code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _a : List[str] = logging.get_logger(__name__) class __A (__magic_name__ ): snake_case :Optional[Any] = "upernet" def __init__( self , UpperCamelCase_=None , UpperCamelCase_=5_12 , UpperCamelCase_=0.0_2 , UpperCamelCase_=[1, 2, 3, 6] , UpperCamelCase_=True , UpperCamelCase_=0.4 , UpperCamelCase_=3_84 , UpperCamelCase_=2_56 , UpperCamelCase_=1 , UpperCamelCase_=False , UpperCamelCase_=2_55 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : int = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Any = backbone_config.get("model_type" ) __UpperCAmelCase : str = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : Union[str, Any] = config_class.from_dict(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = backbone_config __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : str = pool_scales __UpperCAmelCase : Tuple = use_auxiliary_head __UpperCAmelCase : int = auxiliary_loss_weight __UpperCAmelCase : List[Any] = auxiliary_in_channels __UpperCAmelCase : Tuple = auxiliary_channels __UpperCAmelCase : Any = auxiliary_num_convs __UpperCAmelCase : Tuple = auxiliary_concat_input __UpperCAmelCase : List[Any] = loss_ignore_index def _snake_case ( self ): __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Optional[Any] = self.backbone_config.to_dict() __UpperCAmelCase : Any = self.__class__.model_type return output
10
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = set_counts __UpperCAmelCase : int = max(UpperCamelCase_ ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Any = [1] * num_sets __UpperCAmelCase : Any = list(range(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Dict = src_parent __UpperCAmelCase : Dict = self.set_counts[src_parent] __UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ ) return True def _snake_case ( self , UpperCamelCase_ ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
10
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : int = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
1
'''simple docstring''' from __future__ import annotations _a : Tuple = 1.60_21e-19 # units = C def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> tuple[str, float]: """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif conductivity < 0: raise ValueError("Conductivity cannot be negative" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative" ) elif mobility < 0: raise ValueError("mobility cannot be negative" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
10
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
'''simple docstring''' import requests _a : Optional[Any] = "YOUR API KEY" def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = giphy_api_key ) -> list: """simple docstring""" __UpperCAmelCase : Tuple = "+".join(query.split() ) __UpperCAmelCase : Optional[Any] = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" __UpperCAmelCase : Union[str, Any] = requests.get(lowerCamelCase__ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
10
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
10
1
'''simple docstring''' from __future__ import annotations from typing import Any def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 __UpperCAmelCase : Optional[Any] = {"+", "-", "*", "/"} __UpperCAmelCase : list[Any] = [] for token in postfix_notation: if token in operations: __UpperCAmelCase , __UpperCAmelCase : Optional[int] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowerCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
10
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
1
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _a : List[str] = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
10
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
1
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata def _lowercase ( lowerCamelCase__ , lowerCamelCase__=False ) -> Dict: """simple docstring""" try: __UpperCAmelCase : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __UpperCAmelCase : List[str] = default else: # KEY is set, convert it to True or False. try: __UpperCAmelCase : int = strtobool(lowerCamelCase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value _a : Any = parse_flag_from_env("RUN_SLOW", default=False) _a : str = parse_flag_from_env("RUN_REMOTE", default=False) _a : Any = parse_flag_from_env("RUN_LOCAL", default=True) _a : Union[str, Any] = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression _a : Any = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") _a : Union[str, Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") _a : List[str] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio _a : Dict = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ", ) # Beam _a : Tuple = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility _a : int = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows _a : str = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def _lowercase ( lowerCamelCase__ ) -> Any: """simple docstring""" try: import faiss # noqa except ImportError: __UpperCAmelCase : List[str] = unittest.skip("test requires faiss" )(lowerCamelCase__ ) return test_case def _lowercase ( lowerCamelCase__ ) -> List[Any]: """simple docstring""" try: import regex # noqa except ImportError: __UpperCAmelCase : Tuple = unittest.skip("test requires regex" )(lowerCamelCase__ ) return test_case def _lowercase ( lowerCamelCase__ ) -> List[str]: """simple docstring""" try: import elasticsearch # noqa except ImportError: __UpperCAmelCase : List[str] = unittest.skip("test requires elasticsearch" )(lowerCamelCase__ ) return test_case def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" try: import sqlalchemy # noqa except ImportError: __UpperCAmelCase : Any = unittest.skip("test requires sqlalchemy" )(lowerCamelCase__ ) return test_case def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" if not config.TORCH_AVAILABLE: __UpperCAmelCase : int = unittest.skip("test requires PyTorch" )(lowerCamelCase__ ) return test_case def _lowercase ( lowerCamelCase__ ) -> Dict: """simple docstring""" if not config.TF_AVAILABLE: __UpperCAmelCase : List[str] = unittest.skip("test requires TensorFlow" )(lowerCamelCase__ ) return test_case def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" if not config.JAX_AVAILABLE: __UpperCAmelCase : str = unittest.skip("test requires JAX" )(lowerCamelCase__ ) return test_case def _lowercase ( lowerCamelCase__ ) -> List[Any]: """simple docstring""" if not config.PIL_AVAILABLE: __UpperCAmelCase : Union[str, Any] = unittest.skip("test requires Pillow" )(lowerCamelCase__ ) return test_case def _lowercase ( lowerCamelCase__ ) -> Tuple: """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(lowerCamelCase__ ) else: return test_case def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(lowerCamelCase__ ) else: return test_case def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(lowerCamelCase__ ) else: return test_case def _lowercase ( lowerCamelCase__ ) -> Any: """simple docstring""" def _require_spacy_model(lowerCamelCase__ ): try: import spacy # noqa F401 spacy.load(lowerCamelCase__ ) except ImportError: return unittest.skip("test requires spacy" )(lowerCamelCase__ ) except OSError: return unittest.skip("test requires spacy model '{}'".format(lowerCamelCase__ ) )(lowerCamelCase__ ) else: return test_case return _require_spacy_model def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(lowerCamelCase__ ) else: return test_case def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(lowerCamelCase__ ) else: return test_case def _lowercase ( lowerCamelCase__ ) -> Tuple: """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: __UpperCAmelCase : int = unittest.skip("test is slow" )(lowerCamelCase__ ) return test_case def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" if not _run_local_tests or _run_local_tests == 0: __UpperCAmelCase : List[str] = unittest.skip("test is local" )(lowerCamelCase__ ) return test_case def _lowercase ( lowerCamelCase__ ) -> Dict: """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: __UpperCAmelCase : Tuple = unittest.skip("test is packaged" )(lowerCamelCase__ ) return test_case def _lowercase ( lowerCamelCase__ ) -> Any: """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: __UpperCAmelCase : Any = unittest.skip("test requires remote" )(lowerCamelCase__ ) return test_case def _lowercase ( *lowerCamelCase__ ) -> Tuple: """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(lowerCamelCase__ ) and name.startswith("test" ): for decorator in decorators: __UpperCAmelCase : Tuple = decorator(lowerCamelCase__ ) setattr(cls , lowerCamelCase__ , lowerCamelCase__ ) return cls return decorate class __A (__magic_name__ ): pass class __A (__magic_name__ ): snake_case :List[str] = 0 snake_case :Any = 1 snake_case :Dict = 2 @contextmanager def _lowercase ( lowerCamelCase__=OfflineSimulationMode.CONNECTION_FAILS , lowerCamelCase__=1e-1_6 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = requests.Session().request def timeout_request(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ): # Change the url to an invalid url so that the connection hangs __UpperCAmelCase : List[Any] = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __UpperCAmelCase : str = timeout try: return online_request(lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __UpperCAmelCase : Any = url __UpperCAmelCase : Any = e.args[0] __UpperCAmelCase : Optional[Any] = (max_retry_error.args[0].replace("10.255.255.1" , f"""OfflineMock[{url}]""" ),) __UpperCAmelCase : str = (max_retry_error,) raise def raise_connection_error(lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ): raise requests.ConnectionError("Offline mode is enabled." , request=lowerCamelCase__ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , lowerCamelCase__ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , lowerCamelCase__ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCamelCase__ ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def _lowercase ( *lowerCamelCase__ , **lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : int = str(Path().resolve() ) with tempfile.TemporaryDirectory(*lowerCamelCase__ , **lowerCamelCase__ ) as tmp_dir: try: os.chdir(lowerCamelCase__ ) yield finally: os.chdir(lowerCamelCase__ ) @contextmanager def _lowercase ( ) -> Any: """simple docstring""" import gc gc.collect() __UpperCAmelCase : Optional[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _lowercase ( ) -> List[Any]: """simple docstring""" import gc gc.collect() __UpperCAmelCase : Optional[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" return deepcopy(lowerCamelCase__ ).integers(0 , 100 , 10 ).tolist() == deepcopy(lowerCamelCase__ ).integers(0 , 100 , 10 ).tolist() def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ): try: return func(*lowerCamelCase__ , **lowerCamelCase__ ) except HTTPError as err: if str(lowerCamelCase__ ).startswith("500" ) or str(lowerCamelCase__ ).startswith("502" ): pytest.xfail(str(lowerCamelCase__ ) ) raise err return decorator.decorator(_wrapper , lowerCamelCase__ ) class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = returncode __UpperCAmelCase : Optional[int] = stdout __UpperCAmelCase : int = stderr async def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" while True: __UpperCAmelCase : Any = await stream.readline() if line: callback(lowerCamelCase__ ) else: break async def _lowercase ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=False ) -> _RunOutput: """simple docstring""" if echo: print("\nRunning: " , " ".join(lowerCamelCase__ ) ) __UpperCAmelCase : Optional[Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCamelCase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCamelCase__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Tuple = [] def tee(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="" ): __UpperCAmelCase : List[Any] = line.decode("utf-8" ).rstrip() sink.append(lowerCamelCase__ ) if not quiet: print(lowerCamelCase__ , lowerCamelCase__ , file=lowerCamelCase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda lowerCamelCase__ : tee(lowerCamelCase__ , lowerCamelCase__ , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda lowerCamelCase__ : tee(lowerCamelCase__ , lowerCamelCase__ , sys.stderr , label="stderr:" ) ), ] , timeout=lowerCamelCase__ , ) return _RunOutput(await p.wait() , lowerCamelCase__ , lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=180 , lowerCamelCase__=False , lowerCamelCase__=True ) -> _RunOutput: """simple docstring""" __UpperCAmelCase : Dict = asyncio.get_event_loop() __UpperCAmelCase : int = loop.run_until_complete( _stream_subprocess(lowerCamelCase__ , env=lowerCamelCase__ , stdin=lowerCamelCase__ , timeout=lowerCamelCase__ , quiet=lowerCamelCase__ , echo=lowerCamelCase__ ) ) __UpperCAmelCase : List[Any] = " ".join(lowerCamelCase__ ) if result.returncode > 0: __UpperCAmelCase : Dict = "\n".join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"""'{cmd_str}' produced no output.""" ) return result def _lowercase ( ) -> str: """simple docstring""" __UpperCAmelCase : Tuple = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) __UpperCAmelCase : Tuple = re.sub(R"^gw" , "" , lowerCamelCase__ , 0 , re.M ) return int(lowerCamelCase__ ) def _lowercase ( ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : Dict = 2_9500 __UpperCAmelCase : Any = pytest_xdist_worker_id() return port + uniq_delta
10
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __A : snake_case :int = BlenderbotConfig snake_case :int = {} snake_case :Dict = "gelu" def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=20 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_=0 , ): __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : Tuple = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : List[Any] = eos_token_id __UpperCAmelCase : Union[str, Any] = pad_token_id __UpperCAmelCase : Union[str, Any] = bos_token_id def _snake_case ( self ): __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCAmelCase : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCAmelCase : Union[str, Any] = prepare_blenderbot_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : str = TFBlenderbotModel(config=UpperCamelCase_ ).get_decoder() __UpperCAmelCase : Union[str, Any] = inputs_dict["input_ids"] __UpperCAmelCase : Dict = input_ids[:1, :] __UpperCAmelCase : int = inputs_dict["attention_mask"][:1, :] __UpperCAmelCase : Union[str, Any] = inputs_dict["head_mask"] __UpperCAmelCase : Union[str, Any] = 1 # first forward pass __UpperCAmelCase : List[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ ) __UpperCAmelCase , __UpperCAmelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCAmelCase : str = tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCAmelCase : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCAmelCase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCAmelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx] __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase_ , UpperCamelCase_ , rtol=1E-3 ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: __UpperCAmelCase : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCamelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __UpperCAmelCase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCAmelCase : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCAmelCase : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __A (__magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () snake_case :str = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () snake_case :Optional[int] = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) snake_case :Tuple = True snake_case :Any = False snake_case :Any = False def _snake_case ( self ): __UpperCAmelCase : Optional[int] = TFBlenderbotModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=UpperCamelCase_ ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase_ ) @require_tokenizers @require_tf class __A (unittest.TestCase ): snake_case :Union[str, Any] = ["My friends are cool but they eat too many carbs."] snake_case :Tuple = "facebook/blenderbot-400M-distill" @cached_property def _snake_case ( self ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _snake_case ( self ): __UpperCAmelCase : List[str] = self.tokenizer(self.src_text , return_tensors="tf" ) __UpperCAmelCase : List[str] = self.model.generate( model_inputs.input_ids , ) __UpperCAmelCase : int = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
10
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
10
1
'''simple docstring''' _a : List[str] = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def _lowercase ( ) -> tuple[list[int], int]: """simple docstring""" __UpperCAmelCase : str = [randint(-1000 , 1000 ) for i in range(10 )] __UpperCAmelCase : Dict = randint(-5000 , 5000 ) return (arr, r) _a : str = make_dataset() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(lowerCamelCase__ , 3 ): if sum(lowerCamelCase__ ) == target: return tuple(sorted(lowerCamelCase__ ) ) return (0, 0, 0) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> tuple[int, int, int]: """simple docstring""" arr.sort() __UpperCAmelCase : List[Any] = len(lowerCamelCase__ ) for i in range(n - 1 ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def _lowercase ( ) -> tuple[float, float]: """simple docstring""" __UpperCAmelCase : Optional[Any] = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" __UpperCAmelCase : Optional[Any] = "\ntriplet_sum1(*dataset)\n" __UpperCAmelCase : List[Any] = "\ntriplet_sum2(*dataset)\n" __UpperCAmelCase : Any = repeat(setup=lowerCamelCase__ , stmt=lowerCamelCase__ , repeat=5 , number=1_0000 ) __UpperCAmelCase : int = repeat(setup=lowerCamelCase__ , stmt=lowerCamelCase__ , repeat=5 , number=1_0000 ) return (min(lowerCamelCase__ ), min(lowerCamelCase__ )) if __name__ == "__main__": from doctest import testmod testmod() _a : Tuple = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
10
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _a : List[Any] = logging.get_logger(__name__) def _lowercase ( lowerCamelCase__ ) -> List[int]: """simple docstring""" if isinstance(lowerCamelCase__ , np.ndarray ): return list(tensor.shape ) __UpperCAmelCase : List[Any] = tf.shape(lowerCamelCase__ ) if tensor.shape == tf.TensorShape(lowerCamelCase__ ): return dynamic __UpperCAmelCase : List[str] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(lowerCamelCase__ )] def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None ) -> tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1e-9 , axis=lowerCamelCase__ , name=lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1e-5 , lowerCamelCase__=-1 ) -> str: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized __UpperCAmelCase , __UpperCAmelCase : Tuple = tf.nn.moments(lowerCamelCase__ , axes=[axis] , keepdims=lowerCamelCase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __UpperCAmelCase : Dict = [1] * inputs.shape.rank __UpperCAmelCase : Any = shape_list(lowerCamelCase__ )[axis] __UpperCAmelCase : Tuple = tf.reshape(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : str = tf.reshape(lowerCamelCase__ , lowerCamelCase__ ) # Compute layer normalization using the batch_normalization # function. __UpperCAmelCase : List[str] = tf.nn.batch_normalization( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , offset=lowerCamelCase__ , scale=lowerCamelCase__ , variance_epsilon=lowerCamelCase__ , ) return outputs def _lowercase ( lowerCamelCase__ , lowerCamelCase__=0 , lowerCamelCase__=-1 ) -> str: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __UpperCAmelCase : List[Any] = tf.shape(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __UpperCAmelCase : List[str] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(lowerCamelCase__ , lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> tf.Tensor: """simple docstring""" if not isinstance(lowerCamelCase__ , tf.Tensor ): __UpperCAmelCase : Optional[Any] = tf.convert_to_tensor(lowerCamelCase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __UpperCAmelCase : Union[str, Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __UpperCAmelCase : Any = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __UpperCAmelCase : Dict = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = "input_ids" ) -> None: """simple docstring""" tf.debugging.assert_less( lowerCamelCase__ , tf.cast(lowerCamelCase__ , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(lowerCamelCase__ )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Tuple = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __UpperCAmelCase : List[Any] = [x for x in data if len(lowerCamelCase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) __UpperCAmelCase : Any = np.asarray(lowerCamelCase__ ) __UpperCAmelCase : str = 1 __UpperCAmelCase : Tuple = np.array_split(lowerCamelCase__ , lowerCamelCase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __UpperCAmelCase : Tuple = np.array_split(lowerCamelCase__ , lowerCamelCase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(lowerCamelCase__ ): __UpperCAmelCase : Tuple = chunk_data else: __UpperCAmelCase : int = data def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" if name in group.attrs: __UpperCAmelCase : Optional[int] = [n.decode("utf8" ) if hasattr(lowerCamelCase__ , "decode" ) else n for n in group.attrs[name]] else: __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[Any] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(lowerCamelCase__ , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def _lowercase ( lowerCamelCase__ ) -> List[Any]: """simple docstring""" def _expand_single_ad_tensor(lowerCamelCase__ ): if isinstance(lowerCamelCase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(lowerCamelCase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , lowerCamelCase__ )
10
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : str = { "configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST", "PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _a : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if colsa != 1: __UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if rowsa != rowsa: __UpperCAmelCase : Optional[int] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != rowsa: __UpperCAmelCase : List[str] = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}""" ) raise ValueError(lowerCamelCase__ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape strictly_diagonally_dominant(lowerCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase__ ): __UpperCAmelCase : int = [] for row in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = 0 for col in range(lowerCamelCase__ ): if col == row: __UpperCAmelCase : int = table[row][col] elif col == cols - 1: __UpperCAmelCase : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : List[Any] = (temp + val) / denom new_val.append(lowerCamelCase__ ) __UpperCAmelCase : str = new_val return [float(lowerCamelCase__ ) for i in new_val] def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape __UpperCAmelCase : str = True for i in range(0 , lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __A (__magic_name__ ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Tuple = dataset __UpperCAmelCase : Optional[int] = process __UpperCAmelCase : Dict = params def __len__( self ): return len(self.dataset ) def __getitem__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.dataset[i] __UpperCAmelCase : Optional[Any] = self.process(UpperCamelCase_ , **self.params ) return processed class __A (__magic_name__ ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ): __UpperCAmelCase : Optional[Any] = loader __UpperCAmelCase : Tuple = infer __UpperCAmelCase : int = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[str] = loader_batch_size # Internal bookkeeping __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : Any = None def __len__( self ): return len(self.loader ) def __iter__( self ): __UpperCAmelCase : Tuple = iter(self.loader ) return self def _snake_case ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice __UpperCAmelCase : Union[str, Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __UpperCAmelCase : Any = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): # Convert ModelOutput to tuple first __UpperCAmelCase : int = element.to_tuple() if isinstance(element[0] , torch.Tensor ): __UpperCAmelCase : str = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __UpperCAmelCase : Optional[int] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCamelCase_ , UpperCamelCase_ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): __UpperCAmelCase : Optional[int] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __UpperCAmelCase : List[str] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __UpperCAmelCase : int = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __UpperCAmelCase : str = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __UpperCAmelCase : List[str] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. __UpperCAmelCase : List[str] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __UpperCAmelCase : Optional[Any] = self._loader_batch_data.__class__(UpperCamelCase_ ) self._loader_batch_index += 1 return result def _snake_case ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __UpperCAmelCase : Optional[int] = next(self.iterator ) __UpperCAmelCase : int = self.infer(UpperCamelCase_ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Optional[int] = processed else: __UpperCAmelCase : Dict = list(processed.keys() )[0] __UpperCAmelCase : Tuple = processed[key] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Any = len(UpperCamelCase_ ) else: __UpperCAmelCase : Tuple = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __UpperCAmelCase : Optional[int] = observed_batch_size # Setting internal index to unwrap the batch __UpperCAmelCase : Tuple = processed __UpperCAmelCase : Union[str, Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __A (__magic_name__ ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __iter__( self ): __UpperCAmelCase : Any = iter(self.loader ) __UpperCAmelCase : List[Any] = None return self def _snake_case ( self ): if self.subiterator is None: __UpperCAmelCase : Any = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item __UpperCAmelCase : Tuple = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __UpperCAmelCase : List[str] = self.infer(next(self.iterator ) , **self.params ) __UpperCAmelCase : List[Any] = next(self.subiterator ) return processed class __A (__magic_name__ ): def __iter__( self ): __UpperCAmelCase : Tuple = iter(self.loader ) return self def _snake_case ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Any = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __UpperCAmelCase : int = self.loader_batch_item() __UpperCAmelCase : Optional[int] = item.pop("is_last" ) accumulator.append(UpperCamelCase_ ) if is_last: return accumulator while not is_last: __UpperCAmelCase : List[Any] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = processed else: __UpperCAmelCase : Tuple = list(processed.keys() )[0] __UpperCAmelCase : Optional[Any] = processed[key] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) else: __UpperCAmelCase : Dict = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __UpperCAmelCase : List[Any] = observed_batch_size __UpperCAmelCase : Union[str, Any] = processed __UpperCAmelCase : int = 0 while self._loader_batch_index < self.loader_batch_size: __UpperCAmelCase : int = self.loader_batch_item() __UpperCAmelCase : str = item.pop("is_last" ) accumulator.append(UpperCamelCase_ ) if is_last: return accumulator else: __UpperCAmelCase : List[Any] = processed __UpperCAmelCase : Optional[int] = item.pop("is_last" ) accumulator.append(UpperCamelCase_ ) return accumulator class __A (__magic_name__ ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = dataset __UpperCAmelCase : List[str] = key def __len__( self ): return len(self.dataset ) def __getitem__( self , UpperCamelCase_ ): return self.dataset[i][self.key] class __A (__magic_name__ ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = dataset __UpperCAmelCase : Union[str, Any] = keya __UpperCAmelCase : Optional[Any] = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , UpperCamelCase_ ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
