCase ) lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""model"""] lowerCamelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCamelCase__ = {} lowerCamelCase__ = """first_stage_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] # extract state_dict for UNetLDM lowerCamelCase__ = {} lowerCamelCase__ = """model.diffusion_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] lowerCamelCase__ = config.model.params.first_stage_config.params lowerCamelCase__ = config.model.params.unet_config.params lowerCamelCase__ = VQModel(**__lowerCAmelCase ).eval() vqvae.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = UNetLDMModel(**__lowerCAmelCase ).eval() unet.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__lowerCAmelCase , ) lowerCamelCase__ = LDMPipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipeline.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) UpperCamelCase : List[Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
9
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = tempfile.mkdtemp() # fmt: off lowerCamelCase__ = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowerCamelCase__ = dict(zip(_lowerCAmelCase ,range(len(_lowerCAmelCase ) ) ) ) lowerCamelCase__ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] lowerCamelCase__ = {"""unk_token""": """<unk>"""} lowerCamelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) lowerCamelCase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowerCamelCase__ = os.path.join(self.tmpdirname ,_lowerCAmelCase ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = self.get_rust_tokenizer() lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = CLIPProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase__ = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=_lowerCAmelCase ) lowerCamelCase__ = CLIPProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase__ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,_lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer ,_lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,_lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 ) lowerCamelCase__ = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = CLIPProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = CLIPProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = processor(text=_lowerCAmelCase ) lowerCamelCase__ = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = CLIPProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = CLIPProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = CLIPProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
717
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : tuple[int, ...] ): lowerCamelCase__ = "" lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 for keychar, cipherchar in zip(cycle(__lowerCAmelCase ) , __lowerCAmelCase ): lowerCamelCase__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__lowerCAmelCase ) return decoded def A__ ( __lowerCAmelCase : list[int] ): lowerCamelCase__ = [] for key in product(__lowerCAmelCase , repeat=3 ): lowerCamelCase__ = try_key(__lowerCAmelCase , __lowerCAmelCase ) if encoded is not None: possibles.append(__lowerCAmelCase ) return possibles def A__ ( __lowerCAmelCase : list[str] , __lowerCAmelCase : str ): return [possible for possible in possibles if common_word in possible.lower()] def A__ ( __lowerCAmelCase : str = "p059_cipher.txt" ): lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = Path(__lowerCAmelCase ).parent.joinpath(__lowerCAmelCase ).read_text(encoding="""utf-8""" ) lowerCamelCase__ = [int(__lowerCAmelCase ) for number in data.strip().split(""",""" )] lowerCamelCase__ = filter_valid_chars(__lowerCAmelCase ) for common_word in COMMON_WORDS: lowerCamelCase__ = filter_common_word(__lowerCAmelCase , __lowerCAmelCase ) if len(__lowerCAmelCase ) == 1: break lowerCamelCase__ = possibles[0] return sum(ord(__lowerCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
9
0
'''simple docstring''' from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
718
'''simple docstring''' import argparse import struct import unittest class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ): lowerCamelCase__ = data # Initialize hash values lowerCamelCase__ = [ 0x6a_09_e6_67, 0xbb_67_ae_85, 0x3c_6e_f3_72, 0xa5_4f_f5_3a, 0x51_0e_52_7f, 0x9b_05_68_8c, 0x1f_83_d9_ab, 0x5b_e0_cd_19, ] # Initialize round constants lowerCamelCase__ = [ 0x42_8a_2f_98, 0x71_37_44_91, 0xb5_c0_fb_cf, 0xe9_b5_db_a5, 0x39_56_c2_5b, 0x59_f1_11_f1, 0x92_3f_82_a4, 0xab_1c_5e_d5, 0xd8_07_aa_98, 0x12_83_5b_01, 0x24_31_85_be, 0x55_0c_7d_c3, 0x72_be_5d_74, 0x80_de_b1_fe, 0x9b_dc_06_a7, 0xc1_9b_f1_74, 0xe4_9b_69_c1, 0xef_be_47_86, 0x0f_c1_9d_c6, 0x24_0c_a1_cc, 0x2d_e9_2c_6f, 0x4a_74_84_aa, 0x5c_b0_a9_dc, 0x76_f9_88_da, 0x98_3e_51_52, 0xa8_31_c6_6d, 0xb0_03_27_c8, 0xbf_59_7f_c7, 0xc6_e0_0b_f3, 0xd5_a7_91_47, 0x06_ca_63_51, 0x14_29_29_67, 0x27_b7_0a_85, 0x2e_1b_21_38, 0x4d_2c_6d_fc, 0x53_38_0d_13, 0x65_0a_73_54, 0x76_6a_0a_bb, 0x81_c2_c9_2e, 0x92_72_2c_85, 0xa2_bf_e8_a1, 0xa8_1a_66_4b, 0xc2_4b_8b_70, 0xc7_6c_51_a3, 0xd1_92_e8_19, 0xd6_99_06_24, 0xf4_0e_35_85, 0x10_6a_a0_70, 0x19_a4_c1_16, 0x1e_37_6c_08, 0x27_48_77_4c, 0x34_b0_bc_b5, 0x39_1c_0c_b3, 0x4e_d8_aa_4a, 0x5b_9c_ca_4f, 0x68_2e_6f_f3, 0x74_8f_82_ee, 0x78_a5_63_6f, 0x84_c8_78_14, 0x8c_c7_02_08, 0x90_be_ff_fa, 0xa4_50_6c_eb, 0xbe_f9_a3_f7, 0xc6_71_78_f2, ] lowerCamelCase__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCamelCase_ ( _lowerCAmelCase ): lowerCamelCase__ = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowerCAmelCase ) + 8) % 64)) lowerCamelCase__ = struct.pack(""">Q""" ,(len(_lowerCAmelCase ) * 8) ) return data + padding + big_endian_integer def UpperCamelCase_ ( self ): # Convert into blocks of 64 bytes lowerCamelCase__ = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCamelCase__ = list(struct.unpack(""">16L""" ,_lowerCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCamelCase__ = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) lowerCamelCase__ = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) lowerCamelCase__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression lowerCamelCase__ = self.ror(_lowerCAmelCase ,6 ) ^ self.ror(_lowerCAmelCase ,11 ) ^ self.ror(_lowerCAmelCase ,25 ) lowerCamelCase__ = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g) lowerCamelCase__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 lowerCamelCase__ = self.ror(_lowerCAmelCase ,2 ) ^ self.ror(_lowerCAmelCase ,13 ) ^ self.ror(_lowerCAmelCase ,22 ) lowerCamelCase__ = (a & b) ^ (a & c) ^ (b & c) lowerCamelCase__ = (sa + maj) % 0x1_00_00_00_00 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) lowerCamelCase__ = [a, b, c, d, e, f, g, h] # Modify final values lowerCamelCase__ = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowerCamelCase__ = """""".join([hex(_lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): import hashlib lowerCamelCase__ = bytes("""Test String""" ,"""utf-8""" ) self.assertEqual(SHAaaa(_lowerCAmelCase ).hash ,hashlib.shaaaa(_lowerCAmelCase ).hexdigest() ) def A__ ( ): import doctest doctest.testmod() lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = bytes(__lowerCAmelCase , """utf-8""" ) print(SHAaaa(__lowerCAmelCase ).hash ) if __name__ == "__main__": main()
9
0
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Dict = 'T5Config' def A__ ( __lowerCAmelCase : jnp.array , __lowerCAmelCase : int , __lowerCAmelCase : int ): lowerCamelCase__ = jnp.zeros_like(__lowerCAmelCase ) lowerCamelCase__ = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCamelCase__ = shifted_input_ids.at[:, 0].set(__lowerCAmelCase ) lowerCamelCase__ = jnp.where(shifted_input_ids == -100 , __lowerCAmelCase , __lowerCAmelCase ) return shifted_input_ids class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'mt5' _UpperCamelCase = MTaConfig class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'mt5' _UpperCamelCase = MTaConfig class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'mt5' _UpperCamelCase = MTaConfig
719
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def A__ ( __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Tuple ): lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) lowerCamelCase__ = emb.weight.data return lin_layer def A__ ( __lowerCAmelCase : Dict ): lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) lowerCamelCase__ = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] lowerCamelCase__ = mam_aaa["""model"""] remove_ignore_keys_(__lowerCAmelCase ) lowerCamelCase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowerCamelCase__ = MaMaaaConfig( vocab_size=__lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) lowerCamelCase__ = state_dict["""decoder.embed_tokens.weight"""] lowerCamelCase__ = MaMaaaForConditionalGeneration(__lowerCAmelCase ) model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowerCamelCase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase : Tuple = parser.parse_args() UpperCamelCase : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
9
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A__ ( __lowerCAmelCase : str ): lowerCamelCase__ = filter(lambda __lowerCAmelCase : p.requires_grad , model.parameters() ) lowerCamelCase__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCamelCase : int = logging.getLogger(__name__) def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] ): if metric == "rouge2": lowerCamelCase__ = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": lowerCamelCase__ = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": lowerCamelCase__ = """{val_avg_em:.4f}-{step_count}""" elif metric == "loss": lowerCamelCase__ = """{val_avg_loss:.4f}-{step_count}""" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' """ function.""" ) lowerCamelCase__ = ModelCheckpoint( dirpath=__lowerCAmelCase , filename=__lowerCAmelCase , monitor=F'''val_{metric}''' , mode="""max""" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): return EarlyStopping( monitor=F'''val_{metric}''' , mode="""min""" if """loss""" in metric else """max""" , patience=__lowerCAmelCase , verbose=__lowerCAmelCase , ) class UpperCamelCase__ (pl.Callback ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_lowerCAmelCase ) @rank_zero_only def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=True ): logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) lowerCamelCase__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results lowerCamelCase__ = Path(pl_module.hparams.output_dir ) if type_path == "test": lowerCamelCase__ = od / """test_results.txt""" lowerCamelCase__ = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowerCamelCase__ = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' lowerCamelCase__ = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_lowerCAmelCase ) generations_file.parent.mkdir(exist_ok=_lowerCAmelCase ) with open(_lowerCAmelCase ,"""a+""" ) as writer: for key in sorted(_lowerCAmelCase ): if key in ["log", "progress_bar", "preds"]: continue lowerCamelCase__ = metrics[key] if isinstance(_lowerCAmelCase ,torch.Tensor ): lowerCamelCase__ = val.item() lowerCamelCase__ = F'''{key}: {val:.6f}\n''' writer.write(_lowerCAmelCase ) if not save_generations: return if "preds" in metrics: lowerCamelCase__ = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(_lowerCAmelCase ) @rank_zero_only def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): try: lowerCamelCase__ = pl_module.model.model.num_parameters() except AttributeError: lowerCamelCase__ = pl_module.model.num_parameters() lowerCamelCase__ = count_trainable_parameters(_lowerCAmelCase ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} ) @rank_zero_only def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): save_json(pl_module.metrics ,pl_module.metrics_save_path ) return self._write_logs(_lowerCAmelCase ,_lowerCAmelCase ,"""test""" ) @rank_zero_only def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): save_json(pl_module.metrics ,pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
720
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = BlipImageProcessor() lowerCamelCase__ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowerCamelCase__ = BlipProcessor(_lowerCAmelCase ,_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).tokenizer def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).image_processor def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self ): lowerCamelCase__ = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 ) lowerCamelCase__ = BlipProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = processor(text=_lowerCAmelCase ) lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
9
0
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ): lowerCamelCase__ = OmegaConf.load(__lowerCAmelCase ) lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""model"""] lowerCamelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCamelCase__ = {} lowerCamelCase__ = """first_stage_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] # extract state_dict for UNetLDM lowerCamelCase__ = {} lowerCamelCase__ = """model.diffusion_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] lowerCamelCase__ = config.model.params.first_stage_config.params lowerCamelCase__ = config.model.params.unet_config.params lowerCamelCase__ = VQModel(**__lowerCAmelCase ).eval() vqvae.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = UNetLDMModel(**__lowerCAmelCase ).eval() unet.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__lowerCAmelCase , ) lowerCamelCase__ = LDMPipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipeline.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) UpperCamelCase : List[Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
721
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def A__ ( __lowerCAmelCase : Union[str, Any] ): if hor == 128: lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase__ = (32, 128, 256) lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase__ = (32, 64, 128, 256) lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") lowerCamelCase__ = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) lowerCamelCase__ = model.state_dict() lowerCamelCase__ = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_5536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_5536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } lowerCamelCase__ = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) lowerCamelCase__ = model lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
9
0
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : '''simple docstring''' @staticmethod def UpperCamelCase_ ( *_lowerCAmelCase ,**_lowerCAmelCase ): pass @is_pipeline_test @require_torch @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' _UpperCamelCase = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = pipeline("""visual-question-answering""" ,model="""hf-internal-testing/tiny-vilt-random-vqa""" ) lowerCamelCase__ = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = vqa_pipeline(_lowerCAmelCase ,top_k=1 ) self.assertEqual( _lowerCAmelCase ,[ [{"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}], [{"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}], ] ,) @require_torch def UpperCamelCase_ ( self ): lowerCamelCase__ = pipeline("""visual-question-answering""" ,model="""hf-internal-testing/tiny-vilt-random-vqa""" ) lowerCamelCase__ = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowerCamelCase__ = """How many cats are there?""" lowerCamelCase__ = vqa_pipeline(image=_lowerCAmelCase ,question="""How many cats are there?""" ,top_k=2 ) self.assertEqual( _lowerCAmelCase ,[{"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}, {"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}] ) lowerCamelCase__ = vqa_pipeline({"""image""": image, """question""": question} ,top_k=2 ) self.assertEqual( _lowerCAmelCase ,[{"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}, {"""score""": ANY(_lowerCAmelCase ), """answer""": ANY(_lowerCAmelCase )}] ) @slow @require_torch def UpperCamelCase_ ( self ): lowerCamelCase__ = pipeline("""visual-question-answering""" ,model="""dandelin/vilt-b32-finetuned-vqa""" ) lowerCamelCase__ = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowerCamelCase__ = """How many cats are there?""" lowerCamelCase__ = vqa_pipeline(image=_lowerCAmelCase ,question=_lowerCAmelCase ,top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ,decimals=4 ) ,[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) lowerCamelCase__ = vqa_pipeline({"""image""": image, """question""": question} ,top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ,decimals=4 ) ,[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) lowerCamelCase__ = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] ,top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ,decimals=4 ) ,[[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 ,) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def UpperCamelCase_ ( self ): pass
700
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase = "▁" ,_lowerCAmelCase = True ,_lowerCAmelCase = "<unk>" ,_lowerCAmelCase = "</s>" ,_lowerCAmelCase = "<pad>" ,): lowerCamelCase__ = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } lowerCamelCase__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowerCamelCase__ = token_dict["""token"""] lowerCamelCase__ = Tokenizer(Unigram() ) lowerCamelCase__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) ,""" """ ), normalizers.Lowercase(), ] ) lowerCamelCase__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ), pre_tokenizers.Digits(individual_digits=_lowerCAmelCase ), pre_tokenizers.Punctuation(), ] ) lowerCamelCase__ = decoders.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ) lowerCamelCase__ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' ,special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] ,) lowerCamelCase__ = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,): lowerCamelCase__ = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = [files] self._tokenizer.train(_lowerCAmelCase ,trainer=_lowerCAmelCase ) self.add_unk_id() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,): lowerCamelCase__ = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,) self._tokenizer.train_from_iterator(_lowerCAmelCase ,trainer=_lowerCAmelCase ) self.add_unk_id() def UpperCamelCase_ ( self ): lowerCamelCase__ = json.loads(self._tokenizer.to_str() ) lowerCamelCase__ = self.special_tokens["""unk"""]["""id"""] lowerCamelCase__ = Tokenizer.from_str(json.dumps(_lowerCAmelCase ) )
9
0
'''simple docstring''' import argparse from collections import defaultdict import yaml UpperCamelCase : Optional[int] = 'docs/source/en/_toctree.yml' def A__ ( __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = defaultdict(__lowerCAmelCase ) for doc in model_doc: counts[doc["local"]] += 1 lowerCamelCase__ = [key for key, value in counts.items() if value > 1] lowerCamelCase__ = [] for duplicate_key in duplicates: lowerCamelCase__ = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(__lowerCAmelCase ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : s["title"].lower() ) def A__ ( __lowerCAmelCase : Dict=False ): with open(__lowerCAmelCase , encoding="""utf-8""" ) as f: lowerCamelCase__ = yaml.safe_load(f.read() ) # Get to the API doc lowerCamelCase__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCamelCase__ = content[api_idx]["""sections"""] # Then to the model doc lowerCamelCase__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowerCamelCase__ = api_doc[model_idx]["""sections"""] lowerCamelCase__ = [(idx, section) for idx, section in enumerate(__lowerCAmelCase ) if """sections""" in section] lowerCamelCase__ = False for idx, modality_doc in modalities_docs: lowerCamelCase__ = modality_doc["""sections"""] lowerCamelCase__ = clean_model_doc_toc(__lowerCAmelCase ) if old_modality_doc != new_modality_doc: lowerCamelCase__ = True if overwrite: lowerCamelCase__ = new_modality_doc if diff: if overwrite: lowerCamelCase__ = model_doc lowerCamelCase__ = api_doc with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__lowerCAmelCase , allow_unicode=__lowerCAmelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase : str = parser.parse_args() check_model_doc(args.fix_and_overwrite)
701
'''simple docstring''' from __future__ import annotations import math def A__ ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCamelCase : str = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def A__ ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) lowerCamelCase__ = [] for num in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ = odd_composites[num] - 2 * i * i if is_prime(__lowerCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__lowerCAmelCase ) == n: return list_nums return [] def A__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
9
0
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase = "▁" ,_lowerCAmelCase = True ,_lowerCAmelCase = "<unk>" ,_lowerCAmelCase = "</s>" ,_lowerCAmelCase = "<pad>" ,): lowerCamelCase__ = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } lowerCamelCase__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowerCamelCase__ = token_dict["""token"""] lowerCamelCase__ = Tokenizer(Unigram() ) lowerCamelCase__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) ,""" """ ), normalizers.Lowercase(), ] ) lowerCamelCase__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ), pre_tokenizers.Digits(individual_digits=_lowerCAmelCase ), pre_tokenizers.Punctuation(), ] ) lowerCamelCase__ = decoders.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ) lowerCamelCase__ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' ,special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] ,) lowerCamelCase__ = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,): lowerCamelCase__ = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = [files] self._tokenizer.train(_lowerCAmelCase ,trainer=_lowerCAmelCase ) self.add_unk_id() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,): lowerCamelCase__ = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,) self._tokenizer.train_from_iterator(_lowerCAmelCase ,trainer=_lowerCAmelCase ) self.add_unk_id() def UpperCamelCase_ ( self ): lowerCamelCase__ = json.loads(self._tokenizer.to_str() ) lowerCamelCase__ = self.special_tokens["""unk"""]["""id"""] lowerCamelCase__ = Tokenizer.from_str(json.dumps(_lowerCAmelCase ) )
702
'''simple docstring''' def A__ ( ): return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(__lowerCAmelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
9
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = [] lowerCamelCase__ = 11 lowerCamelCase__ = int("""1""" + """0""" * digit_len ) for num in range(__lowerCAmelCase , __lowerCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__lowerCAmelCase , __lowerCAmelCase ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 lowerCamelCase__ = 10 return solutions def A__ ( __lowerCAmelCase : int = 2 ): lowerCamelCase__ = 1.0 for fraction in fraction_list(__lowerCAmelCase ): lowerCamelCase__ = Fraction(__lowerCAmelCase ) result *= frac.denominator / frac.numerator return int(__lowerCAmelCase ) if __name__ == "__main__": print(solution())
703
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'} UpperCamelCase : Dict = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } UpperCamelCase : List[Any] = { 'camembert-base': 5_12, } UpperCamelCase : List[str] = '▁' class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,additional_special_tokens=_lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCAmelCase ,) lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) lowerCamelCase__ = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowerCamelCase__ = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} lowerCamelCase__ = len(self.fairseq_tokens_to_ids ) lowerCamelCase__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowerCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] lowerCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCamelCase_ ( self ): lowerCamelCase__ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self.sp_model.encode(_lowerCAmelCase ,out_type=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_lowerCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = [] lowerCamelCase__ = """""" lowerCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowerCamelCase__ = True lowerCamelCase__ = [] else: current_sub_tokens.append(_lowerCAmelCase ) lowerCamelCase__ = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def __getstate__( self ): lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None return state def __setstate__( self ,_lowerCAmelCase ): lowerCamelCase__ = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ = os.path.join( _lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase ,"""wb""" ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
9
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,): super().__init__() self.register_modules( vae=_lowerCAmelCase ,text_encoder=_lowerCAmelCase ,tokenizer=_lowerCAmelCase ,unet=_lowerCAmelCase ,scheduler=_lowerCAmelCase ,safety_checker=_lowerCAmelCase ,feature_extractor=_lowerCAmelCase ,) def UpperCamelCase_ ( self ,_lowerCAmelCase = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCAmelCase ) def UpperCamelCase_ ( self ): self.enable_attention_slicing(_lowerCAmelCase ) @torch.no_grad() def __call__( self ,_lowerCAmelCase ,_lowerCAmelCase = 5_12 ,_lowerCAmelCase = 5_12 ,_lowerCAmelCase = 50 ,_lowerCAmelCase = 7.5 ,_lowerCAmelCase = None ,_lowerCAmelCase = 1 ,_lowerCAmelCase = 0.0 ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = "pil" ,_lowerCAmelCase = True ,_lowerCAmelCase = None ,_lowerCAmelCase = 1 ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = 1 elif isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = len(_lowerCAmelCase ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_lowerCAmelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCAmelCase ,_lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_lowerCAmelCase )}.''' ) # get prompt text embeddings lowerCamelCase__ = self.tokenizer( _lowerCAmelCase ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,return_tensors="""pt""" ,) lowerCamelCase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowerCamelCase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowerCamelCase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = text_embeddings.shape lowerCamelCase__ = text_embeddings.repeat(1 ,_lowerCAmelCase ,1 ) lowerCamelCase__ = text_embeddings.view(bs_embed * num_images_per_prompt ,_lowerCAmelCase ,-1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase__ = 42 if negative_prompt is None: lowerCamelCase__ = [""""""] elif type(_lowerCAmelCase ) is not type(_lowerCAmelCase ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(_lowerCAmelCase )} !=''' F''' {type(_lowerCAmelCase )}.''' ) elif isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = [negative_prompt] elif batch_size != len(_lowerCAmelCase ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(_lowerCAmelCase )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: lowerCamelCase__ = negative_prompt lowerCamelCase__ = text_input_ids.shape[-1] lowerCamelCase__ = self.tokenizer( _lowerCAmelCase ,padding="""max_length""" ,max_length=_lowerCAmelCase ,truncation=_lowerCAmelCase ,return_tensors="""pt""" ,) lowerCamelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase__ = uncond_embeddings.shape[1] lowerCamelCase__ = uncond_embeddings.repeat(_lowerCAmelCase ,_lowerCAmelCase ,1 ) lowerCamelCase__ = uncond_embeddings.view(batch_size * num_images_per_prompt ,_lowerCAmelCase ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowerCamelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase__ = torch.randn( _lowerCAmelCase ,generator=_lowerCAmelCase ,device="""cpu""" ,dtype=_lowerCAmelCase ).to(self.device ) lowerCamelCase__ = torch.randn(_lowerCAmelCase ,generator=_lowerCAmelCase ,device="""cpu""" ,dtype=_lowerCAmelCase ).to( self.device ) else: lowerCamelCase__ = torch.randn( _lowerCAmelCase ,generator=_lowerCAmelCase ,device=self.device ,dtype=_lowerCAmelCase ) lowerCamelCase__ = torch.randn(_lowerCAmelCase ,generator=_lowerCAmelCase ,device=self.device ,dtype=_lowerCAmelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowerCamelCase__ = latents_reference.to(self.device ) lowerCamelCase__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowerCamelCase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowerCamelCase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowerCamelCase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowerCamelCase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowerCamelCase__ = 0 if dx < 0 else dx lowerCamelCase__ = 0 if dy < 0 else dy lowerCamelCase__ = max(-dx ,0 ) lowerCamelCase__ = max(-dy ,0 ) # import pdb # pdb.set_trace() lowerCamelCase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase__ = {} if accepts_eta: lowerCamelCase__ = eta for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ = self.scheduler.scale_model_input(_lowerCAmelCase ,_lowerCAmelCase ) # predict the noise residual lowerCamelCase__ = self.unet(_lowerCAmelCase ,_lowerCAmelCase ,encoder_hidden_states=_lowerCAmelCase ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase__ , lowerCamelCase__ = noise_pred.chunk(2 ) lowerCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ = self.scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = 1 / 0.1_8215 * latents lowerCamelCase__ = self.vae.decode(_lowerCAmelCase ).sample lowerCamelCase__ = (image / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase__ = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if self.safety_checker is not None: lowerCamelCase__ = self.feature_extractor(self.numpy_to_pil(_lowerCAmelCase ) ,return_tensors="""pt""" ).to( self.device ) lowerCamelCase__ , lowerCamelCase__ = self.safety_checker( images=_lowerCAmelCase ,clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowerCamelCase__ = None if output_type == "pil": lowerCamelCase__ = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_lowerCAmelCase ,nsfw_content_detected=_lowerCAmelCase )