10
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Any = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A (__magic_name__ , unittest.TestCase ): snake_case :List[Any] = LEDTokenizer snake_case :List[str] = LEDTokenizerFast snake_case :Tuple = True def _snake_case ( self ): super().setUp() __UpperCAmelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] __UpperCAmelCase : Any = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Any = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __UpperCAmelCase : Optional[Any] = {"unk_token": "<unk>"} __UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCamelCase_ ) ) def _snake_case ( self , **UpperCamelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def _snake_case ( self , **UpperCamelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return "lower newer", "lower newer" @cached_property def _snake_case ( self ): return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def _snake_case ( self ): return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def _snake_case ( self ): __UpperCAmelCase : Optional[int] = ["A long paragraph for summarization.", "Another paragraph for summarization."] __UpperCAmelCase : Tuple = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Tuple = tokenizer(UpperCamelCase_ , max_length=len(UpperCamelCase_ ) , padding=UpperCamelCase_ , return_tensors="pt" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __UpperCAmelCase : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) @require_torch def _snake_case ( self ): __UpperCAmelCase : Tuple = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Tuple = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors="pt" ) self.assertIn("input_ids" , UpperCamelCase_ ) self.assertIn("attention_mask" , UpperCamelCase_ ) self.assertNotIn("labels" , UpperCamelCase_ ) self.assertNotIn("decoder_attention_mask" , UpperCamelCase_ ) @require_torch def _snake_case ( self ): __UpperCAmelCase : int = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : List[str] = tokenizer(text_target=UpperCamelCase_ , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def _snake_case ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Tuple = tokenizer( ["I am a small frog" * 10_24, "I am a small frog"] , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors="pt" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def _snake_case ( self ): __UpperCAmelCase : List[str] = ["A long paragraph for summarization."] __UpperCAmelCase : Any = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Optional[int] = tokenizer(UpperCamelCase_ , return_tensors="pt" ) __UpperCAmelCase : str = tokenizer(text_target=UpperCamelCase_ , return_tensors="pt" ) __UpperCAmelCase : str = inputs["input_ids"] __UpperCAmelCase : Any = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _snake_case ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCAmelCase : Dict = ["Summary of the text.", "Another summary."] __UpperCAmelCase : str = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __UpperCAmelCase : int = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ ) __UpperCAmelCase : Tuple = [[0] * len(UpperCamelCase_ ) for x in encoded_output["input_ids"]] __UpperCAmelCase : int = tokenizer.pad(UpperCamelCase_ ) self.assertSequenceEqual(outputs["global_attention_mask"] , UpperCamelCase_ ) def _snake_case ( self ): pass def _snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : Tuple = "A, <mask> AllenNLP sentence." __UpperCAmelCase : str = tokenizer_r.encode_plus(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) __UpperCAmelCase : List[str] = tokenizer_p.encode_plus(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) __UpperCAmelCase : Optional[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) __UpperCAmelCase : int = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCamelCase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( UpperCamelCase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
10
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
'''simple docstring''' import random def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ) -> dict: """simple docstring""" __UpperCAmelCase : dict = {i: [] for i in range(lowerCamelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase__ ): for j in range(i + 1 , lowerCamelCase__ ): if random.random() < probability: graph[i].append(lowerCamelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase__ ) return graph def _lowercase ( lowerCamelCase__ ) -> dict: """simple docstring""" return { i: [j for j in range(lowerCamelCase__ ) if i != j] for i in range(lowerCamelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
10
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Any = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Union[str, Any] = "ibert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Tuple = quant_mode __UpperCAmelCase : Union[str, Any] = force_dequant class __A (__magic_name__ ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
10
1
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __A (__magic_name__ ): def __get__( self , UpperCamelCase_ , UpperCamelCase_=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) __UpperCAmelCase : Any = "__cached_" + self.fget.__name__ __UpperCAmelCase : int = getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if cached is None: __UpperCAmelCase : Union[str, Any] = self.fget(UpperCamelCase_ ) setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return cached def _lowercase ( lowerCamelCase__ ) -> Any: """simple docstring""" __UpperCAmelCase : Optional[int] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"""invalid truth value {val!r}""" ) def _lowercase ( lowerCamelCase__ ) -> Optional[int]: """simple docstring""" if is_torch_fx_proxy(lowerCamelCase__ ): return True if is_torch_available(): import torch if isinstance(lowerCamelCase__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowerCamelCase__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowerCamelCase__ , (jnp.ndarray, Tracer) ): return True return isinstance(lowerCamelCase__ , np.ndarray ) def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" return isinstance(lowerCamelCase__ , np.ndarray ) def _lowercase ( lowerCamelCase__ ) -> List[str]: """simple docstring""" return _is_numpy(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" import torch return isinstance(lowerCamelCase__ , torch.Tensor ) def _lowercase ( lowerCamelCase__ ) -> Tuple: """simple docstring""" return False if not is_torch_available() else _is_torch(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" import torch return isinstance(lowerCamelCase__ , torch.device ) def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" return False if not is_torch_available() else _is_torch_device(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> Any: """simple docstring""" import torch if isinstance(lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , lowerCamelCase__ ): __UpperCAmelCase : Optional[int] = getattr(lowerCamelCase__ , lowerCamelCase__ ) else: return False return isinstance(lowerCamelCase__ , torch.dtype ) def _lowercase ( lowerCamelCase__ ) -> Tuple: """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" import tensorflow as tf return isinstance(lowerCamelCase__ , tf.Tensor ) def _lowercase ( lowerCamelCase__ ) -> Tuple: """simple docstring""" return False if not is_tf_available() else _is_tensorflow(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> Dict: """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowerCamelCase__ , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(lowerCamelCase__ ) return type(lowerCamelCase__ ) == tf.Tensor def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> Tuple: """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(lowerCamelCase__ , jnp.ndarray ) def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" return False if not is_flax_available() else _is_jax(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" if isinstance(lowerCamelCase__ , (dict, UserDict) ): return {k: to_py_obj(lowerCamelCase__ ) for k, v in obj.items()} elif isinstance(lowerCamelCase__ , (list, tuple) ): return [to_py_obj(lowerCamelCase__ ) for o in obj] elif is_tf_tensor(lowerCamelCase__ ): return obj.numpy().tolist() elif is_torch_tensor(lowerCamelCase__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowerCamelCase__ ): return np.asarray(lowerCamelCase__ ).tolist() elif isinstance(lowerCamelCase__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def _lowercase ( lowerCamelCase__ ) -> List[str]: """simple docstring""" if isinstance(lowerCamelCase__ , (dict, UserDict) ): return {k: to_numpy(lowerCamelCase__ ) for k, v in obj.items()} elif isinstance(lowerCamelCase__ , (list, tuple) ): return np.array(lowerCamelCase__ ) elif is_tf_tensor(lowerCamelCase__ ): return obj.numpy() elif is_torch_tensor(lowerCamelCase__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowerCamelCase__ ): return np.asarray(lowerCamelCase__ ) else: return obj class __A (__magic_name__ ): def _snake_case ( self ): __UpperCAmelCase : Optional[int] = fields(self ) # Safety and consistency checks if not len(UpperCamelCase_ ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) __UpperCAmelCase : int = getattr(self , class_fields[0].name ) __UpperCAmelCase : Dict = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(UpperCamelCase_ ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : int = first_field.items() __UpperCAmelCase : Any = True else: try: __UpperCAmelCase : Any = iter(UpperCamelCase_ ) __UpperCAmelCase : str = True except TypeError: __UpperCAmelCase : Any = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(UpperCamelCase_ ): if ( not isinstance(UpperCamelCase_ , (list, tuple) ) or not len(UpperCamelCase_ ) == 2 or not isinstance(element[0] , UpperCamelCase_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute __UpperCAmelCase : List[Any] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: __UpperCAmelCase : Tuple = element[1] elif first_field is not None: __UpperCAmelCase : Dict = first_field else: for field in class_fields: __UpperCAmelCase : int = getattr(self , field.name ) if v is not None: __UpperCAmelCase : Tuple = v def __delitem__( self , *UpperCamelCase_ , **UpperCamelCase_ ): raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self , UpperCamelCase_ ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[str] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , UpperCamelCase_ , UpperCamelCase_ ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(UpperCamelCase_ , UpperCamelCase_ ) super().__setattr__(UpperCamelCase_ , UpperCamelCase_ ) def __setitem__( self , UpperCamelCase_ , UpperCamelCase_ ): # Will raise a KeyException if needed super().__setitem__(UpperCamelCase_ , UpperCamelCase_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): return tuple(self[k] for k in self.keys() ) class __A (__magic_name__ , __magic_name__ ): @classmethod def _snake_case ( cls , UpperCamelCase_ ): raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class __A (__magic_name__ ): snake_case :Optional[Any] = "longest" snake_case :str = "max_length" snake_case :Optional[Any] = "do_not_pad" class __A (__magic_name__ ): snake_case :int = "pt" snake_case :Union[str, Any] = "tf" snake_case :int = "np" snake_case :str = "jax" class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = context_managers __UpperCAmelCase : Optional[int] = ExitStack() def __enter__( self ): for context_manager in self.context_managers: self.stack.enter_context(UpperCamelCase_ ) def __exit__( self , *UpperCamelCase_ , **UpperCamelCase_ ): self.stack.__exit__(*UpperCamelCase_ , **UpperCamelCase_ ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : List[str] = infer_framework(lowerCamelCase__ ) if framework == "tf": __UpperCAmelCase : List[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models else: __UpperCAmelCase : int = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : List[str] = model_class.__name__ __UpperCAmelCase : Optional[int] = infer_framework(lowerCamelCase__ ) if framework == "tf": __UpperCAmelCase : int = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __UpperCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: __UpperCAmelCase : Any = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = "" , lowerCamelCase__ = "." ) -> Optional[Any]: """simple docstring""" def _flatten_dict(lowerCamelCase__ , lowerCamelCase__="" , lowerCamelCase__="." ): for k, v in d.items(): __UpperCAmelCase : Union[str, Any] = str(lowerCamelCase__ ) + delimiter + str(lowerCamelCase__ ) if parent_key else k if v and isinstance(lowerCamelCase__ , lowerCamelCase__ ): yield from flatten_dict(lowerCamelCase__ , lowerCamelCase__ , delimiter=lowerCamelCase__ ).items() else: yield key, v return dict(_flatten_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ) @contextmanager def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = False ) -> Dict: """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def _lowercase ( lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[int]: """simple docstring""" if is_numpy_array(lowerCamelCase__ ): return np.transpose(lowerCamelCase__ , axes=lowerCamelCase__ ) elif is_torch_tensor(lowerCamelCase__ ): return array.T if axes is None else array.permute(*lowerCamelCase__ ) elif is_tf_tensor(lowerCamelCase__ ): import tensorflow as tf return tf.transpose(lowerCamelCase__ , perm=lowerCamelCase__ ) elif is_jax_tensor(lowerCamelCase__ ): return jnp.transpose(lowerCamelCase__ , axes=lowerCamelCase__ ) else: raise ValueError(f"""Type not supported for transpose: {type(lowerCamelCase__ )}.""" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" if is_numpy_array(lowerCamelCase__ ): return np.reshape(lowerCamelCase__ , lowerCamelCase__ ) elif is_torch_tensor(lowerCamelCase__ ): return array.reshape(*lowerCamelCase__ ) elif is_tf_tensor(lowerCamelCase__ ): import tensorflow as tf return tf.reshape(lowerCamelCase__ , lowerCamelCase__ ) elif is_jax_tensor(lowerCamelCase__ ): return jnp.reshape(lowerCamelCase__ , lowerCamelCase__ ) else: raise ValueError(f"""Type not supported for reshape: {type(lowerCamelCase__ )}.""" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__=None ) -> Tuple: """simple docstring""" if is_numpy_array(lowerCamelCase__ ): return np.squeeze(lowerCamelCase__ , axis=lowerCamelCase__ ) elif is_torch_tensor(lowerCamelCase__ ): return array.squeeze() if axis is None else array.squeeze(dim=lowerCamelCase__ ) elif is_tf_tensor(lowerCamelCase__ ): import tensorflow as tf return tf.squeeze(lowerCamelCase__ , axis=lowerCamelCase__ ) elif is_jax_tensor(lowerCamelCase__ ): return jnp.squeeze(lowerCamelCase__ , axis=lowerCamelCase__ ) else: raise ValueError(f"""Type not supported for squeeze: {type(lowerCamelCase__ )}.""" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" if is_numpy_array(lowerCamelCase__ ): return np.expand_dims(lowerCamelCase__ , lowerCamelCase__ ) elif is_torch_tensor(lowerCamelCase__ ): return array.unsqueeze(dim=lowerCamelCase__ ) elif is_tf_tensor(lowerCamelCase__ ): import tensorflow as tf return tf.expand_dims(lowerCamelCase__ , axis=lowerCamelCase__ ) elif is_jax_tensor(lowerCamelCase__ ): return jnp.expand_dims(lowerCamelCase__ , axis=lowerCamelCase__ ) else: raise ValueError(f"""Type not supported for expand_dims: {type(lowerCamelCase__ )}.""" ) def _lowercase ( lowerCamelCase__ ) -> Any: """simple docstring""" if is_numpy_array(lowerCamelCase__ ): return np.size(lowerCamelCase__ ) elif is_torch_tensor(lowerCamelCase__ ): return array.numel() elif is_tf_tensor(lowerCamelCase__ ): import tensorflow as tf return tf.size(lowerCamelCase__ ) elif is_jax_tensor(lowerCamelCase__ ): return array.size else: raise ValueError(f"""Type not supported for expand_dims: {type(lowerCamelCase__ )}.""" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" for key, value in auto_map.items(): if isinstance(lowerCamelCase__ , (tuple, list) ): __UpperCAmelCase : List[Any] = [f"""{repo_id}--{v}""" if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: __UpperCAmelCase : List[str] = f"""{repo_id}--{value}""" return auto_map def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" for base_class in inspect.getmro(lowerCamelCase__ ): __UpperCAmelCase : Dict = base_class.__module__ __UpperCAmelCase : Dict = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"""Could not infer framework from class {model_class}.""" )
10
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ ) try: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead." __UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] ) __UpperCAmelCase : Any = "" __UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] ) __UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
10
1
'''simple docstring''' from __future__ import annotations _a : Optional[Any] = [True] * 1000001 _a : Optional[Any] = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): _a : Dict = False i += 1 def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" return seive[n] def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" return any(digit in "02468" for digit in str(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ = 100_0000 ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(lowerCamelCase__ ) and not contains_an_even_digit(lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = str(lowerCamelCase__ ) __UpperCAmelCase : Tuple = [int(str_num[j:] + str_num[:j] ) for j in range(len(lowerCamelCase__ ) )] if all(is_prime(lowerCamelCase__ ) for i in list_nums ): result.append(lowerCamelCase__ ) return result def _lowercase ( ) -> int: """simple docstring""" return len(find_circular_primes() ) if __name__ == "__main__": print(f"""{len(find_circular_primes()) = }""")
10
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case :Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case :Any = frozenset([] ) snake_case :Optional[int] = True @property def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[str] = (16, 16) __UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) __UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) __UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): __UpperCAmelCase : List[str] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) __UpperCAmelCase : Tuple = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) __UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _snake_case ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _snake_case ( self ): __UpperCAmelCase : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name ) __UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) __UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0] outputs.append(UpperCamelCase_ ) assert check_same_shape(UpperCamelCase_ ) @require_torch_gpu @slow class __A (unittest.TestCase ): def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[int] = torch.manual_seed(33 ) __UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" __UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images __UpperCAmelCase : int = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _snake_case ( self ): __UpperCAmelCase : List[Any] = torch.manual_seed(33 ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" __UpperCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) __UpperCAmelCase : Dict = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
10
1
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _a : Tuple = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") _a : Optional[Any] = f"""https://www.google.com/search?q={query}&num=100""" _a : Optional[int] = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: _a : Dict = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: _a : Union[str, Any] = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
10
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
1
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _a : str = logging.get_logger(__name__) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple[int, int]: """simple docstring""" def constraint_to_multiple_of(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=0 , lowerCamelCase__=None ): __UpperCAmelCase : str = round(val / multiple ) * multiple if max_val is not None and x > max_val: __UpperCAmelCase : List[str] = math.floor(val / multiple ) * multiple if x < min_val: __UpperCAmelCase : int = math.ceil(val / multiple ) * multiple return x __UpperCAmelCase : List[str] = (output_size, output_size) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else output_size __UpperCAmelCase , __UpperCAmelCase : Tuple = get_image_size(lowerCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase : Any = output_size # determine new height and width __UpperCAmelCase : int = output_height / input_height __UpperCAmelCase : List[str] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __UpperCAmelCase : List[str] = scale_width else: # fit height __UpperCAmelCase : Union[str, Any] = scale_height __UpperCAmelCase : str = constraint_to_multiple_of(scale_height * input_height , multiple=lowerCamelCase__ ) __UpperCAmelCase : int = constraint_to_multiple_of(scale_width * input_width , multiple=lowerCamelCase__ ) return (new_height, new_width) class __A (__magic_name__ ): snake_case :int = ["pixel_values"] def __init__( self , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = PILImageResampling.BILINEAR , UpperCamelCase_ = False , UpperCamelCase_ = 1 , UpperCamelCase_ = True , UpperCamelCase_ = 1 / 2_55 , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = size if size is not None else {"height": 3_84, "width": 3_84} __UpperCAmelCase : int = get_size_dict(UpperCamelCase_ ) __UpperCAmelCase : str = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : Dict = keep_aspect_ratio __UpperCAmelCase : Optional[Any] = ensure_multiple_of __UpperCAmelCase : List[Any] = resample __UpperCAmelCase : str = do_rescale __UpperCAmelCase : str = rescale_factor __UpperCAmelCase : Tuple = do_normalize __UpperCAmelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = 1 , UpperCamelCase_ = PILImageResampling.BICUBIC , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : List[Any] = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __UpperCAmelCase : Optional[Any] = get_resize_output_image_size( UpperCamelCase_ , output_size=(size["height"], size["width"]) , keep_aspect_ratio=UpperCamelCase_ , multiple=UpperCamelCase_ , ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ): return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = ChannelDimension.FIRST , **UpperCamelCase_ , ): __UpperCAmelCase : List[str] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : List[str] = size if size is not None else self.size __UpperCAmelCase : Any = get_size_dict(UpperCamelCase_ ) __UpperCAmelCase : List[str] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __UpperCAmelCase : Dict = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __UpperCAmelCase : Any = resample if resample is not None else self.resample __UpperCAmelCase : Any = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : List[Any] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : int = image_std if image_std is not None else self.image_std __UpperCAmelCase : int = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __UpperCAmelCase : Optional[int] = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: __UpperCAmelCase : str = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_rescale: __UpperCAmelCase : Tuple = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: __UpperCAmelCase : List[str] = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] __UpperCAmelCase : Dict = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __UpperCAmelCase : List[Any] = {"pixel_values": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : List[str] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(UpperCamelCase_ ): __UpperCAmelCase : List[str] = target_sizes.numpy() __UpperCAmelCase : Optional[int] = [] for idx in range(len(UpperCamelCase_ ) ): __UpperCAmelCase : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCamelCase_ ) __UpperCAmelCase : Dict = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCamelCase_ ) else: __UpperCAmelCase : int = logits.argmax(dim=1 ) __UpperCAmelCase : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
10