704
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = R"""\w+[.]\d+""" lowerCamelCase__ = re.findall(__lowerCAmelCase , __lowerCAmelCase ) for pat in pats: lowerCamelCase__ = key.replace(__lowerCAmelCase , """_""".join(pat.split(""".""" ) ) ) return key def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": lowerCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase__ = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase__ = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=42 ): # Step 1: Convert pytorch tensor to numpy lowerCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCamelCase__ = flax_model.init_weights(PRNGKey(__lowerCAmelCase ) ) lowerCamelCase__ = flatten_dict(__lowerCAmelCase ) lowerCamelCase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase__ = rename_key(__lowerCAmelCase ) lowerCamelCase__ = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters lowerCamelCase__ , lowerCamelCase__ = rename_key_and_reshape_tensor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowerCamelCase__ = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase )
9
0
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = ['image_processor', 'tokenizer'] _UpperCamelCase = 'BlipImageProcessor' _UpperCamelCase = 'AutoTokenizer' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): super().__init__(_lowerCAmelCase ,_lowerCAmelCase ) # add QFormer tokenizer lowerCamelCase__ = qformer_tokenizer def __call__( self ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = True ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = 0 ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,_lowerCAmelCase = False ,_lowerCAmelCase = False ,_lowerCAmelCase = False ,_lowerCAmelCase = False ,_lowerCAmelCase = True ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) lowerCamelCase__ = BatchFeature() if text is not None: lowerCamelCase__ = self.tokenizer( text=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ,padding=_lowerCAmelCase ,truncation=_lowerCAmelCase ,max_length=_lowerCAmelCase ,stride=_lowerCAmelCase ,pad_to_multiple_of=_lowerCAmelCase ,return_attention_mask=_lowerCAmelCase ,return_overflowing_tokens=_lowerCAmelCase ,return_special_tokens_mask=_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase ,return_length=_lowerCAmelCase ,verbose=_lowerCAmelCase ,return_tensors=_lowerCAmelCase ,**_lowerCAmelCase ,) encoding.update(_lowerCAmelCase ) lowerCamelCase__ = self.qformer_tokenizer( text=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ,padding=_lowerCAmelCase ,truncation=_lowerCAmelCase ,max_length=_lowerCAmelCase ,stride=_lowerCAmelCase ,pad_to_multiple_of=_lowerCAmelCase ,return_attention_mask=_lowerCAmelCase ,return_overflowing_tokens=_lowerCAmelCase ,return_special_tokens_mask=_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase ,return_length=_lowerCAmelCase ,verbose=_lowerCAmelCase ,return_tensors=_lowerCAmelCase ,**_lowerCAmelCase ,) lowerCamelCase__ = qformer_text_encoding.pop("""input_ids""" ) lowerCamelCase__ = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: lowerCamelCase__ = self.image_processor(_lowerCAmelCase ,return_tensors=_lowerCAmelCase ) encoding.update(_lowerCAmelCase ) return encoding def UpperCamelCase_ ( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase ,**_lowerCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase_ ( self ): lowerCamelCase__ = self.tokenizer.model_input_names lowerCamelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,**_lowerCAmelCase ): if os.path.isfile(_lowerCAmelCase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(_lowerCAmelCase ,exist_ok=_lowerCAmelCase ) lowerCamelCase__ = os.path.join(_lowerCAmelCase ,"""qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(_lowerCAmelCase ) return super().save_pretrained(_lowerCAmelCase ,**_lowerCAmelCase ) @classmethod def UpperCamelCase_ ( cls ,_lowerCAmelCase ,**_lowerCAmelCase ): lowerCamelCase__ = AutoTokenizer.from_pretrained(_lowerCAmelCase ,subfolder="""qformer_tokenizer""" ) lowerCamelCase__ = cls._get_arguments_from_pretrained(_lowerCAmelCase ,**_lowerCAmelCase ) args.append(_lowerCAmelCase ) return cls(*_lowerCAmelCase )
705
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] ,model_result["""ss"""] ): lowerCamelCase__ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sgugger/tiny-distilbert-classification""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,only_pretrain_model=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """patrickvonplaten/t5-tiny-random""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,configs=[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,"""Cannot do xla on CPU.""" ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,save_to_csv=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ,inference_memory_csv_file=os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ,env_info_csv_file=os.path.join(_lowerCAmelCase ,"""env.csv""" ) ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""env.csv""" ) ).exists() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(_lowerCAmelCase ): self.assertTrue(hasattr(_lowerCAmelCase ,"""sequential""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""cumulative""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""current""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(_lowerCAmelCase ,"""log.txt""" ) ,log_print=_lowerCAmelCase ,trace_memory_line_by_line=_lowerCAmelCase ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""log.txt""" ) ).exists() )
9
0
'''simple docstring''' UpperCamelCase : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def A__ ( __lowerCAmelCase : dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : int ): lowerCamelCase__ = set() # keep track of all the paths to be checked lowerCamelCase__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowerCamelCase__ = queue.pop(0 ) # get the last node from the path lowerCamelCase__ = path[-1] if node not in explored: lowerCamelCase__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowerCamelCase__ = list(__lowerCAmelCase ) new_path.append(__lowerCAmelCase ) queue.append(__lowerCAmelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__lowerCAmelCase ) # in case there's no path between the 2 nodes return [] def A__ ( __lowerCAmelCase : dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowerCamelCase__ = [start] lowerCamelCase__ = set(__lowerCAmelCase ) # Keep tab on distances from `start` node. lowerCamelCase__ = {start: 0, target: -1} while queue: lowerCamelCase__ = queue.pop(0 ) if node == target: lowerCamelCase__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__lowerCAmelCase ) queue.append(__lowerCAmelCase ) lowerCamelCase__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
706
'''simple docstring''' from math import factorial UpperCamelCase : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def A__ ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowerCAmelCase ) ) def A__ ( __lowerCAmelCase : int = 60 , __lowerCAmelCase : int = 100_0000 ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length lowerCamelCase__ = 0 # the cached sizes of the previous chains lowerCamelCase__ = {} for start_chain_element in range(1 , __lowerCAmelCase ): # The temporary set will contain the elements of the chain lowerCamelCase__ = set() lowerCamelCase__ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCamelCase__ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__lowerCAmelCase ) chain_set_length += 1 lowerCamelCase__ = digit_factorial_sum(__lowerCAmelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCamelCase__ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution()}')
9
0
'''simple docstring''' from __future__ import annotations def A__ ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif stress < 0: raise ValueError("""Stress cannot be negative""" ) elif tangential_force < 0: raise ValueError("""Tangential Force cannot be negative""" ) elif area < 0: raise ValueError("""Area cannot be negative""" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCamelCase : Optional[Any] = 'src/diffusers' # Matches is_xxx_available() UpperCamelCase : Union[str, Any] = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla UpperCamelCase : Optional[Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') UpperCamelCase : Optional[int] = '\n{0} = None\n' UpperCamelCase : Optional[Any] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' UpperCamelCase : Any = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def A__ ( __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = _re_backend.findall(__lowerCAmelCase ) if len(__lowerCAmelCase ) == 0: return None return "_and_".join(__lowerCAmelCase ) def A__ ( ): with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase__ = 0 lowerCamelCase__ = {} # Go through the end of the file while line_index < len(__lowerCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 lowerCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(__lowerCAmelCase ) and len(lines[line_index] ) > 1: lowerCamelCase__ = lines[line_index] lowerCamelCase__ = _re_single_line_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = objects else: line_index += 1 return backend_specific_objects def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict ): if name.isupper(): return DUMMY_CONSTANT.format(__lowerCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__lowerCAmelCase , __lowerCAmelCase ) else: return DUMMY_CLASS.format(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Optional[int]=None ): if backend_specific_objects is None: lowerCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase__ = {} for backend, objects in backend_specific_objects.items(): lowerCamelCase__ = """[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]""" lowerCamelCase__ = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__lowerCAmelCase , __lowerCAmelCase ) for o in objects] ) lowerCamelCase__ = dummy_file return dummy_files def A__ ( __lowerCAmelCase : List[str]=False ): lowerCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase__ = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. lowerCamelCase__ = os.path.join(__lowerCAmelCase , """utils""" ) lowerCamelCase__ = { backend: os.path.join(__lowerCAmelCase , F'''dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py as the main ''' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F'''diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py. Run `make fix-copies` ''' """to fix this.""" ) if __name__ == "__main__": UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase : Any = parser.parse_args() check_dummies(args.fix_and_overwrite)
9
0
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def A__ ( __lowerCAmelCase : Union[str, Any] ): if hor == 128: lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase__ = (32, 128, 256) lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase__ = (32, 64, 128, 256) lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") lowerCamelCase__ = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) lowerCamelCase__ = model.state_dict() lowerCamelCase__ = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_5536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_5536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } lowerCamelCase__ = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) lowerCamelCase__ = model lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
708
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : List[Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = GPTSwaTokenizer _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = False def UpperCamelCase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ,eos_token="""<unk>""" ,bos_token="""<unk>""" ,pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = """This is a test""" lowerCamelCase__ = """This is a test""" return input_text, output_text def UpperCamelCase_ ( self ): lowerCamelCase__ = """<s>""" lowerCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) ,_lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""j""" ) self.assertEqual(len(_lowerCAmelCase ) ,20_00 ) def UpperCamelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,20_00 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,[4_65, 2_87, 2_65, 6_31, 8_42] ) lowerCamelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( _lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ,) # fmt: on lowerCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase ,[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] ,) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) # fmt: off self.assertListEqual( _lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def UpperCamelCase_ ( self ): lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ) lowerCamelCase__ = ["""This is a test""", """I was born in 92000, and this is falsé."""] lowerCamelCase__ = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ): self.assertListEqual(tokenizer.encode_fast(_lowerCAmelCase ) ,_lowerCAmelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ): self.assertEqual(tokenizer.decode_fast(_lowerCAmelCase ) ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off lowerCamelCase__ = {"""input_ids""": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase ,model_name="""AI-Sweden/gpt-sw3-126m""" ,sequences=_lowerCAmelCase ,)
9
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' ,'False' ) ) is not True ,reason='Skipping test because should only be run when releasing minor transformers version' ,) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue_model_parallelism.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, ] ) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() ,encoding="""utf-8""" ,check=_lowerCAmelCase ,) assert hasattr(self ,"""env""" ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): # configuration for running training on smdistributed Model Parallel lowerCamelCase__ = { """enabled""": True, """processes_per_host""": 8, } lowerCamelCase__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCamelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCamelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=F'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' ,instance_count=_lowerCAmelCase ,instance_type=self.instance_type ,debugger_hook_config=_lowerCAmelCase ,hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 5_00, } ,metric_definitions=self.env.metric_definitions ,distribution=_lowerCAmelCase ,py_version="""py36""" ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ): TrainingJobAnalytics(_lowerCAmelCase ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): # create estimator lowerCamelCase__ = self.create_estimator(_lowerCAmelCase ) # run training estimator.fit() # result dataframe lowerCamelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCamelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" ,99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' ,"""w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} ,_lowerCAmelCase )
709
'''simple docstring''' from manim import * class UpperCamelCase__ (a ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = Rectangle(height=0.5 ,width=0.5 ) lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""CPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(1 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""GPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) gpu.align_to(_lowerCAmelCase ,_lowerCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""Model""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,) lowerCamelCase__ = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) lowerCamelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase ,run_time=2.5 ) ,Write(_lowerCAmelCase ) ,Write(_lowerCAmelCase ) ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] for i, rect in enumerate(_lowerCAmelCase ): lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase ,opacity=0.7 ) cpu_target.move_to(_lowerCAmelCase ) cpu_target.generate_target() lowerCamelCase__ = 0.46 / 4 lowerCamelCase__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_lowerCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=_lowerCAmelCase ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=_lowerCAmelCase ,buff=0.0 ) cpu_targs.append(_lowerCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCAmelCase ) ) second_animations.append(MoveToTarget(_lowerCAmelCase ,run_time=1.5 ) ) self.play(*_lowerCAmelCase ) self.play(*_lowerCAmelCase ) self.wait()
9
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : Optional[Any] = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Dict = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
'''simple docstring''' UpperCamelCase : Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCamelCase : list[bool | None] = [None] * 10_00_00_00 UpperCamelCase : Tuple = True UpperCamelCase : Optional[int] = False def A__ ( __lowerCAmelCase : int ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase__ = chain(next_number(__lowerCAmelCase ) ) lowerCamelCase__ = number_chain while number < 1000_0000: lowerCamelCase__ = number_chain number *= 10 return number_chain def A__ ( __lowerCAmelCase : int = 1000_0000 ): for i in range(1 , __lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution() = }')
9
0
'''simple docstring''' from __future__ import annotations def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ): if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) lowerCamelCase__ = number_of_bytes // partitions lowerCamelCase__ = [] for i in range(__lowerCAmelCase ): lowerCamelCase__ = i * bytes_per_partition + 1 lowerCamelCase__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : List[str] = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'donut-swin' _UpperCamelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self ,_lowerCAmelCase=2_24 ,_lowerCAmelCase=4 ,_lowerCAmelCase=3 ,_lowerCAmelCase=96 ,_lowerCAmelCase=[2, 2, 6, 2] ,_lowerCAmelCase=[3, 6, 12, 24] ,_lowerCAmelCase=7 ,_lowerCAmelCase=4.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=False ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = embed_dim lowerCamelCase__ = depths lowerCamelCase__ = len(_lowerCAmelCase ) lowerCamelCase__ = num_heads lowerCamelCase__ = window_size lowerCamelCase__ = mlp_ratio lowerCamelCase__ = qkv_bias lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = drop_path_rate lowerCamelCase__ = hidden_act lowerCamelCase__ = use_absolute_embeddings lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
9
0
'''simple docstring''' import pprint import requests UpperCamelCase : Union[str, Any] = 'https://zenquotes.io/api' def A__ ( ): return requests.get(API_ENDPOINT_URL + """/today""" ).json() def A__ ( ): return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": UpperCamelCase : Dict = random_quotes() pprint.pprint(response)
712
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME UpperCamelCase : Optional[Any] = ['small', 'medium', 'large'] UpperCamelCase : Dict = 'lm_head.decoder.weight' UpperCamelCase : int = 'lm_head.weight' def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): lowerCamelCase__ = torch.load(__lowerCAmelCase ) lowerCamelCase__ = d.pop(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) UpperCamelCase : Dict = parser.parse_args() for MODEL in DIALOGPT_MODELS: UpperCamelCase : Any = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl') UpperCamelCase : str = F'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
9
0
'''simple docstring''' def A__ ( ): return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(__lowerCAmelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
713
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=30 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=10 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=0.6 ,_lowerCAmelCase=None ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = mask_ratio lowerCamelCase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCamelCase__ = (image_size // patch_size) ** 2 lowerCamelCase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFViTMAEModel(config=_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) # expected sequence length = num_patches lowerCamelCase__ = (self.image_size // self.patch_size) ** 2 lowerCamelCase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCamelCase__ = 1 lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase ) lowerCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) lowerCamelCase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _UpperCamelCase = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = TFViTMAEModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) lowerCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase ,tf.keras.layers.Layer ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): # make the mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = copy.deepcopy(self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = outputs_dict[0].numpy() lowerCamelCase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1E-6 ) def UpperCamelCase_ ( self ): # make the mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_lowerCAmelCase ): lowerCamelCase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(_lowerCAmelCase ): lowerCamelCase__ = v.numpy() else: lowerCamelCase__ = np.array(_lowerCAmelCase ) return inputs_np_dict for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = prepare_numpy_arrays(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): # make masks reproducible np.random.seed(2 ) lowerCamelCase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ = tf.constant(_lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCamelCase__ = tf_noise super().check_pt_tf_models(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_lowerCAmelCase ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(_lowerCAmelCase ,_lowerCAmelCase ),) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_lowerCAmelCase ,"""_keras_serializable""" ,_lowerCAmelCase ) } lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ = tf.convert_to_tensor(_lowerCAmelCase ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: lowerCamelCase__ = main_layer_class(_lowerCAmelCase ) lowerCamelCase__ = { name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowerCamelCase__ = tf.keras.Model(_lowerCAmelCase ,outputs=main_layer(_lowerCAmelCase ) ) lowerCamelCase__ = model(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ = os.path.join(_lowerCAmelCase ,"""keras_model.h5""" ) model.save(_lowerCAmelCase ) lowerCamelCase__ = tf.keras.models.load_model( _lowerCAmelCase ,custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_lowerCAmelCase ,tf.keras.Model ) lowerCamelCase__ = model(_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": lowerCamelCase__ = outputs.last_hidden_state.numpy() lowerCamelCase__ = 0 else: lowerCamelCase__ = outputs.logits.numpy() lowerCamelCase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ,saved_model=_lowerCAmelCase ) lowerCamelCase__ = model_class.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": lowerCamelCase__ = after_outputs["""last_hidden_state"""].numpy() lowerCamelCase__ = 0 else: lowerCamelCase__ = after_outputs["""logits"""].numpy() lowerCamelCase__ = 0 lowerCamelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase ,1E-5 ) def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_lowerCAmelCase ) lowerCamelCase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowerCamelCase__ = model_class.from_config(model.config ) lowerCamelCase__ = new_model(_lowerCAmelCase ) # Build model new_model.set_weights(model.get_weights() ) lowerCamelCase__ = new_model(_lowerCAmelCase ,noise=_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def UpperCamelCase_ ( self ): pass @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(_lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCamelCase__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCamelCase__ = ViTMAEConfig() lowerCamelCase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) # verify the logits lowerCamelCase__ = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape ,_lowerCAmelCase ) lowerCamelCase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] ,_lowerCAmelCase ,atol=1E-4 )
9