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = "▁" _a : Dict = {"vocab_file": "sentencepiece.bpe.model"} _a : str = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } _a : Tuple = { "facebook/nllb-200-distilled-600M": 1024, } # fmt: off _a : str = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Dict = ["input_ids", "attention_mask"] snake_case :List[int] = [] snake_case :List[int] = [] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_ = None , UpperCamelCase_=None , UpperCamelCase_=False , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs __UpperCAmelCase : Any = legacy_behaviour super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : List[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : str = 1 __UpperCAmelCase : Union[str, Any] = len(self.sp_model ) __UpperCAmelCase : List[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCamelCase_ ) } __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.lang_code_to_id.items()} __UpperCAmelCase : Optional[int] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __UpperCAmelCase : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __UpperCAmelCase : Any = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __UpperCAmelCase : Optional[Any] = src_lang if src_lang is not None else "eng_Latn" __UpperCAmelCase : Optional[int] = self.lang_code_to_id[self._src_lang] __UpperCAmelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): __UpperCAmelCase : int = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Dict = {} __UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _snake_case ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _snake_case ( self ): return self._src_lang @src_lang.setter def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = [1] * len(self.prefix_tokens ) __UpperCAmelCase : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase_ )) + ([0] * len(UpperCamelCase_ )) + suffix_ones def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Optional[Any] = [self.sep_token_id] __UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) __UpperCAmelCase : Union[str, Any] = src_lang __UpperCAmelCase : str = self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.convert_tokens_to_ids(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = tgt_lang_id return inputs def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Union[str, Any] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : str = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = "eng_Latn" , UpperCamelCase_ = None , UpperCamelCase_ = "fra_Latn" , **UpperCamelCase_ , ): __UpperCAmelCase : Tuple = src_lang __UpperCAmelCase : Dict = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __UpperCAmelCase : Dict = [self.cur_lang_code] __UpperCAmelCase : Any = [self.eos_token_id] def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.lang_code_to_id[lang] if self.legacy_behaviour: __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __UpperCAmelCase : Tuple = [self.cur_lang_code] __UpperCAmelCase : Any = [self.eos_token_id]
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __A (ctypes.Structure ): # _fields is a specific attr expected by ctypes snake_case :Optional[int] = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def _lowercase ( ) -> str: """simple docstring""" if os.name == "nt": __UpperCAmelCase : List[str] = CursorInfo() __UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCamelCase__ , ctypes.byref(lowerCamelCase__ ) ) __UpperCAmelCase : Union[str, Any] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCamelCase__ , ctypes.byref(lowerCamelCase__ ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def _lowercase ( ) -> Any: """simple docstring""" if os.name == "nt": __UpperCAmelCase : Optional[Any] = CursorInfo() __UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCamelCase__ , ctypes.byref(lowerCamelCase__ ) ) __UpperCAmelCase : Dict = True ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCamelCase__ , ctypes.byref(lowerCamelCase__ ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def _lowercase ( ) -> int: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
10
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _a : str = datasets.load_iris() _a : List[Any] = np.array(data["data"]) _a : Optional[Any] = np.array(data["target"]) _a : Dict = data["target_names"] _a , _a , _a , _a : Any = train_test_split(X, y) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified __UpperCAmelCase : int = [] for data_point in data: __UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
10
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _a : Any = logging.get_logger(__name__) _a : str = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class __A (__magic_name__ ): snake_case :Any = "instructblip_vision_model" def __init__( self , UpperCamelCase_=14_08 , UpperCamelCase_=61_44 , UpperCamelCase_=39 , UpperCamelCase_=16 , UpperCamelCase_=2_24 , UpperCamelCase_=14 , UpperCamelCase_="gelu" , UpperCamelCase_=1E-6 , UpperCamelCase_=0.0 , UpperCamelCase_=1E-10 , UpperCamelCase_=True , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : List[str] = num_attention_heads __UpperCAmelCase : Union[str, Any] = patch_size __UpperCAmelCase : Dict = image_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : Tuple = attention_dropout __UpperCAmelCase : Tuple = layer_norm_eps __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Tuple = qkv_bias @classmethod def _snake_case ( cls , UpperCamelCase_ , **UpperCamelCase_ ): cls._set_token_in_kwargs(UpperCamelCase_ ) __UpperCAmelCase , __UpperCAmelCase : Any = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": __UpperCAmelCase : Any = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class __A (__magic_name__ ): snake_case :Any = "instructblip_qformer" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=0 , UpperCamelCase_="absolute" , UpperCamelCase_=2 , UpperCamelCase_=14_08 , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : str = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Any = intermediate_size __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : Any = layer_norm_eps __UpperCAmelCase : str = position_embedding_type __UpperCAmelCase : Optional[Any] = cross_attention_frequency __UpperCAmelCase : int = encoder_hidden_size @classmethod def _snake_case ( cls , UpperCamelCase_ , **UpperCamelCase_ ): cls._set_token_in_kwargs(UpperCamelCase_ ) __UpperCAmelCase , __UpperCAmelCase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": __UpperCAmelCase : int = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class __A (__magic_name__ ): snake_case :Optional[int] = "instructblip" snake_case :Union[str, Any] = True def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=32 , **UpperCamelCase_ ): super().__init__(**UpperCamelCase_ ) if vision_config is None: __UpperCAmelCase : Optional[Any] = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: __UpperCAmelCase : Dict = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: __UpperCAmelCase : Dict = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) __UpperCAmelCase : Any = InstructBlipVisionConfig(**UpperCamelCase_ ) __UpperCAmelCase : List[str] = InstructBlipQFormerConfig(**UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = text_config["model_type"] if "model_type" in text_config else "opt" __UpperCAmelCase : Union[str, Any] = CONFIG_MAPPING[text_model_type](**UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.text_config.tie_word_embeddings __UpperCAmelCase : str = self.text_config.is_encoder_decoder __UpperCAmelCase : List[Any] = num_query_tokens __UpperCAmelCase : str = self.vision_config.hidden_size __UpperCAmelCase : Optional[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __UpperCAmelCase : Optional[int] = 1.0 __UpperCAmelCase : List[str] = 0.0_2 @classmethod def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , ) def _snake_case ( self ): __UpperCAmelCase : int = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : int = self.vision_config.to_dict() __UpperCAmelCase : Optional[int] = self.qformer_config.to_dict() __UpperCAmelCase : List[Any] = self.text_config.to_dict() __UpperCAmelCase : List[Any] = self.__class__.model_type return output
10
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = set_counts __UpperCAmelCase : int = max(UpperCamelCase_ ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Any = [1] * num_sets __UpperCAmelCase : Any = list(range(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Dict = src_parent __UpperCAmelCase : Dict = self.set_counts[src_parent] __UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ ) return True def _snake_case ( self , UpperCamelCase_ ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
10
1
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ ) -> list: """simple docstring""" __UpperCAmelCase : Union[str, Any] = [0] * len(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): # use last results for better performance - dynamic programming __UpperCAmelCase : Tuple = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: __UpperCAmelCase : Tuple = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 __UpperCAmelCase : Dict = j return prefix_result def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" return max(prefix_function(lowerCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
10
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : str = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
10
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" print("\nThe shortest path matrix using Floyd Warshall algorithm\n" ) for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): if dist[i][j] != float("inf" ): print(int(dist[i][j] ) , end="\t" ) else: print("INF" , end="\t" ) print() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = [[float("inf" ) for _ in range(lowerCamelCase__ )] for _ in range(lowerCamelCase__ )] for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(lowerCamelCase__ ): # looping through rows of graph array for i in range(lowerCamelCase__ ): # looping through columns of graph array for j in range(lowerCamelCase__ ): if ( dist[i][k] != float("inf" ) and dist[k][j] != float("inf" ) and dist[i][k] + dist[k][j] < dist[i][j] ): __UpperCAmelCase : Dict = dist[i][k] + dist[k][j] _print_dist(lowerCamelCase__ , lowerCamelCase__ ) return dist, v if __name__ == "__main__": _a : Tuple = int(input("Enter number of vertices: ")) _a : List[Any] = int(input("Enter number of edges: ")) _a : Union[str, Any] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): _a : Optional[int] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) _a : Dict = int(input("Enter source:")) _a : str = int(input("Enter destination:")) _a : str = float(input("Enter weight:")) _a : Optional[Any] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
10
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
1
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder _a : Dict = datasets.utils.logging.get_logger(__name__) class __A (folder_based_builder.FolderBasedBuilderConfig ): snake_case :bool = None snake_case :bool = None class __A (folder_based_builder.FolderBasedBuilder ): snake_case :Dict = datasets.Audio() snake_case :List[str] = "audio" snake_case :List[str] = AudioFolderConfig snake_case :List[str] # definition at the bottom of the script snake_case :Optional[Any] = AudioClassification(audio_column="audio" , label_column="label" ) _a : Tuple = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] _a : Tuple = AUDIO_EXTENSIONS
10
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_="None" , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=None , ): __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : List[str] = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : Optional[Any] = use_input_mask __UpperCAmelCase : Optional[Any] = use_token_type_ids __UpperCAmelCase : str = use_labels __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : str = hidden_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : int = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : Any = relative_attention __UpperCAmelCase : str = position_biased_input __UpperCAmelCase : Any = pos_att_type __UpperCAmelCase : List[Any] = scope def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : List[str] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : str = None if self.use_labels: __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : List[Any] = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = TFDebertaVaModel(config=UpperCamelCase_ ) __UpperCAmelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : int = [input_ids, input_mask] __UpperCAmelCase : Any = model(UpperCamelCase_ ) __UpperCAmelCase : Any = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = TFDebertaVaForMaskedLM(config=UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCAmelCase : Any = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Any = TFDebertaVaForSequenceClassification(config=UpperCamelCase_ ) __UpperCAmelCase : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCAmelCase : Optional[Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.num_labels __UpperCAmelCase : str = TFDebertaVaForTokenClassification(config=UpperCamelCase_ ) __UpperCAmelCase : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCAmelCase : Dict = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = TFDebertaVaForQuestionAnswering(config=UpperCamelCase_ ) __UpperCAmelCase : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self ): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __A (__magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Any = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) snake_case :Tuple = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) snake_case :List[Any] = False snake_case :Optional[int] = False def _snake_case ( self ): __UpperCAmelCase : List[Any] = TFDebertaVaModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ ) @slow def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(UpperCamelCase_ ) @require_tf class __A (unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def _snake_case ( self ): pass @slow def _snake_case ( self ): __UpperCAmelCase : Any = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) __UpperCAmelCase : Optional[Any] = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __UpperCAmelCase : Dict = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] __UpperCAmelCase : Any = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCamelCase_ , atol=1E-4 )
10
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
1
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A (__magic_name__ , unittest.TestCase ): snake_case :Dict = LayoutLMTokenizer snake_case :Union[str, Any] = LayoutLMTokenizerFast snake_case :Any = True snake_case :int = True def _snake_case ( self ): super().setUp() __UpperCAmelCase : List[str] = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _snake_case ( self , **UpperCamelCase_ ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Dict = "UNwant\u00E9d,running" __UpperCAmelCase : Optional[int] = "unwanted, running" return input_text, output_text def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = self.tokenizer_class(self.vocab_file ) __UpperCAmelCase : Tuple = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(UpperCamelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [7, 4, 5, 10, 8, 9] ) def _snake_case ( self ): pass
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
10
1
'''simple docstring''' from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=30 , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=10 , UpperCamelCase_=0.0_2 , UpperCamelCase_=3 , UpperCamelCase_=None , ): __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : str = image_size __UpperCAmelCase : Union[str, Any] = patch_size __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : int = is_training __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Tuple = attention_probs_dropout_prob __UpperCAmelCase : Tuple = type_sequence_label_size __UpperCAmelCase : str = initializer_range __UpperCAmelCase : Dict = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCAmelCase : Tuple = (image_size // patch_size) ** 2 __UpperCAmelCase : Any = num_patches + 1 def _snake_case ( self ): __UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels def _snake_case ( self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = TFViTModel(config=UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. __UpperCAmelCase : List[str] = self.image_size // 2 __UpperCAmelCase : Dict = pixel_values[:, :, :image_size, :image_size] __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ , interpolate_pos_encoding=UpperCamelCase_ , training=UpperCamelCase_ ) __UpperCAmelCase : str = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.type_sequence_label_size __UpperCAmelCase : Dict = TFViTForImageClassification(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = model(UpperCamelCase_ , labels=UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. __UpperCAmelCase : Optional[Any] = self.image_size // 2 __UpperCAmelCase : Optional[int] = pixel_values[:, :, :image_size, :image_size] __UpperCAmelCase : Optional[int] = model(UpperCamelCase_ , interpolate_pos_encoding=UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCAmelCase : str = 1 __UpperCAmelCase : Tuple = TFViTForImageClassification(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : Optional[Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self ): __UpperCAmelCase : str = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class __A (__magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Any = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () snake_case :str = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) snake_case :Union[str, Any] = False snake_case :Tuple = False snake_case :int = False def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = TFViTModelTester(self ) __UpperCAmelCase : int = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def _snake_case ( self ): pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def _snake_case ( self ): pass def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __UpperCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(UpperCamelCase_ ) __UpperCAmelCase : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @slow def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(UpperCamelCase_ ) def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class __A (unittest.TestCase ): @cached_property def _snake_case ( self ): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def _snake_case ( self ): __UpperCAmelCase : Any = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) __UpperCAmelCase : str = self.default_image_processor __UpperCAmelCase : Optional[int] = prepare_img() __UpperCAmelCase : Optional[int] = image_processor(images=UpperCamelCase_ , return_tensors="tf" ) # forward pass __UpperCAmelCase : Optional[Any] = model(**UpperCamelCase_ ) # verify the logits __UpperCAmelCase : List[Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) __UpperCAmelCase : List[str] = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 )
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" with open(lowerCamelCase__ ) as metadata_file: __UpperCAmelCase : List[Any] = json.load(lowerCamelCase__ ) __UpperCAmelCase : Dict = LukeConfig(use_entity_aware_attention=lowerCamelCase__ , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __UpperCAmelCase : Optional[Any] = torch.load(lowerCamelCase__ , map_location="cpu" )["module"] # Load the entity vocab file __UpperCAmelCase : Optional[int] = load_original_entity_vocab(lowerCamelCase__ ) # add an entry for [MASK2] __UpperCAmelCase : Dict = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __UpperCAmelCase : List[str] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __UpperCAmelCase : List[str] = AddedToken("<ent>" , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = AddedToken("<ent2>" , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , "tokenizer_config.json" ) , "r" ) as f: __UpperCAmelCase : Dict = json.load(lowerCamelCase__ ) __UpperCAmelCase : Optional[int] = "MLukeTokenizer" with open(os.path.join(lowerCamelCase__ , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : Tuple = MLukeTokenizer.from_pretrained(lowerCamelCase__ ) # Initialize the embeddings of the special tokens __UpperCAmelCase : Any = tokenizer.convert_tokens_to_ids(["@"] )[0] __UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(["#"] )[0] __UpperCAmelCase : Tuple = state_dict["embeddings.word_embeddings.weight"] __UpperCAmelCase : List[str] = word_emb[ent_init_index].unsqueeze(0 ) __UpperCAmelCase : int = word_emb[enta_init_index].unsqueeze(0 ) __UpperCAmelCase : Any = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __UpperCAmelCase : Union[str, Any] = state_dict[bias_name] __UpperCAmelCase : Tuple = decoder_bias[ent_init_index].unsqueeze(0 ) __UpperCAmelCase : str = decoder_bias[enta_init_index].unsqueeze(0 ) __UpperCAmelCase : Optional[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __UpperCAmelCase : int = f"""encoder.layer.{layer_index}.attention.self.""" __UpperCAmelCase : Tuple = state_dict[prefix + matrix_name] __UpperCAmelCase : int = state_dict[prefix + matrix_name] __UpperCAmelCase : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __UpperCAmelCase : Tuple = state_dict["entity_embeddings.entity_embeddings.weight"] __UpperCAmelCase : Any = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __UpperCAmelCase : List[str] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __UpperCAmelCase : Union[str, Any] = state_dict["entity_predictions.bias"] __UpperCAmelCase : Union[str, Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __UpperCAmelCase : str = torch.cat([entity_prediction_bias, entity_mask_bias] ) __UpperCAmelCase : Optional[Any] = LukeForMaskedLM(config=lowerCamelCase__ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __UpperCAmelCase : Any = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __UpperCAmelCase : Dict = state_dict[key] else: __UpperCAmelCase : Dict = state_dict[key] __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) if set(lowerCamelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowerCamelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __UpperCAmelCase : List[Any] = MLukeTokenizer.from_pretrained(lowerCamelCase__ , task="entity_classification" ) __UpperCAmelCase : Optional[int] = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __UpperCAmelCase : Dict = (0, 9) __UpperCAmelCase : List[str] = tokenizer(lowerCamelCase__ , entity_spans=[span] , return_tensors="pt" ) __UpperCAmelCase : int = model(**lowerCamelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __UpperCAmelCase : int = torch.Size((1, 33, 768) ) __UpperCAmelCase : str = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __UpperCAmelCase : Tuple = torch.Size((1, 1, 768) ) __UpperCAmelCase : Tuple = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction __UpperCAmelCase : Optional[int] = MLukeTokenizer.from_pretrained(lowerCamelCase__ ) __UpperCAmelCase : int = "Tokyo is the capital of <mask>." __UpperCAmelCase : List[str] = (24, 30) __UpperCAmelCase : Any = tokenizer(lowerCamelCase__ , entity_spans=[span] , return_tensors="pt" ) __UpperCAmelCase : Tuple = model(**lowerCamelCase__ ) __UpperCAmelCase : List[Any] = encoding["input_ids"][0].tolist() __UpperCAmelCase : Union[str, Any] = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __UpperCAmelCase : Optional[Any] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCamelCase__ ) __UpperCAmelCase : Dict = outputs.entity_logits[0][0].argmax().item() __UpperCAmelCase : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowerCamelCase__ ) ) model.save_pretrained(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : int = ["[MASK]", "[PAD]", "[UNK]"] __UpperCAmelCase : Dict = [json.loads(lowerCamelCase__ ) for line in open(lowerCamelCase__ )] __UpperCAmelCase : str = {} for entry in data: __UpperCAmelCase : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __UpperCAmelCase : int = entity_id break __UpperCAmelCase : Union[str, Any] = f"""{language}:{entity_name}""" __UpperCAmelCase : List[str] = entity_id return new_mapping if __name__ == "__main__": _a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) _a : Any = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
10
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
10
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
1
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = set_counts __UpperCAmelCase : int = max(UpperCamelCase_ ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Any = [1] * num_sets __UpperCAmelCase : Any = list(range(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Dict = src_parent __UpperCAmelCase : Dict = self.set_counts[src_parent] __UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ ) return True def _snake_case ( self , UpperCamelCase_ ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
10
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if colsa != 1: __UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if rowsa != rowsa: __UpperCAmelCase : Optional[int] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != rowsa: __UpperCAmelCase : List[str] = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}""" ) raise ValueError(lowerCamelCase__ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape strictly_diagonally_dominant(lowerCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase__ ): __UpperCAmelCase : int = [] for row in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = 0 for col in range(lowerCamelCase__ ): if col == row: __UpperCAmelCase : int = table[row][col] elif col == cols - 1: __UpperCAmelCase : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : List[Any] = (temp + val) / denom new_val.append(lowerCamelCase__ ) __UpperCAmelCase : str = new_val return [float(lowerCamelCase__ ) for i in new_val] def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape __UpperCAmelCase : str = True for i in range(0 , lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' import os def _lowercase ( lowerCamelCase__ = "input.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) as input_file: __UpperCAmelCase : str = [ [int(lowerCamelCase__ ) for element in line.split("," )] for line in input_file.readlines() ] __UpperCAmelCase : Dict = len(lowerCamelCase__ ) __UpperCAmelCase : Optional[int] = len(matrix[0] ) __UpperCAmelCase : int = [[-1 for _ in range(lowerCamelCase__ )] for _ in range(lowerCamelCase__ )] for i in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = matrix[i][0] for j in range(1 , lowerCamelCase__ ): for i in range(lowerCamelCase__ ): __UpperCAmelCase : Optional[Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowerCamelCase__ ): __UpperCAmelCase : str = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __UpperCAmelCase : Dict = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
10