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase : int = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'bloom' _UpperCamelCase = ['past_key_values'] _UpperCamelCase = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self ,_lowerCAmelCase=25_08_80 ,_lowerCAmelCase=64 ,_lowerCAmelCase=2 ,_lowerCAmelCase=8 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=1 ,_lowerCAmelCase=2 ,_lowerCAmelCase=False ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=1 ,_lowerCAmelCase=False ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size # Backward compatibility with n_embed kwarg lowerCamelCase__ = kwargs.pop("""n_embed""" ,_lowerCAmelCase ) lowerCamelCase__ = hidden_size if n_embed is None else n_embed lowerCamelCase__ = n_layer lowerCamelCase__ = n_head lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = use_cache lowerCamelCase__ = pretraining_tp lowerCamelCase__ = apply_residual_connection_post_layernorm lowerCamelCase__ = hidden_dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id lowerCamelCase__ = slow_but_exact super().__init__(bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = version.parse('1.12' ) def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase = "default" ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,): super().__init__(_lowerCAmelCase ,task=_lowerCAmelCase ,patching_specs=_lowerCAmelCase ,use_past=_lowerCAmelCase ) if not getattr(self._config ,"""pad_token_id""" ,_lowerCAmelCase ): # TODO: how to do that better? lowerCamelCase__ = 0 @property def UpperCamelCase_ ( self ): lowerCamelCase__ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" ,inverted_values_shape=_lowerCAmelCase ) lowerCamelCase__ = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCamelCase__ = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCamelCase_ ( self ): return self._config.n_layer @property def UpperCamelCase_ ( self ): return self._config.n_head @property def UpperCamelCase_ ( self ): return 1E-3 def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): lowerCamelCase__ = super(_lowerCAmelCase ,self ).generate_dummy_inputs( _lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCamelCase__ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase__ = seqlen + 2 lowerCamelCase__ = self._config.hidden_size // self.num_attention_heads lowerCamelCase__ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowerCamelCase__ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowerCamelCase__ = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers ) ] lowerCamelCase__ = common_inputs["""attention_mask"""] if self.use_past: lowerCamelCase__ = ordered_inputs["""attention_mask"""].dtype lowerCamelCase__ = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self ): return 13
714
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=7 ,_lowerCAmelCase=3 ,_lowerCAmelCase=18 ,_lowerCAmelCase=30 ,_lowerCAmelCase=4_00 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,): lowerCamelCase__ = size if size is not None else {"""shortest_edge""": 18} lowerCamelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = num_channels lowerCamelCase__ = image_size lowerCamelCase__ = min_resolution lowerCamelCase__ = max_resolution lowerCamelCase__ = do_resize lowerCamelCase__ = size lowerCamelCase__ = do_center_crop lowerCamelCase__ = crop_size lowerCamelCase__ = do_normalize lowerCamelCase__ = image_mean lowerCamelCase__ = image_std def UpperCamelCase_ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = LevitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): lowerCamelCase__ = LevitImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""image_std""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""size""" ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,Image.Image ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,np.ndarray ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,torch.Tensor ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
9
0
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() UpperCamelCase : Optional[Any] = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Union[str, Any]=True ): if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: lowerCamelCase__ = cached_file(__lowerCAmelCase , __lowerCAmelCase , force_download=not use_cached_models ) lowerCamelCase__ = config_class.from_json_file(__lowerCAmelCase ) lowerCamelCase__ = True lowerCamelCase__ = True print(F'''Building TensorFlow model from configuration: {config}''' ) lowerCamelCase__ = model_class(__lowerCAmelCase ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): lowerCamelCase__ = cached_file( __lowerCAmelCase , __lowerCAmelCase , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: lowerCamelCase__ = load_pytorch_checkpoint_in_tfa_model(__lowerCAmelCase , __lowerCAmelCase ) if compare_with_pt_model: lowerCamelCase__ = tf_model(tf_model.dummy_inputs , training=__lowerCAmelCase ) # build the network lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) lowerCamelCase__ = pt_model_class.from_pretrained( pretrained_model_name_or_path=__lowerCAmelCase , config=__lowerCAmelCase , state_dict=__lowerCAmelCase ) with torch.no_grad(): lowerCamelCase__ = pt_model(**pt_model.dummy_inputs ) lowerCamelCase__ = pto[0].numpy() lowerCamelCase__ = tfo[0].numpy() lowerCamelCase__ = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2e-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(__lowerCAmelCase , save_format="""h5""" ) def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Any=None , __lowerCAmelCase : Any=None , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Any=False , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : List[Any]=False , ): if args_model_type is None: lowerCamelCase__ = list(MODEL_CLASSES.keys() ) else: lowerCamelCase__ = [args_model_type] for j, model_type in enumerate(__lowerCAmelCase , start=1 ): print("""=""" * 100 ) print(F''' Converting model type {j}/{len(__lowerCAmelCase )}: {model_type}''' ) print("""=""" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: lowerCamelCase__ = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: lowerCamelCase__ = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(__lowerCAmelCase , __lowerCAmelCase ) , start=1 ): print("""-""" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue lowerCamelCase__ = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(__lowerCAmelCase )}: {model_shortcut_name} - model_type {model_type}''' ) print("""-""" * 100 ) if config_shortcut_name in aws_config_map: lowerCamelCase__ = cached_file(__lowerCAmelCase , __lowerCAmelCase , force_download=not use_cached_models ) else: lowerCamelCase__ = config_shortcut_name if model_shortcut_name in aws_model_maps: lowerCamelCase__ = cached_file(__lowerCAmelCase , __lowerCAmelCase , force_download=not use_cached_models ) else: lowerCamelCase__ = model_shortcut_name if os.path.isfile(__lowerCAmelCase ): lowerCamelCase__ = """converted_model""" convert_pt_checkpoint_to_tf( model_type=__lowerCAmelCase , pytorch_checkpoint_path=__lowerCAmelCase , config_file=__lowerCAmelCase , tf_dump_path=os.path.join(__lowerCAmelCase , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__lowerCAmelCase , ) if remove_cached_files: os.remove(__lowerCAmelCase ) os.remove(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( F'Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ' 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') UpperCamelCase : str = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
715
'''simple docstring''' import numpy # List of input, output pairs UpperCamelCase : List[Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCamelCase : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) UpperCamelCase : int = [2, 4, 1, 5] UpperCamelCase : int = len(train_data) UpperCamelCase : Dict = 0.009 def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : str="train" ): return calculate_hypothesis_value(__lowerCAmelCase , __lowerCAmelCase ) - output( __lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Any ): lowerCamelCase__ = 0 for i in range(len(__lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=m ): lowerCamelCase__ = 0 for i in range(__lowerCAmelCase ): if index == -1: summation_value += _error(__lowerCAmelCase ) else: summation_value += _error(__lowerCAmelCase ) * train_data[i][0][index] return summation_value def A__ ( __lowerCAmelCase : List[Any] ): lowerCamelCase__ = summation_of_cost_derivative(__lowerCAmelCase , __lowerCAmelCase ) / m return cost_derivative_value def A__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase__ = 0.00_0002 lowerCamelCase__ = 0 lowerCamelCase__ = 0 while True: j += 1 lowerCamelCase__ = [0, 0, 0, 0] for i in range(0 , len(__lowerCAmelCase ) ): lowerCamelCase__ = get_cost_derivative(i - 1 ) lowerCamelCase__ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase , rtol=__lowerCAmelCase , ): break lowerCamelCase__ = temp_parameter_vector print(("""Number of iterations:""", j) ) def A__ ( ): for i in range(len(__lowerCAmelCase ) ): print(("""Actual output value:""", output(__lowerCAmelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__lowerCAmelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
9
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor UpperCamelCase : Dict = logging.get_logger(__name__) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" ,_lowerCAmelCase ,) super().__init__(*_lowerCAmelCase ,**_lowerCAmelCase )
716
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ): lowerCamelCase__ = OmegaConf.load(__lowerCAmelCase ) lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""model"""] lowerCamelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCamelCase__ = {} lowerCamelCase__ = """first_stage_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] # extract state_dict for UNetLDM lowerCamelCase__ = {} lowerCamelCase__ = """model.diffusion_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] lowerCamelCase__ = config.model.params.first_stage_config.params lowerCamelCase__ = config.model.params.unet_config.params lowerCamelCase__ = VQModel(**__lowerCAmelCase ).eval() vqvae.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = UNetLDMModel(**__lowerCAmelCase ).eval() unet.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__lowerCAmelCase , ) lowerCamelCase__ = LDMPipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipeline.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) UpperCamelCase : List[Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
9
0
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : int = Lock() def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__lowerCAmelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCamelCase__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCamelCase__ = min(__lowerCAmelCase , __lowerCAmelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__lowerCAmelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCamelCase__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCamelCase__ = max(__lowerCAmelCase , __lowerCAmelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : List[str] ): lowerCamelCase__ = [] lowerCamelCase__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCamelCase__ = Pipe() lowerCamelCase__ = Pipe() process_array_.append( Process( target=__lowerCAmelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCamelCase__ = temp_rs lowerCamelCase__ = temp_rr for i in range(1 , len(__lowerCAmelCase ) - 1 ): lowerCamelCase__ = Pipe() lowerCamelCase__ = Pipe() process_array_.append( Process( target=__lowerCAmelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCamelCase__ = temp_rs lowerCamelCase__ = temp_rr process_array_.append( Process( target=__lowerCAmelCase , args=( len(__lowerCAmelCase ) - 1, arr[len(__lowerCAmelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__lowerCAmelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__lowerCAmelCase ) ): lowerCamelCase__ = result_pipe[p][0].recv() process_array_[p].join() return arr def A__ ( ): lowerCamelCase__ = list(range(10 , 0 , -1 ) ) print("""Initial List""" ) print(*__lowerCAmelCase ) lowerCamelCase__ = odd_even_transposition(__lowerCAmelCase ) print("""Sorted List\n""" ) print(*__lowerCAmelCase ) if __name__ == "__main__": main()
717
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : tuple[int, ...] ): lowerCamelCase__ = "" lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 for keychar, cipherchar in zip(cycle(__lowerCAmelCase ) , __lowerCAmelCase ): lowerCamelCase__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__lowerCAmelCase ) return decoded def A__ ( __lowerCAmelCase : list[int] ): lowerCamelCase__ = [] for key in product(__lowerCAmelCase , repeat=3 ): lowerCamelCase__ = try_key(__lowerCAmelCase , __lowerCAmelCase ) if encoded is not None: possibles.append(__lowerCAmelCase ) return possibles def A__ ( __lowerCAmelCase : list[str] , __lowerCAmelCase : str ): return [possible for possible in possibles if common_word in possible.lower()] def A__ ( __lowerCAmelCase : str = "p059_cipher.txt" ): lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = Path(__lowerCAmelCase ).parent.joinpath(__lowerCAmelCase ).read_text(encoding="""utf-8""" ) lowerCamelCase__ = [int(__lowerCAmelCase ) for number in data.strip().split(""",""" )] lowerCamelCase__ = filter_valid_chars(__lowerCAmelCase ) for common_word in COMMON_WORDS: lowerCamelCase__ = filter_common_word(__lowerCAmelCase , __lowerCAmelCase ) if len(__lowerCAmelCase ) == 1: break lowerCamelCase__ = possibles[0] return sum(ord(__lowerCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
9
0
'''simple docstring''' from collections import defaultdict def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = 1 lowerCamelCase__ = True for v in tree[start]: if v not in visited: ret += dfs(__lowerCAmelCase ) if ret % 2 == 0: cuts.append(__lowerCAmelCase ) return ret def A__ ( ): dfs(1 ) if __name__ == "__main__": UpperCamelCase : Tuple = 10, 9 UpperCamelCase : Optional[int] = defaultdict(list) UpperCamelCase : dict[int, bool] = {} UpperCamelCase : list[int] = [] UpperCamelCase : Optional[Any] = 0 UpperCamelCase : Dict = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
718
'''simple docstring''' import argparse import struct import unittest class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ): lowerCamelCase__ = data # Initialize hash values lowerCamelCase__ = [ 0x6a_09_e6_67, 0xbb_67_ae_85, 0x3c_6e_f3_72, 0xa5_4f_f5_3a, 0x51_0e_52_7f, 0x9b_05_68_8c, 0x1f_83_d9_ab, 0x5b_e0_cd_19, ] # Initialize round constants lowerCamelCase__ = [ 0x42_8a_2f_98, 0x71_37_44_91, 0xb5_c0_fb_cf, 0xe9_b5_db_a5, 0x39_56_c2_5b, 0x59_f1_11_f1, 0x92_3f_82_a4, 0xab_1c_5e_d5, 0xd8_07_aa_98, 0x12_83_5b_01, 0x24_31_85_be, 0x55_0c_7d_c3, 0x72_be_5d_74, 0x80_de_b1_fe, 0x9b_dc_06_a7, 0xc1_9b_f1_74, 0xe4_9b_69_c1, 0xef_be_47_86, 0x0f_c1_9d_c6, 0x24_0c_a1_cc, 0x2d_e9_2c_6f, 0x4a_74_84_aa, 0x5c_b0_a9_dc, 0x76_f9_88_da, 0x98_3e_51_52, 0xa8_31_c6_6d, 0xb0_03_27_c8, 0xbf_59_7f_c7, 0xc6_e0_0b_f3, 0xd5_a7_91_47, 0x06_ca_63_51, 0x14_29_29_67, 0x27_b7_0a_85, 0x2e_1b_21_38, 0x4d_2c_6d_fc, 0x53_38_0d_13, 0x65_0a_73_54, 0x76_6a_0a_bb, 0x81_c2_c9_2e, 0x92_72_2c_85, 0xa2_bf_e8_a1, 0xa8_1a_66_4b, 0xc2_4b_8b_70, 0xc7_6c_51_a3, 0xd1_92_e8_19, 0xd6_99_06_24, 0xf4_0e_35_85, 0x10_6a_a0_70, 0x19_a4_c1_16, 0x1e_37_6c_08, 0x27_48_77_4c, 0x34_b0_bc_b5, 0x39_1c_0c_b3, 0x4e_d8_aa_4a, 0x5b_9c_ca_4f, 0x68_2e_6f_f3, 0x74_8f_82_ee, 0x78_a5_63_6f, 0x84_c8_78_14, 0x8c_c7_02_08, 0x90_be_ff_fa, 0xa4_50_6c_eb, 0xbe_f9_a3_f7, 0xc6_71_78_f2, ] lowerCamelCase__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCamelCase_ ( _lowerCAmelCase ): lowerCamelCase__ = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowerCAmelCase ) + 8) % 64)) lowerCamelCase__ = struct.pack(""">Q""" ,(len(_lowerCAmelCase ) * 8) ) return data + padding + big_endian_integer def UpperCamelCase_ ( self ): # Convert into blocks of 64 bytes lowerCamelCase__ = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCamelCase__ = list(struct.unpack(""">16L""" ,_lowerCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCamelCase__ = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) lowerCamelCase__ = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) lowerCamelCase__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression lowerCamelCase__ = self.ror(_lowerCAmelCase ,6 ) ^ self.ror(_lowerCAmelCase ,11 ) ^ self.ror(_lowerCAmelCase ,25 ) lowerCamelCase__ = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g) lowerCamelCase__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 lowerCamelCase__ = self.ror(_lowerCAmelCase ,2 ) ^ self.ror(_lowerCAmelCase ,13 ) ^ self.ror(_lowerCAmelCase ,22 ) lowerCamelCase__ = (a & b) ^ (a & c) ^ (b & c) lowerCamelCase__ = (sa + maj) % 0x1_00_00_00_00 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) lowerCamelCase__ = [a, b, c, d, e, f, g, h] # Modify final values lowerCamelCase__ = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowerCamelCase__ = """""".join([hex(_lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): import hashlib lowerCamelCase__ = bytes("""Test String""" ,"""utf-8""" ) self.assertEqual(SHAaaa(_lowerCAmelCase ).hash ,hashlib.shaaaa(_lowerCAmelCase ).hexdigest() ) def A__ ( ): import doctest doctest.testmod() lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = bytes(__lowerCAmelCase , """utf-8""" ) print(SHAaaa(__lowerCAmelCase ).hash ) if __name__ == "__main__": main()
9
0
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = ['vqvae'] def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,): super().__init__() self.register_modules(unet=_lowerCAmelCase ,scheduler=_lowerCAmelCase ,mel=_lowerCAmelCase ,vqvae=_lowerCAmelCase ) def UpperCamelCase_ ( self ): return 50 if isinstance(self.scheduler ,_lowerCAmelCase ) else 10_00 @torch.no_grad() def __call__( self ,_lowerCAmelCase = 1 ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = 0 ,_lowerCAmelCase = 0 ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = 0 ,_lowerCAmelCase = 0 ,_lowerCAmelCase = None ,_lowerCAmelCase = 0 ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase=True ,): lowerCamelCase__ = steps or self.get_default_steps() self.scheduler.set_timesteps(_lowerCAmelCase ) lowerCamelCase__ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowerCamelCase__ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCamelCase__ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_lowerCAmelCase ,device=self.device ,) lowerCamelCase__ = noise lowerCamelCase__ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self.mel.audio_slice_to_image(_lowerCAmelCase ) lowerCamelCase__ = np.frombuffer(input_image.tobytes() ,dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) lowerCamelCase__ = (input_image / 2_55) * 2 - 1 lowerCamelCase__ = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowerCamelCase__ = self.vqvae.encode(torch.unsqueeze(_lowerCAmelCase ,0 ) ).latent_dist.sample( generator=_lowerCAmelCase )[0] lowerCamelCase__ = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCamelCase__ = self.scheduler.add_noise(_lowerCAmelCase ,_lowerCAmelCase ,self.scheduler.timesteps[start_step - 1] ) lowerCamelCase__ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCamelCase__ = int(mask_start_secs * pixels_per_second ) lowerCamelCase__ = int(mask_end_secs * pixels_per_second ) lowerCamelCase__ = self.scheduler.add_noise(_lowerCAmelCase ,_lowerCAmelCase ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_lowerCAmelCase ): lowerCamelCase__ = self.unet(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )["""sample"""] else: lowerCamelCase__ = self.unet(_lowerCAmelCase ,_lowerCAmelCase )["""sample"""] if isinstance(self.scheduler ,_lowerCAmelCase ): lowerCamelCase__ = self.scheduler.step( model_output=_lowerCAmelCase ,timestep=_lowerCAmelCase ,sample=_lowerCAmelCase ,eta=_lowerCAmelCase ,generator=_lowerCAmelCase ,)["""prev_sample"""] else: lowerCamelCase__ = self.scheduler.step( model_output=_lowerCAmelCase ,timestep=_lowerCAmelCase ,sample=_lowerCAmelCase ,generator=_lowerCAmelCase ,)["""prev_sample"""] if mask is not None: if mask_start > 0: lowerCamelCase__ = mask[:, step, :, :mask_start] if mask_end > 0: lowerCamelCase__ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCamelCase__ = 1 / self.vqvae.config.scaling_factor * images lowerCamelCase__ = self.vqvae.decode(_lowerCAmelCase )["""sample"""] lowerCamelCase__ = (images / 2 + 0.5).clamp(0 ,1 ) lowerCamelCase__ = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() lowerCamelCase__ = (images * 2_55).round().astype("""uint8""" ) lowerCamelCase__ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_lowerCAmelCase ,mode="""RGB""" ).convert("""L""" ) for _ in images) ) lowerCamelCase__ = [self.mel.image_to_audio(_lowerCAmelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_lowerCAmelCase )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_lowerCAmelCase ) ) @torch.no_grad() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 50 ): assert isinstance(self.scheduler ,_lowerCAmelCase ) self.scheduler.set_timesteps(_lowerCAmelCase ) lowerCamelCase__ = np.array( [np.frombuffer(image.tobytes() ,dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) lowerCamelCase__ = (sample / 2_55) * 2 - 1 lowerCamelCase__ = torch.Tensor(_lowerCAmelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): lowerCamelCase__ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCamelCase__ = self.scheduler.alphas_cumprod[t] lowerCamelCase__ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCamelCase__ = 1 - alpha_prod_t lowerCamelCase__ = self.unet(_lowerCAmelCase ,_lowerCAmelCase )["""sample"""] lowerCamelCase__ = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCamelCase__ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCamelCase__ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = acos(torch.dot(torch.flatten(_lowerCAmelCase ) ,torch.flatten(_lowerCAmelCase ) ) / torch.norm(_lowerCAmelCase ) / torch.norm(_lowerCAmelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(_lowerCAmelCase ) + sin(alpha * theta ) * xa / sin(_lowerCAmelCase )
719
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def A__ ( __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Tuple ): lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) lowerCamelCase__ = emb.weight.data return lin_layer def A__ ( __lowerCAmelCase : Dict ): lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) lowerCamelCase__ = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] lowerCamelCase__ = mam_aaa["""model"""] remove_ignore_keys_(__lowerCAmelCase ) lowerCamelCase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowerCamelCase__ = MaMaaaConfig( vocab_size=__lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) lowerCamelCase__ = state_dict["""decoder.embed_tokens.weight"""] lowerCamelCase__ = MaMaaaForConditionalGeneration(__lowerCAmelCase ) model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowerCamelCase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase : Tuple = parser.parse_args() UpperCamelCase : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
9
0
'''simple docstring''' def A__ ( __lowerCAmelCase : int ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
720
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = BlipImageProcessor() lowerCamelCase__ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowerCamelCase__ = BlipProcessor(_lowerCAmelCase ,_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).tokenizer def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).image_processor def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self ): lowerCamelCase__ = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 ) lowerCamelCase__ = BlipProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = processor(text=_lowerCAmelCase ) lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
9
0
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ): lowerCamelCase__ = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg""" lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert("""RGB""" ) lowerCamelCase__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) lowerCamelCase__ = transform(__lowerCAmelCase ).unsqueeze(0 ).to(__lowerCAmelCase ) return image def A__ ( __lowerCAmelCase : Tuple ): if "visual_encoder" in key: lowerCamelCase__ = re.sub("""visual_encoder*""" , """vision_model.encoder""" , __lowerCAmelCase ) if "blocks" in key: lowerCamelCase__ = re.sub(R"""blocks""" , """layers""" , __lowerCAmelCase ) if "attn" in key: lowerCamelCase__ = re.sub(R"""attn""" , """self_attn""" , __lowerCAmelCase ) if "norm1" in key: lowerCamelCase__ = re.sub(R"""norm1""" , """layer_norm1""" , __lowerCAmelCase ) if "norm2" in key: lowerCamelCase__ = re.sub(R"""norm2""" , """layer_norm2""" , __lowerCAmelCase ) if "encoder.norm" in key: lowerCamelCase__ = re.sub(R"""encoder.norm""" , """post_layernorm""" , __lowerCAmelCase ) if "encoder.patch_embed.proj" in key: lowerCamelCase__ = re.sub(R"""encoder.patch_embed.proj""" , """embeddings.patch_embedding""" , __lowerCAmelCase ) if "encoder.pos_embed" in key: lowerCamelCase__ = re.sub(R"""encoder.pos_embed""" , """embeddings.position_embedding""" , __lowerCAmelCase ) if "encoder.cls_token" in key: lowerCamelCase__ = re.sub(R"""encoder.cls_token""" , """embeddings.class_embedding""" , __lowerCAmelCase ) if "self_attn" in key: lowerCamelCase__ = re.sub(R"""self_attn.proj""" , """self_attn.projection""" , __lowerCAmelCase ) return key @torch.no_grad() def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int]=None ): if config_path is not None: lowerCamelCase__ = BlipConfig.from_pretrained(__lowerCAmelCase ) else: lowerCamelCase__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowerCamelCase__ = BlipForConditionalGeneration(__lowerCAmelCase ).eval() lowerCamelCase__ = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth""" lowerCamelCase__ = blip_decoder(pretrained=__lowerCAmelCase , image_size=384 , vit="""base""" ) lowerCamelCase__ = pt_model.eval() lowerCamelCase__ = pt_model.state_dict() for key in modified_state_dict.copy(): lowerCamelCase__ = modified_state_dict.pop(__lowerCAmelCase ) lowerCamelCase__ = rename_key(__lowerCAmelCase ) lowerCamelCase__ = value hf_model.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = 384 lowerCamelCase__ = load_demo_image(image_size=__lowerCAmelCase , device="""cpu""" ) lowerCamelCase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowerCamelCase__ = tokenizer(["""a picture of"""] ).input_ids lowerCamelCase__ = hf_model.generate(__lowerCAmelCase , __lowerCAmelCase ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowerCamelCase__ = hf_model.generate(__lowerCAmelCase ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__lowerCAmelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowerCamelCase__ = ( """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth""" ) lowerCamelCase__ = blip_vqa(pretrained=__lowerCAmelCase , image_size=__lowerCAmelCase , vit="""base""" ) vqa_model.eval() lowerCamelCase__ = vqa_model.state_dict() for key in modified_state_dict.copy(): lowerCamelCase__ = modified_state_dict.pop(__lowerCAmelCase ) lowerCamelCase__ = rename_key(__lowerCAmelCase ) lowerCamelCase__ = value lowerCamelCase__ = BlipForQuestionAnswering(__lowerCAmelCase ) hf_vqa_model.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = ["""How many dogs are in this image?"""] lowerCamelCase__ = tokenizer(__lowerCAmelCase , return_tensors="""pt""" ).input_ids lowerCamelCase__ = hf_vqa_model.generate(__lowerCAmelCase , __lowerCAmelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + """_vqa""" ) lowerCamelCase__ = """https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth""" lowerCamelCase__ = blip_itm(pretrained=__lowerCAmelCase , image_size=__lowerCAmelCase , vit="""base""" ) itm_model.eval() lowerCamelCase__ = itm_model.state_dict() for key in modified_state_dict.copy(): lowerCamelCase__ = modified_state_dict.pop(__lowerCAmelCase ) lowerCamelCase__ = rename_key(__lowerCAmelCase ) lowerCamelCase__ = value lowerCamelCase__ = BlipForImageTextRetrieval(__lowerCAmelCase ) lowerCamelCase__ = ["""A picture of a woman with a dog sitting in a beach"""] lowerCamelCase__ = tokenizer( __lowerCAmelCase , return_tensors="""pt""" , padding="""max_length""" , truncation=__lowerCAmelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__lowerCAmelCase ) hf_itm_model.eval() lowerCamelCase__ = hf_itm_model(__lowerCAmelCase , __lowerCAmelCase , use_itm_head=__lowerCAmelCase ) lowerCamelCase__ = hf_itm_model(__lowerCAmelCase , __lowerCAmelCase , use_itm_head=__lowerCAmelCase ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + """_itm""" ) if __name__ == "__main__": UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') UpperCamelCase : int = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