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Any = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class __A (__magic_name__ ): def __init__( self ): # test for the above condition self.test() def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : int = False while not completed: if counter == 1: self.reset() __UpperCAmelCase : Any = self.advance() if not self.does_advance(UpperCamelCase_ ): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = self.update(UpperCamelCase_ ) counter += 1 if counter > 1_00_00: raise Exception("update() does not fulfill the constraint." ) if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly." ) @abstractmethod def _snake_case ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case ( self , UpperCamelCase_ ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case ( self , UpperCamelCase_ ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case ( self , UpperCamelCase_=False ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class __A (__magic_name__ ): def __init__( self , UpperCamelCase_ ): super(UpperCamelCase_ , self ).__init__() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or len(UpperCamelCase_ ) == 0: raise ValueError(f"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) __UpperCAmelCase : Tuple = token_ids __UpperCAmelCase : Any = len(self.token_ids ) __UpperCAmelCase : Union[str, Any] = -1 # the index of the currently fulfilled step __UpperCAmelCase : int = False def _snake_case ( self ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def _snake_case ( self , UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(UpperCamelCase_ )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def _snake_case ( self , UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(UpperCamelCase_ )}""" ) __UpperCAmelCase : str = False __UpperCAmelCase : str = False __UpperCAmelCase : int = False if self.does_advance(UpperCamelCase_ ): self.fulfilled_idx += 1 __UpperCAmelCase : Optional[Any] = True if self.fulfilled_idx == (self.seqlen - 1): __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Optional[int] = completed else: # failed to make progress. __UpperCAmelCase : Optional[int] = True self.reset() return stepped, completed, reset def _snake_case ( self ): __UpperCAmelCase : Dict = False __UpperCAmelCase : Optional[Any] = 0 def _snake_case ( self ): return self.seqlen - (self.fulfilled_idx + 1) def _snake_case ( self , UpperCamelCase_=False ): __UpperCAmelCase : Dict = PhrasalConstraint(self.token_ids ) if stateful: __UpperCAmelCase : List[Any] = self.seqlen __UpperCAmelCase : Dict = self.fulfilled_idx __UpperCAmelCase : List[Any] = self.completed return new_constraint class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_=True ): __UpperCAmelCase : Union[str, Any] = max([len(UpperCamelCase_ ) for one in nested_token_ids] ) __UpperCAmelCase : List[str] = {} for token_ids in nested_token_ids: __UpperCAmelCase : Dict = root for tidx, token_id in enumerate(UpperCamelCase_ ): if token_id not in level: __UpperCAmelCase : Any = {} __UpperCAmelCase : Tuple = level[token_id] if no_subsets and self.has_subsets(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( "Each list in `nested_token_ids` can't be a complete subset of another list, but is" f""" {nested_token_ids}.""" ) __UpperCAmelCase : Union[str, Any] = root def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = self.trie for current_token in current_seq: __UpperCAmelCase : Dict = start[current_token] __UpperCAmelCase : str = list(start.keys() ) return next_tokens def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Any = self.next_tokens(UpperCamelCase_ ) return len(UpperCamelCase_ ) == 0 def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = list(root.values() ) if len(UpperCamelCase_ ) == 0: return 1 else: return sum([self.count_leaves(UpperCamelCase_ ) for nn in next_nodes] ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.count_leaves(UpperCamelCase_ ) return len(UpperCamelCase_ ) != leaf_count class __A (__magic_name__ ): def __init__( self , UpperCamelCase_ ): super(UpperCamelCase_ , self ).__init__() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or len(UpperCamelCase_ ) == 0: raise ValueError(f"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(UpperCamelCase_ , UpperCamelCase_ ) for token_ids in nested_token_ids ): raise ValueError(f"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) __UpperCAmelCase : Any = DisjunctiveTrie(UpperCamelCase_ ) __UpperCAmelCase : str = nested_token_ids __UpperCAmelCase : int = self.trie.max_height __UpperCAmelCase : Dict = [] __UpperCAmelCase : List[Any] = False def _snake_case ( self ): __UpperCAmelCase : List[str] = self.trie.next_tokens(self.current_seq ) if len(UpperCamelCase_ ) == 0: return None else: return token_list def _snake_case ( self , UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCamelCase_ )}""" ) __UpperCAmelCase : List[Any] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def _snake_case ( self , UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCamelCase_ )}""" ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : List[Any] = False if self.does_advance(UpperCamelCase_ ): self.current_seq.append(UpperCamelCase_ ) __UpperCAmelCase : int = True else: __UpperCAmelCase : Union[str, Any] = True self.reset() __UpperCAmelCase : Union[str, Any] = self.trie.reached_leaf(self.current_seq ) __UpperCAmelCase : Any = completed return stepped, completed, reset def _snake_case ( self ): __UpperCAmelCase : int = False __UpperCAmelCase : List[Any] = [] def _snake_case ( self ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def _snake_case ( self , UpperCamelCase_=False ): __UpperCAmelCase : Dict = DisjunctiveConstraint(self.token_ids ) if stateful: __UpperCAmelCase : Union[str, Any] = self.seqlen __UpperCAmelCase : List[Any] = self.current_seq __UpperCAmelCase : List[Any] = self.completed return new_constraint class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = constraints # max # of steps required to fulfill a given constraint __UpperCAmelCase : Optional[int] = max([c.seqlen for c in constraints] ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Dict = False self.init_state() def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : int = None __UpperCAmelCase : List[str] = [constraint.copy(stateful=UpperCamelCase_ ) for constraint in self.constraints] def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def _snake_case ( self ): __UpperCAmelCase : str = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __UpperCAmelCase : Union[str, Any] = constraint.advance() if isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.append(UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.extend(UpperCamelCase_ ) else: __UpperCAmelCase : Dict = self.inprogress_constraint.advance() if isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.append(UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.extend(UpperCamelCase_ ) if len(UpperCamelCase_ ) == 0: return None else: return token_list def _snake_case ( self , UpperCamelCase_ ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.add(UpperCamelCase_ ) # the entire list of constraints are fulfilled if self.completed: break def _snake_case ( self , UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f"""`token_id` should be an `int`, but is `{token_id}`.""" ) __UpperCAmelCase , __UpperCAmelCase : int = False, False if self.completed: __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.inprogress_constraint.update(UpperCamelCase_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCamelCase_ ) ) __UpperCAmelCase : Tuple = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __UpperCAmelCase : List[Any] = None if len(self.pending_constraints ) == 0: # we're done! __UpperCAmelCase : List[Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCamelCase_ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = pending_constraint.update(UpperCamelCase_ ) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true." ) if complete: self.complete_constraints.append(UpperCamelCase_ ) __UpperCAmelCase : int = None if not complete and stepped: __UpperCAmelCase : Any = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __UpperCAmelCase : Dict = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __UpperCAmelCase : str = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def _snake_case ( self , UpperCamelCase_=True ): __UpperCAmelCase : List[Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __UpperCAmelCase : List[Any] = [ constraint.copy(stateful=UpperCamelCase_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __UpperCAmelCase : List[str] = self.inprogress_constraint.copy(stateful=UpperCamelCase_ ) __UpperCAmelCase : Dict = [constraint.copy() for constraint in self.pending_constraints] return new_state
10
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
'''simple docstring''' def _lowercase ( ) -> int: """simple docstring""" return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(lowerCamelCase__ , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
10
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Any = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Union[str, Any] = "ibert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Tuple = quant_mode __UpperCAmelCase : Union[str, Any] = force_dequant class __A (__magic_name__ ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
10
1
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __A (__magic_name__ , unittest.TestCase ): snake_case :Optional[int] = CpmAntTokenizer snake_case :List[str] = False def _snake_case ( self ): super().setUp() __UpperCAmelCase : Any = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] __UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def _snake_case ( self ): __UpperCAmelCase : str = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) __UpperCAmelCase : str = "今天天气真好!" __UpperCAmelCase : str = ["今天", "天气", "真", "好", "!"] __UpperCAmelCase : Optional[int] = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : List[str] = "今天天气真好!" __UpperCAmelCase : Any = [tokenizer.bos_token] + tokens __UpperCAmelCase : Any = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ ) __UpperCAmelCase : int = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
10
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ ) try: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead." __UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] ) __UpperCAmelCase : Any = "" __UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] ) __UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
10
1
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _a : str = (720, 1280) # Height, Width _a : Any = (0.4, 0.6) # if height or width lower than this scale, drop it. _a : List[str] = 1 / 100 _a : Any = "" _a : Union[str, Any] = "" _a : Optional[Any] = "" _a : Tuple = 250 def _lowercase ( ) -> None: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : int = get_dataset(lowerCamelCase__ , lowerCamelCase__ ) for index in range(lowerCamelCase__ ): __UpperCAmelCase : List[Any] = random.sample(range(len(lowerCamelCase__ ) ) , 4 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = update_image_and_anno( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , filter_scale=lowerCamelCase__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase : str = random_chars(32 ) __UpperCAmelCase : Any = path.split(os.sep )[-1].rsplit("." , 1 )[0] __UpperCAmelCase : Any = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(f"""{file_root}.jpg""" , lowerCamelCase__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) __UpperCAmelCase : Union[str, Any] = [] for anno in new_annos: __UpperCAmelCase : int = anno[3] - anno[1] __UpperCAmelCase : List[Any] = anno[4] - anno[2] __UpperCAmelCase : Any = anno[1] + width / 2 __UpperCAmelCase : Optional[int] = anno[2] + height / 2 __UpperCAmelCase : List[Any] = f"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(lowerCamelCase__ ) with open(f"""{file_root}.txt""" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> tuple[list, list]: """simple docstring""" __UpperCAmelCase : Dict = [] __UpperCAmelCase : List[Any] = [] for label_file in glob.glob(os.path.join(lowerCamelCase__ , "*.txt" ) ): __UpperCAmelCase : Optional[Any] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(lowerCamelCase__ ) as in_file: __UpperCAmelCase : int = in_file.readlines() __UpperCAmelCase : List[Any] = os.path.join(lowerCamelCase__ , f"""{label_name}.jpg""" ) __UpperCAmelCase : Optional[Any] = [] for obj_list in obj_lists: __UpperCAmelCase : Union[str, Any] = obj_list.rstrip("\n" ).split(" " ) __UpperCAmelCase : str = float(obj[1] ) - float(obj[3] ) / 2 __UpperCAmelCase : Optional[Any] = float(obj[2] ) - float(obj[4] ) / 2 __UpperCAmelCase : Optional[Any] = float(obj[1] ) + float(obj[3] ) / 2 __UpperCAmelCase : str = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(lowerCamelCase__ ) labels.append(lowerCamelCase__ ) return img_paths, labels def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" __UpperCAmelCase : Optional[Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __UpperCAmelCase : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCAmelCase : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __UpperCAmelCase : Tuple = int(scale_x * output_size[1] ) __UpperCAmelCase : List[Any] = int(scale_y * output_size[0] ) __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : Any = [] for i, index in enumerate(lowerCamelCase__ ): __UpperCAmelCase : str = all_img_list[index] path_list.append(lowerCamelCase__ ) __UpperCAmelCase : Tuple = all_annos[index] __UpperCAmelCase : List[str] = cva.imread(lowerCamelCase__ ) if i == 0: # top-left __UpperCAmelCase : Any = cva.resize(lowerCamelCase__ , (divid_point_x, divid_point_y) ) __UpperCAmelCase : Tuple = img for bbox in img_annos: __UpperCAmelCase : List[Any] = bbox[1] * scale_x __UpperCAmelCase : List[Any] = bbox[2] * scale_y __UpperCAmelCase : Optional[Any] = bbox[3] * scale_x __UpperCAmelCase : int = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __UpperCAmelCase : Any = cva.resize(lowerCamelCase__ , (output_size[1] - divid_point_x, divid_point_y) ) __UpperCAmelCase : Union[str, Any] = img for bbox in img_annos: __UpperCAmelCase : Any = scale_x + bbox[1] * (1 - scale_x) __UpperCAmelCase : int = bbox[2] * scale_y __UpperCAmelCase : str = scale_x + bbox[3] * (1 - scale_x) __UpperCAmelCase : str = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __UpperCAmelCase : Optional[int] = cva.resize(lowerCamelCase__ , (divid_point_x, output_size[0] - divid_point_y) ) __UpperCAmelCase : Tuple = img for bbox in img_annos: __UpperCAmelCase : List[Any] = bbox[1] * scale_x __UpperCAmelCase : int = scale_y + bbox[2] * (1 - scale_y) __UpperCAmelCase : Any = bbox[3] * scale_x __UpperCAmelCase : Optional[int] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __UpperCAmelCase : List[str] = cva.resize( lowerCamelCase__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __UpperCAmelCase : Optional[int] = img for bbox in img_annos: __UpperCAmelCase : Any = scale_x + bbox[1] * (1 - scale_x) __UpperCAmelCase : Dict = scale_y + bbox[2] * (1 - scale_y) __UpperCAmelCase : Any = scale_x + bbox[3] * (1 - scale_x) __UpperCAmelCase : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __UpperCAmelCase : Any = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase : Dict = ascii_lowercase + digits return "".join(random.choice(lowerCamelCase__ ) for _ in range(lowerCamelCase__ ) ) if __name__ == "__main__": main() print("DONE ✅")
10
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case :Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case :Any = frozenset([] ) snake_case :Optional[int] = True @property def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[str] = (16, 16) __UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) __UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) __UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): __UpperCAmelCase : List[str] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) __UpperCAmelCase : Tuple = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) __UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _snake_case ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _snake_case ( self ): __UpperCAmelCase : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name ) __UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) __UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0] outputs.append(UpperCamelCase_ ) assert check_same_shape(UpperCamelCase_ ) @require_torch_gpu @slow class __A (unittest.TestCase ): def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[int] = torch.manual_seed(33 ) __UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" __UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images __UpperCAmelCase : int = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _snake_case ( self ): __UpperCAmelCase : List[Any] = torch.manual_seed(33 ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" __UpperCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) __UpperCAmelCase : Dict = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
10
1
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
1
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
10
1
'''simple docstring''' import os from math import logaa def _lowercase ( lowerCamelCase__ = "base_exp.txt" ) -> int: """simple docstring""" __UpperCAmelCase : float = 0 __UpperCAmelCase : Dict = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) ): __UpperCAmelCase , __UpperCAmelCase : Any = list(map(lowerCamelCase__ , line.split("," ) ) ) if x * logaa(lowerCamelCase__ ) > largest: __UpperCAmelCase : Any = x * logaa(lowerCamelCase__ ) __UpperCAmelCase : List[str] = i + 1 return result if __name__ == "__main__": print(solution())
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowercase ( lowerCamelCase__ , lowerCamelCase__=0.999 , lowerCamelCase__="cosine" , ) -> Dict: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __UpperCAmelCase : Any = [] for i in range(lowerCamelCase__ ): __UpperCAmelCase : Tuple = i / num_diffusion_timesteps __UpperCAmelCase : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ) , lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__ , dtype=torch.floataa ) class __A (__magic_name__ , __magic_name__ ): snake_case :Optional[int] = [e.name for e in KarrasDiffusionSchedulers] snake_case :Dict = 2 @register_to_config def __init__( self , UpperCamelCase_ = 10_00 , UpperCamelCase_ = 0.0_0_0_8_5 , UpperCamelCase_ = 0.0_1_2 , UpperCamelCase_ = "linear" , UpperCamelCase_ = None , UpperCamelCase_ = "epsilon" , UpperCamelCase_ = "linspace" , UpperCamelCase_ = 0 , ): if trained_betas is not None: __UpperCAmelCase : List[str] = torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": __UpperCAmelCase : int = torch.linspace(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __UpperCAmelCase : Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __UpperCAmelCase : Tuple = betas_for_alpha_bar(UpperCamelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) __UpperCAmelCase : Optional[Any] = 1.0 - self.betas __UpperCAmelCase : Optional[Any] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=None ): if schedule_timesteps is None: __UpperCAmelCase : int = self.timesteps __UpperCAmelCase : str = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __UpperCAmelCase : Union[str, Any] = 1 if len(UpperCamelCase_ ) > 1 else 0 else: __UpperCAmelCase : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep __UpperCAmelCase : Dict = self._index_counter[timestep_int] return indices[pos].item() @property def _snake_case ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : Tuple = self.index_for_timestep(UpperCamelCase_ ) if self.state_in_first_order: __UpperCAmelCase : Tuple = self.sigmas[step_index] else: __UpperCAmelCase : Tuple = self.sigmas_interpol[step_index] __UpperCAmelCase : Any = sample / ((sigma**2 + 1) ** 0.5) return sample def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , ): __UpperCAmelCase : Union[str, Any] = num_inference_steps __UpperCAmelCase : Any = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __UpperCAmelCase : int = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase_ , dtype=UpperCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __UpperCAmelCase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCAmelCase : Tuple = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __UpperCAmelCase : List[Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCAmelCase : Union[str, Any] = (np.arange(UpperCamelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCamelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) __UpperCAmelCase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __UpperCAmelCase : str = torch.from_numpy(np.log(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = np.interp(UpperCamelCase_ , np.arange(0 , len(UpperCamelCase_ ) ) , UpperCamelCase_ ) __UpperCAmelCase : Any = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __UpperCAmelCase : int = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ) # interpolate sigmas __UpperCAmelCase : Tuple = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __UpperCAmelCase : Tuple = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __UpperCAmelCase : Union[str, Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCamelCase_ ).startswith("mps" ): # mps does not support float64 __UpperCAmelCase : Union[str, Any] = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=torch.floataa ) else: __UpperCAmelCase : Tuple = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) # interpolate timesteps __UpperCAmelCase : Tuple = self.sigma_to_t(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=timesteps.dtype ) __UpperCAmelCase : int = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __UpperCAmelCase : List[str] = torch.cat([timesteps[:1], interleaved_timesteps] ) __UpperCAmelCase : str = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __UpperCAmelCase : List[str] = defaultdict(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): # get log sigma __UpperCAmelCase : Union[str, Any] = sigma.log() # get distribution __UpperCAmelCase : Dict = log_sigma - self.log_sigmas[:, None] # get sigmas range __UpperCAmelCase : Optional[int] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __UpperCAmelCase : List[str] = low_idx + 1 __UpperCAmelCase : Union[str, Any] = self.log_sigmas[low_idx] __UpperCAmelCase : List[Any] = self.log_sigmas[high_idx] # interpolate sigmas __UpperCAmelCase : Tuple = (low - log_sigma) / (low - high) __UpperCAmelCase : int = w.clamp(0 , 1 ) # transform interpolation to time range __UpperCAmelCase : Optional[Any] = (1 - w) * low_idx + w * high_idx __UpperCAmelCase : Dict = t.view(sigma.shape ) return t @property def _snake_case ( self ): return self.sample is None def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True , ): __UpperCAmelCase : Optional[int] = self.index_for_timestep(UpperCamelCase_ ) # advance index counter by 1 __UpperCAmelCase : List[str] = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __UpperCAmelCase : int = self.sigmas[step_index] __UpperCAmelCase : str = self.sigmas_interpol[step_index + 1] __UpperCAmelCase : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __UpperCAmelCase : List[str] = self.sigmas[step_index - 1] __UpperCAmelCase : int = self.sigmas_interpol[step_index] __UpperCAmelCase : int = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Optional[int] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __UpperCAmelCase : Optional[int] = sigma_hat if self.state_in_first_order else sigma_interpol __UpperCAmelCase : Union[str, Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __UpperCAmelCase : Tuple = sigma_hat if self.state_in_first_order else sigma_interpol __UpperCAmelCase : int = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __UpperCAmelCase : Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __UpperCAmelCase : List[Any] = sigma_interpol - sigma_hat # store for 2nd order step __UpperCAmelCase : int = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __UpperCAmelCase : int = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __UpperCAmelCase : Any = sigma_next - sigma_hat __UpperCAmelCase : Dict = self.sample __UpperCAmelCase : str = None __UpperCAmelCase : List[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __UpperCAmelCase : Any = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase_ ): # mps does not support float64 __UpperCAmelCase : int = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __UpperCAmelCase : List[Any] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __UpperCAmelCase : Dict = self.timesteps.to(original_samples.device ) __UpperCAmelCase : Optional[Any] = timesteps.to(original_samples.device ) __UpperCAmelCase : Tuple = [self.index_for_timestep(UpperCamelCase_ , UpperCamelCase_ ) for t in timesteps] __UpperCAmelCase : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __UpperCAmelCase : Optional[int] = sigma.unsqueeze(-1 ) __UpperCAmelCase : Union[str, Any] = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
10
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _a : str = datasets.load_iris() _a : List[Any] = np.array(data["data"]) _a : Optional[Any] = np.array(data["target"]) _a : Dict = data["target_names"] _a , _a , _a , _a : Any = train_test_split(X, y) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified __UpperCAmelCase : int = [] for data_point in data: __UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
10
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : Tuple = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __A (__magic_name__ ): snake_case :Union[str, Any] = "codegen" snake_case :List[str] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , UpperCamelCase_=5_04_00 , UpperCamelCase_=20_48 , UpperCamelCase_=20_48 , UpperCamelCase_=40_96 , UpperCamelCase_=28 , UpperCamelCase_=16 , UpperCamelCase_=64 , UpperCamelCase_=None , UpperCamelCase_="gelu_new" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=1E-5 , UpperCamelCase_=0.0_2 , UpperCamelCase_=True , UpperCamelCase_=5_02_56 , UpperCamelCase_=5_02_56 , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : str = n_ctx __UpperCAmelCase : Optional[int] = n_positions __UpperCAmelCase : Dict = n_embd __UpperCAmelCase : Tuple = n_layer __UpperCAmelCase : Tuple = n_head __UpperCAmelCase : List[str] = n_inner __UpperCAmelCase : Union[str, Any] = rotary_dim __UpperCAmelCase : Union[str, Any] = activation_function __UpperCAmelCase : List[Any] = resid_pdrop __UpperCAmelCase : str = embd_pdrop __UpperCAmelCase : Optional[int] = attn_pdrop __UpperCAmelCase : Optional[int] = layer_norm_epsilon __UpperCAmelCase : str = initializer_range __UpperCAmelCase : str = use_cache __UpperCAmelCase : Dict = bos_token_id __UpperCAmelCase : Any = eos_token_id super().__init__( bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , tie_word_embeddings=UpperCamelCase_ , **UpperCamelCase_ ) class __A (__magic_name__ ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ = "default" , UpperCamelCase_ = None , UpperCamelCase_ = False , ): super().__init__(UpperCamelCase_ , task=UpperCamelCase_ , patching_specs=UpperCamelCase_ , use_past=UpperCamelCase_ ) if not getattr(self._config , "pad_token_id" , UpperCamelCase_ ): # TODO: how to do that better? __UpperCAmelCase : Tuple = 0 @property def _snake_case ( self ): __UpperCAmelCase : str = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase_ , direction="inputs" ) __UpperCAmelCase : List[str] = {0: "batch", 1: "past_sequence + sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = -1 , UpperCamelCase_ = -1 , UpperCamelCase_ = False , UpperCamelCase_ = None , ): __UpperCAmelCase : Optional[int] = super(UpperCamelCase_ , self ).generate_dummy_inputs( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) # We need to order the input in the way they appears in the forward() __UpperCAmelCase : Optional[Any] = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __UpperCAmelCase , __UpperCAmelCase : Dict = common_inputs["input_ids"].shape # Not using the same length for past_key_values __UpperCAmelCase : Any = seqlen + 2 __UpperCAmelCase : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCAmelCase : List[str] = [ (torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) for _ in range(self.num_layers ) ] __UpperCAmelCase : str = common_inputs["attention_mask"] if self.use_past: __UpperCAmelCase : Any = ordered_inputs["attention_mask"].dtype __UpperCAmelCase : Any = torch.cat( [ordered_inputs["attention_mask"], torch.ones(UpperCamelCase_ , UpperCamelCase_ , dtype=UpperCamelCase_ )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
10
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = set_counts __UpperCAmelCase : int = max(UpperCamelCase_ ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Any = [1] * num_sets __UpperCAmelCase : Any = list(range(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Dict = src_parent __UpperCAmelCase : Dict = self.set_counts[src_parent] __UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ ) return True def _snake_case ( self , UpperCamelCase_ ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
10
1
'''simple docstring''' _a : Tuple = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } _a : int = {value: key for key, value in encode_dict.items()} def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : str = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" if set(lowerCamelCase__ ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces" ) __UpperCAmelCase : Optional[Any] = "" for word in coded.split(): while len(lowerCamelCase__ ) != 0: decoded += decode_dict[word[:5]] __UpperCAmelCase : Any = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
1
'''simple docstring''' from __future__ import annotations import math _a : List[Any] = "2020.9.26" _a : int = "xcodz-dot, cclaus, dhruvmanila" def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> tuple[float, float]: """simple docstring""" if not all(isinstance(lowerCamelCase__ , (float, int) ) for val in locals().values() ): __UpperCAmelCase : Dict = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(lowerCamelCase__ ) __UpperCAmelCase : List[str] = ((x * distance) / (z + distance)) * scale __UpperCAmelCase : Dict = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> tuple[float, float, float]: """simple docstring""" if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("Axis must be a str" ) __UpperCAmelCase : int = locals() del input_variables["axis"] if not all(isinstance(lowerCamelCase__ , (float, int) ) for val in input_variables.values() ): __UpperCAmelCase : int = ( "Input values except axis must either be float or int: " f"""{list(input_variables.values() )}""" ) raise TypeError(lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = (angle % 360) / 450 * 180 / math.pi if axis == "z": __UpperCAmelCase : Any = x * math.cos(lowerCamelCase__ ) - y * math.sin(lowerCamelCase__ ) __UpperCAmelCase : List[Any] = y * math.cos(lowerCamelCase__ ) + x * math.sin(lowerCamelCase__ ) __UpperCAmelCase : List[Any] = z elif axis == "x": __UpperCAmelCase : Union[str, Any] = y * math.cos(lowerCamelCase__ ) - z * math.sin(lowerCamelCase__ ) __UpperCAmelCase : Optional[int] = z * math.cos(lowerCamelCase__ ) + y * math.sin(lowerCamelCase__ ) __UpperCAmelCase : Dict = x elif axis == "y": __UpperCAmelCase : Optional[int] = x * math.cos(lowerCamelCase__ ) - z * math.sin(lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = z * math.cos(lowerCamelCase__ ) + x * math.sin(lowerCamelCase__ ) __UpperCAmelCase : Tuple = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(f"""{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }""")
10
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : int = logging.get_logger(__name__) _a : int = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __A (__magic_name__ ): snake_case :Optional[int] = "trocr" snake_case :Union[str, Any] = ["past_key_values"] snake_case :int = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self , UpperCamelCase_=5_02_65 , UpperCamelCase_=10_24 , UpperCamelCase_=12 , UpperCamelCase_=16 , UpperCamelCase_=40_96 , UpperCamelCase_="gelu" , UpperCamelCase_=5_12 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , **UpperCamelCase_ , ): __UpperCAmelCase : Optional[int] = vocab_size __UpperCAmelCase : Optional[Any] = d_model __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : Optional[Any] = decoder_attention_heads __UpperCAmelCase : Dict = decoder_ffn_dim __UpperCAmelCase : List[Any] = activation_function __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : List[str] = dropout __UpperCAmelCase : Union[str, Any] = attention_dropout __UpperCAmelCase : Dict = activation_dropout __UpperCAmelCase : Union[str, Any] = init_std __UpperCAmelCase : Optional[int] = decoder_layerdrop __UpperCAmelCase : Union[str, Any] = use_cache __UpperCAmelCase : Tuple = scale_embedding __UpperCAmelCase : str = use_learned_position_embeddings __UpperCAmelCase : int = layernorm_embedding super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
10
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType _a : List[str] = logging.get_logger(__name__) _a : Any = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class __A (__magic_name__ ): snake_case :List[str] = "imagegpt" snake_case :str = ["past_key_values"] snake_case :Tuple = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , UpperCamelCase_=5_12 + 1 , UpperCamelCase_=32 * 32 , UpperCamelCase_=5_12 , UpperCamelCase_=24 , UpperCamelCase_=8 , UpperCamelCase_=None , UpperCamelCase_="quick_gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=1E-5 , UpperCamelCase_=0.0_2 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : Dict = n_positions __UpperCAmelCase : Tuple = n_embd __UpperCAmelCase : List[str] = n_layer __UpperCAmelCase : Any = n_head __UpperCAmelCase : Optional[Any] = n_inner __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Optional[Any] = resid_pdrop __UpperCAmelCase : List[str] = embd_pdrop __UpperCAmelCase : str = attn_pdrop __UpperCAmelCase : int = layer_norm_epsilon __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : List[str] = scale_attn_weights __UpperCAmelCase : int = use_cache __UpperCAmelCase : Tuple = scale_attn_by_inverse_layer_idx __UpperCAmelCase : Optional[int] = reorder_and_upcast_attn __UpperCAmelCase : List[str] = tie_word_embeddings super().__init__(tie_word_embeddings=UpperCamelCase_ , **UpperCamelCase_ ) class __A (__magic_name__ ): @property def _snake_case ( self ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = 1 , UpperCamelCase_ = -1 , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = 3 , UpperCamelCase_ = 32 , UpperCamelCase_ = 32 , ): __UpperCAmelCase : Tuple = self._generate_dummy_images(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = dict(preprocessor(images=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) ) return inputs
10
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
1
'''simple docstring''' def _lowercase ( ) -> list[list[int]]: """simple docstring""" return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] _a : int = generate_large_matrix() _a : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _lowercase ( lowerCamelCase__ ) -> None: """simple docstring""" assert all(row == sorted(lowerCamelCase__ , reverse=lowerCamelCase__ ) for row in grid ) assert all(list(lowerCamelCase__ ) == sorted(lowerCamelCase__ , reverse=lowerCamelCase__ ) for col in zip(*lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : Optional[Any] = len(lowerCamelCase__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : int = (left + right) // 2 __UpperCAmelCase : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Optional[int] = mid + 1 else: __UpperCAmelCase : int = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : int = 0 __UpperCAmelCase : List[Any] = len(grid[0] ) for i in range(len(lowerCamelCase__ ) ): __UpperCAmelCase : Optional[Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(lowerCamelCase__ ) * len(grid[0] )) - total def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Optional[int] = 0 for row in grid: for i, number in enumerate(lowerCamelCase__ ): if number < 0: total += len(lowerCamelCase__ ) - i break return total def _lowercase ( ) -> None: """simple docstring""" from timeit import timeit print("Running benchmarks" ) __UpperCAmelCase : Optional[Any] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Any = timeit(f"""{func}(grid=grid)""" , setup=lowerCamelCase__ , number=500 ) print(f"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
10
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
1
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" if not sentence: return "" __UpperCAmelCase : List[str] = dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
10
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A (__magic_name__ , unittest.TestCase ): snake_case :Any = ShapEPipeline snake_case :Tuple = ["prompt"] snake_case :Dict = ["prompt"] snake_case :Tuple = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] snake_case :Any = False @property def _snake_case ( self ): return 32 @property def _snake_case ( self ): return 32 @property def _snake_case ( self ): return self.time_input_dim * 4 @property def _snake_case ( self ): return 8 @property def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(UpperCamelCase_ ) @property def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } __UpperCAmelCase : int = PriorTransformer(**UpperCamelCase_ ) return model @property def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : int = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } __UpperCAmelCase : Optional[Any] = ShapERenderer(**UpperCamelCase_ ) return model def _snake_case ( self ): __UpperCAmelCase : Any = self.dummy_prior __UpperCAmelCase : Tuple = self.dummy_text_encoder __UpperCAmelCase : List[Any] = self.dummy_tokenizer __UpperCAmelCase : Dict = self.dummy_renderer __UpperCAmelCase : Optional[Any] = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=10_24 , prediction_type="sample" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) __UpperCAmelCase : Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : Optional[Any] = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Any = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : List[str] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Optional[int] = self.pipeline_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __UpperCAmelCase : Any = output.images[0] __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __UpperCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): __UpperCAmelCase : int = torch_device == "cpu" __UpperCAmelCase : Optional[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def _snake_case ( self ): __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Optional[Any] = self.pipeline_class(**UpperCamelCase_ ) __UpperCAmelCase : int = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Dict = 1 __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : List[Any] = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: __UpperCAmelCase : Dict = batch_size * [inputs[key]] __UpperCAmelCase : Any = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A (unittest.TestCase ): def _snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) __UpperCAmelCase : Tuple = ShapEPipeline.from_pretrained("openai/shap-e" ) __UpperCAmelCase : Dict = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __UpperCAmelCase : Union[str, Any] = pipe( "a shark" , generator=UpperCamelCase_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
10
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
1
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __A (__magic_name__ ): snake_case :Dict = (PNDMScheduler,) snake_case :List[Any] = (("num_inference_steps", 50),) def _snake_case ( self , **UpperCamelCase_ ): __UpperCAmelCase : int = { "num_train_timesteps": 10_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**UpperCamelCase_ ) return config def _snake_case ( self , UpperCamelCase_=0 , **UpperCamelCase_ ): __UpperCAmelCase : Any = dict(self.forward_default_kwargs ) __UpperCAmelCase : Dict = kwargs.pop("num_inference_steps" , UpperCamelCase_ ) __UpperCAmelCase : str = self.dummy_sample __UpperCAmelCase : Optional[Any] = 0.1 * sample __UpperCAmelCase : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __UpperCAmelCase : List[Any] = self.get_scheduler_config(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals __UpperCAmelCase : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_ ) __UpperCAmelCase : int = scheduler_class.from_pretrained(UpperCamelCase_ ) new_scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals __UpperCAmelCase : Any = dummy_past_residuals[:] __UpperCAmelCase : Any = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : Dict = new_scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase : List[str] = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : int = new_scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ): pass def _snake_case ( self , UpperCamelCase_=0 , **UpperCamelCase_ ): __UpperCAmelCase : str = dict(self.forward_default_kwargs ) __UpperCAmelCase : Optional[Any] = kwargs.pop("num_inference_steps" , UpperCamelCase_ ) __UpperCAmelCase : int = self.dummy_sample __UpperCAmelCase : int = 0.1 * sample __UpperCAmelCase : Dict = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __UpperCAmelCase : Optional[int] = self.get_scheduler_config() __UpperCAmelCase : Optional[int] = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase : Union[str, Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = scheduler_class.from_pretrained(UpperCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase : Optional[int] = dummy_past_residuals[:] __UpperCAmelCase : str = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : str = new_scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase : Any = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : List[str] = new_scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self , **UpperCamelCase_ ): __UpperCAmelCase : Dict = self.scheduler_classes[0] __UpperCAmelCase : Optional[int] = self.get_scheduler_config(**UpperCamelCase_ ) __UpperCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = 10 __UpperCAmelCase : Optional[Any] = self.dummy_model() __UpperCAmelCase : Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase_ ) for i, t in enumerate(scheduler.prk_timesteps ): __UpperCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __UpperCAmelCase : Any = model(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : List[Any] = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample return sample def _snake_case ( self ): __UpperCAmelCase : List[Any] = dict(self.forward_default_kwargs ) __UpperCAmelCase : Optional[int] = kwargs.pop("num_inference_steps" , UpperCamelCase_ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase : str = self.get_scheduler_config() __UpperCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) __UpperCAmelCase : Any = self.dummy_sample __UpperCAmelCase : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase_ , "set_timesteps" ): scheduler.set_timesteps(UpperCamelCase_ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase_ , "set_timesteps" ): __UpperCAmelCase : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase : int = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] __UpperCAmelCase : Optional[Any] = dummy_past_residuals[:] __UpperCAmelCase : Dict = scheduler.step_prk(UpperCamelCase_ , 0 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : int = scheduler.step_prk(UpperCamelCase_ , 1 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase : Optional[int] = scheduler.step_plms(UpperCamelCase_ , 0 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : Union[str, Any] = scheduler.step_plms(UpperCamelCase_ , 1 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _snake_case ( self ): for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def _snake_case ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCamelCase_ ) __UpperCAmelCase : str = self.scheduler_classes[0] __UpperCAmelCase : str = self.get_scheduler_config(steps_offset=1 ) __UpperCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def _snake_case ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def _snake_case ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def _snake_case ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def _snake_case ( self ): for t in [1, 5, 10]: self.check_over_forward(time_step=UpperCamelCase_ ) def _snake_case ( self ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=UpperCamelCase_ ) def _snake_case ( self ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 __UpperCAmelCase : Dict = 27 for scheduler_class in self.scheduler_classes: __UpperCAmelCase : Optional[Any] = self.dummy_sample __UpperCAmelCase : int = 0.1 * sample __UpperCAmelCase : Dict = self.get_scheduler_config() __UpperCAmelCase : str = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __UpperCAmelCase : int = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample def _snake_case ( self ): with self.assertRaises(UpperCamelCase_ ): __UpperCAmelCase : Tuple = self.scheduler_classes[0] __UpperCAmelCase : List[str] = self.get_scheduler_config() __UpperCAmelCase : Optional[Any] = scheduler_class(**UpperCamelCase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _snake_case ( self ): __UpperCAmelCase : Any = self.full_loop() __UpperCAmelCase : Tuple = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1E-3 def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.full_loop(prediction_type="v_prediction" ) __UpperCAmelCase : Any = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : List[Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1E-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1E-3 def _snake_case ( self ): # We specify different beta, so that the first alpha is 0.99 __UpperCAmelCase : str = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.0_1 ) __UpperCAmelCase : Tuple = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : List[str] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1E-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1E-3 def _snake_case ( self ): # We specify different beta, so that the first alpha is 0.99 __UpperCAmelCase : Dict = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.0_1 ) __UpperCAmelCase : Optional[int] = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : Tuple = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1E-3
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
10
1
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule _a : List[Any] = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _a : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) __UpperCAmelCase : Dict = str(bin(lowerCamelCase__ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowerCamelCase__ ) )[2:] __UpperCAmelCase : Optional[Any] = max(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase__ ) , b_binary.zfill(lowerCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
10
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
1
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
10
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
1
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __A (unittest.TestCase ): def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=4 , ): __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Optional[int] = seq_length __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : Any = use_attention_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : Union[str, Any] = intermediate_size __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Dict = num_choices def _snake_case ( self ): __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : int = None if self.use_attention_mask: __UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : str = None if self.use_token_type_ids: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : int = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = config_and_inputs __UpperCAmelCase : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def _snake_case ( self ): __UpperCAmelCase : Any = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = config_and_inputs __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __A (__magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = True snake_case :List[str] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = FlaxRobertaModelTester(self ) @slow def _snake_case ( self ): for model_class_name in self.all_model_classes: __UpperCAmelCase : str = model_class_name.from_pretrained("roberta-base" , from_pt=UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ )
10
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if colsa != 1: __UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if rowsa != rowsa: __UpperCAmelCase : Optional[int] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != rowsa: __UpperCAmelCase : List[str] = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}""" ) raise ValueError(lowerCamelCase__ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape strictly_diagonally_dominant(lowerCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase__ ): __UpperCAmelCase : int = [] for row in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = 0 for col in range(lowerCamelCase__ ): if col == row: __UpperCAmelCase : int = table[row][col] elif col == cols - 1: __UpperCAmelCase : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : List[Any] = (temp + val) / denom new_val.append(lowerCamelCase__ ) __UpperCAmelCase : str = new_val return [float(lowerCamelCase__ ) for i in new_val] def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape __UpperCAmelCase : str = True for i in range(0 , lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> None: """simple docstring""" __UpperCAmelCase : str = len(lowerCamelCase__ ) print("The following activities are selected:" ) # The first activity is always selected __UpperCAmelCase : int = 0 print(lowerCamelCase__ , end="," ) # Consider rest of the activities for j in range(lowerCamelCase__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowerCamelCase__ , end="," ) __UpperCAmelCase : Tuple = j if __name__ == "__main__": import doctest doctest.testmod() _a : Any = [1, 3, 0, 5, 8, 5] _a : Union[str, Any] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
10
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Any = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __A (unittest.TestCase , __magic_name__ ): def _snake_case ( self ): __UpperCAmelCase : str = load_tool("text-classification" ) self.tool.setup() __UpperCAmelCase : Any = load_tool("text-classification" , remote=UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Any = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(UpperCamelCase_ , "positive" ) def _snake_case ( self ): __UpperCAmelCase : str = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(UpperCamelCase_ , "positive" ) def _snake_case ( self ): __UpperCAmelCase : List[str] = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(UpperCamelCase_ , "positive" ) def _snake_case ( self ): __UpperCAmelCase : Any = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(UpperCamelCase_ , "positive" )
10
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Any = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Union[str, Any] = "ibert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Tuple = quant_mode __UpperCAmelCase : Union[str, Any] = force_dequant class __A (__magic_name__ ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
10
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Any = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Union[str, Any] = "ibert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Tuple = quant_mode __UpperCAmelCase : Union[str, Any] = force_dequant class __A (__magic_name__ ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
10
1