721
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def A__ ( __lowerCAmelCase : Union[str, Any] ): if hor == 128: lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase__ = (32, 128, 256) lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase__ = (32, 64, 128, 256) lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") lowerCamelCase__ = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) lowerCamelCase__ = model.state_dict() lowerCamelCase__ = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_5536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_5536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } lowerCamelCase__ = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) lowerCamelCase__ = model lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
9
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=3 ,_lowerCAmelCase=32 ,_lowerCAmelCase=3 ,_lowerCAmelCase=10 ,_lowerCAmelCase=[10, 20, 30, 40] ,_lowerCAmelCase=[1, 1, 2, 1] ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase="relu" ,_lowerCAmelCase=3 ,_lowerCAmelCase=None ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = num_channels lowerCamelCase__ = embeddings_size lowerCamelCase__ = hidden_sizes lowerCamelCase__ = depths lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = hidden_act lowerCamelCase__ = num_labels lowerCamelCase__ = scope lowerCamelCase__ = len(_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] ,self.num_labels ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFResNetModel(config=_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = TFResNetForImageClassification(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCamelCase = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = TFResNetModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ) def UpperCamelCase_ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self ): return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): def check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase__ = layer_type lowerCamelCase__ = True check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ = True check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFResNetModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""tf""" ) # forward pass lowerCamelCase__ = model(**_lowerCAmelCase ) # verify the logits lowerCamelCase__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,_lowerCAmelCase ) lowerCamelCase__ = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_lowerCAmelCase ,atol=1E-4 ) )
700
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase = "▁" ,_lowerCAmelCase = True ,_lowerCAmelCase = "<unk>" ,_lowerCAmelCase = "</s>" ,_lowerCAmelCase = "<pad>" ,): lowerCamelCase__ = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } lowerCamelCase__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowerCamelCase__ = token_dict["""token"""] lowerCamelCase__ = Tokenizer(Unigram() ) lowerCamelCase__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) ,""" """ ), normalizers.Lowercase(), ] ) lowerCamelCase__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ), pre_tokenizers.Digits(individual_digits=_lowerCAmelCase ), pre_tokenizers.Punctuation(), ] ) lowerCamelCase__ = decoders.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ) lowerCamelCase__ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' ,special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] ,) lowerCamelCase__ = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,): lowerCamelCase__ = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = [files] self._tokenizer.train(_lowerCAmelCase ,trainer=_lowerCAmelCase ) self.add_unk_id() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,): lowerCamelCase__ = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,) self._tokenizer.train_from_iterator(_lowerCAmelCase ,trainer=_lowerCAmelCase ) self.add_unk_id() def UpperCamelCase_ ( self ): lowerCamelCase__ = json.loads(self._tokenizer.to_str() ) lowerCamelCase__ = self.special_tokens["""unk"""]["""id"""] lowerCamelCase__ = Tokenizer.from_str(json.dumps(_lowerCAmelCase ) )
9
0
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase__ : '''simple docstring''' _UpperCamelCase = 42 _UpperCamelCase = None @staticmethod def UpperCamelCase_ ( ): raise NotImplementedError def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ): raise NotImplementedError def UpperCamelCase_ ( self ,_lowerCAmelCase ): raise NotImplementedError def UpperCamelCase_ ( self ): if not self.is_available(): raise RuntimeError( F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def UpperCamelCase_ ( cls ): return F'''`pip install {cls.pip_package or cls.name}`''' class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'optuna' @staticmethod def UpperCamelCase_ ( ): return is_optuna_available() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ): return run_hp_search_optuna(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): return default_hp_space_optuna(_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'ray' _UpperCamelCase = '\'ray[tune]\'' @staticmethod def UpperCamelCase_ ( ): return is_ray_available() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ): return run_hp_search_ray(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): return default_hp_space_ray(_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'sigopt' @staticmethod def UpperCamelCase_ ( ): return is_sigopt_available() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ): return run_hp_search_sigopt(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): return default_hp_space_sigopt(_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'wandb' @staticmethod def UpperCamelCase_ ( ): return is_wandb_available() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ): return run_hp_search_wandb(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): return default_hp_space_wandb(_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def A__ ( ): lowerCamelCase__ = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = available_backends[0].name if len(__lowerCAmelCase ) > 1: logger.info( F'''{len(__lowerCAmelCase )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( """No hyperparameter search backend available.\n""" + """\n""".join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
701
'''simple docstring''' from __future__ import annotations import math def A__ ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCamelCase : str = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def A__ ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) lowerCamelCase__ = [] for num in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ = odd_composites[num] - 2 * i * i if is_prime(__lowerCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__lowerCAmelCase ) == n: return list_nums return [] def A__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
9
0
'''simple docstring''' from datetime import datetime import requests def A__ ( __lowerCAmelCase : str ): lowerCamelCase__ = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" lowerCamelCase__ = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(__lowerCAmelCase ).content if __name__ == "__main__": UpperCamelCase : str = input('Enter Video/IGTV url: ').strip() UpperCamelCase : str = F'{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(F'Done. Video saved to disk as {file_name}.')
702
'''simple docstring''' def A__ ( ): return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(__lowerCAmelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
9
0
'''simple docstring''' def A__ ( __lowerCAmelCase : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'} UpperCamelCase : Dict = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } UpperCamelCase : List[Any] = { 'camembert-base': 5_12, } UpperCamelCase : List[str] = '▁' class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,additional_special_tokens=_lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCAmelCase ,) lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) lowerCamelCase__ = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowerCamelCase__ = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} lowerCamelCase__ = len(self.fairseq_tokens_to_ids ) lowerCamelCase__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowerCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] lowerCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCamelCase_ ( self ): lowerCamelCase__ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self.sp_model.encode(_lowerCAmelCase ,out_type=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_lowerCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = [] lowerCamelCase__ = """""" lowerCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowerCamelCase__ = True lowerCamelCase__ = [] else: current_sub_tokens.append(_lowerCAmelCase ) lowerCamelCase__ = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def __getstate__( self ): lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None return state def __setstate__( self ,_lowerCAmelCase ): lowerCamelCase__ = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ = os.path.join( _lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase ,"""wb""" ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
9
0
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=7 ): lowerCamelCase__ = None if token is not None: lowerCamelCase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowerCamelCase__ = """636036""" lowerCamelCase__ = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowerCamelCase__ = requests.get(__lowerCAmelCase , headers=__lowerCAmelCase ).json() return result["workflow_runs"] def A__ ( __lowerCAmelCase : Any ): lowerCamelCase__ = get_daily_ci_runs(__lowerCAmelCase ) lowerCamelCase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowerCamelCase__ = workflow_run["""id"""] break return workflow_run_id def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] ): lowerCamelCase__ = get_last_daily_ci_runs(__lowerCAmelCase ) if workflow_run_id is not None: lowerCamelCase__ = get_artifacts_links(worflow_run_id=__lowerCAmelCase , token=__lowerCAmelCase ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowerCamelCase__ = artifacts_links[artifact_name] download_artifact( artifact_name=__lowerCAmelCase , artifact_url=__lowerCAmelCase , output_dir=__lowerCAmelCase , token=__lowerCAmelCase ) def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] ): get_last_daily_ci_artifacts(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = {} for artifact_name in artifact_names: lowerCamelCase__ = os.path.join(__lowerCAmelCase , F'''{artifact_name}.zip''' ) if os.path.isfile(__lowerCAmelCase ): lowerCamelCase__ = {} with zipfile.ZipFile(__lowerCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__lowerCAmelCase ): # read the file with z.open(__lowerCAmelCase ) as f: lowerCamelCase__ = f.read().decode("""UTF-8""" ) return results
704
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = R"""\w+[.]\d+""" lowerCamelCase__ = re.findall(__lowerCAmelCase , __lowerCAmelCase ) for pat in pats: lowerCamelCase__ = key.replace(__lowerCAmelCase , """_""".join(pat.split(""".""" ) ) ) return key def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": lowerCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase__ = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase__ = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=42 ): # Step 1: Convert pytorch tensor to numpy lowerCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCamelCase__ = flax_model.init_weights(PRNGKey(__lowerCAmelCase ) ) lowerCamelCase__ = flatten_dict(__lowerCAmelCase ) lowerCamelCase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase__ = rename_key(__lowerCAmelCase ) lowerCamelCase__ = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters lowerCamelCase__ , lowerCamelCase__ = rename_key_and_reshape_tensor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowerCamelCase__ = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase )
9
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Optional[int] = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : str ): lowerCamelCase__ = DPTConfig() if "large" in checkpoint_url: lowerCamelCase__ = 1024 lowerCamelCase__ = 4096 lowerCamelCase__ = 24 lowerCamelCase__ = 16 lowerCamelCase__ = [5, 11, 17, 23] lowerCamelCase__ = [256, 512, 1024, 1024] lowerCamelCase__ = (1, 384, 384) if "ade" in checkpoint_url: lowerCamelCase__ = True lowerCamelCase__ = 150 lowerCamelCase__ = """huggingface/label-files""" lowerCamelCase__ = """ade20k-id2label.json""" lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ = idalabel lowerCamelCase__ = {v: k for k, v in idalabel.items()} lowerCamelCase__ = [1, 150, 480, 480] return config, expected_shape def A__ ( __lowerCAmelCase : Tuple ): lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Dict ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: lowerCamelCase__ = name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: lowerCamelCase__ = name.replace("""proj""" , """projection""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: lowerCamelCase__ = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: lowerCamelCase__ = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" ) if "head" in name: lowerCamelCase__ = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ = in_proj_bias[: config.hidden_size] lowerCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ = in_proj_bias[-config.hidden_size :] def A__ ( ): lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ): lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase ) # load original state_dict from URL lowerCamelCase__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(__lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) lowerCamelCase__ = val # read in qkv matrices read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Check outputs on an image lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384 lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" ) # forward pass lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth # Assert logits lowerCamelCase__ = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: lowerCamelCase__ = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(__lowerCAmelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __lowerCAmelCase ) ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=__lowerCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=__lowerCAmelCase , ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) UpperCamelCase : List[str] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
705
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] ,model_result["""ss"""] ): lowerCamelCase__ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sgugger/tiny-distilbert-classification""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,only_pretrain_model=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """patrickvonplaten/t5-tiny-random""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,configs=[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,"""Cannot do xla on CPU.""" ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,save_to_csv=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ,inference_memory_csv_file=os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ,env_info_csv_file=os.path.join(_lowerCAmelCase ,"""env.csv""" ) ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""env.csv""" ) ).exists() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(_lowerCAmelCase ): self.assertTrue(hasattr(_lowerCAmelCase ,"""sequential""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""cumulative""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""current""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(_lowerCAmelCase ,"""log.txt""" ) ,log_print=_lowerCAmelCase ,trace_memory_line_by_line=_lowerCAmelCase ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""log.txt""" ) ).exists() )
9
0
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def A__ ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance == 0: return {"resistance": sqrt(pow(__lowerCAmelCase , 2 ) - pow(__lowerCAmelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__lowerCAmelCase , 2 ) - pow(__lowerCAmelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__lowerCAmelCase , 2 ) + pow(__lowerCAmelCase , 2 ) )} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' from math import factorial UpperCamelCase : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def A__ ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowerCAmelCase ) ) def A__ ( __lowerCAmelCase : int = 60 , __lowerCAmelCase : int = 100_0000 ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length lowerCamelCase__ = 0 # the cached sizes of the previous chains lowerCamelCase__ = {} for start_chain_element in range(1 , __lowerCAmelCase ): # The temporary set will contain the elements of the chain lowerCamelCase__ = set() lowerCamelCase__ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCamelCase__ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__lowerCAmelCase ) chain_set_length += 1 lowerCamelCase__ = digit_factorial_sum(__lowerCAmelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCamelCase__ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution()}')
9
0
'''simple docstring''' def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = abs(__lowerCAmelCase ) lowerCamelCase__ = 0 while n > 0: res += n % 10 n //= 10 return res def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = abs(__lowerCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def A__ ( __lowerCAmelCase : int ): return sum(int(__lowerCAmelCase ) for c in str(abs(__lowerCAmelCase ) ) ) def A__ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase : Callable , __lowerCAmelCase : int ) -> None: lowerCamelCase__ = F'''{func.__name__}({value})''' lowerCamelCase__ = timeit(F'''__main__.{call}''' , setup="""import __main__""" ) print(F'''{call:56} = {func(__lowerCAmelCase )} -- {timing:.4f} seconds''' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
707
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCamelCase : Optional[Any] = 'src/diffusers' # Matches is_xxx_available() UpperCamelCase : Union[str, Any] = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla UpperCamelCase : Optional[Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') UpperCamelCase : Optional[int] = '\n{0} = None\n' UpperCamelCase : Optional[Any] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' UpperCamelCase : Any = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def A__ ( __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = _re_backend.findall(__lowerCAmelCase ) if len(__lowerCAmelCase ) == 0: return None return "_and_".join(__lowerCAmelCase ) def A__ ( ): with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase__ = 0 lowerCamelCase__ = {} # Go through the end of the file while line_index < len(__lowerCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 lowerCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(__lowerCAmelCase ) and len(lines[line_index] ) > 1: lowerCamelCase__ = lines[line_index] lowerCamelCase__ = _re_single_line_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = objects else: line_index += 1 return backend_specific_objects def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict ): if name.isupper(): return DUMMY_CONSTANT.format(__lowerCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__lowerCAmelCase , __lowerCAmelCase ) else: return DUMMY_CLASS.format(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Optional[int]=None ): if backend_specific_objects is None: lowerCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase__ = {} for backend, objects in backend_specific_objects.items(): lowerCamelCase__ = """[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]""" lowerCamelCase__ = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__lowerCAmelCase , __lowerCAmelCase ) for o in objects] ) lowerCamelCase__ = dummy_file return dummy_files def A__ ( __lowerCAmelCase : List[str]=False ): lowerCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase__ = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. lowerCamelCase__ = os.path.join(__lowerCAmelCase , """utils""" ) lowerCamelCase__ = { backend: os.path.join(__lowerCAmelCase , F'''dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py as the main ''' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F'''diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py. Run `make fix-copies` ''' """to fix this.""" ) if __name__ == "__main__": UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase : Any = parser.parse_args() check_dummies(args.fix_and_overwrite)
9
0
'''simple docstring''' def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) lowerCamelCase__ = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
708
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : List[Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = GPTSwaTokenizer _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = False def UpperCamelCase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ,eos_token="""<unk>""" ,bos_token="""<unk>""" ,pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = """This is a test""" lowerCamelCase__ = """This is a test""" return input_text, output_text def UpperCamelCase_ ( self ): lowerCamelCase__ = """<s>""" lowerCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) ,_lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""j""" ) self.assertEqual(len(_lowerCAmelCase ) ,20_00 ) def UpperCamelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,20_00 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,[4_65, 2_87, 2_65, 6_31, 8_42] ) lowerCamelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( _lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ,) # fmt: on lowerCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase ,[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] ,) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) # fmt: off self.assertListEqual( _lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def UpperCamelCase_ ( self ): lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ) lowerCamelCase__ = ["""This is a test""", """I was born in 92000, and this is falsé."""] lowerCamelCase__ = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ): self.assertListEqual(tokenizer.encode_fast(_lowerCAmelCase ) ,_lowerCAmelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ): self.assertEqual(tokenizer.decode_fast(_lowerCAmelCase ) ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off lowerCamelCase__ = {"""input_ids""": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase ,model_name="""AI-Sweden/gpt-sw3-126m""" ,sequences=_lowerCAmelCase ,)
9
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=a ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = field(default='automatic-speech-recognition' ,metadata={'include_in_asdict_even_if_is_default': True} ) _UpperCamelCase = Features({'audio': Audio()} ) _UpperCamelCase = Features({'transcription': Value('string' )} ) _UpperCamelCase = 'audio' _UpperCamelCase = 'transcription' def UpperCamelCase_ ( self ,_lowerCAmelCase ): if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] ,_lowerCAmelCase ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) lowerCamelCase__ = copy.deepcopy(self ) lowerCamelCase__ = self.input_schema.copy() lowerCamelCase__ = features[self.audio_column] lowerCamelCase__ = input_schema return task_template @property def UpperCamelCase_ ( self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
709
'''simple docstring''' from manim import * class UpperCamelCase__ (a ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = Rectangle(height=0.5 ,width=0.5 ) lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""CPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(1 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""GPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) gpu.align_to(_lowerCAmelCase ,_lowerCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""Model""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,) lowerCamelCase__ = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) lowerCamelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase ,run_time=2.5 ) ,Write(_lowerCAmelCase ) ,Write(_lowerCAmelCase ) ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] for i, rect in enumerate(_lowerCAmelCase ): lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase ,opacity=0.7 ) cpu_target.move_to(_lowerCAmelCase ) cpu_target.generate_target() lowerCamelCase__ = 0.46 / 4 lowerCamelCase__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_lowerCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=_lowerCAmelCase ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=_lowerCAmelCase ,buff=0.0 ) cpu_targs.append(_lowerCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCAmelCase ) ) second_animations.append(MoveToTarget(_lowerCAmelCase ,run_time=1.5 ) ) self.play(*_lowerCAmelCase ) self.play(*_lowerCAmelCase ) self.wait()
9
0
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCamelCase : Optional[Any] = 'src/diffusers' # Matches is_xxx_available() UpperCamelCase : Union[str, Any] = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla UpperCamelCase : Optional[Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') UpperCamelCase : Optional[int] = '\n{0} = None\n' UpperCamelCase : Optional[Any] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' UpperCamelCase : Any = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def A__ ( __lowerCAmelCase ): lowerCamelCase__ = _re_backend.findall(__lowerCAmelCase ) if len(__lowerCAmelCase ) == 0: return None return "_and_".join(__lowerCAmelCase ) def A__ ( ): with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase__ = 0 lowerCamelCase__ = {} # Go through the end of the file while line_index < len(__lowerCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 lowerCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(__lowerCAmelCase ) and len(lines[line_index] ) > 1: lowerCamelCase__ = lines[line_index] lowerCamelCase__ = _re_single_line_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = objects else: line_index += 1 return backend_specific_objects def A__ ( __lowerCAmelCase , __lowerCAmelCase ): if name.isupper(): return DUMMY_CONSTANT.format(__lowerCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__lowerCAmelCase , __lowerCAmelCase ) else: return DUMMY_CLASS.format(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase=None ): if backend_specific_objects is None: lowerCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase__ = {} for backend, objects in backend_specific_objects.items(): lowerCamelCase__ = """[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]""" lowerCamelCase__ = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__lowerCAmelCase , __lowerCAmelCase ) for o in objects] ) lowerCamelCase__ = dummy_file return dummy_files def A__ ( __lowerCAmelCase=False ): lowerCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase__ = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. lowerCamelCase__ = os.path.join(__lowerCAmelCase , """utils""" ) lowerCamelCase__ = { backend: os.path.join(__lowerCAmelCase , F'''dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py as the main ''' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F'''diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py. Run `make fix-copies` ''' """to fix this.""" ) if __name__ == "__main__": UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase : Any = parser.parse_args() check_dummies(args.fix_and_overwrite)