'''simple docstring''' import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _a : List[Any] = True from torch.cuda.amp import autocast _a : int = logging.getLogger(__name__) def _lowercase ( lowerCamelCase__=None , lowerCamelCase__=None ) -> Optional[Any]: """simple docstring""" return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class __A : snake_case :str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case :Optional[bool] = field( default=__magic_name__ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) snake_case :Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) snake_case :Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) snake_case :Optional[float] = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) snake_case :Optional[float] = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) snake_case :Optional[float] = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) snake_case :Optional[float] = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class __A : snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) snake_case :Optional[str] = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) snake_case :bool = field( default=__magic_name__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) snake_case :Optional[int] = field( default=__magic_name__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) snake_case :Optional[int] = field( default=__magic_name__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case :Optional[int] = field( default=__magic_name__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) snake_case :List[str] = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class __A : snake_case :WavaVecaProcessor snake_case :Union[bool, str] = True snake_case :Optional[int] = None snake_case :Optional[int] = None snake_case :Optional[int] = None snake_case :Optional[int] = None def __call__( self , UpperCamelCase_ ): # split inputs and labels since they have to be of different lenghts and need # different padding methods __UpperCAmelCase : List[Any] = [{"input_values": feature["input_values"]} for feature in features] __UpperCAmelCase : Optional[Any] = [{"input_ids": feature["labels"]} for feature in features] __UpperCAmelCase : int = self.processor.pad( UpperCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) __UpperCAmelCase : Optional[Any] = self.processor.pad( labels=UpperCamelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="pt" , ) # replace padding with -100 to ignore loss correctly __UpperCAmelCase : Union[str, Any] = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_00 ) __UpperCAmelCase : Dict = labels return batch class __A (__magic_name__ ): def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): model.train() __UpperCAmelCase : List[Any] = self._prepare_inputs(UpperCamelCase_ ) if self.use_amp: with autocast(): __UpperCAmelCase : Optional[int] = self.compute_loss(UpperCamelCase_ , UpperCamelCase_ ) else: __UpperCAmelCase : Any = self.compute_loss(UpperCamelCase_ , UpperCamelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __UpperCAmelCase : Any = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __UpperCAmelCase : Dict = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __UpperCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCamelCase_ ).backward() elif self.use_apex: with amp.scale_loss(UpperCamelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCamelCase_ ) else: loss.backward() return loss.detach() def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __UpperCAmelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCAmelCase : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , lowerCamelCase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __UpperCAmelCase : str = datasets.load_dataset( "common_voice" , data_args.dataset_config_name , split=data_args.train_split_name ) __UpperCAmelCase : Dict = datasets.load_dataset("common_voice" , data_args.dataset_config_name , split="test" ) # Create and save tokenizer __UpperCAmelCase : Dict = f"""[{''.join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowerCamelCase__ ): __UpperCAmelCase : Tuple = re.sub(lowerCamelCase__ , "" , batch["sentence"] ).lower() + " " return batch __UpperCAmelCase : Optional[Any] = train_dataset.map(lowerCamelCase__ , remove_columns=["sentence"] ) __UpperCAmelCase : str = eval_dataset.map(lowerCamelCase__ , remove_columns=["sentence"] ) def extract_all_chars(lowerCamelCase__ ): __UpperCAmelCase : List[Any] = " ".join(batch["text"] ) __UpperCAmelCase : int = list(set(lowerCamelCase__ ) ) return {"vocab": [vocab], "all_text": [all_text]} __UpperCAmelCase : List[str] = train_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , batch_size=-1 , keep_in_memory=lowerCamelCase__ , remove_columns=train_dataset.column_names , ) __UpperCAmelCase : List[str] = train_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , batch_size=-1 , keep_in_memory=lowerCamelCase__ , remove_columns=eval_dataset.column_names , ) __UpperCAmelCase : Optional[Any] = list(set(vocab_train["vocab"][0] ) | set(vocab_test["vocab"][0] ) ) __UpperCAmelCase : List[str] = {v: k for k, v in enumerate(lowerCamelCase__ )} __UpperCAmelCase : List[str] = vocab_dict[" "] del vocab_dict[" "] __UpperCAmelCase : int = len(lowerCamelCase__ ) __UpperCAmelCase : List[str] = len(lowerCamelCase__ ) with open("vocab.json" , "w" ) as vocab_file: json.dump(lowerCamelCase__ , lowerCamelCase__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase : Union[str, Any] = WavaVecaCTCTokenizer( "vocab.json" , unk_token="[UNK]" , pad_token="[PAD]" , word_delimiter_token="|" , ) __UpperCAmelCase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0.0 , do_normalize=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ ) __UpperCAmelCase : int = WavaVecaProcessor(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) __UpperCAmelCase : Any = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="mean" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __UpperCAmelCase : List[Any] = min(len(lowerCamelCase__ ) , data_args.max_train_samples ) __UpperCAmelCase : Union[str, Any] = train_dataset.select(range(lowerCamelCase__ ) ) if data_args.max_val_samples is not None: __UpperCAmelCase : Union[str, Any] = eval_dataset.select(range(data_args.max_val_samples ) ) __UpperCAmelCase : Dict = torchaudio.transforms.Resample(4_8000 , 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCamelCase__ ): __UpperCAmelCase , __UpperCAmelCase : Tuple = torchaudio.load(batch["path"] ) __UpperCAmelCase : List[Any] = resampler(lowerCamelCase__ ).squeeze().numpy() __UpperCAmelCase : Optional[Any] = 1_6000 __UpperCAmelCase : Optional[Any] = batch["text"] return batch __UpperCAmelCase : Union[str, Any] = train_dataset.map( lowerCamelCase__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __UpperCAmelCase : str = eval_dataset.map( lowerCamelCase__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(lowerCamelCase__ ): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" __UpperCAmelCase : Optional[int] = processor( audio=batch["speech"] , text=batch["target_text"] , sampling_rate=batch["sampling_rate"][0] ) batch.update(lowerCamelCase__ ) return batch __UpperCAmelCase : List[Any] = train_dataset.map( lowerCamelCase__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , ) __UpperCAmelCase : Union[str, Any] = eval_dataset.map( lowerCamelCase__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCamelCase__ , num_proc=data_args.preprocessing_num_workers , ) # Metric __UpperCAmelCase : Dict = datasets.load_metric("wer" ) def compute_metrics(lowerCamelCase__ ): __UpperCAmelCase : Dict = pred.predictions __UpperCAmelCase : Optional[Any] = np.argmax(lowerCamelCase__ , axis=-1 ) __UpperCAmelCase : Optional[Any] = processor.tokenizer.pad_token_id __UpperCAmelCase : int = processor.batch_decode(lowerCamelCase__ ) # we do not want to group tokens when computing the metrics __UpperCAmelCase : Tuple = processor.batch_decode(pred.label_ids , group_tokens=lowerCamelCase__ ) __UpperCAmelCase : str = wer_metric.compute(predictions=lowerCamelCase__ , references=lowerCamelCase__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __UpperCAmelCase : Any = DataCollatorCTCWithPadding(processor=lowerCamelCase__ , padding=lowerCamelCase__ ) # Initialize our Trainer __UpperCAmelCase : Any = CTCTrainer( model=lowerCamelCase__ , data_collator=lowerCamelCase__ , args=lowerCamelCase__ , compute_metrics=lowerCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __UpperCAmelCase : Tuple = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __UpperCAmelCase : Any = model_args.model_name_or_path else: __UpperCAmelCase : Any = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __UpperCAmelCase : Dict = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) trainer.save_model() __UpperCAmelCase : List[str] = train_result.metrics __UpperCAmelCase : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase__ ) ) __UpperCAmelCase : Any = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("train" , lowerCamelCase__ ) trainer.save_metrics("train" , lowerCamelCase__ ) trainer.save_state() # Evaluation __UpperCAmelCase : str = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __UpperCAmelCase : Dict = trainer.evaluate() __UpperCAmelCase : int = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCamelCase__ ) __UpperCAmelCase : List[Any] = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("eval" , lowerCamelCase__ ) trainer.save_metrics("eval" , lowerCamelCase__ ) return results if __name__ == "__main__": main()
10
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ ) try: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead." __UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] ) __UpperCAmelCase : Any = "" __UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] ) __UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
10
1
'''simple docstring''' # flake8: noqa # Lint as: python3 _a : Dict = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
10
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case :Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case :Any = frozenset([] ) snake_case :Optional[int] = True @property def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[str] = (16, 16) __UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) __UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) __UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): __UpperCAmelCase : List[str] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) __UpperCAmelCase : Tuple = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) __UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _snake_case ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _snake_case ( self ): __UpperCAmelCase : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name ) __UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) __UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0] outputs.append(UpperCamelCase_ ) assert check_same_shape(UpperCamelCase_ ) @require_torch_gpu @slow class __A (unittest.TestCase ): def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[int] = torch.manual_seed(33 ) __UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" __UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images __UpperCAmelCase : int = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _snake_case ( self ): __UpperCAmelCase : List[Any] = torch.manual_seed(33 ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" __UpperCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) __UpperCAmelCase : Dict = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
10
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_=12 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=0.0_2 , UpperCamelCase_=0 , UpperCamelCase_=None , ): __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Optional[int] = vocab_size __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Optional[Any] = projection_dim __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : List[str] = num_attention_heads __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[str] = dropout __UpperCAmelCase : Union[str, Any] = attention_dropout __UpperCAmelCase : Any = max_position_embeddings __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = scope __UpperCAmelCase : str = bos_token_id def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[str] = None if self.use_input_mask: __UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: __UpperCAmelCase : List[Any] = input_mask.numpy() __UpperCAmelCase , __UpperCAmelCase : List[Any] = input_mask.shape __UpperCAmelCase : Tuple = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCamelCase_ ): __UpperCAmelCase : Any = 1 __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[str] = self.get_config() return config, input_ids, tf.convert_to_tensor(UpperCamelCase_ ) def _snake_case ( self ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : str = TFBlipTextModel(config=UpperCamelCase_ ) __UpperCAmelCase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , training=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __A (__magic_name__ , unittest.TestCase ): snake_case :Optional[Any] = (TFBlipTextModel,) if is_tf_available() else () snake_case :Any = False snake_case :Dict = False snake_case :Dict = False def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = BlipTextModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _snake_case ( self ): pass def _snake_case ( self ): pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def _snake_case ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def _snake_case ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def _snake_case ( self ): pass @slow def _snake_case ( self ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = TFBlipTextModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=UpperCamelCase_ )
10
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __A (unittest.TestCase ): def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = 0 def _snake_case ( self ): __UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Optional[Any] = Path(UpperCamelCase_ ) / "preprocessor_config.json" __UpperCAmelCase : Optional[Any] = Path(UpperCamelCase_ ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(UpperCamelCase_ , "w" ) , ) json.dump({"model_type": "clip"} , open(UpperCamelCase_ , "w" ) ) __UpperCAmelCase : Any = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Optional[int] = Path(UpperCamelCase_ ) / "preprocessor_config.json" __UpperCAmelCase : Optional[Any] = Path(UpperCamelCase_ ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(UpperCamelCase_ , "w" ) , ) json.dump({"model_type": "clip"} , open(UpperCamelCase_ , "w" ) ) __UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : str = CLIPConfig() # Create a dummy config file with image_proceesor_type __UpperCAmelCase : Union[str, Any] = Path(UpperCamelCase_ ) / "preprocessor_config.json" __UpperCAmelCase : List[Any] = Path(UpperCamelCase_ ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(UpperCamelCase_ , "w" ) , ) json.dump({"model_type": "clip"} , open(UpperCamelCase_ , "w" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained(UpperCamelCase_ ).to_dict() config_dict.pop("image_processor_type" ) __UpperCAmelCase : Optional[Any] = CLIPImageProcessor(**UpperCamelCase_ ) # save in new folder model_config.save_pretrained(UpperCamelCase_ ) config.save_pretrained(UpperCamelCase_ ) __UpperCAmelCase : str = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) # make sure private variable is not incorrectly saved __UpperCAmelCase : Dict = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : str = Path(UpperCamelCase_ ) / "preprocessor_config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(UpperCamelCase_ , "w" ) , ) __UpperCAmelCase : Any = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): with self.assertRaisesRegex( UpperCamelCase_ , "clip-base is not a local folder and is not a valid model identifier" ): __UpperCAmelCase : Any = AutoImageProcessor.from_pretrained("clip-base" ) def _snake_case ( self ): with self.assertRaisesRegex( UpperCamelCase_ , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained(UpperCamelCase_ , revision="aaaaaa" ) def _snake_case ( self ): with self.assertRaisesRegex( UpperCamelCase_ , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): __UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model" ) def _snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): __UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=UpperCamelCase_ ) __UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase_ ) __UpperCAmelCase : int = AutoImageProcessor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , "NewImageProcessor" ) def _snake_case ( self ): try: AutoConfig.register("custom" , UpperCamelCase_ ) AutoImageProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoImageProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Union[str, Any] = Path(UpperCamelCase_ ) / "preprocessor_config.json" __UpperCAmelCase : Dict = Path(UpperCamelCase_ ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(UpperCamelCase_ , "w" ) , ) json.dump({"model_type": "clip"} , open(UpperCamelCase_ , "w" ) ) __UpperCAmelCase : Dict = CustomImageProcessor.from_pretrained(UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self ): class __A (__magic_name__ ): snake_case :Tuple = True try: AutoConfig.register("custom" , UpperCamelCase_ ) AutoImageProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) # If remote code is not set, the default is to use local __UpperCAmelCase : str = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(not hasattr(UpperCamelCase_ , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
10
1
'''simple docstring''' from __future__ import annotations from typing import TypedDict class __A (__magic_name__ ): snake_case :str snake_case :int def _lowercase ( lowerCamelCase__ ) -> list[str]: """simple docstring""" if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(lowerCamelCase__ ) )] def _lowercase ( lowerCamelCase__ ) -> BWTTransformDict: """simple docstring""" if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) __UpperCAmelCase : Union[str, Any] = all_rotations(lowerCamelCase__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation __UpperCAmelCase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(lowerCamelCase__ ), } return response def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: __UpperCAmelCase : Tuple = int(lowerCamelCase__ ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(lowerCamelCase__ ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) __UpperCAmelCase : List[str] = [""] * len(lowerCamelCase__ ) for _ in range(len(lowerCamelCase__ ) ): for i in range(len(lowerCamelCase__ ) ): __UpperCAmelCase : Optional[Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": _a : List[Any] = "Provide a string that I will generate its BWT transform: " _a : Union[str, Any] = input(entry_msg).strip() _a : Union[str, Any] = bwt_transform(s) print( f"""Burrows Wheeler transform for string '{s}' results """ f"""in '{result['bwt_string']}'""" ) _a : Optional[Any] = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( f"""Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' """ f"""we get original string '{original_string}'""" )
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : snake_case :int snake_case :Node | None = None snake_case :Node | None = None def _lowercase ( ) -> Node | None: """simple docstring""" __UpperCAmelCase : Optional[Any] = Node(1 ) __UpperCAmelCase : Union[str, Any] = Node(2 ) __UpperCAmelCase : Optional[int] = Node(3 ) __UpperCAmelCase : Optional[int] = Node(4 ) __UpperCAmelCase : List[Any] = Node(5 ) return tree def _lowercase ( lowerCamelCase__ ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _lowercase ( lowerCamelCase__ ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _lowercase ( lowerCamelCase__ ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _lowercase ( lowerCamelCase__ ) -> Sequence[Node | None]: """simple docstring""" __UpperCAmelCase : list[Any] = [] if root is None: return output __UpperCAmelCase : int = deque([root] ) while process_queue: __UpperCAmelCase : int = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Sequence[Node | None]: """simple docstring""" __UpperCAmelCase : list[Any] = [] def populate_output(lowerCamelCase__ , lowerCamelCase__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase__ , lowerCamelCase__ ) return output def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Sequence[Node | None]: """simple docstring""" __UpperCAmelCase : list[Any] = [] def populate_output(lowerCamelCase__ , lowerCamelCase__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase__ , lowerCamelCase__ ) return output def _lowercase ( lowerCamelCase__ ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] __UpperCAmelCase : list[Sequence[Node | None]] = [] __UpperCAmelCase : str = 0 __UpperCAmelCase : Tuple = height(lowerCamelCase__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase__ , lowerCamelCase__ ) ) __UpperCAmelCase : Union[str, Any] = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase__ , lowerCamelCase__ ) ) __UpperCAmelCase : Optional[int] = 0 return output def _lowercase ( ) -> None: # Main function for testing. """simple docstring""" __UpperCAmelCase : int = make_tree() print(f"""In-order Traversal: {inorder(lowerCamelCase__ )}""" ) print(f"""Pre-order Traversal: {preorder(lowerCamelCase__ )}""" ) print(f"""Post-order Traversal: {postorder(lowerCamelCase__ )}""" , "\n" ) print(f"""Height of Tree: {height(lowerCamelCase__ )}""" , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(lowerCamelCase__ ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(lowerCamelCase__ ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase__ , level=lowerCamelCase__ ) ) print("\nZigZag order Traversal: " ) print(zigzag(lowerCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
10
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _a : str = datasets.load_iris() _a : List[Any] = np.array(data["data"]) _a : Optional[Any] = np.array(data["target"]) _a : Dict = data["target_names"] _a , _a , _a , _a : Any = train_test_split(X, y) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified __UpperCAmelCase : int = [] for data_point in data: __UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
10
1
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _a : Optional[int] = False class __A (unittest.TestCase ): pass @nightly @require_torch_gpu class __A (unittest.TestCase ): def _snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : List[Any] = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) __UpperCAmelCase : List[Any] = torch.manual_seed(0 ) __UpperCAmelCase : Dict = pipe.dual_guided( prompt="first prompt" , image=UpperCamelCase_ , text_to_image_strength=0.7_5 , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained(UpperCamelCase_ , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : List[str] = generator.manual_seed(0 ) __UpperCAmelCase : str = pipe.dual_guided( prompt="first prompt" , image=UpperCamelCase_ , text_to_image_strength=0.7_5 , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _snake_case ( self ): __UpperCAmelCase : str = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : int = "cyberpunk 2077" __UpperCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) __UpperCAmelCase : List[str] = torch.manual_seed(0 ) __UpperCAmelCase : Any = pipe.dual_guided( prompt=UpperCamelCase_ , image=UpperCamelCase_ , text_to_image_strength=0.7_5 , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images __UpperCAmelCase : Union[str, Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase : List[Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __UpperCAmelCase : List[str] = "A painting of a squirrel eating a burger " __UpperCAmelCase : int = torch.manual_seed(0 ) __UpperCAmelCase : Any = pipe.text_to_image( prompt=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __UpperCAmelCase : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase : Optional[Any] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __UpperCAmelCase : Optional[int] = pipe.image_variation(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="numpy" ).images __UpperCAmelCase : Union[str, Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase : Optional[Any] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
10
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = set_counts __UpperCAmelCase : int = max(UpperCamelCase_ ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Any = [1] * num_sets __UpperCAmelCase : Any = list(range(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Dict = src_parent __UpperCAmelCase : Dict = self.set_counts[src_parent] __UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ ) return True def _snake_case ( self , UpperCamelCase_ ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
10
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _a : Optional[Any] = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _a : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
1
'''simple docstring''' from functools import lru_cache def _lowercase ( lowerCamelCase__ ) -> set: """simple docstring""" __UpperCAmelCase : int = 2 __UpperCAmelCase : Optional[Any] = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(lowerCamelCase__ ) if n > 1: factors.add(lowerCamelCase__ ) return factors @lru_cache def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" return len(unique_prime_factors(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" return len(set(lowerCamelCase__ ) ) in (0, 1) def _lowercase ( lowerCamelCase__ ) -> list: """simple docstring""" __UpperCAmelCase : List[str] = 2 while True: # Increment each value of a generated range __UpperCAmelCase : Tuple = [base + i for i in range(lowerCamelCase__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. __UpperCAmelCase : List[Any] = [upf_len(lowerCamelCase__ ) for x in group] checker.append(lowerCamelCase__ ) # If all numbers in the list are equal, return the group variable. if equality(lowerCamelCase__ ): return group # Increment our base variable by 1 base += 1 def _lowercase ( lowerCamelCase__ = 4 ) -> int: """simple docstring""" __UpperCAmelCase : str = run(lowerCamelCase__ ) return results[0] if len(lowerCamelCase__ ) else None if __name__ == "__main__": print(solution())
10
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" return str(lowerCamelCase__ ) == str(lowerCamelCase__ )[::-1] def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" return int(lowerCamelCase__ ) + int(str(lowerCamelCase__ )[::-1] ) def _lowercase ( lowerCamelCase__ = 1_0000 ) -> int: """simple docstring""" __UpperCAmelCase : Union[str, Any] = [] for num in range(1 , lowerCamelCase__ ): __UpperCAmelCase : Dict = 0 __UpperCAmelCase : str = num while iterations < 50: __UpperCAmelCase : List[str] = sum_reverse(lowerCamelCase__ ) iterations += 1 if is_palindrome(lowerCamelCase__ ): break else: lychrel_nums.append(lowerCamelCase__ ) return len(lowerCamelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
10
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
10
1
'''simple docstring''' _a : str = "Input must be a string of 8 numbers plus letter" _a : List[str] = "TRWAGMYFPDXBNJZSQVHLCKE" def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): __UpperCAmelCase : Dict = f"""Expected string as input, found {type(lowerCamelCase__ ).__name__}""" raise TypeError(lowerCamelCase__ ) __UpperCAmelCase : Tuple = spanish_id.replace("-" , "" ).upper() if len(lowerCamelCase__ ) != 9: raise ValueError(lowerCamelCase__ ) try: __UpperCAmelCase : Dict = int(spanish_id_clean[0:8] ) __UpperCAmelCase : Dict = spanish_id_clean[8] except ValueError as ex: raise ValueError(lowerCamelCase__ ) from ex if letter.isdigit(): raise ValueError(lowerCamelCase__ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
10
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
1
'''simple docstring''' import os def _lowercase ( lowerCamelCase__ = "matrix.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) as in_file: __UpperCAmelCase : str = in_file.read() __UpperCAmelCase : Union[str, Any] = [[int(lowerCamelCase__ ) for cell in row.split("," )] for row in data.strip().splitlines()] __UpperCAmelCase : Any = [[0 for cell in row] for row in grid] __UpperCAmelCase : List[str] = len(grid[0] ) __UpperCAmelCase : Any = [[0 for i in range(lowerCamelCase__ )] for j in range(lowerCamelCase__ )] __UpperCAmelCase : str = grid[0][0] for i in range(1 , lowerCamelCase__ ): __UpperCAmelCase : int = grid[0][i] + dp[0][i - 1] for i in range(1 , lowerCamelCase__ ): __UpperCAmelCase : Optional[Any] = grid[i][0] + dp[i - 1][0] for i in range(1 , lowerCamelCase__ ): for j in range(1 , lowerCamelCase__ ): __UpperCAmelCase : Any = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f"""{solution() = }""")
10
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
1
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar _a : int = TypeVar("_T") class __A (Generic[_T] ): def __init__( self , UpperCamelCase_ = None ): __UpperCAmelCase : list[_T] = list(iterable or [] ) __UpperCAmelCase : list[_T] = [] def __len__( self ): return len(self._stacka ) + len(self._stacka ) def __repr__( self ): return f"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def _snake_case ( self , UpperCamelCase_ ): self._stacka.append(UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : str = self._stacka.pop __UpperCAmelCase : Union[str, Any] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
10
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
1
'''simple docstring''' import sys from collections import defaultdict class __A : def __init__( self ): __UpperCAmelCase : Optional[Any] = [] def _snake_case ( self , UpperCamelCase_ ): return self.node_position[vertex] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = pos def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __UpperCAmelCase : int = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __UpperCAmelCase : List[Any] = 2 * start + 1 else: __UpperCAmelCase : Union[str, Any] = 2 * start + 2 if heap[smallest_child] < heap[start]: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = heap[smallest_child], positions[smallest_child] __UpperCAmelCase , __UpperCAmelCase : List[str] = ( heap[start], positions[start], ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = temp, tempa __UpperCAmelCase : Any = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , UpperCamelCase_ ) self.top_to_bottom(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = position[index] while index != 0: __UpperCAmelCase : List[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __UpperCAmelCase : Union[str, Any] = heap[parent] __UpperCAmelCase : Dict = position[parent] self.set_position(position[parent] , UpperCamelCase_ ) else: __UpperCAmelCase : Dict = val __UpperCAmelCase : List[str] = temp self.set_position(UpperCamelCase_ , UpperCamelCase_ ) break __UpperCAmelCase : List[str] = parent else: __UpperCAmelCase : List[str] = val __UpperCAmelCase : Union[str, Any] = temp self.set_position(UpperCamelCase_ , 0 ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Any = len(UpperCamelCase_ ) // 2 - 1 for i in range(UpperCamelCase_ , -1 , -1 ): self.top_to_bottom(UpperCamelCase_ , UpperCamelCase_ , len(UpperCamelCase_ ) , UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Tuple = positions[0] __UpperCAmelCase : Tuple = sys.maxsize self.top_to_bottom(UpperCamelCase_ , 0 , len(UpperCamelCase_ ) , UpperCamelCase_ ) return temp def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : List[str] = Heap() __UpperCAmelCase : Tuple = [0] * len(lowerCamelCase__ ) __UpperCAmelCase : Optional[int] = [-1] * len(lowerCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __UpperCAmelCase : Tuple = [] # Heap of Distance of vertices from their neighboring vertex __UpperCAmelCase : Dict = [] for vertex in range(len(lowerCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(lowerCamelCase__ ) heap.node_position.append(lowerCamelCase__ ) __UpperCAmelCase : Dict = [] __UpperCAmelCase : Dict = 1 __UpperCAmelCase : int = sys.maxsize for neighbor, distance in adjacency_list[0]: __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : int = distance heap.heapify(lowerCamelCase__ , lowerCamelCase__ ) for _ in range(1 , len(lowerCamelCase__ ) ): __UpperCAmelCase : str = heap.delete_minimum(lowerCamelCase__ , lowerCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __UpperCAmelCase : Dict = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(lowerCamelCase__ )] ): __UpperCAmelCase : List[str] = distance heap.bottom_to_top( lowerCamelCase__ , heap.get_position(lowerCamelCase__ ) , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : List[str] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _a : int = int(input("Enter number of edges: ").strip()) _a : Tuple = defaultdict(list) for _ in range(edges_number): _a : Dict = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
10
1
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" for param in module.parameters(): __UpperCAmelCase : List[Any] = False def _lowercase ( ) -> str: """simple docstring""" __UpperCAmelCase : Optional[int] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __UpperCAmelCase : List[str] = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : List[str] = plt.imshow(lowerCamelCase__ ) fig.axes.get_xaxis().set_visible(lowerCamelCase__ ) fig.axes.get_yaxis().set_visible(lowerCamelCase__ ) plt.show() def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : Optional[int] = datetime.now() __UpperCAmelCase : int = current_time.strftime("%H:%M:%S" ) return timestamp
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ ) -> list[int]: """simple docstring""" if len(lowerCamelCase__ ) == 0: return array __UpperCAmelCase , __UpperCAmelCase : str = min(lowerCamelCase__ ), max(lowerCamelCase__ ) # Compute the variables __UpperCAmelCase : Any = _max - _min + 1 __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: __UpperCAmelCase : Optional[Any] = i - _min __UpperCAmelCase : List[Any] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. __UpperCAmelCase : Optional[Any] = 0 for i in range(lowerCamelCase__ ): while holes_repeat[i] > 0: __UpperCAmelCase : int = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _a : Optional[int] = input("Enter numbers separated by comma:\n") _a : str = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
10
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
1
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Optional[int] = StableUnCLIPPipeline snake_case :Optional[Any] = TEXT_TO_IMAGE_PARAMS snake_case :List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS snake_case :Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case :Any = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false snake_case :Optional[int] = False def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 32 __UpperCAmelCase : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __UpperCAmelCase : Dict = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase_ , projection_dim=UpperCamelCase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase : str = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=UpperCamelCase_ , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=UpperCamelCase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = StableUnCLIPImageNormalizer(embedding_dim=UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __UpperCAmelCase : List[str] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCamelCase_ , layers_per_block=1 , upcast_attention=UpperCamelCase_ , use_linear_projection=UpperCamelCase_ , ) torch.manual_seed(0 ) __UpperCAmelCase : int = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type="v_prediction" , set_alpha_to_one=UpperCamelCase_ , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = AutoencoderKL() __UpperCAmelCase : int = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : List[Any] = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCamelCase_ ) @slow @require_torch_gpu class __A (unittest.TestCase ): def _snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) __UpperCAmelCase : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase : int = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCAmelCase : Tuple = pipe("anime turle" , generator=UpperCamelCase_ , output_type="np" ) __UpperCAmelCase : Tuple = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase : List[Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) __UpperCAmelCase : int = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase : Optional[int] = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) __UpperCAmelCase : Dict = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
1
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : Optional[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _a : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): __UpperCAmelCase : Any = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: __UpperCAmelCase : List[str] = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: __UpperCAmelCase : str = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __UpperCAmelCase : List[str] = value elif weight_type == "weight_g": __UpperCAmelCase : List[Any] = value elif weight_type == "weight_v": __UpperCAmelCase : Dict = value elif weight_type == "bias": __UpperCAmelCase : int = value else: __UpperCAmelCase : int = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Any: """simple docstring""" __UpperCAmelCase : str = [] __UpperCAmelCase : List[Any] = fairseq_model.state_dict() __UpperCAmelCase : Union[str, Any] = hf_model.feature_extractor __UpperCAmelCase : Dict = hf_model.adapter for name, value in fairseq_dict.items(): __UpperCAmelCase : str = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == "group" , ) __UpperCAmelCase : int = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: __UpperCAmelCase : Union[str, Any] = True if "*" in mapped_key: __UpperCAmelCase : int = name.split(lowerCamelCase__ )[0].split("." )[-2] __UpperCAmelCase : Any = mapped_key.replace("*" , lowerCamelCase__ ) if "weight_g" in name: __UpperCAmelCase : Dict = "weight_g" elif "weight_v" in name: __UpperCAmelCase : Optional[int] = "weight_v" elif "bias" in name: __UpperCAmelCase : Union[str, Any] = "bias" elif "weight" in name: __UpperCAmelCase : Optional[Any] = "weight" else: __UpperCAmelCase : Dict = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : List[Any] = full_name.split("conv_layers." )[-1] __UpperCAmelCase : Dict = name.split("." ) __UpperCAmelCase : List[Any] = int(items[0] ) __UpperCAmelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __UpperCAmelCase : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __UpperCAmelCase : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __UpperCAmelCase : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __UpperCAmelCase : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Tuple = full_name.split("adaptor." )[-1] __UpperCAmelCase : Optional[int] = name.split("." ) if items[1].isdigit(): __UpperCAmelCase : Union[str, Any] = int(items[1] ) else: __UpperCAmelCase : Optional[int] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" __UpperCAmelCase : Optional[Any] = value logger.info(f"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" __UpperCAmelCase : List[Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" __UpperCAmelCase : str = value logger.info(f"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" __UpperCAmelCase : List[str] = value logger.info(f"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" __UpperCAmelCase : List[Any] = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" __UpperCAmelCase : Dict = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> Optional[int]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = emb.weight.shape __UpperCAmelCase : str = nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) __UpperCAmelCase : Dict = emb.weight.data return lin_layer @torch.no_grad() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> Dict: """simple docstring""" __UpperCAmelCase : List[Any] = WavaVecaConfig.from_pretrained( lowerCamelCase__ , add_adapter=lowerCamelCase__ , adapter_stride=lowerCamelCase__ , adapter_kernel_size=lowerCamelCase__ , use_auth_token=lowerCamelCase__ , output_hidden_size=lowerCamelCase__ , ) __UpperCAmelCase : int = MBartConfig.from_pretrained(lowerCamelCase__ ) # load model __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) __UpperCAmelCase : int = model[0].eval() # load feature extractor __UpperCAmelCase : List[str] = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase__ , use_auth_token=lowerCamelCase__ ) # set weights for wav2vec2 encoder __UpperCAmelCase : Tuple = WavaVecaModel(lowerCamelCase__ ) recursively_load_weights_wavaveca(model.encoder , lowerCamelCase__ ) # load decoder weights __UpperCAmelCase : List[Any] = MBartForCausalLM(lowerCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase : Dict = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCamelCase__ ) logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __UpperCAmelCase : int = SpeechEncoderDecoderModel(encoder=lowerCamelCase__ , decoder=lowerCamelCase__ ) __UpperCAmelCase : List[str] = False __UpperCAmelCase : Union[str, Any] = MBartaaTokenizer(lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = hf_wavavec.config.to_dict() __UpperCAmelCase : int = tokenizer.pad_token_id __UpperCAmelCase : Union[str, Any] = tokenizer.bos_token_id __UpperCAmelCase : Union[str, Any] = tokenizer.eos_token_id __UpperCAmelCase : Tuple = "mbart50" __UpperCAmelCase : Tuple = "wav2vec2" __UpperCAmelCase : int = tokenizer.eos_token_id __UpperCAmelCase : Any = 25_0004 __UpperCAmelCase : int = tokenizer.eos_token_id __UpperCAmelCase : Union[str, Any] = SpeechEncoderDecoderConfig.from_dict(lowerCamelCase__ ) hf_wavavec.save_pretrained(lowerCamelCase__ ) feature_extractor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": _a : Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250004, type=int, help="`decoder_start_token_id` of model config") _a : str = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
10
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if colsa != 1: __UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if rowsa != rowsa: __UpperCAmelCase : Optional[int] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != rowsa: __UpperCAmelCase : List[str] = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}""" ) raise ValueError(lowerCamelCase__ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape strictly_diagonally_dominant(lowerCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase__ ): __UpperCAmelCase : int = [] for row in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = 0 for col in range(lowerCamelCase__ ): if col == row: __UpperCAmelCase : int = table[row][col] elif col == cols - 1: __UpperCAmelCase : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : List[Any] = (temp + val) / denom new_val.append(lowerCamelCase__ ) __UpperCAmelCase : str = new_val return [float(lowerCamelCase__ ) for i in new_val] def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape __UpperCAmelCase : str = True for i in range(0 , lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : str = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " f"""{test_file} instead.""" ) __UpperCAmelCase : Optional[Any] = components[-1] if not test_fn.endswith("py" ): raise ValueError(f"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith("test_modeling_" ): raise ValueError( f"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) __UpperCAmelCase : str = components[:-1] + [test_fn.replace(".py" , "" )] __UpperCAmelCase : Dict = ".".join(lowerCamelCase__ ) return test_module_path def _lowercase ( lowerCamelCase__ ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : Optional[int] = get_module_path(lowerCamelCase__ ) __UpperCAmelCase : List[Any] = importlib.import_module(lowerCamelCase__ ) return test_module def _lowercase ( lowerCamelCase__ ) -> Tuple: """simple docstring""" __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Any = get_test_module(lowerCamelCase__ ) for attr in dir(lowerCamelCase__ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # sort with class names return sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x.__name__ ) def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : int = [] __UpperCAmelCase : Any = get_test_module(lowerCamelCase__ ) for attr in dir(lowerCamelCase__ ): __UpperCAmelCase : Optional[Any] = getattr(lowerCamelCase__ , lowerCamelCase__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __UpperCAmelCase : Optional[Any] = getattr(lowerCamelCase__ , "all_model_classes" , [] ) if len(lowerCamelCase__ ) > 0: test_classes.append(lowerCamelCase__ ) # sort with class names return sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x.__name__ ) def _lowercase ( lowerCamelCase__ ) -> Any: """simple docstring""" __UpperCAmelCase : Tuple = get_test_classes(lowerCamelCase__ ) __UpperCAmelCase : Optional[int] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x.__name__ ) def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : Any = test_class() if hasattr(lowerCamelCase__ , "setUp" ): test.setUp() __UpperCAmelCase : str = None if hasattr(lowerCamelCase__ , "model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __UpperCAmelCase : Optional[int] = test.model_tester.__class__ return model_tester def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : str = get_test_classes(lowerCamelCase__ ) __UpperCAmelCase : List[Any] = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowerCamelCase__ ) # sort with class names return sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x.__name__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Union[str, Any] = get_test_classes_for_model(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = [] for test_class in test_classes: __UpperCAmelCase : Dict = get_model_tester_from_test_class(lowerCamelCase__ ) if tester_class is not None: tester_classes.append(lowerCamelCase__ ) # sort with class names return sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x.__name__ ) def _lowercase ( lowerCamelCase__ ) -> Tuple: """simple docstring""" __UpperCAmelCase : str = get_test_classes(lowerCamelCase__ ) __UpperCAmelCase : Tuple = {test_class: get_model_tester_from_test_class(lowerCamelCase__ ) for test_class in test_classes} return test_tester_mapping def _lowercase ( lowerCamelCase__ ) -> Any: """simple docstring""" __UpperCAmelCase : Tuple = get_model_classes(lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = { model_class: get_test_classes_for_model(lowerCamelCase__ , lowerCamelCase__ ) for model_class in model_classes } return model_test_mapping def _lowercase ( lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = get_model_classes(lowerCamelCase__ ) __UpperCAmelCase : str = { model_class: get_tester_classes_for_model(lowerCamelCase__ , lowerCamelCase__ ) for model_class in model_classes } return model_to_tester_mapping def _lowercase ( lowerCamelCase__ ) -> Optional[int]: """simple docstring""" if isinstance(lowerCamelCase__ , lowerCamelCase__ ): return o elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): return o.__name__ elif isinstance(lowerCamelCase__ , (list, tuple) ): return [to_json(lowerCamelCase__ ) for x in o] elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): return {to_json(lowerCamelCase__ ): to_json(lowerCamelCase__ ) for k, v in o.items()} else: return o
10
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Any = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __A (__magic_name__ ): snake_case :Union[str, Any] = (UnCLIPScheduler,) def _snake_case ( self , **UpperCamelCase_ ): __UpperCAmelCase : Tuple = { "num_train_timesteps": 10_00, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**UpperCamelCase_ ) return config def _snake_case ( self ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def _snake_case ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def _snake_case ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def _snake_case ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCamelCase_ ) def _snake_case ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def _snake_case ( self ): for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase_ , prev_timestep=UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Dict = self.scheduler_classes[0] __UpperCAmelCase : Optional[int] = self.get_scheduler_config(variance_type="fixed_small_log" ) __UpperCAmelCase : int = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_5_4_9_6_2_5 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.9_9_9_4_9_8_7 ) ) < 1E-5 def _snake_case ( self ): __UpperCAmelCase : Tuple = self.scheduler_classes[0] __UpperCAmelCase : str = self.get_scheduler_config(variance_type="learned_range" ) __UpperCAmelCase : Any = scheduler_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase_ ) - -1_0.1_7_1_2_7_9_0 < 1E-5 assert scheduler._get_variance(4_87 , predicted_variance=UpperCamelCase_ ) - -5.7_9_9_8_0_5_2 < 1E-5 assert scheduler._get_variance(9_99 , predicted_variance=UpperCamelCase_ ) - -0.0_0_1_0_0_1_1 < 1E-5 def _snake_case ( self ): __UpperCAmelCase : Tuple = self.scheduler_classes[0] __UpperCAmelCase : Dict = self.get_scheduler_config() __UpperCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = scheduler.timesteps __UpperCAmelCase : Any = self.dummy_model() __UpperCAmelCase : List[Any] = self.dummy_sample_deter __UpperCAmelCase : Any = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase_ ): # 1. predict noise residual __UpperCAmelCase : Dict = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 __UpperCAmelCase : Optional[int] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample __UpperCAmelCase : List[Any] = pred_prev_sample __UpperCAmelCase : Tuple = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : Tuple = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 2_5_2.2_6_8_2_4_9_5 ) < 1E-2 assert abs(result_mean.item() - 0.3_2_8_4_7_4_3 ) < 1E-3 def _snake_case ( self ): __UpperCAmelCase : Tuple = self.scheduler_classes[0] __UpperCAmelCase : List[str] = self.get_scheduler_config() __UpperCAmelCase : str = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(25 ) __UpperCAmelCase : str = scheduler.timesteps __UpperCAmelCase : Optional[int] = self.dummy_model() __UpperCAmelCase : Dict = self.dummy_sample_deter __UpperCAmelCase : List[str] = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase_ ): # 1. predict noise residual __UpperCAmelCase : Tuple = model(UpperCamelCase_ , UpperCamelCase_ ) if i + 1 == timesteps.shape[0]: __UpperCAmelCase : Optional[int] = None else: __UpperCAmelCase : Dict = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __UpperCAmelCase : Tuple = scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , prev_timestep=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample __UpperCAmelCase : Optional[int] = pred_prev_sample __UpperCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 2_5_8.2_0_4_4_9_8_3 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_6_2_0_3_8 ) < 1E-3 def _snake_case ( self ): pass def _snake_case ( self ): pass
10
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } _a : Optional[Any] = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } _a : Tuple = { "ctrl": 256, } _a : Dict = { "Pregnancy": 168629, "Christianity": 7675, "Explain": 106423, "Fitness": 63440, "Saving": 63163, "Ask": 27171, "Ass": 95985, "Joke": 163509, "Questions": 45622, "Thoughts": 49605, "Retail": 52342, "Feminism": 164338, "Writing": 11992, "Atheism": 192263, "Netflix": 48616, "Computing": 39639, "Opinion": 43213, "Alone": 44967, "Funny": 58917, "Gaming": 40358, "Human": 4088, "India": 1331, "Joker": 77138, "Diet": 36206, "Legal": 11859, "Norman": 4939, "Tip": 72689, "Weight": 52343, "Movies": 46273, "Running": 23425, "Science": 2090, "Horror": 37793, "Confession": 60572, "Finance": 12250, "Politics": 16360, "Scary": 191985, "Support": 12654, "Technologies": 32516, "Teenage": 66160, "Event": 32769, "Learned": 67460, "Notion": 182770, "Wikipedia": 37583, "Books": 6665, "Extract": 76050, "Confessions": 102701, "Conspiracy": 75932, "Links": 63674, "Narcissus": 150425, "Relationship": 54766, "Relationships": 134796, "Reviews": 41671, "News": 4256, "Translation": 26820, "multilingual": 128406, } def _lowercase ( lowerCamelCase__ ) -> Any: """simple docstring""" __UpperCAmelCase : Optional[Any] = set() __UpperCAmelCase : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[int] = char __UpperCAmelCase : List[Any] = set(lowerCamelCase__ ) return pairs class __A (__magic_name__ ): snake_case :List[Any] = VOCAB_FILES_NAMES snake_case :Optional[int] = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = CONTROL_CODES def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="<unk>" , **UpperCamelCase_ ): super().__init__(unk_token=UpperCamelCase_ , **UpperCamelCase_ ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : Union[str, Any] = json.load(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = {v: k for k, v in self.encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Optional[int] = [tuple(merge.split() ) for merge in merges] __UpperCAmelCase : str = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : List[Any] = {} @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = tuple(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) __UpperCAmelCase : Tuple = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : int = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Optional[int] = bigram __UpperCAmelCase : int = [] __UpperCAmelCase : Optional[Any] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Any = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Optional[Any] = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : int = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Any = "@@ ".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = word[:-4] __UpperCAmelCase : Optional[Any] = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = [] __UpperCAmelCase : str = re.findall(r"\S+\n?" , UpperCamelCase_ ) for token in words: split_tokens.extend(list(self.bpe(UpperCamelCase_ ).split(" " ) ) ) return split_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ , self.unk_token ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = " ".join(UpperCamelCase_ ).replace("@@ " , "" ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : int = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : List[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : List[str] = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : List[str] = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
10
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Any = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Union[str, Any] = "ibert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Tuple = quant_mode __UpperCAmelCase : Union[str, Any] = force_dequant class __A (__magic_name__ ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
10