710
'''simple docstring''' UpperCamelCase : Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCamelCase : list[bool | None] = [None] * 10_00_00_00 UpperCamelCase : Tuple = True UpperCamelCase : Optional[int] = False def A__ ( __lowerCAmelCase : int ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase__ = chain(next_number(__lowerCAmelCase ) ) lowerCamelCase__ = number_chain while number < 1000_0000: lowerCamelCase__ = number_chain number *= 10 return number_chain def A__ ( __lowerCAmelCase : int = 1000_0000 ): for i in range(1 , __lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution() = }')
9
0
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem UpperCamelCase : int = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 UpperCamelCase : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def A__ ( __lowerCAmelCase : str ): if "://" in dataset_path: lowerCamelCase__ = dataset_path.split("""://""" )[1] return dataset_path def A__ ( __lowerCAmelCase : fsspec.AbstractFileSystem ): if fs is not None and fs.protocol != "file": return True else: return False def A__ ( __lowerCAmelCase : fsspec.AbstractFileSystem , __lowerCAmelCase : str , __lowerCAmelCase : str ): lowerCamelCase__ = not is_remote_filesystem(__lowerCAmelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__lowerCAmelCase ) , fs._strip_protocol(__lowerCAmelCase ) ) else: fs.mv(__lowerCAmelCase , __lowerCAmelCase , recursive=__lowerCAmelCase ) def A__ ( ): if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = threading.Lock()
711
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : List[str] = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'donut-swin' _UpperCamelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self ,_lowerCAmelCase=2_24 ,_lowerCAmelCase=4 ,_lowerCAmelCase=3 ,_lowerCAmelCase=96 ,_lowerCAmelCase=[2, 2, 6, 2] ,_lowerCAmelCase=[3, 6, 12, 24] ,_lowerCAmelCase=7 ,_lowerCAmelCase=4.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=False ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = embed_dim lowerCamelCase__ = depths lowerCamelCase__ = len(_lowerCAmelCase ) lowerCamelCase__ = num_heads lowerCamelCase__ = window_size lowerCamelCase__ = mlp_ratio lowerCamelCase__ = qkv_bias lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = drop_path_rate lowerCamelCase__ = hidden_act lowerCamelCase__ = use_absolute_embeddings lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
9
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=3 ,_lowerCAmelCase=32 ,_lowerCAmelCase=3 ,_lowerCAmelCase=10 ,_lowerCAmelCase=[10, 20, 30, 40] ,_lowerCAmelCase=[1, 1, 2, 1] ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase="relu" ,_lowerCAmelCase=3 ,_lowerCAmelCase=None ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = num_channels lowerCamelCase__ = embeddings_size lowerCamelCase__ = hidden_sizes lowerCamelCase__ = depths lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = hidden_act lowerCamelCase__ = num_labels lowerCamelCase__ = scope lowerCamelCase__ = len(_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] ,self.num_labels ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFRegNetModel(config=_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = TFRegNetForImageClassification(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase ,training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () _UpperCamelCase = ( {'feature-extraction': TFRegNetModel, 'image-classification': TFRegNetForImageClassification} if is_tf_available() else {} ) _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = TFRegNetModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ) def UpperCamelCase_ ( self ): return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCamelCase_ ( self ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,reason="""TF does not support backprop for grouped convolutions on CPU.""" ,) @slow def UpperCamelCase_ ( self ): super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): def check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ,training=_lowerCAmelCase ) lowerCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) ,expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 2, self.model_tester.image_size // 2] ,) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase__ = layer_type lowerCamelCase__ = True check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ = True check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase={} ): lowerCamelCase__ = model(_lowerCAmelCase ,return_dict=_lowerCAmelCase ,**_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,return_dict=_lowerCAmelCase ,**_lowerCAmelCase ).to_tuple() def recursive_check(_lowerCAmelCase ,_lowerCAmelCase ): if isinstance(_lowerCAmelCase ,(List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCAmelCase ,_lowerCAmelCase ): recursive_check(_lowerCAmelCase ,_lowerCAmelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowerCAmelCase ,_lowerCAmelCase ) ) ,msg=( """Tuple and dict output are not equal. Difference:""" F''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) ,) recursive_check(_lowerCAmelCase ,_lowerCAmelCase ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase ) check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,{"""output_hidden_states""": True} ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase ) check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,{"""output_hidden_states""": True} ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFRegNetModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""tf""" ) # forward pass lowerCamelCase__ = model(**_lowerCAmelCase ,training=_lowerCAmelCase ) # verify the logits lowerCamelCase__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,_lowerCAmelCase ) lowerCamelCase__ = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] ,_lowerCAmelCase ,atol=1E-4 )
712
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME UpperCamelCase : Optional[Any] = ['small', 'medium', 'large'] UpperCamelCase : Dict = 'lm_head.decoder.weight' UpperCamelCase : int = 'lm_head.weight' def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): lowerCamelCase__ = torch.load(__lowerCAmelCase ) lowerCamelCase__ = d.pop(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) UpperCamelCase : Dict = parser.parse_args() for MODEL in DIALOGPT_MODELS: UpperCamelCase : Any = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl') UpperCamelCase : str = F'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
9
0
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 42 _UpperCamelCase = 42 class UpperCamelCase__ (nn.Module ): '''simple docstring''' _UpperCamelCase = 42 _UpperCamelCase = (16, 32, 96, 256) _UpperCamelCase = jnp.floataa def UpperCamelCase_ ( self ): lowerCamelCase__ = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) lowerCamelCase__ = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCamelCase__ = self.block_out_channels[i] lowerCamelCase__ = self.block_out_channels[i + 1] lowerCamelCase__ = nn.Conv( _lowerCAmelCase ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(_lowerCAmelCase ) lowerCamelCase__ = nn.Conv( _lowerCAmelCase ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(_lowerCAmelCase ) lowerCamelCase__ = blocks lowerCamelCase__ = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self ,_lowerCAmelCase ): lowerCamelCase__ = self.conv_in(_lowerCAmelCase ) lowerCamelCase__ = nn.silu(_lowerCAmelCase ) for block in self.blocks: lowerCamelCase__ = block(_lowerCAmelCase ) lowerCamelCase__ = nn.silu(_lowerCAmelCase ) lowerCamelCase__ = self.conv_out(_lowerCAmelCase ) return embedding @flax_register_to_config class UpperCamelCase__ (nn.Module ,a ,a ): '''simple docstring''' _UpperCamelCase = 32 _UpperCamelCase = 4 _UpperCamelCase = ( 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D', ) _UpperCamelCase = False _UpperCamelCase = (320, 640, 1280, 1280) _UpperCamelCase = 2 _UpperCamelCase = 8 _UpperCamelCase = None _UpperCamelCase = 1280 _UpperCamelCase = 0.0 _UpperCamelCase = False _UpperCamelCase = jnp.floataa _UpperCamelCase = True _UpperCamelCase = 0 _UpperCamelCase = 'rgb' _UpperCamelCase = (16, 32, 96, 256) def UpperCamelCase_ ( self ,_lowerCAmelCase ): # init input tensors lowerCamelCase__ = (1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase__ = jnp.zeros(_lowerCAmelCase ,dtype=jnp.floataa ) lowerCamelCase__ = jnp.ones((1,) ,dtype=jnp.intaa ) lowerCamelCase__ = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) lowerCamelCase__ = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCamelCase__ = jnp.zeros(_lowerCAmelCase ,dtype=jnp.floataa ) lowerCamelCase__ , lowerCamelCase__ = jax.random.split(_lowerCAmelCase ) lowerCamelCase__ = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )["params"] def UpperCamelCase_ ( self ): lowerCamelCase__ = self.block_out_channels lowerCamelCase__ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase__ = self.num_attention_heads or self.attention_head_dim # input lowerCamelCase__ = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time lowerCamelCase__ = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) lowerCamelCase__ = FlaxTimestepEmbedding(_lowerCAmelCase ,dtype=self.dtype ) lowerCamelCase__ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) lowerCamelCase__ = self.only_cross_attention if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = (num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = block_out_channels[0] lowerCamelCase__ = nn.Conv( _lowerCAmelCase ,kernel_size=(1, 1) ,padding="""VALID""" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(_lowerCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase__ = output_channel lowerCamelCase__ = block_out_channels[i] lowerCamelCase__ = i == len(_lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase__ = FlaxCrossAttnDownBlockaD( in_channels=_lowerCAmelCase ,out_channels=_lowerCAmelCase ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: lowerCamelCase__ = FlaxDownBlockaD( in_channels=_lowerCAmelCase ,out_channels=_lowerCAmelCase ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(_lowerCAmelCase ) for _ in range(self.layers_per_block ): lowerCamelCase__ = nn.Conv( _lowerCAmelCase ,kernel_size=(1, 1) ,padding="""VALID""" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(_lowerCAmelCase ) if not is_final_block: lowerCamelCase__ = nn.Conv( _lowerCAmelCase ,kernel_size=(1, 1) ,padding="""VALID""" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(_lowerCAmelCase ) lowerCamelCase__ = down_blocks lowerCamelCase__ = controlnet_down_blocks # mid lowerCamelCase__ = block_out_channels[-1] lowerCamelCase__ = FlaxUNetMidBlockaDCrossAttn( in_channels=_lowerCAmelCase ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) lowerCamelCase__ = nn.Conv( _lowerCAmelCase ,kernel_size=(1, 1) ,padding="""VALID""" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = 1.0 ,_lowerCAmelCase = True ,_lowerCAmelCase = False ,): lowerCamelCase__ = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCamelCase__ = jnp.flip(_lowerCAmelCase ,axis=1 ) # 1. time if not isinstance(_lowerCAmelCase ,jnp.ndarray ): lowerCamelCase__ = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(_lowerCAmelCase ,jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase__ = timesteps.astype(dtype=jnp.floataa ) lowerCamelCase__ = jnp.expand_dims(_lowerCAmelCase ,0 ) lowerCamelCase__ = self.time_proj(_lowerCAmelCase ) lowerCamelCase__ = self.time_embedding(_lowerCAmelCase ) # 2. pre-process lowerCamelCase__ = jnp.transpose(_lowerCAmelCase ,(0, 2, 3, 1) ) lowerCamelCase__ = self.conv_in(_lowerCAmelCase ) lowerCamelCase__ = jnp.transpose(_lowerCAmelCase ,(0, 2, 3, 1) ) lowerCamelCase__ = self.controlnet_cond_embedding(_lowerCAmelCase ) sample += controlnet_cond # 3. down lowerCamelCase__ = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ , lowerCamelCase__ = down_block(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,deterministic=not train ) else: lowerCamelCase__ , lowerCamelCase__ = down_block(_lowerCAmelCase ,_lowerCAmelCase ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCamelCase__ = self.mid_block(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,deterministic=not train ) # 5. contronet blocks lowerCamelCase__ = () for down_block_res_sample, controlnet_block in zip(_lowerCAmelCase ,self.controlnet_down_blocks ): lowerCamelCase__ = controlnet_block(_lowerCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCamelCase__ = controlnet_down_block_res_samples lowerCamelCase__ = self.controlnet_mid_block(_lowerCAmelCase ) # 6. scaling lowerCamelCase__ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_lowerCAmelCase ,mid_block_res_sample=_lowerCAmelCase )
713
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=30 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=10 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=0.6 ,_lowerCAmelCase=None ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = mask_ratio lowerCamelCase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCamelCase__ = (image_size // patch_size) ** 2 lowerCamelCase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFViTMAEModel(config=_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) # expected sequence length = num_patches lowerCamelCase__ = (self.image_size // self.patch_size) ** 2 lowerCamelCase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCamelCase__ = 1 lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase ) lowerCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) lowerCamelCase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _UpperCamelCase = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = TFViTMAEModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) lowerCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase ,tf.keras.layers.Layer ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): # make the mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = copy.deepcopy(self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = outputs_dict[0].numpy() lowerCamelCase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1E-6 ) def UpperCamelCase_ ( self ): # make the mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_lowerCAmelCase ): lowerCamelCase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(_lowerCAmelCase ): lowerCamelCase__ = v.numpy() else: lowerCamelCase__ = np.array(_lowerCAmelCase ) return inputs_np_dict for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = prepare_numpy_arrays(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): # make masks reproducible np.random.seed(2 ) lowerCamelCase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ = tf.constant(_lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCamelCase__ = tf_noise super().check_pt_tf_models(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_lowerCAmelCase ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(_lowerCAmelCase ,_lowerCAmelCase ),) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_lowerCAmelCase ,"""_keras_serializable""" ,_lowerCAmelCase ) } lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ = tf.convert_to_tensor(_lowerCAmelCase ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: lowerCamelCase__ = main_layer_class(_lowerCAmelCase ) lowerCamelCase__ = { name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowerCamelCase__ = tf.keras.Model(_lowerCAmelCase ,outputs=main_layer(_lowerCAmelCase ) ) lowerCamelCase__ = model(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ = os.path.join(_lowerCAmelCase ,"""keras_model.h5""" ) model.save(_lowerCAmelCase ) lowerCamelCase__ = tf.keras.models.load_model( _lowerCAmelCase ,custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_lowerCAmelCase ,tf.keras.Model ) lowerCamelCase__ = model(_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": lowerCamelCase__ = outputs.last_hidden_state.numpy() lowerCamelCase__ = 0 else: lowerCamelCase__ = outputs.logits.numpy() lowerCamelCase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ,saved_model=_lowerCAmelCase ) lowerCamelCase__ = model_class.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": lowerCamelCase__ = after_outputs["""last_hidden_state"""].numpy() lowerCamelCase__ = 0 else: lowerCamelCase__ = after_outputs["""logits"""].numpy() lowerCamelCase__ = 0 lowerCamelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase ,1E-5 ) def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_lowerCAmelCase ) lowerCamelCase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowerCamelCase__ = model_class.from_config(model.config ) lowerCamelCase__ = new_model(_lowerCAmelCase ) # Build model new_model.set_weights(model.get_weights() ) lowerCamelCase__ = new_model(_lowerCAmelCase ,noise=_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def UpperCamelCase_ ( self ): pass @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(_lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCamelCase__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCamelCase__ = ViTMAEConfig() lowerCamelCase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) # verify the logits lowerCamelCase__ = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape ,_lowerCAmelCase ) lowerCamelCase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] ,_lowerCAmelCase ,atol=1E-4 )
9
0
from __future__ import annotations def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : int ): lowerCamelCase__ = 0 lowerCamelCase__ = len(__lowerCAmelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCamelCase__ = i + 1 else: lowerCamelCase__ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
714
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=7 ,_lowerCAmelCase=3 ,_lowerCAmelCase=18 ,_lowerCAmelCase=30 ,_lowerCAmelCase=4_00 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,): lowerCamelCase__ = size if size is not None else {"""shortest_edge""": 18} lowerCamelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = num_channels lowerCamelCase__ = image_size lowerCamelCase__ = min_resolution lowerCamelCase__ = max_resolution lowerCamelCase__ = do_resize lowerCamelCase__ = size lowerCamelCase__ = do_center_crop lowerCamelCase__ = crop_size lowerCamelCase__ = do_normalize lowerCamelCase__ = image_mean lowerCamelCase__ = image_std def UpperCamelCase_ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = LevitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): lowerCamelCase__ = LevitImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""image_std""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""size""" ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,Image.Image ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,np.ndarray ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,torch.Tensor ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
9
0
import numpy as np import datasets UpperCamelCase : List[Any] = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' UpperCamelCase : Dict = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' UpperCamelCase : Any = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCamelCase__ (datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """X""": datasets.Sequence(datasets.Value("""float""" ,id="""sequence""" ) ,id="""X""" ), } ) ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): # convert to numpy arrays lowerCamelCase__ = np.array(_lowerCAmelCase ) lowerCamelCase__ = np.array(_lowerCAmelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("""Expected `X` to be a 2D vector""" ) if len(reference_distribution.shape ) != 2: raise ValueError("""Expected `reference_distribution` to be a 2D vector""" ) if reference_distribution.shape[0] < 2: raise ValueError( """Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension""" ) # Get mahalanobis distance for each prediction lowerCamelCase__ = X - np.mean(_lowerCAmelCase ) lowerCamelCase__ = np.cov(reference_distribution.T ) try: lowerCamelCase__ = np.linalg.inv(_lowerCAmelCase ) except np.linalg.LinAlgError: lowerCamelCase__ = np.linalg.pinv(_lowerCAmelCase ) lowerCamelCase__ = np.dot(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = np.dot(_lowerCAmelCase ,X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
715
'''simple docstring''' import numpy # List of input, output pairs UpperCamelCase : List[Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCamelCase : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) UpperCamelCase : int = [2, 4, 1, 5] UpperCamelCase : int = len(train_data) UpperCamelCase : Dict = 0.009 def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : str="train" ): return calculate_hypothesis_value(__lowerCAmelCase , __lowerCAmelCase ) - output( __lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Any ): lowerCamelCase__ = 0 for i in range(len(__lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=m ): lowerCamelCase__ = 0 for i in range(__lowerCAmelCase ): if index == -1: summation_value += _error(__lowerCAmelCase ) else: summation_value += _error(__lowerCAmelCase ) * train_data[i][0][index] return summation_value def A__ ( __lowerCAmelCase : List[Any] ): lowerCamelCase__ = summation_of_cost_derivative(__lowerCAmelCase , __lowerCAmelCase ) / m return cost_derivative_value def A__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase__ = 0.00_0002 lowerCamelCase__ = 0 lowerCamelCase__ = 0 while True: j += 1 lowerCamelCase__ = [0, 0, 0, 0] for i in range(0 , len(__lowerCAmelCase ) ): lowerCamelCase__ = get_cost_derivative(i - 1 ) lowerCamelCase__ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase , rtol=__lowerCAmelCase , ): break lowerCamelCase__ = temp_parameter_vector print(("""Number of iterations:""", j) ) def A__ ( ): for i in range(len(__lowerCAmelCase ) ): print(("""Actual output value:""", output(__lowerCAmelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__lowerCAmelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
9
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL UpperCamelCase : Any = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): if isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCAmelCase ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = ['pixel_values'] def __init__( self ,_lowerCAmelCase = True ,_lowerCAmelCase = None ,_lowerCAmelCase = PILImageResampling.BILINEAR ,_lowerCAmelCase = True ,_lowerCAmelCase = None ,_lowerCAmelCase = True ,_lowerCAmelCase = 1 / 2_55 ,_lowerCAmelCase = True ,_lowerCAmelCase = True ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = size if size is not None else {"""shortest_edge""": 2_56} lowerCamelCase__ = get_size_dict(_lowerCAmelCase ,default_to_square=_lowerCAmelCase ) lowerCamelCase__ = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} lowerCamelCase__ = get_size_dict(_lowerCAmelCase ,param_name="""crop_size""" ) lowerCamelCase__ = do_resize lowerCamelCase__ = size lowerCamelCase__ = do_center_crop lowerCamelCase__ = crop_size lowerCamelCase__ = resample lowerCamelCase__ = do_rescale lowerCamelCase__ = rescale_factor lowerCamelCase__ = offset lowerCamelCase__ = do_normalize lowerCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = PILImageResampling.BILINEAR ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): lowerCamelCase__ = get_size_dict(_lowerCAmelCase ,default_to_square=_lowerCAmelCase ) if "shortest_edge" in size: lowerCamelCase__ = get_resize_output_image_size(_lowerCAmelCase ,size["""shortest_edge"""] ,default_to_square=_lowerCAmelCase ) elif "height" in size and "width" in size: lowerCamelCase__ = (size["""height"""], size["""width"""]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(_lowerCAmelCase ,size=_lowerCAmelCase ,resample=_lowerCAmelCase ,data_format=_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): lowerCamelCase__ = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_lowerCAmelCase ,size=(size["""height"""], size["""width"""]) ,data_format=_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = True ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): lowerCamelCase__ = image.astype(np.floataa ) if offset: lowerCamelCase__ = image - (scale / 2) return rescale(_lowerCAmelCase ,scale=_lowerCAmelCase ,data_format=_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): return normalize(_lowerCAmelCase ,mean=_lowerCAmelCase ,std=_lowerCAmelCase ,data_format=_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = ChannelDimension.FIRST ,): if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. lowerCamelCase__ = to_numpy_array(_lowerCAmelCase ) if do_resize: lowerCamelCase__ = self.resize(image=_lowerCAmelCase ,size=_lowerCAmelCase ,resample=_lowerCAmelCase ) if do_center_crop: lowerCamelCase__ = self.center_crop(_lowerCAmelCase ,size=_lowerCAmelCase ) if do_rescale: lowerCamelCase__ = self.rescale(image=_lowerCAmelCase ,scale=_lowerCAmelCase ,offset=_lowerCAmelCase ) if do_normalize: lowerCamelCase__ = self.normalize(image=_lowerCAmelCase ,mean=_lowerCAmelCase ,std=_lowerCAmelCase ) lowerCamelCase__ = to_channel_dimension_format(_lowerCAmelCase ,_lowerCAmelCase ) return image def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = ChannelDimension.FIRST ,**_lowerCAmelCase ,): lowerCamelCase__ = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ = resample if resample is not None else self.resample lowerCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ = offset if offset is not None else self.offset lowerCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ = image_mean if image_mean is not None else self.image_mean lowerCamelCase__ = image_std if image_std is not None else self.image_std lowerCamelCase__ = size if size is not None else self.size lowerCamelCase__ = get_size_dict(_lowerCAmelCase ,default_to_square=_lowerCAmelCase ) lowerCamelCase__ = crop_size if crop_size is not None else self.crop_size lowerCamelCase__ = get_size_dict(_lowerCAmelCase ,param_name="""crop_size""" ) if not valid_images(_lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) lowerCamelCase__ = make_batched(_lowerCAmelCase ) lowerCamelCase__ = [ [ self._preprocess_image( image=_lowerCAmelCase ,do_resize=_lowerCAmelCase ,size=_lowerCAmelCase ,resample=_lowerCAmelCase ,do_center_crop=_lowerCAmelCase ,crop_size=_lowerCAmelCase ,do_rescale=_lowerCAmelCase ,rescale_factor=_lowerCAmelCase ,offset=_lowerCAmelCase ,do_normalize=_lowerCAmelCase ,image_mean=_lowerCAmelCase ,image_std=_lowerCAmelCase ,data_format=_lowerCAmelCase ,) for img in video ] for video in videos ] lowerCamelCase__ = {"""pixel_values""": videos} return BatchFeature(data=_lowerCAmelCase ,tensor_type=_lowerCAmelCase )
716
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ): lowerCamelCase__ = OmegaConf.load(__lowerCAmelCase ) lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""model"""] lowerCamelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCamelCase__ = {} lowerCamelCase__ = """first_stage_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] # extract state_dict for UNetLDM lowerCamelCase__ = {} lowerCamelCase__ = """model.diffusion_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] lowerCamelCase__ = config.model.params.first_stage_config.params lowerCamelCase__ = config.model.params.unet_config.params lowerCamelCase__ = VQModel(**__lowerCAmelCase ).eval() vqvae.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = UNetLDMModel(**__lowerCAmelCase ).eval() unet.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__lowerCAmelCase , ) lowerCamelCase__ = LDMPipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipeline.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) UpperCamelCase : List[Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