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Optional[int] = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ ) try: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead." __UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] ) __UpperCAmelCase : Any = "" __UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] ) __UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
10
1
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _a : Optional[Any] = logging.getLogger(__name__) _a : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A : snake_case :Optional[str] = field( default=__magic_name__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(__magic_name__ )} , ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __A : snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "The input training data file (a text file)."} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) snake_case :bool = field( default=__magic_name__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) snake_case :bool = field( default=__magic_name__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) snake_case :bool = field(default=__magic_name__ , metadata={"help": "Whether ot not to use whole word mask."} ) snake_case :float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) snake_case :float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) snake_case :int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) snake_case :int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) snake_case :bool = field( default=__magic_name__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False , lowerCamelCase__ = None , ) -> Tuple: """simple docstring""" def _dataset(lowerCamelCase__ , lowerCamelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase__ , file_path=lowerCamelCase__ , block_size=args.block_size , ref_path=lowerCamelCase__ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase__ , file_path=lowerCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase__ , file_path=lowerCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , lowerCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __UpperCAmelCase : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __UpperCAmelCase : int = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __UpperCAmelCase : Union[str, Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: __UpperCAmelCase : Any = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) __UpperCAmelCase : str = AutoModelWithLMHead.from_config(lowerCamelCase__ ) model.resize_token_embeddings(len(lowerCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: __UpperCAmelCase : Any = tokenizer.max_len # Our input block size will be the max possible for the model else: __UpperCAmelCase : Any = min(data_args.block_size , tokenizer.max_len ) # Get datasets __UpperCAmelCase : int = ( get_dataset(lowerCamelCase__ , tokenizer=lowerCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __UpperCAmelCase : List[Any] = ( get_dataset(lowerCamelCase__ , tokenizer=lowerCamelCase__ , evaluate=lowerCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __UpperCAmelCase : Tuple = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __UpperCAmelCase : int = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase__ , mlm_probability=data_args.mlm_probability ) else: __UpperCAmelCase : Tuple = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __UpperCAmelCase : List[str] = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , data_collator=lowerCamelCase__ , train_dataset=lowerCamelCase__ , eval_dataset=lowerCamelCase__ , prediction_loss_only=lowerCamelCase__ , ) # Training if training_args.do_train: __UpperCAmelCase : Dict = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase : Optional[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __UpperCAmelCase : Dict = trainer.evaluate() __UpperCAmelCase : Tuple = math.exp(eval_output["eval_loss"] ) __UpperCAmelCase : Optional[int] = {"perplexity": perplexity} __UpperCAmelCase : int = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(lowerCamelCase__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , lowerCamelCase__ , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(lowerCamelCase__ ) return results def _lowercase ( lowerCamelCase__ ) -> Any: """simple docstring""" main() if __name__ == "__main__": main()
10
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case :Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case :Any = frozenset([] ) snake_case :Optional[int] = True @property def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[str] = (16, 16) __UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) __UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) __UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): __UpperCAmelCase : List[str] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) __UpperCAmelCase : Tuple = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) __UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _snake_case ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _snake_case ( self ): __UpperCAmelCase : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name ) __UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) __UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0] outputs.append(UpperCamelCase_ ) assert check_same_shape(UpperCamelCase_ ) @require_torch_gpu @slow class __A (unittest.TestCase ): def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[int] = torch.manual_seed(33 ) __UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" __UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images __UpperCAmelCase : int = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _snake_case ( self ): __UpperCAmelCase : List[Any] = torch.manual_seed(33 ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" __UpperCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) __UpperCAmelCase : Dict = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
10
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __A (__magic_name__ ): snake_case :torch.FloatTensor class __A (__magic_name__ , __magic_name__ ): @register_to_config def __init__( self , UpperCamelCase_ = 32 , UpperCamelCase_ = 64 , UpperCamelCase_ = 20 , UpperCamelCase_ = 7_68 , UpperCamelCase_=77 , UpperCamelCase_=4 , UpperCamelCase_ = 0.0 , UpperCamelCase_ = "silu" , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = "linear" , UpperCamelCase_ = "prd" , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , ): super().__init__() __UpperCAmelCase : List[str] = num_attention_heads __UpperCAmelCase : Dict = attention_head_dim __UpperCAmelCase : str = num_attention_heads * attention_head_dim __UpperCAmelCase : Any = additional_embeddings __UpperCAmelCase : Union[str, Any] = time_embed_dim or inner_dim __UpperCAmelCase : List[str] = embedding_proj_dim or embedding_dim __UpperCAmelCase : Any = clip_embed_dim or embedding_dim __UpperCAmelCase : List[str] = Timesteps(UpperCamelCase_ , UpperCamelCase_ , 0 ) __UpperCAmelCase : Any = TimestepEmbedding(UpperCamelCase_ , UpperCamelCase_ , out_dim=UpperCamelCase_ , act_fn=UpperCamelCase_ ) __UpperCAmelCase : Tuple = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) if embedding_proj_norm_type is None: __UpperCAmelCase : List[str] = None elif embedding_proj_norm_type == "layer": __UpperCAmelCase : Dict = nn.LayerNorm(UpperCamelCase_ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __UpperCAmelCase : List[Any] = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) if encoder_hid_proj_type is None: __UpperCAmelCase : Union[str, Any] = None elif encoder_hid_proj_type == "linear": __UpperCAmelCase : Dict = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __UpperCAmelCase : str = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase_ ) ) if added_emb_type == "prd": __UpperCAmelCase : Optional[Any] = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase_ ) ) elif added_emb_type is None: __UpperCAmelCase : Any = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __UpperCAmelCase : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dropout=UpperCamelCase_ , activation_fn="gelu" , attention_bias=UpperCamelCase_ , ) for d in range(UpperCamelCase_ ) ] ) if norm_in_type == "layer": __UpperCAmelCase : Union[str, Any] = nn.LayerNorm(UpperCamelCase_ ) elif norm_in_type is None: __UpperCAmelCase : Tuple = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __UpperCAmelCase : Dict = nn.LayerNorm(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Dict = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) __UpperCAmelCase : List[Any] = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , UpperCamelCase_ , persistent=UpperCamelCase_ ) __UpperCAmelCase : int = nn.Parameter(torch.zeros(1 , UpperCamelCase_ ) ) __UpperCAmelCase : Tuple = nn.Parameter(torch.zeros(1 , UpperCamelCase_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {} def fn_recursive_add_processors(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if hasattr(UpperCamelCase_ , "set_processor" ): __UpperCAmelCase : Dict = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase_ , UpperCamelCase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return processors def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Any = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase_ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if hasattr(UpperCamelCase_ , "set_processor" ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): module.set_processor(UpperCamelCase_ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase_ , UpperCamelCase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): self.set_attn_processor(AttnProcessor() ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = True , ): __UpperCAmelCase : Tuple = hidden_states.shape[0] __UpperCAmelCase : Optional[Any] = timestep if not torch.is_tensor(UpperCamelCase_ ): __UpperCAmelCase : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase_ ) and len(timesteps.shape ) == 0: __UpperCAmelCase : int = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : int = timesteps * torch.ones(UpperCamelCase_ , dtype=timesteps.dtype , device=timesteps.device ) __UpperCAmelCase : Union[str, Any] = self.time_proj(UpperCamelCase_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __UpperCAmelCase : Union[str, Any] = timesteps_projected.to(dtype=self.dtype ) __UpperCAmelCase : Optional[Any] = self.time_embedding(UpperCamelCase_ ) if self.embedding_proj_norm is not None: __UpperCAmelCase : Optional[int] = self.embedding_proj_norm(UpperCamelCase_ ) __UpperCAmelCase : int = self.embedding_proj(UpperCamelCase_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __UpperCAmelCase : Optional[Any] = self.encoder_hidden_states_proj(UpperCamelCase_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) __UpperCAmelCase : List[str] = self.proj_in(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.positional_embedding.to(hidden_states.dtype ) __UpperCAmelCase : Any = [] __UpperCAmelCase : Dict = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __UpperCAmelCase : List[Any] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __UpperCAmelCase : Dict = hidden_states[:, None, :] __UpperCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __UpperCAmelCase : Any = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase_ , -1 , -1 ) additional_embeds.append(UpperCamelCase_ ) __UpperCAmelCase : int = torch.cat( UpperCamelCase_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __UpperCAmelCase : int = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __UpperCAmelCase : int = F.pad( UpperCamelCase_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __UpperCAmelCase : str = hidden_states + positional_embeddings if attention_mask is not None: __UpperCAmelCase : Dict = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 __UpperCAmelCase : List[str] = F.pad(UpperCamelCase_ , (0, self.additional_embeddings) , value=0.0 ) __UpperCAmelCase : Any = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __UpperCAmelCase : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __UpperCAmelCase : Dict = self.norm_in(UpperCamelCase_ ) for block in self.transformer_blocks: __UpperCAmelCase : Optional[Any] = block(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) __UpperCAmelCase : Any = self.norm_out(UpperCamelCase_ ) if self.prd_embedding is not None: __UpperCAmelCase : List[Any] = hidden_states[:, -1] else: __UpperCAmelCase : Dict = hidden_states[:, additional_embeddings_len:] __UpperCAmelCase : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
10
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
1
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _a : Optional[Any] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __A (__magic_name__ ): snake_case :bool = field(default=__magic_name__ , metadata={"help": "Whether to use SortishSampler or not."} ) snake_case :bool = field( default=__magic_name__ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) snake_case :Optional[int] = field( default=__magic_name__ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) snake_case :Optional[int] = field( default=__magic_name__ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) snake_case :Optional[Union[str, Path, GenerationConfig]] = field( default=__magic_name__ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _snake_case ( self ): __UpperCAmelCase : Any = super().to_dict() for k, v in d.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Tuple = v.to_dict() return d
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
10
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" if index == number_of_items: return 0 __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Optional[int] = knapsack(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ) if weights[index] <= max_weight: __UpperCAmelCase : Union[str, Any] = values[index] + knapsack( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , max_weight - weights[index] , index + 1 ) return max(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Optional[Any] = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _a : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _a : str = datasets.load_iris() _a : List[Any] = np.array(data["data"]) _a : Optional[Any] = np.array(data["target"]) _a : Dict = data["target_names"] _a , _a , _a , _a : Any = train_test_split(X, y) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified __UpperCAmelCase : int = [] for data_point in data: __UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
10
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = len(lowerCamelCase__ ) __UpperCAmelCase : List[str] = sum(lowerCamelCase__ ) __UpperCAmelCase : Any = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __UpperCAmelCase : Union[str, Any] = True for i in range(1 , s + 1 ): __UpperCAmelCase : Dict = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __UpperCAmelCase : Tuple = dp[i][j - 1] if arr[i - 1] <= j: __UpperCAmelCase : str = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __UpperCAmelCase : Dict = s - 2 * j break return diff
10
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = set_counts __UpperCAmelCase : int = max(UpperCamelCase_ ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Any = [1] * num_sets __UpperCAmelCase : Any = list(range(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Dict = src_parent __UpperCAmelCase : Dict = self.set_counts[src_parent] __UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ ) return True def _snake_case ( self , UpperCamelCase_ ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
10
1
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __A (unittest.TestCase ): @property def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : int = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = self.dummy_uncond_unet __UpperCAmelCase : str = DDIMScheduler() __UpperCAmelCase : Optional[Any] = self.dummy_vq_model __UpperCAmelCase : Union[str, Any] = LDMPipeline(unet=UpperCamelCase_ , vqvae=UpperCamelCase_ , scheduler=UpperCamelCase_ ) ldm.to(UpperCamelCase_ ) ldm.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) __UpperCAmelCase : Dict = ldm(generator=UpperCamelCase_ , num_inference_steps=2 , output_type="numpy" ).images __UpperCAmelCase : List[str] = torch.manual_seed(0 ) __UpperCAmelCase : Any = ldm(generator=UpperCamelCase_ , num_inference_steps=2 , output_type="numpy" , return_dict=UpperCamelCase_ )[0] __UpperCAmelCase : int = image[0, -3:, -3:, -1] __UpperCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase : Optional[int] = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) __UpperCAmelCase : str = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __A (unittest.TestCase ): def _snake_case ( self ): __UpperCAmelCase : Dict = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(UpperCamelCase_ ) ldm.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : List[Any] = torch.manual_seed(0 ) __UpperCAmelCase : Dict = ldm(generator=UpperCamelCase_ , num_inference_steps=5 , output_type="numpy" ).images __UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __UpperCAmelCase : List[str] = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) __UpperCAmelCase : List[Any] = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
1
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _a : Optional[Any] = logging.get_logger("transformers.models.speecht5") def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" hf_model.apply_weight_norm() __UpperCAmelCase : int = checkpoint["input_conv.weight_g"] __UpperCAmelCase : Tuple = checkpoint["input_conv.weight_v"] __UpperCAmelCase : str = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): __UpperCAmelCase : Optional[Any] = checkpoint[f"""upsamples.{i}.1.weight_g"""] __UpperCAmelCase : List[str] = checkpoint[f"""upsamples.{i}.1.weight_v"""] __UpperCAmelCase : int = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): __UpperCAmelCase : Optional[Any] = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] __UpperCAmelCase : Optional[Any] = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] __UpperCAmelCase : Optional[Any] = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] __UpperCAmelCase : Union[str, Any] = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] __UpperCAmelCase : Any = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] __UpperCAmelCase : Tuple = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] __UpperCAmelCase : List[Any] = checkpoint["output_conv.1.weight_g"] __UpperCAmelCase : Union[str, Any] = checkpoint["output_conv.1.weight_v"] __UpperCAmelCase : int = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , ) -> Union[str, Any]: """simple docstring""" if config_path is not None: __UpperCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase__ ) else: __UpperCAmelCase : Optional[int] = SpeechTaHifiGanConfig() __UpperCAmelCase : Optional[int] = SpeechTaHifiGan(lowerCamelCase__ ) __UpperCAmelCase : int = torch.load(lowerCamelCase__ ) load_weights(orig_checkpoint["model"]["generator"] , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : str = np.load(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = stats[0].reshape(-1 ) __UpperCAmelCase : Union[str, Any] = stats[1].reshape(-1 ) __UpperCAmelCase : Optional[int] = torch.from_numpy(lowerCamelCase__ ).float() __UpperCAmelCase : int = torch.from_numpy(lowerCamelCase__ ).float() model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": _a : List[Any] = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) _a : str = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
10
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
'''simple docstring''' from collections.abc import Callable class __A : def __init__( self , UpperCamelCase_ = None ): # Stores actual heap items. __UpperCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. __UpperCAmelCase : dict = {} # Stores current size of heap. __UpperCAmelCase : Tuple = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __UpperCAmelCase : Optional[Any] = key or (lambda UpperCamelCase_ : x) def _snake_case ( self , UpperCamelCase_ ): return int((i - 1) / 2 ) if i > 0 else None def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase , __UpperCAmelCase : int = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __UpperCAmelCase , __UpperCAmelCase : Any = self.arr[j], self.arr[i] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): return self.arr[i][1] < self.arr[j][1] def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : str = self._left(UpperCamelCase_ ) __UpperCAmelCase : str = self._right(UpperCamelCase_ ) __UpperCAmelCase : int = i if left is not None and not self._cmp(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = left if right is not None and not self._cmp(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = right return valid_parent def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self._parent(UpperCamelCase_ ) while parent is not None and not self._cmp(UpperCamelCase_ , UpperCamelCase_ ): self._swap(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase , __UpperCAmelCase : int = parent, self._parent(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self._get_valid_parent(UpperCamelCase_ ) while valid_parent != index: self._swap(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase , __UpperCAmelCase : Tuple = valid_parent, self._get_valid_parent(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): if item not in self.pos_map: return __UpperCAmelCase : str = self.pos_map[item] __UpperCAmelCase : List[Any] = [item, self.key(UpperCamelCase_ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(UpperCamelCase_ ) self._heapify_down(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if item not in self.pos_map: return __UpperCAmelCase : str = self.pos_map[item] del self.pos_map[item] __UpperCAmelCase : Union[str, Any] = self.arr[self.size - 1] __UpperCAmelCase : int = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(UpperCamelCase_ ) self._heapify_down(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(UpperCamelCase_ )] ) else: __UpperCAmelCase : int = [item, self.key(UpperCamelCase_ )] __UpperCAmelCase : Optional[int] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def _snake_case ( self ): return self.arr[0] if self.size else None def _snake_case ( self ): __UpperCAmelCase : str = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _lowercase ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
10
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
10
1
'''simple docstring''' def _lowercase ( ) -> Tuple: """simple docstring""" __UpperCAmelCase : str = 0 for i in range(1 , 1001 ): total += i**i return str(lowerCamelCase__ )[-10:] if __name__ == "__main__": print(solution())
10
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Any = int(lowerCamelCase__ ) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase : List[str] = divmod(lowerCamelCase__ , 2 ) return binary_recursive(lowerCamelCase__ ) + str(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : str = str(lowerCamelCase__ ).strip() if not number: raise ValueError("No input value was provided" ) __UpperCAmelCase : List[str] = "-" if number.startswith("-" ) else "" __UpperCAmelCase : List[Any] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f"""{negative}0b{binary_recursive(int(lowerCamelCase__ ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
10
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
1
'''simple docstring''' from __future__ import annotations _a : int = [] def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" for i in range(len(lowerCamelCase__ ) ): if board[row][i] == 1: return False for i in range(len(lowerCamelCase__ ) ): if board[i][column] == 1: return False for i, j in zip(range(lowerCamelCase__ , -1 , -1 ) , range(lowerCamelCase__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowerCamelCase__ , -1 , -1 ) , range(lowerCamelCase__ , len(lowerCamelCase__ ) ) ): if board[i][j] == 1: return False return True def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if row >= len(lowerCamelCase__ ): solution.append(lowerCamelCase__ ) printboard(lowerCamelCase__ ) print() return True for i in range(len(lowerCamelCase__ ) ): if is_safe(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): __UpperCAmelCase : Tuple = 1 solve(lowerCamelCase__ , row + 1 ) __UpperCAmelCase : Tuple = 0 return False def _lowercase ( lowerCamelCase__ ) -> None: """simple docstring""" for i in range(len(lowerCamelCase__ ) ): for j in range(len(lowerCamelCase__ ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) _a : Any = 8 _a : Dict = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
10
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
1
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = None ) -> list[list[str]]: """simple docstring""" __UpperCAmelCase : str = word_bank or [] # create a table __UpperCAmelCase : int = len(lowerCamelCase__ ) + 1 __UpperCAmelCase : list[list[list[str]]] = [] for _ in range(lowerCamelCase__ ): table.append([] ) # seed value __UpperCAmelCase : Optional[Any] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCamelCase__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCamelCase__ )] == word: __UpperCAmelCase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCamelCase__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCamelCase__ )]: combination.reverse() return table[len(lowerCamelCase__ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
10
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
10
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging _a : Dict = logging.get_logger(__name__) # TODO: upload to AWS _a : Optional[Any] = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Optional[int] = "retribert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=8 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=True , UpperCamelCase_=1_28 , UpperCamelCase_=0 , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = vocab_size __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : int = initializer_range __UpperCAmelCase : Optional[Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = share_encoders __UpperCAmelCase : Tuple = projection_dim
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ ) -> list[int]: """simple docstring""" return [ord(lowerCamelCase__ ) - 96 for elem in plain] def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def _lowercase ( ) -> None: """simple docstring""" __UpperCAmelCase : List[Any] = encode(input("-> " ).strip().lower() ) print("Encoded: " , lowerCamelCase__ ) print("Decoded:" , decode(lowerCamelCase__ ) ) if __name__ == "__main__": main()
10
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a : Any = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _a : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
1