9
0
from ....utils import logging UpperCamelCase : List[str] = logging.get_logger(__name__) class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=20_48 ): lowerCamelCase__ = config.__dict__ lowerCamelCase__ = modal_hidden_size if num_labels: lowerCamelCase__ = num_labels
717
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : tuple[int, ...] ): lowerCamelCase__ = "" lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 for keychar, cipherchar in zip(cycle(__lowerCAmelCase ) , __lowerCAmelCase ): lowerCamelCase__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__lowerCAmelCase ) return decoded def A__ ( __lowerCAmelCase : list[int] ): lowerCamelCase__ = [] for key in product(__lowerCAmelCase , repeat=3 ): lowerCamelCase__ = try_key(__lowerCAmelCase , __lowerCAmelCase ) if encoded is not None: possibles.append(__lowerCAmelCase ) return possibles def A__ ( __lowerCAmelCase : list[str] , __lowerCAmelCase : str ): return [possible for possible in possibles if common_word in possible.lower()] def A__ ( __lowerCAmelCase : str = "p059_cipher.txt" ): lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = Path(__lowerCAmelCase ).parent.joinpath(__lowerCAmelCase ).read_text(encoding="""utf-8""" ) lowerCamelCase__ = [int(__lowerCAmelCase ) for number in data.strip().split(""",""" )] lowerCamelCase__ = filter_valid_chars(__lowerCAmelCase ) for common_word in COMMON_WORDS: lowerCamelCase__ = filter_common_word(__lowerCAmelCase , __lowerCAmelCase ) if len(__lowerCAmelCase ) == 1: break lowerCamelCase__ = possibles[0] return sum(ord(__lowerCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
9
0
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers UpperCamelCase : str = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)] def A__ ( ): lowerCamelCase__ = os.path.dirname(os.path.realpath(__lowerCAmelCase ) ) lowerCamelCase__ = os.path.join(__lowerCAmelCase , """words.txt""" ) lowerCamelCase__ = """""" with open(__lowerCAmelCase ) as f: lowerCamelCase__ = f.readline() lowerCamelCase__ = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] lowerCamelCase__ = [ word for word in [sum(ord(__lowerCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__lowerCAmelCase ) if __name__ == "__main__": print(solution())
718
'''simple docstring''' import argparse import struct import unittest class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ): lowerCamelCase__ = data # Initialize hash values lowerCamelCase__ = [ 0x6a_09_e6_67, 0xbb_67_ae_85, 0x3c_6e_f3_72, 0xa5_4f_f5_3a, 0x51_0e_52_7f, 0x9b_05_68_8c, 0x1f_83_d9_ab, 0x5b_e0_cd_19, ] # Initialize round constants lowerCamelCase__ = [ 0x42_8a_2f_98, 0x71_37_44_91, 0xb5_c0_fb_cf, 0xe9_b5_db_a5, 0x39_56_c2_5b, 0x59_f1_11_f1, 0x92_3f_82_a4, 0xab_1c_5e_d5, 0xd8_07_aa_98, 0x12_83_5b_01, 0x24_31_85_be, 0x55_0c_7d_c3, 0x72_be_5d_74, 0x80_de_b1_fe, 0x9b_dc_06_a7, 0xc1_9b_f1_74, 0xe4_9b_69_c1, 0xef_be_47_86, 0x0f_c1_9d_c6, 0x24_0c_a1_cc, 0x2d_e9_2c_6f, 0x4a_74_84_aa, 0x5c_b0_a9_dc, 0x76_f9_88_da, 0x98_3e_51_52, 0xa8_31_c6_6d, 0xb0_03_27_c8, 0xbf_59_7f_c7, 0xc6_e0_0b_f3, 0xd5_a7_91_47, 0x06_ca_63_51, 0x14_29_29_67, 0x27_b7_0a_85, 0x2e_1b_21_38, 0x4d_2c_6d_fc, 0x53_38_0d_13, 0x65_0a_73_54, 0x76_6a_0a_bb, 0x81_c2_c9_2e, 0x92_72_2c_85, 0xa2_bf_e8_a1, 0xa8_1a_66_4b, 0xc2_4b_8b_70, 0xc7_6c_51_a3, 0xd1_92_e8_19, 0xd6_99_06_24, 0xf4_0e_35_85, 0x10_6a_a0_70, 0x19_a4_c1_16, 0x1e_37_6c_08, 0x27_48_77_4c, 0x34_b0_bc_b5, 0x39_1c_0c_b3, 0x4e_d8_aa_4a, 0x5b_9c_ca_4f, 0x68_2e_6f_f3, 0x74_8f_82_ee, 0x78_a5_63_6f, 0x84_c8_78_14, 0x8c_c7_02_08, 0x90_be_ff_fa, 0xa4_50_6c_eb, 0xbe_f9_a3_f7, 0xc6_71_78_f2, ] lowerCamelCase__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCamelCase_ ( _lowerCAmelCase ): lowerCamelCase__ = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowerCAmelCase ) + 8) % 64)) lowerCamelCase__ = struct.pack(""">Q""" ,(len(_lowerCAmelCase ) * 8) ) return data + padding + big_endian_integer def UpperCamelCase_ ( self ): # Convert into blocks of 64 bytes lowerCamelCase__ = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCamelCase__ = list(struct.unpack(""">16L""" ,_lowerCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCamelCase__ = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) lowerCamelCase__ = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) lowerCamelCase__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression lowerCamelCase__ = self.ror(_lowerCAmelCase ,6 ) ^ self.ror(_lowerCAmelCase ,11 ) ^ self.ror(_lowerCAmelCase ,25 ) lowerCamelCase__ = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g) lowerCamelCase__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 lowerCamelCase__ = self.ror(_lowerCAmelCase ,2 ) ^ self.ror(_lowerCAmelCase ,13 ) ^ self.ror(_lowerCAmelCase ,22 ) lowerCamelCase__ = (a & b) ^ (a & c) ^ (b & c) lowerCamelCase__ = (sa + maj) % 0x1_00_00_00_00 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) lowerCamelCase__ = [a, b, c, d, e, f, g, h] # Modify final values lowerCamelCase__ = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowerCamelCase__ = """""".join([hex(_lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): import hashlib lowerCamelCase__ = bytes("""Test String""" ,"""utf-8""" ) self.assertEqual(SHAaaa(_lowerCAmelCase ).hash ,hashlib.shaaaa(_lowerCAmelCase ).hexdigest() ) def A__ ( ): import doctest doctest.testmod() lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = bytes(__lowerCAmelCase , """utf-8""" ) print(SHAaaa(__lowerCAmelCase ).hash ) if __name__ == "__main__": main()
9
0
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class UpperCamelCase__ (a ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCAmelCase ,"""hidden_sizes""" ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase ,"""num_attention_heads""" ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase ,"""num_encoder_blocks""" ) ) class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=64 ,_lowerCAmelCase=3 ,_lowerCAmelCase=4 ,_lowerCAmelCase=[2, 2, 2, 2] ,_lowerCAmelCase=[8, 4, 2, 1] ,_lowerCAmelCase=[16, 32, 64, 1_28] ,_lowerCAmelCase=[1, 4, 8, 16] ,_lowerCAmelCase=[1, 2, 4, 8] ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=None ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = num_channels lowerCamelCase__ = num_encoder_blocks lowerCamelCase__ = sr_ratios lowerCamelCase__ = depths lowerCamelCase__ = hidden_sizes lowerCamelCase__ = downsampling_rates lowerCamelCase__ = num_attention_heads lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = scope def UpperCamelCase_ ( self ): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): return SegformerConfig( image_size=self.image_size ,num_channels=self.num_channels ,num_encoder_blocks=self.num_encoder_blocks ,depths=self.depths ,hidden_sizes=self.hidden_sizes ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = SegformerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ) lowerCamelCase__ = lowerCamelCase__ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = SegformerForSemanticSegmentation(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss ,0.0 ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = 1 lowerCamelCase__ = SegformerForSemanticSegmentation(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = torch.randint(0 ,1 ,(self.batch_size, self.image_size, self.image_size) ).to(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase ) self.parent.assertGreater(result.loss ,0.0 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _UpperCamelCase = ( { 'feature-extraction': SegformerModel, 'image-classification': SegformerForImageClassification, 'image-segmentation': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = SegformerModelTester(self ) lowerCamelCase__ = SegformerConfigTester(self ,config_class=_lowerCAmelCase ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_lowerCAmelCase ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def UpperCamelCase_ ( self ): pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = True for model_class in self.all_model_classes: lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = True lowerCamelCase__ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ = outputs.attentions lowerCamelCase__ = sum(self.model_tester.depths ) self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase__ = True lowerCamelCase__ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase ) # verify the first attentions (first block, first layer) lowerCamelCase__ = (self.model_tester.image_size // 4) ** 2 lowerCamelCase__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,) # verify the last attentions (last block, last layer) lowerCamelCase__ = (self.model_tester.image_size // 32) ** 2 lowerCamelCase__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) ,[self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] ,) lowerCamelCase__ = len(_lowerCAmelCase ) # Check attention is always last and order is fine lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ) self.assertEqual(out_len + 1 ,len(_lowerCAmelCase ) ) lowerCamelCase__ = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase ) # verify the first attentions (first block, first layer) lowerCamelCase__ = (self.model_tester.image_size // 4) ** 2 lowerCamelCase__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,) def UpperCamelCase_ ( self ): def check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ = outputs.hidden_states lowerCamelCase__ = self.model_tester.num_encoder_blocks self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) ,[ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] ,) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = True check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ = True check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): if not self.model_tester.is_training: return lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCAmelCase ): continue lowerCamelCase__ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase ) lowerCamelCase__ = model(**_lowerCAmelCase ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self ): pass @slow def UpperCamelCase_ ( self ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = SegformerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ): # only resize + normalize lowerCamelCase__ = SegformerImageProcessor( image_scale=(5_12, 5_12) ,keep_ratio=_lowerCAmelCase ,align=_lowerCAmelCase ,do_random_crop=_lowerCAmelCase ) lowerCamelCase__ = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( _lowerCAmelCase ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ) lowerCamelCase__ = encoded_inputs.pixel_values.to(_lowerCAmelCase ) with torch.no_grad(): lowerCamelCase__ = model(_lowerCAmelCase ) lowerCamelCase__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape ,_lowerCAmelCase ) lowerCamelCase__ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,_lowerCAmelCase ,atol=1E-4 ) ) @slow def UpperCamelCase_ ( self ): # only resize + normalize lowerCamelCase__ = SegformerImageProcessor( image_scale=(5_12, 5_12) ,keep_ratio=_lowerCAmelCase ,align=_lowerCAmelCase ,do_random_crop=_lowerCAmelCase ) lowerCamelCase__ = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(_lowerCAmelCase ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ) lowerCamelCase__ = encoded_inputs.pixel_values.to(_lowerCAmelCase ) with torch.no_grad(): lowerCamelCase__ = model(_lowerCAmelCase ) lowerCamelCase__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape ,_lowerCAmelCase ) lowerCamelCase__ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,_lowerCAmelCase ,atol=1E-1 ) ) @slow def UpperCamelCase_ ( self ): # only resize + normalize lowerCamelCase__ = SegformerImageProcessor( image_scale=(5_12, 5_12) ,keep_ratio=_lowerCAmelCase ,align=_lowerCAmelCase ,do_random_crop=_lowerCAmelCase ) lowerCamelCase__ = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( _lowerCAmelCase ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ) lowerCamelCase__ = encoded_inputs.pixel_values.to(_lowerCAmelCase ) with torch.no_grad(): lowerCamelCase__ = model(_lowerCAmelCase ) lowerCamelCase__ = outputs.logits.detach().cpu() lowerCamelCase__ = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase ,target_sizes=[(5_00, 3_00)] ) lowerCamelCase__ = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape ,_lowerCAmelCase ) lowerCamelCase__ = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase ) lowerCamelCase__ = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape ,_lowerCAmelCase )
719
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def A__ ( __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Tuple ): lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) lowerCamelCase__ = emb.weight.data return lin_layer def A__ ( __lowerCAmelCase : Dict ): lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) lowerCamelCase__ = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] lowerCamelCase__ = mam_aaa["""model"""] remove_ignore_keys_(__lowerCAmelCase ) lowerCamelCase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowerCamelCase__ = MaMaaaConfig( vocab_size=__lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) lowerCamelCase__ = state_dict["""decoder.embed_tokens.weight"""] lowerCamelCase__ = MaMaaaForConditionalGeneration(__lowerCAmelCase ) model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowerCamelCase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase : Tuple = parser.parse_args() UpperCamelCase : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
9
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase : Tuple = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Dict = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
720
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = BlipImageProcessor() lowerCamelCase__ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowerCamelCase__ = BlipProcessor(_lowerCAmelCase ,_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).tokenizer def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).image_processor def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self ): lowerCamelCase__ = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 ) lowerCamelCase__ = BlipProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = processor(text=_lowerCAmelCase ) lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
9
0
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : int ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer lowerCamelCase__ = flax_key_tuple[:-1] + ("""weight""",) lowerCamelCase__ = torch.permute(__lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCAmelCase ): # linear layer lowerCamelCase__ = flax_key_tuple[:-1] + ("""weight""",) lowerCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowerCamelCase__ = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def A__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ): if "metadata" in layer: lowerCamelCase__ = layer.split("""metadata""" ) lowerCamelCase__ = """""".join(split_layer[0] )[:-1] lowerCamelCase__ = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: lowerCamelCase__ = layer.split("""kvstore""" ) lowerCamelCase__ = """""".join(split_layer[0] )[:-1] lowerCamelCase__ = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: lowerCamelCase__ = layer.split("""/""" ) lowerCamelCase__ = """/""".join(split_layer[:-1] ) lowerCamelCase__ = (split_layer[-1],) if "kvstore/path" in layer: lowerCamelCase__ = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: lowerCamelCase__ = """file""" else: lowerCamelCase__ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple ): lowerCamelCase__ = rename_keys(__lowerCAmelCase ) lowerCamelCase__ = {} for k, v in current_block.items(): lowerCamelCase__ = v lowerCamelCase__ = new_current_block torch.save(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str = WEIGHTS_NAME ): lowerCamelCase__ = convert_file_size_to_int(__lowerCAmelCase ) lowerCamelCase__ = [] lowerCamelCase__ = {} lowerCamelCase__ = 0 lowerCamelCase__ = 0 os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: lowerCamelCase__ = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] lowerCamelCase__ = flatten_dict(__lowerCAmelCase , sep="""/""" ) lowerCamelCase__ = {} for layer in checkpoint_info.keys(): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = get_key_and_tensorstore_dict( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if curr_real_layer_name in all_layers: lowerCamelCase__ = content else: lowerCamelCase__ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file lowerCamelCase__ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() lowerCamelCase__ = torch.tensor(__lowerCAmelCase ) lowerCamelCase__ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts lowerCamelCase__ , lowerCamelCase__ = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __lowerCAmelCase ) lowerCamelCase__ = """/""".join(__lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: lowerCamelCase__ = os.path.join( __lowerCAmelCase , weights_name.replace(""".bin""" , F'''-{len(__lowerCAmelCase )+1:05d}-of-???.bin''' ) ) rename_and_save_block(__lowerCAmelCase , __lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block lowerCamelCase__ = {} lowerCamelCase__ = 0 lowerCamelCase__ = raw_weights.to(getattr(__lowerCAmelCase , __lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block lowerCamelCase__ = os.path.join(__lowerCAmelCase , weights_name.replace(""".bin""" , F'''-{len(__lowerCAmelCase )+1:05d}-of-???.bin''' ) ) rename_and_save_block(__lowerCAmelCase , __lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index lowerCamelCase__ = {} lowerCamelCase__ = {} for idx, shard in enumerate(__lowerCAmelCase ): lowerCamelCase__ = weights_name.replace( """.bin""" , F'''-{idx+1:05d}-of-{len(__lowerCAmelCase ):05d}.bin''' ) # len(sharded_state_dicts):05d} lowerCamelCase__ = os.path.join(__lowerCAmelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) lowerCamelCase__ = shard for key in shard: lowerCamelCase__ = shard_file # Add the metadata lowerCamelCase__ = {"""total_size""": total_size} lowerCamelCase__ = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , """w""" , encoding="""utf-8""" ) as f: lowerCamelCase__ = json.dumps(__lowerCAmelCase , indent=2 , sort_keys=__lowerCAmelCase ) + """\n""" f.write(__lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCamelCase : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A__ ( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer lowerCamelCase__ = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) lowerCamelCase__ = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) lowerCamelCase__ = TaTokenizer.from_pretrained("""t5-small""" ) lowerCamelCase__ = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" lowerCamelCase__ = tokenizer(__lowerCAmelCase , return_tensors="""pt""" ).input_ids lowerCamelCase__ = model.generate(__lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
721
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def A__ ( __lowerCAmelCase : Union[str, Any] ): if hor == 128: lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase__ = (32, 128, 256) lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase__ = (32, 64, 128, 256) lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") lowerCamelCase__ = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) lowerCamelCase__ = model.state_dict() lowerCamelCase__ = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_5536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_5536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } lowerCamelCase__ = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) lowerCamelCase__ = model lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
9
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase : int = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys UpperCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
700
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class UpperCamelCase__ (a ): '''simple docstring''' def __init__( self ,_lowerCAmelCase = "▁" ,_lowerCAmelCase = True ,_lowerCAmelCase = "<unk>" ,_lowerCAmelCase = "</s>" ,_lowerCAmelCase = "<pad>" ,): lowerCamelCase__ = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } lowerCamelCase__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowerCamelCase__ = token_dict["""token"""] lowerCamelCase__ = Tokenizer(Unigram() ) lowerCamelCase__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) ,""" """ ), normalizers.Lowercase(), ] ) lowerCamelCase__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ), pre_tokenizers.Digits(individual_digits=_lowerCAmelCase ), pre_tokenizers.Punctuation(), ] ) lowerCamelCase__ = decoders.Metaspace(replacement=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ) lowerCamelCase__ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' ,special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] ,) lowerCamelCase__ = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,): lowerCamelCase__ = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = [files] self._tokenizer.train(_lowerCAmelCase ,trainer=_lowerCAmelCase ) self.add_unk_id() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = 80_00 ,_lowerCAmelCase = True ,): lowerCamelCase__ = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase ,special_tokens=self.special_tokens_list ,show_progress=_lowerCAmelCase ,) self._tokenizer.train_from_iterator(_lowerCAmelCase ,trainer=_lowerCAmelCase ) self.add_unk_id() def UpperCamelCase_ ( self ): lowerCamelCase__ = json.loads(self._tokenizer.to_str() ) lowerCamelCase__ = self.special_tokens["""unk"""]["""id"""] lowerCamelCase__ = Tokenizer.from_str(json.dumps(_lowerCAmelCase ) )
9
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCamelCase : List[str] = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = b.T lowerCamelCase__ = np.sum(np.square(__lowerCAmelCase ) , axis=1 ) lowerCamelCase__ = np.sum(np.square(__lowerCAmelCase ) , axis=0 ) lowerCamelCase__ = np.matmul(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = aa[:, None] - 2 * ab + ba[None, :] return d def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str ): lowerCamelCase__ = x.reshape(-1 , 3 ) lowerCamelCase__ = squared_euclidean_distance(__lowerCAmelCase , __lowerCAmelCase ) return np.argmin(__lowerCAmelCase , axis=1 ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = ['pixel_values'] def __init__( self ,_lowerCAmelCase = None ,_lowerCAmelCase = True ,_lowerCAmelCase = None ,_lowerCAmelCase = PILImageResampling.BILINEAR ,_lowerCAmelCase = True ,_lowerCAmelCase = True ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = size if size is not None else {"""height""": 2_56, """width""": 2_56} lowerCamelCase__ = get_size_dict(_lowerCAmelCase ) lowerCamelCase__ = np.array(_lowerCAmelCase ) if clusters is not None else None lowerCamelCase__ = do_resize lowerCamelCase__ = size lowerCamelCase__ = resample lowerCamelCase__ = do_normalize lowerCamelCase__ = do_color_quantize def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = PILImageResampling.BILINEAR ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): lowerCamelCase__ = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( _lowerCAmelCase ,size=(size["""height"""], size["""width"""]) ,resample=_lowerCAmelCase ,data_format=_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,): lowerCamelCase__ = rescale(image=_lowerCAmelCase ,scale=1 / 127.5 ,data_format=_lowerCAmelCase ) lowerCamelCase__ = image - 1 return image def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = ChannelDimension.FIRST ,**_lowerCAmelCase ,): lowerCamelCase__ = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ = size if size is not None else self.size lowerCamelCase__ = get_size_dict(_lowerCAmelCase ) lowerCamelCase__ = resample if resample is not None else self.resample lowerCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize lowerCamelCase__ = clusters if clusters is not None else self.clusters lowerCamelCase__ = np.array(_lowerCAmelCase ) lowerCamelCase__ = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. lowerCamelCase__ = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: lowerCamelCase__ = [self.resize(image=_lowerCAmelCase ,size=_lowerCAmelCase ,resample=_lowerCAmelCase ) for image in images] if do_normalize: lowerCamelCase__ = [self.normalize(image=_lowerCAmelCase ) for image in images] if do_color_quantize: lowerCamelCase__ = [to_channel_dimension_format(_lowerCAmelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) lowerCamelCase__ = np.array(_lowerCAmelCase ) lowerCamelCase__ = color_quantize(_lowerCAmelCase ,_lowerCAmelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) lowerCamelCase__ = images.shape[0] lowerCamelCase__ = images.reshape(_lowerCAmelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. lowerCamelCase__ = list(_lowerCAmelCase ) else: lowerCamelCase__ = [to_channel_dimension_format(_lowerCAmelCase ,_lowerCAmelCase ) for image in images] lowerCamelCase__ = {"""input_ids""": images} return BatchFeature(data=_lowerCAmelCase ,tensor_type=_lowerCAmelCase )
701
'''simple docstring''' from __future__ import annotations import math def A__ ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCamelCase : str = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def A__ ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) lowerCamelCase__ = [] for num in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ = odd_composites[num] - 2 * i * i if is_prime(__lowerCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__lowerCAmelCase ) == n: return list_nums return [] def A__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
9
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' ,'False' ) ) is not True ,reason='Skipping test because should only be run when releasing minor transformers version' ,) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() ,encoding="""utf-8""" ,check=_lowerCAmelCase ,) assert hasattr(self ,"""env""" ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = F'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}''' # distributed data settings lowerCamelCase__ = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=_lowerCAmelCase ,instance_count=_lowerCAmelCase ,instance_type=self.instance_type ,debugger_hook_config=_lowerCAmelCase ,hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,distribution=_lowerCAmelCase ,py_version="""py36""" ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ): TrainingJobAnalytics(_lowerCAmelCase ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): # create estimator lowerCamelCase__ = self.create_estimator(_lowerCAmelCase ) # run training estimator.fit() # result dataframe lowerCamelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCamelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCamelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" ,99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' ,"""w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} ,_lowerCAmelCase )
702
'''simple docstring''' def A__ ( ): return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(__lowerCAmelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
9
0
'''simple docstring''' UpperCamelCase : Tuple = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
703
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'} UpperCamelCase : Dict = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } UpperCamelCase : List[Any] = { 'camembert-base': 5_12, } UpperCamelCase : List[str] = '▁' class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,additional_special_tokens=_lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCAmelCase ,) lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) lowerCamelCase__ = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowerCamelCase__ = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} lowerCamelCase__ = len(self.fairseq_tokens_to_ids ) lowerCamelCase__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowerCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] lowerCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCamelCase_ ( self ): lowerCamelCase__ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self.sp_model.encode(_lowerCAmelCase ,out_type=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_lowerCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = [] lowerCamelCase__ = """""" lowerCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowerCamelCase__ = True lowerCamelCase__ = [] else: current_sub_tokens.append(_lowerCAmelCase ) lowerCamelCase__ = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def __getstate__( self ): lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None return state def __setstate__( self ,_lowerCAmelCase ): lowerCamelCase__ = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ = os.path.join( _lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase ,"""wb""" ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
9
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class UpperCamelCase__ : '''simple docstring''' _UpperCamelCase = 42 _UpperCamelCase = 42 class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ): lowerCamelCase__ = [[] for _ in range(_lowerCAmelCase )] lowerCamelCase__ = size def __getitem__( self ,_lowerCAmelCase ): return iter(self._graph[vertex] ) @property def UpperCamelCase_ ( self ): return self._size def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(_lowerCAmelCase ,_lowerCAmelCase ) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = deque([start_vertex] ) lowerCamelCase__ = [None] * self.size lowerCamelCase__ = 0 while queue: lowerCamelCase__ = queue.popleft() lowerCamelCase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCamelCase__ = current_distance + edge.weight lowerCamelCase__ = distances[edge.destination_vertex] if ( isinstance(_lowerCAmelCase ,_lowerCAmelCase ) and new_distance >= dest_vertex_distance ): continue lowerCamelCase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
704
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = R"""\w+[.]\d+""" lowerCamelCase__ = re.findall(__lowerCAmelCase , __lowerCAmelCase ) for pat in pats: lowerCamelCase__ = key.replace(__lowerCAmelCase , """_""".join(pat.split(""".""" ) ) ) return key def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": lowerCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase__ = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase__ = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=42 ): # Step 1: Convert pytorch tensor to numpy lowerCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCamelCase__ = flax_model.init_weights(PRNGKey(__lowerCAmelCase ) ) lowerCamelCase__ = flatten_dict(__lowerCAmelCase ) lowerCamelCase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase__ = rename_key(__lowerCAmelCase ) lowerCamelCase__ = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters lowerCamelCase__ , lowerCamelCase__ = rename_key_and_reshape_tensor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowerCamelCase__ = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase )
9
0
'''simple docstring''' import warnings from .generation import TFGenerationMixin class UpperCamelCase__ (a ): '''simple docstring''' warnings.warn( 'Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ' 'be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.' , a , )
705
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] ,model_result["""ss"""] ): lowerCamelCase__ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sgugger/tiny-distilbert-classification""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,only_pretrain_model=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """patrickvonplaten/t5-tiny-random""" lowerCamelCase__ = AutoConfig.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ,configs=[config] ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,"""Cannot do xla on CPU.""" ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,save_to_csv=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ,inference_memory_csv_file=os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ,env_info_csv_file=os.path.join(_lowerCAmelCase ,"""env.csv""" ) ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""env.csv""" ) ).exists() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(_lowerCAmelCase ): self.assertTrue(hasattr(_lowerCAmelCase ,"""sequential""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""cumulative""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""current""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(_lowerCAmelCase ,"""log.txt""" ) ,log_print=_lowerCAmelCase ,trace_memory_line_by_line=_lowerCAmelCase ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) lowerCamelCase__ = TensorFlowBenchmark(_lowerCAmelCase ) lowerCamelCase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,"""log.txt""" ) ).exists() )
9
0
'''simple docstring''' from __future__ import annotations def A__ ( __lowerCAmelCase : int = 4 ): lowerCamelCase__ = abs(__lowerCAmelCase ) or 4 return [[1 + x + y * row_size for x in range(__lowerCAmelCase )] for y in range(__lowerCAmelCase )] def A__ ( __lowerCAmelCase : list[list[int]] ): return reverse_row(transpose(__lowerCAmelCase ) ) # OR.. transpose(reverse_column(matrix)) def A__ ( __lowerCAmelCase : list[list[int]] ): return reverse_row(reverse_column(__lowerCAmelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def A__ ( __lowerCAmelCase : list[list[int]] ): return reverse_column(transpose(__lowerCAmelCase ) ) # OR.. transpose(reverse_row(matrix)) def A__ ( __lowerCAmelCase : list[list[int]] ): lowerCamelCase__ = [list(__lowerCAmelCase ) for x in zip(*__lowerCAmelCase )] return matrix def A__ ( __lowerCAmelCase : list[list[int]] ): lowerCamelCase__ = matrix[::-1] return matrix def A__ ( __lowerCAmelCase : list[list[int]] ): lowerCamelCase__ = [x[::-1] for x in matrix] return matrix def A__ ( __lowerCAmelCase : list[list[int]] ): for i in matrix: print(*__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) UpperCamelCase : int = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) UpperCamelCase : Dict = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
706
'''simple docstring''' from math import factorial UpperCamelCase : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def A__ ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowerCAmelCase ) ) def A__ ( __lowerCAmelCase : int = 60 , __lowerCAmelCase : int = 100_0000 ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length lowerCamelCase__ = 0 # the cached sizes of the previous chains lowerCamelCase__ = {} for start_chain_element in range(1 , __lowerCAmelCase ): # The temporary set will contain the elements of the chain lowerCamelCase__ = set() lowerCamelCase__ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCamelCase__ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__lowerCAmelCase ) chain_set_length += 1 lowerCamelCase__ = digit_factorial_sum(__lowerCAmelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCamelCase__ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution()}')
9
0
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) UpperCamelCase : str = {'vocab_file': 'vocab.txt'} UpperCamelCase : int = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } UpperCamelCase : Dict = { 'facebook/esm2_t6_8M_UR50D': 10_24, 'facebook/esm2_t12_35M_UR50D': 10_24, } def A__ ( __lowerCAmelCase : List[str] ): with open(__lowerCAmelCase , """r""" ) as f: lowerCamelCase__ = f.read().splitlines() return [l.strip() for l in lines] class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<cls>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase="<eos>" ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = load_vocab_file(_lowerCAmelCase ) lowerCamelCase__ = dict(enumerate(self.all_tokens ) ) lowerCamelCase__ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowerCamelCase__ = unk_token lowerCamelCase__ = cls_token lowerCamelCase__ = pad_token lowerCamelCase__ = mask_token lowerCamelCase__ = eos_token lowerCamelCase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self._id_to_token.get(_lowerCAmelCase ,self.unk_token ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self._token_to_id.get(_lowerCAmelCase ,self._token_to_id.get(self.unk_token ) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,**_lowerCAmelCase ): return text.split() def UpperCamelCase_ ( self ,_lowerCAmelCase=False ): return len(self._id_to_token ) def UpperCamelCase_ ( self ): return {token: i for i, token in enumerate(self.all_tokens )} def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self._token_to_id.get(_lowerCAmelCase ,self._token_to_id.get(self.unk_token ) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self._id_to_token.get(_lowerCAmelCase ,self.unk_token ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.cls_token_id] lowerCamelCase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowerCamelCase__ = [1] + ([0] * len(_lowerCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(_lowerCAmelCase ) + [1] return mask def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = os.path.join(_lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" ) with open(_lowerCAmelCase ,"""w""" ) as f: f.write("""\n""".join(self.all_tokens ) ) return (vocab_file,) @property def UpperCamelCase_ ( self ): return self.get_vocab_size(with_added_tokens=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = False ): return super()._add_tokens(_lowerCAmelCase ,special_tokens=_lowerCAmelCase )
707
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCamelCase : Optional[Any] = 'src/diffusers' # Matches is_xxx_available() UpperCamelCase : Union[str, Any] = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla UpperCamelCase : Optional[Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') UpperCamelCase : Optional[int] = '\n{0} = None\n' UpperCamelCase : Optional[Any] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' UpperCamelCase : Any = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def A__ ( __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = _re_backend.findall(__lowerCAmelCase ) if len(__lowerCAmelCase ) == 0: return None return "_and_".join(__lowerCAmelCase ) def A__ ( ): with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase__ = 0 lowerCamelCase__ = {} # Go through the end of the file while line_index < len(__lowerCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 lowerCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(__lowerCAmelCase ) and len(lines[line_index] ) > 1: lowerCamelCase__ = lines[line_index] lowerCamelCase__ = _re_single_line_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = objects else: line_index += 1 return backend_specific_objects def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict ): if name.isupper(): return DUMMY_CONSTANT.format(__lowerCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__lowerCAmelCase , __lowerCAmelCase ) else: return DUMMY_CLASS.format(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Optional[int]=None ): if backend_specific_objects is None: lowerCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase__ = {} for backend, objects in backend_specific_objects.items(): lowerCamelCase__ = """[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]""" lowerCamelCase__ = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__lowerCAmelCase , __lowerCAmelCase ) for o in objects] ) lowerCamelCase__ = dummy_file return dummy_files def A__ ( __lowerCAmelCase : List[str]=False ): lowerCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase__ = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. lowerCamelCase__ = os.path.join(__lowerCAmelCase , """utils""" ) lowerCamelCase__ = { backend: os.path.join(__lowerCAmelCase , F'''dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py as the main ''' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F'''diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py. Run `make fix-copies` ''' """to fix this.""" ) if __name__ == "__main__": UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase : Any = parser.parse_args() check_dummies(args.fix_and_overwrite)
9
0
'''simple docstring''' from math import factorial, radians def A__ ( __lowerCAmelCase : float , __lowerCAmelCase : int = 18 , __lowerCAmelCase : int = 10 ): lowerCamelCase__ = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians lowerCamelCase__ = radians(__lowerCAmelCase ) lowerCamelCase__ = angle_in_radians lowerCamelCase__ = 3 lowerCamelCase__ = -1 for _ in range(__lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(__lowerCAmelCase ) lowerCamelCase__ = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": __import__('doctest').testmod()
708
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : List[Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = GPTSwaTokenizer _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = False def UpperCamelCase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ,eos_token="""<unk>""" ,bos_token="""<unk>""" ,pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = """This is a test""" lowerCamelCase__ = """This is a test""" return input_text, output_text def UpperCamelCase_ ( self ): lowerCamelCase__ = """<s>""" lowerCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) ,_lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""j""" ) self.assertEqual(len(_lowerCAmelCase ) ,20_00 ) def UpperCamelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,20_00 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,[4_65, 2_87, 2_65, 6_31, 8_42] ) lowerCamelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( _lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ,) # fmt: on lowerCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase ,[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] ,) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) # fmt: off self.assertListEqual( _lowerCAmelCase ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def UpperCamelCase_ ( self ): lowerCamelCase__ = GPTSwaTokenizer(_lowerCAmelCase ) lowerCamelCase__ = ["""This is a test""", """I was born in 92000, and this is falsé."""] lowerCamelCase__ = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ): self.assertListEqual(tokenizer.encode_fast(_lowerCAmelCase ) ,_lowerCAmelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(_lowerCAmelCase ,_lowerCAmelCase ): self.assertEqual(tokenizer.decode_fast(_lowerCAmelCase ) ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off lowerCamelCase__ = {"""input_ids""": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase ,model_name="""AI-Sweden/gpt-sw3-126m""" ,sequences=_lowerCAmelCase ,)
9
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[Any] = ['DPTFeatureExtractor'] UpperCamelCase : Union[str, Any] = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
'''simple docstring''' from manim import * class UpperCamelCase__ (a ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = Rectangle(height=0.5 ,width=0.5 ) lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""CPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(1 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""GPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) gpu.align_to(_lowerCAmelCase ,_lowerCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""Model""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,) lowerCamelCase__ = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) lowerCamelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase ,run_time=2.5 ) ,Write(_lowerCAmelCase ) ,Write(_lowerCAmelCase ) ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] for i, rect in enumerate(_lowerCAmelCase ): lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase ,opacity=0.7 ) cpu_target.move_to(_lowerCAmelCase ) cpu_target.generate_target() lowerCamelCase__ = 0.46 / 4 lowerCamelCase__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_lowerCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=_lowerCAmelCase ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=_lowerCAmelCase ,buff=0.0 ) cpu_targs.append(_lowerCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCAmelCase ) ) second_animations.append(MoveToTarget(_lowerCAmelCase ,run_time=1.5 ) ) self.play(*_lowerCAmelCase ) self.play(*_lowerCAmelCase ) self.wait()
9
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCamelCase__ : '''simple docstring''' _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None # sigma(t_i) @classmethod def UpperCamelCase_ ( cls ): return cls() @dataclass class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = 42 class UpperCamelCase__ (a ,a ): '''simple docstring''' @property def UpperCamelCase_ ( self ): return True @register_to_config def __init__( self ,_lowerCAmelCase = 0.02 ,_lowerCAmelCase = 1_00 ,_lowerCAmelCase = 1.007 ,_lowerCAmelCase = 80 ,_lowerCAmelCase = 0.05 ,_lowerCAmelCase = 50 ,): pass def UpperCamelCase_ ( self ): return KarrasVeSchedulerState.create() def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = () ): lowerCamelCase__ = jnp.arange(0 ,_lowerCAmelCase )[::-1].copy() lowerCamelCase__ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=_lowerCAmelCase ,schedule=jnp.array(_lowerCAmelCase ,dtype=jnp.floataa ) ,timesteps=_lowerCAmelCase ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,): if self.config.s_min <= sigma <= self.config.s_max: lowerCamelCase__ = min(self.config.s_churn / state.num_inference_steps ,2**0.5 - 1 ) else: lowerCamelCase__ = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCamelCase__ = random.split(_lowerCAmelCase ,num=1 ) lowerCamelCase__ = self.config.s_noise * random.normal(key=_lowerCAmelCase ,shape=sample.shape ) lowerCamelCase__ = sigma + gamma * sigma lowerCamelCase__ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = True ,): lowerCamelCase__ = sample_hat + sigma_hat * model_output lowerCamelCase__ = (sample_hat - pred_original_sample) / sigma_hat lowerCamelCase__ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_lowerCAmelCase ,derivative=_lowerCAmelCase ,state=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = True ,): lowerCamelCase__ = sample_prev + sigma_prev * model_output lowerCamelCase__ = (sample_prev - pred_original_sample) / sigma_prev lowerCamelCase__ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_lowerCAmelCase ,derivative=_lowerCAmelCase ,state=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): raise NotImplementedError()
710
'''simple docstring''' UpperCamelCase : Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCamelCase : list[bool | None] = [None] * 10_00_00_00 UpperCamelCase : Tuple = True UpperCamelCase : Optional[int] = False def A__ ( __lowerCAmelCase : int ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase__ = chain(next_number(__lowerCAmelCase ) ) lowerCamelCase__ = number_chain while number < 1000_0000: lowerCamelCase__ = number_chain number *= 10 return number_chain def A__ ( __lowerCAmelCase : int = 1000_0000 ): for i in range(1 , __lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution() = }')
9
0
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : str ): lowerCamelCase__ = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) lowerCamelCase__ = MaskFormerConfig(backbone_config=__lowerCAmelCase ) lowerCamelCase__ = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok lowerCamelCase__ = 847 lowerCamelCase__ = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok lowerCamelCase__ = 150 lowerCamelCase__ = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok lowerCamelCase__ = 171 lowerCamelCase__ = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO lowerCamelCase__ = 133 lowerCamelCase__ = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok lowerCamelCase__ = 19 lowerCamelCase__ = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok lowerCamelCase__ = 65 lowerCamelCase__ = """mapillary-vistas-id2label.json""" lowerCamelCase__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} return config def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : str ): lowerCamelCase__ = dct.pop(__lowerCAmelCase ) lowerCamelCase__ = val def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ): lowerCamelCase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCamelCase__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase__ = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) lowerCamelCase__ = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ = in_proj_weight[:dim, :] lowerCamelCase__ = in_proj_bias[: dim] lowerCamelCase__ = in_proj_weight[ dim : dim * 2, : ] lowerCamelCase__ = in_proj_bias[ dim : dim * 2 ] lowerCamelCase__ = in_proj_weight[ -dim :, : ] lowerCamelCase__ = in_proj_bias[-dim :] # fmt: on def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): # fmt: off lowerCamelCase__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) lowerCamelCase__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ = in_proj_weight[: hidden_size, :] lowerCamelCase__ = in_proj_bias[:config.hidden_size] lowerCamelCase__ = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase__ = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase__ = in_proj_weight[-hidden_size :, :] lowerCamelCase__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) lowerCamelCase__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ = in_proj_weight[: hidden_size, :] lowerCamelCase__ = in_proj_bias[:config.hidden_size] lowerCamelCase__ = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase__ = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase__ = in_proj_weight[-hidden_size :, :] lowerCamelCase__ = in_proj_bias[-hidden_size :] # fmt: on def A__ ( ): lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : bool = False ): lowerCamelCase__ = get_maskformer_config(__lowerCAmelCase ) # load original state_dict with open(__lowerCAmelCase , """rb""" ) as f: lowerCamelCase__ = pickle.load(__lowerCAmelCase ) lowerCamelCase__ = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys lowerCamelCase__ = create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_swin_q_k_v(__lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): lowerCamelCase__ = torch.from_numpy(__lowerCAmelCase ) # load 🤗 model lowerCamelCase__ = MaskFormerForInstanceSegmentation(__lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCAmelCase , param.shape ) lowerCamelCase__ , lowerCamelCase__ = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCAmelCase ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results lowerCamelCase__ = prepare_img() if "vistas" in model_name: lowerCamelCase__ = 65 elif "cityscapes" in model_name: lowerCamelCase__ = 6_5535 else: lowerCamelCase__ = 255 lowerCamelCase__ = True if """ade""" in model_name else False lowerCamelCase__ = MaskFormerImageProcessor(ignore_index=__lowerCAmelCase , reduce_labels=__lowerCAmelCase ) lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" ) lowerCamelCase__ = model(**__lowerCAmelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": lowerCamelCase__ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCamelCase : Optional[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
711
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : List[str] = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'donut-swin' _UpperCamelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self ,_lowerCAmelCase=2_24 ,_lowerCAmelCase=4 ,_lowerCAmelCase=3 ,_lowerCAmelCase=96 ,_lowerCAmelCase=[2, 2, 6, 2] ,_lowerCAmelCase=[3, 6, 12, 24] ,_lowerCAmelCase=7 ,_lowerCAmelCase=4.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=False ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = embed_dim lowerCamelCase__ = depths lowerCamelCase__ = len(_lowerCAmelCase ) lowerCamelCase__ = num_heads lowerCamelCase__ = window_size lowerCamelCase__ = mlp_ratio lowerCamelCase__ = qkv_bias lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = drop_path_rate lowerCamelCase__ = hidden_act lowerCamelCase__ = use_absolute_embeddings lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
9
0
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def A__ ( __lowerCAmelCase : List[str] ): lowerCamelCase__ = [] for line in lines: lowerCamelCase__ = re.sub(R"""#.*""" , """""" , __lowerCAmelCase ) # remove comments if line: filtered_lines.append(__lowerCAmelCase ) lowerCamelCase__ = """\n""".join(__lowerCAmelCase ) # Make a hash from all this code lowerCamelCase__ = full_str.encode("""utf-8""" ) return shaaaa(__lowerCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCamelCase : Optional[Any] = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCamelCase : List[str] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCamelCase : Dict = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name UpperCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
712
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME UpperCamelCase : Optional[Any] = ['small', 'medium', 'large'] UpperCamelCase : Dict = 'lm_head.decoder.weight' UpperCamelCase : int = 'lm_head.weight' def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): lowerCamelCase__ = torch.load(__lowerCAmelCase ) lowerCamelCase__ = d.pop(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) UpperCamelCase : Dict = parser.parse_args() for MODEL in DIALOGPT_MODELS: UpperCamelCase : Any = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl') UpperCamelCase : str = F'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
9
0
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = R"""\w+[.]\d+""" lowerCamelCase__ = re.findall(__lowerCAmelCase , __lowerCAmelCase ) for pat in pats: lowerCamelCase__ = key.replace(__lowerCAmelCase , """_""".join(pat.split(""".""" ) ) ) return key def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": lowerCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase__ = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase__ = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=42 ): # Step 1: Convert pytorch tensor to numpy lowerCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCamelCase__ = flax_model.init_weights(PRNGKey(__lowerCAmelCase ) ) lowerCamelCase__ = flatten_dict(__lowerCAmelCase ) lowerCamelCase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase__ = rename_key(__lowerCAmelCase ) lowerCamelCase__ = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters lowerCamelCase__ , lowerCamelCase__ = rename_key_and_reshape_tensor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowerCamelCase__ = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase )
713
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=30 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=4 ,_lowerCAmelCase=37 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=10 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=3 ,_lowerCAmelCase=0.6 ,_lowerCAmelCase=None ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = mask_ratio lowerCamelCase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCamelCase__ = (image_size // patch_size) ** 2 lowerCamelCase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFViTMAEModel(config=_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) # expected sequence length = num_patches lowerCamelCase__ = (self.image_size // self.patch_size) ** 2 lowerCamelCase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCamelCase__ = 1 lowerCamelCase__ = TFViTMAEForPreTraining(_lowerCAmelCase ) lowerCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ = model(_lowerCAmelCase ,training=_lowerCAmelCase ) lowerCamelCase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _UpperCamelCase = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = TFViTMAEModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) lowerCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase ,tf.keras.layers.Layer ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): # make the mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = copy.deepcopy(self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = outputs_dict[0].numpy() lowerCamelCase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1E-6 ) def UpperCamelCase_ ( self ): # make the mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_lowerCAmelCase ): lowerCamelCase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(_lowerCAmelCase ): lowerCamelCase__ = v.numpy() else: lowerCamelCase__ = np.array(_lowerCAmelCase ) return inputs_np_dict for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = prepare_numpy_arrays(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): # make masks reproducible np.random.seed(2 ) lowerCamelCase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ = tf.constant(_lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCamelCase__ = tf_noise super().check_pt_tf_models(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_lowerCAmelCase ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(_lowerCAmelCase ,_lowerCAmelCase ),) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_lowerCAmelCase ,"""_keras_serializable""" ,_lowerCAmelCase ) } lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ = tf.convert_to_tensor(_lowerCAmelCase ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: lowerCamelCase__ = main_layer_class(_lowerCAmelCase ) lowerCamelCase__ = { name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowerCamelCase__ = tf.keras.Model(_lowerCAmelCase ,outputs=main_layer(_lowerCAmelCase ) ) lowerCamelCase__ = model(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ = os.path.join(_lowerCAmelCase ,"""keras_model.h5""" ) model.save(_lowerCAmelCase ) lowerCamelCase__ = tf.keras.models.load_model( _lowerCAmelCase ,custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_lowerCAmelCase ,tf.keras.Model ) lowerCamelCase__ = model(_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": lowerCamelCase__ = outputs.last_hidden_state.numpy() lowerCamelCase__ = 0 else: lowerCamelCase__ = outputs.logits.numpy() lowerCamelCase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ,saved_model=_lowerCAmelCase ) lowerCamelCase__ = model_class.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) if model_class.__name__ == "TFViTMAEModel": lowerCamelCase__ = after_outputs["""last_hidden_state"""].numpy() lowerCamelCase__ = 0 else: lowerCamelCase__ = after_outputs["""logits"""].numpy() lowerCamelCase__ = 0 lowerCamelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase ,1E-5 ) def UpperCamelCase_ ( self ): # make mask reproducible np.random.seed(2 ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = int((config.image_size // config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ,noise=_lowerCAmelCase ) lowerCamelCase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_lowerCAmelCase ) lowerCamelCase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowerCamelCase__ = model_class.from_config(model.config ) lowerCamelCase__ = new_model(_lowerCAmelCase ) # Build model new_model.set_weights(model.get_weights() ) lowerCamelCase__ = new_model(_lowerCAmelCase ,noise=_lowerCAmelCase ) self.assert_outputs_same(_lowerCAmelCase ,_lowerCAmelCase ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def UpperCamelCase_ ( self ): pass @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(_lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCamelCase__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCamelCase__ = ViTMAEConfig() lowerCamelCase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCamelCase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowerCamelCase__ = model(**_lowerCAmelCase ,noise=_lowerCAmelCase ) # verify the logits lowerCamelCase__ = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape ,_lowerCAmelCase ) lowerCamelCase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] ,_lowerCAmelCase ,atol=1E-4 )
9
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def A__ ( __lowerCAmelCase : Any ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def A__ ( ): with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" lowerCamelCase__ = [1, 2, 3] with pytest.raises(__lowerCAmelCase ): with parallel_backend("""unsupported backend""" ): map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=2 ) with pytest.raises(__lowerCAmelCase ): with parallel_backend("""unsupported backend""" ): map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = [1, 2] lowerCamelCase__ = {"""a""": 1, """b""": 2} lowerCamelCase__ = {"""a""": [1, 2], """b""": [3, 4]} lowerCamelCase__ = {"""a""": {"""1""": 1}, """b""": 2} lowerCamelCase__ = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} lowerCamelCase__ = [2, 3] lowerCamelCase__ = {"""a""": 2, """b""": 3} lowerCamelCase__ = {"""a""": [2, 3], """b""": [4, 5]} lowerCamelCase__ = {"""a""": {"""1""": 2}, """b""": 3} lowerCamelCase__ = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa
714
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=7 ,_lowerCAmelCase=3 ,_lowerCAmelCase=18 ,_lowerCAmelCase=30 ,_lowerCAmelCase=4_00 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,_lowerCAmelCase=[0.5, 0.5, 0.5] ,): lowerCamelCase__ = size if size is not None else {"""shortest_edge""": 18} lowerCamelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = num_channels lowerCamelCase__ = image_size lowerCamelCase__ = min_resolution lowerCamelCase__ = max_resolution lowerCamelCase__ = do_resize lowerCamelCase__ = size lowerCamelCase__ = do_center_crop lowerCamelCase__ = crop_size lowerCamelCase__ = do_normalize lowerCamelCase__ = image_mean lowerCamelCase__ = image_std def UpperCamelCase_ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = LevitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): lowerCamelCase__ = LevitImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""image_std""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase ,"""size""" ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) lowerCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,Image.Image ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,np.ndarray ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCamelCase_ ( self ): # Initialize image_processing lowerCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_lowerCAmelCase ,torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase ,torch.Tensor ) # Test not batched input lowerCamelCase__ = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowerCamelCase__ = image_processing(_lowerCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
9
0
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase : List[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt') def A__ ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : float , __lowerCAmelCase : int = 1_6000 ): lowerCamelCase__ = int(round(sample_rate * max_length ) ) if len(__lowerCAmelCase ) <= sample_length: return wav lowerCamelCase__ = randint(0 , len(__lowerCAmelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCamelCase__ : '''simple docstring''' _UpperCamelCase = field(default=a ,metadata={'help': 'Name of a dataset from the datasets package'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'A file containing the training audio paths and labels.'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'A file containing the validation audio paths and labels.'} ) _UpperCamelCase = field( default='train' ,metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } ,) _UpperCamelCase = field( default='validation' ,metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } ,) _UpperCamelCase = field( default='audio' ,metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} ,) _UpperCamelCase = field( default='label' ,metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} ) _UpperCamelCase = field( default=a ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } ,) _UpperCamelCase = field( default=a ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } ,) _UpperCamelCase = field( default=20 ,metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} ,) @dataclass class UpperCamelCase__ : '''simple docstring''' _UpperCamelCase = field( default='facebook/wav2vec2-base' ,metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ,) _UpperCamelCase = field( default=a ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} ) _UpperCamelCase = field( default='main' ,metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} ,) _UpperCamelCase = field( default=a ,metadata={'help': 'Name or path of preprocessor config.'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} ) _UpperCamelCase = field( default=a ,metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } ,) _UpperCamelCase = field( default=a ,metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} ,) def UpperCamelCase_ ( self ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" ,_lowerCAmelCase ,) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def A__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__ = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowerCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. lowerCamelCase__ = DatasetDict() lowerCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' """Make sure to set `--audio_column_name` to the correct audio column - one of """ F'''{", ".join(raw_datasets["train"].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' """Make sure to set `--label_column_name` to the correct text column - one of """ F'''{", ".join(raw_datasets["train"].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowerCamelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowerCamelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowerCamelCase__ = feature_extractor.model_input_names[0] def train_transforms(__lowerCAmelCase : Any ): lowerCamelCase__ = [] for audio in batch[data_args.audio_column_name]: lowerCamelCase__ = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__lowerCAmelCase ) lowerCamelCase__ = feature_extractor(__lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) lowerCamelCase__ = {model_input_name: inputs.get(__lowerCAmelCase )} lowerCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__lowerCAmelCase : Any ): lowerCamelCase__ = [audio["""array"""] for audio in batch[data_args.audio_column_name]] lowerCamelCase__ = feature_extractor(__lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) lowerCamelCase__ = {model_input_name: inputs.get(__lowerCAmelCase )} lowerCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowerCamelCase__ = raw_datasets["""train"""].features[data_args.label_column_name].names lowerCamelCase__ , lowerCamelCase__ = {}, {} for i, label in enumerate(__lowerCAmelCase ): lowerCamelCase__ = str(__lowerCAmelCase ) lowerCamelCase__ = label # Load the accuracy metric from the datasets package lowerCamelCase__ = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase : List[Any] ): lowerCamelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=__lowerCAmelCase , references=eval_pred.label_ids ) lowerCamelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase__ = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__lowerCAmelCase , output_all_columns=__lowerCAmelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase__ = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__lowerCAmelCase , output_all_columns=__lowerCAmelCase ) # Initialize our trainer lowerCamelCase__ = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , ) # Training if training_args.do_train: lowerCamelCase__ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ = last_checkpoint lowerCamelCase__ = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase__ = trainer.evaluate() trainer.log_metrics("""eval""" , __lowerCAmelCase ) trainer.save_metrics("""eval""" , __lowerCAmelCase ) # Write model card and (optionally) push to hub lowerCamelCase__ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
715
'''simple docstring''' import numpy # List of input, output pairs UpperCamelCase : List[Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCamelCase : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) UpperCamelCase : int = [2, 4, 1, 5] UpperCamelCase : int = len(train_data) UpperCamelCase : Dict = 0.009 def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : str="train" ): return calculate_hypothesis_value(__lowerCAmelCase , __lowerCAmelCase ) - output( __lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Any ): lowerCamelCase__ = 0 for i in range(len(__lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=m ): lowerCamelCase__ = 0 for i in range(__lowerCAmelCase ): if index == -1: summation_value += _error(__lowerCAmelCase ) else: summation_value += _error(__lowerCAmelCase ) * train_data[i][0][index] return summation_value def A__ ( __lowerCAmelCase : List[Any] ): lowerCamelCase__ = summation_of_cost_derivative(__lowerCAmelCase , __lowerCAmelCase ) / m return cost_derivative_value def A__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase__ = 0.00_0002 lowerCamelCase__ = 0 lowerCamelCase__ = 0 while True: j += 1 lowerCamelCase__ = [0, 0, 0, 0] for i in range(0 , len(__lowerCAmelCase ) ): lowerCamelCase__ = get_cost_derivative(i - 1 ) lowerCamelCase__ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase , rtol=__lowerCAmelCase , ): break lowerCamelCase__ = temp_parameter_vector print(("""Number of iterations:""", j) ) def A__ ( ): for i in range(len(__lowerCAmelCase ) ): print(("""Actual output value:""", output(__lowerCAmelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__lowerCAmelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
9
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase : Optional[Any] = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
716
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] ): lowerCamelCase__ = OmegaConf.load(__lowerCAmelCase ) lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""model"""] lowerCamelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCamelCase__ = {} lowerCamelCase__ = """first_stage_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] # extract state_dict for UNetLDM lowerCamelCase__ = {} lowerCamelCase__ = """model.diffusion_model.""" for key in keys: if key.startswith(__lowerCAmelCase ): lowerCamelCase__ = state_dict[key] lowerCamelCase__ = config.model.params.first_stage_config.params lowerCamelCase__ = config.model.params.unet_config.params lowerCamelCase__ = VQModel(**__lowerCAmelCase ).eval() vqvae.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = UNetLDMModel(**__lowerCAmelCase ).eval() unet.load_state_dict(__lowerCAmelCase ) lowerCamelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__lowerCAmelCase , ) lowerCamelCase__ = LDMPipeline(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipeline.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) UpperCamelCase : List[Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
9
0
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
717
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : tuple[int, ...] ): lowerCamelCase__ = "" lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 for keychar, cipherchar in zip(cycle(__lowerCAmelCase ) , __lowerCAmelCase ): lowerCamelCase__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__lowerCAmelCase ) return decoded def A__ ( __lowerCAmelCase : list[int] ): lowerCamelCase__ = [] for key in product(__lowerCAmelCase , repeat=3 ): lowerCamelCase__ = try_key(__lowerCAmelCase , __lowerCAmelCase ) if encoded is not None: possibles.append(__lowerCAmelCase ) return possibles def A__ ( __lowerCAmelCase : list[str] , __lowerCAmelCase : str ): return [possible for possible in possibles if common_word in possible.lower()] def A__ ( __lowerCAmelCase : str = "p059_cipher.txt" ): lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = Path(__lowerCAmelCase ).parent.joinpath(__lowerCAmelCase ).read_text(encoding="""utf-8""" ) lowerCamelCase__ = [int(__lowerCAmelCase ) for number in data.strip().split(""",""" )] lowerCamelCase__ = filter_valid_chars(__lowerCAmelCase ) for common_word in COMMON_WORDS: lowerCamelCase__ = filter_common_word(__lowerCAmelCase , __lowerCAmelCase ) if len(__lowerCAmelCase ) == 1: break lowerCamelCase__ = possibles[0] return sum(ord(__lowerCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
9
0
'''simple docstring''' from __future__ import annotations def A__ ( __lowerCAmelCase : dict , __lowerCAmelCase : str ): lowerCamelCase__ , lowerCamelCase__ = set(__lowerCAmelCase ), [start] while stack: lowerCamelCase__ = stack.pop() explored.add(__lowerCAmelCase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__lowerCAmelCase ) return explored UpperCamelCase : Any = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
718
'''simple docstring''' import argparse import struct import unittest class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ): lowerCamelCase__ = data # Initialize hash values lowerCamelCase__ = [ 0x6a_09_e6_67, 0xbb_67_ae_85, 0x3c_6e_f3_72, 0xa5_4f_f5_3a, 0x51_0e_52_7f, 0x9b_05_68_8c, 0x1f_83_d9_ab, 0x5b_e0_cd_19, ] # Initialize round constants lowerCamelCase__ = [ 0x42_8a_2f_98, 0x71_37_44_91, 0xb5_c0_fb_cf, 0xe9_b5_db_a5, 0x39_56_c2_5b, 0x59_f1_11_f1, 0x92_3f_82_a4, 0xab_1c_5e_d5, 0xd8_07_aa_98, 0x12_83_5b_01, 0x24_31_85_be, 0x55_0c_7d_c3, 0x72_be_5d_74, 0x80_de_b1_fe, 0x9b_dc_06_a7, 0xc1_9b_f1_74, 0xe4_9b_69_c1, 0xef_be_47_86, 0x0f_c1_9d_c6, 0x24_0c_a1_cc, 0x2d_e9_2c_6f, 0x4a_74_84_aa, 0x5c_b0_a9_dc, 0x76_f9_88_da, 0x98_3e_51_52, 0xa8_31_c6_6d, 0xb0_03_27_c8, 0xbf_59_7f_c7, 0xc6_e0_0b_f3, 0xd5_a7_91_47, 0x06_ca_63_51, 0x14_29_29_67, 0x27_b7_0a_85, 0x2e_1b_21_38, 0x4d_2c_6d_fc, 0x53_38_0d_13, 0x65_0a_73_54, 0x76_6a_0a_bb, 0x81_c2_c9_2e, 0x92_72_2c_85, 0xa2_bf_e8_a1, 0xa8_1a_66_4b, 0xc2_4b_8b_70, 0xc7_6c_51_a3, 0xd1_92_e8_19, 0xd6_99_06_24, 0xf4_0e_35_85, 0x10_6a_a0_70, 0x19_a4_c1_16, 0x1e_37_6c_08, 0x27_48_77_4c, 0x34_b0_bc_b5, 0x39_1c_0c_b3, 0x4e_d8_aa_4a, 0x5b_9c_ca_4f, 0x68_2e_6f_f3, 0x74_8f_82_ee, 0x78_a5_63_6f, 0x84_c8_78_14, 0x8c_c7_02_08, 0x90_be_ff_fa, 0xa4_50_6c_eb, 0xbe_f9_a3_f7, 0xc6_71_78_f2, ] lowerCamelCase__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCamelCase_ ( _lowerCAmelCase ): lowerCamelCase__ = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowerCAmelCase ) + 8) % 64)) lowerCamelCase__ = struct.pack(""">Q""" ,(len(_lowerCAmelCase ) * 8) ) return data + padding + big_endian_integer def UpperCamelCase_ ( self ): # Convert into blocks of 64 bytes lowerCamelCase__ = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCamelCase__ = list(struct.unpack(""">16L""" ,_lowerCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCamelCase__ = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) lowerCamelCase__ = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) lowerCamelCase__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression lowerCamelCase__ = self.ror(_lowerCAmelCase ,6 ) ^ self.ror(_lowerCAmelCase ,11 ) ^ self.ror(_lowerCAmelCase ,25 ) lowerCamelCase__ = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g) lowerCamelCase__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 lowerCamelCase__ = self.ror(_lowerCAmelCase ,2 ) ^ self.ror(_lowerCAmelCase ,13 ) ^ self.ror(_lowerCAmelCase ,22 ) lowerCamelCase__ = (a & b) ^ (a & c) ^ (b & c) lowerCamelCase__ = (sa + maj) % 0x1_00_00_00_00 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) lowerCamelCase__ = [a, b, c, d, e, f, g, h] # Modify final values lowerCamelCase__ = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowerCamelCase__ = """""".join([hex(_lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): import hashlib lowerCamelCase__ = bytes("""Test String""" ,"""utf-8""" ) self.assertEqual(SHAaaa(_lowerCAmelCase ).hash ,hashlib.shaaaa(_lowerCAmelCase ).hexdigest() ) def A__ ( ): import doctest doctest.testmod() lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = bytes(__lowerCAmelCase , """utf-8""" ) print(SHAaaa(__lowerCAmelCase ).hash ) if __name__ == "__main__": main()
9
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Dict = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys UpperCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
719
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def A__ ( __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Tuple ): lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) lowerCamelCase__ = emb.weight.data return lin_layer def A__ ( __lowerCAmelCase : Dict ): lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) lowerCamelCase__ = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] lowerCamelCase__ = mam_aaa["""model"""] remove_ignore_keys_(__lowerCAmelCase ) lowerCamelCase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowerCamelCase__ = MaMaaaConfig( vocab_size=__lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) lowerCamelCase__ = state_dict["""decoder.embed_tokens.weight"""] lowerCamelCase__ = MaMaaaForConditionalGeneration(__lowerCAmelCase ) model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowerCamelCase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase : Tuple = parser.parse_args() UpperCamelCase : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
9
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = BlipImageProcessor() lowerCamelCase__ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowerCamelCase__ = BlipProcessor(_lowerCAmelCase ,_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).tokenizer def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).image_processor def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self ): lowerCamelCase__ = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 ) lowerCamelCase__ = BlipProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = processor(text=_lowerCAmelCase ) lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
720
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = BlipImageProcessor() lowerCamelCase__ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowerCamelCase__ = BlipProcessor(_lowerCAmelCase ,_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).tokenizer def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).image_processor def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self ): lowerCamelCase__ = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 ) lowerCamelCase__ = BlipProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = processor(text=_lowerCAmelCase ) lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
9
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class UpperCamelCase__ : '''simple docstring''' _UpperCamelCase = field( metadata={'help': 'The output directory where the model will be written.'} ,) _UpperCamelCase = field( metadata={ 'help': ( 'The encoder model checkpoint for weights initialization.' 'Don\'t set if you want to train an encoder model from scratch.' ) } ,) _UpperCamelCase = field( metadata={ 'help': ( 'The decoder model checkpoint for weights initialization.' 'Don\'t set if you want to train a decoder model from scratch.' ) } ,) _UpperCamelCase = field( default=a ,metadata={'help': 'Pretrained encoder config name or path if not the same as encoder_model_name'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'Pretrained decoder config name or path if not the same as decoder_model_name'} ) def A__ ( ): lowerCamelCase__ = HfArgumentParser((ModelArguments,) ) ((lowerCamelCase__ ) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowerCamelCase__ = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowerCamelCase__ = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowerCamelCase__ = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowerCamelCase__ = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=__lowerCAmelCase , decoder_config=__lowerCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowerCamelCase__ = decoder_config.decoder_start_token_id lowerCamelCase__ = decoder_config.pad_token_id if decoder_start_token_id is None: lowerCamelCase__ = decoder_config.bos_token_id if pad_token_id is None: lowerCamelCase__ = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowerCamelCase__ = decoder_config.eos_token_id lowerCamelCase__ = decoder_start_token_id lowerCamelCase__ = pad_token_id lowerCamelCase__ = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowerCamelCase__ = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
721
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def A__ ( __lowerCAmelCase : Union[str, Any] ): if hor == 128: lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase__ = (32, 128, 256) lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: lowerCamelCase__ = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") lowerCamelCase__ = (32, 64, 128, 256) lowerCamelCase__ = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") lowerCamelCase__ = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) lowerCamelCase__ = model.state_dict() lowerCamelCase__ = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_5536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_5536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } lowerCamelCase__ = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) lowerCamelCase__ = model lowerCamelCase__ = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) lowerCamelCase__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
9
0
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _lowercase ( *lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__=True , lowerCamelCase__=2 ) -> Any: """simple docstring""" from .. import __version__ __UpperCAmelCase : Optional[Any] = take_from __UpperCAmelCase : Any = () if not isinstance(args[0] , lowerCamelCase__ ): __UpperCAmelCase : Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(lowerCamelCase__ ).base_version ) >= version.parse(lowerCamelCase__ ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) __UpperCAmelCase : List[Any] = None if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowerCamelCase__ ),) __UpperCAmelCase : List[Any] = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(lowerCamelCase__ , lowerCamelCase__ ): values += (getattr(lowerCamelCase__ , lowerCamelCase__ ),) __UpperCAmelCase : Any = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: __UpperCAmelCase : Optional[int] = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: __UpperCAmelCase : Optional[int] = warning + " " if standard_warn else "" warnings.warn(warning + message , lowerCamelCase__ , stacklevel=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) > 0: __UpperCAmelCase : str = inspect.getouterframes(inspect.currentframe() )[1] __UpperCAmelCase : Union[str, Any] = call_frame.filename __UpperCAmelCase : List[str] = call_frame.lineno __UpperCAmelCase : Dict = call_frame.function __UpperCAmelCase , __UpperCAmelCase : Tuple = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(lowerCamelCase__ ) == 0: return elif len(lowerCamelCase__ ) == 1: return values[0] return values
10
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _a : str = datasets.load_iris() _a : List[Any] = np.array(data["data"]) _a : Optional[Any] = np.array(data["target"]) _a : Dict = data["target_names"] _a , _a , _a , _a : Any = train_test_split(X, y) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified __UpperCAmelCase : int = [] for data_point in data: __UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
10
1