code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import os def _lowercase ( ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : Tuple = os.path.join(os.path.dirname(lowerCamelCase__ ) , "num.txt" ) with open(lowerCamelCase__ ) as file_hand: return str(sum(int(lowerCamelCase__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
10
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : int = str(id_ ) __UpperCAmelCase : int = None __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : Any = {} # {vertex:distance} def __lt__( self , UpperCamelCase_ ): return self.key < other.key def __repr__( self ): return self.id def _snake_case ( self , UpperCamelCase_ ): self.neighbors.append(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = weight def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowerCamelCase__ ) graph[b - 1].add_edge(graph[a - 1] , lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list: """simple docstring""" __UpperCAmelCase : Tuple = [] for u in graph: __UpperCAmelCase : Tuple = math.inf __UpperCAmelCase : Tuple = None __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Tuple = graph[:] while q: __UpperCAmelCase : Tuple = min(lowerCamelCase__ ) q.remove(lowerCamelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCAmelCase : List[Any] = u __UpperCAmelCase : str = u.edges[v.id] for i in range(1 , len(lowerCamelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Iterator[tuple]: """simple docstring""" for u in graph: __UpperCAmelCase : Union[str, Any] = math.inf __UpperCAmelCase : List[str] = None __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Optional[int] = list(lowerCamelCase__ ) hq.heapify(lowerCamelCase__ ) while h: __UpperCAmelCase : List[str] = hq.heappop(lowerCamelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCAmelCase : Any = u __UpperCAmelCase : List[Any] = u.edges[v.id] hq.heapify(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowercase ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
10
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
10
1
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _a : List[Any] = "__DUMMY_TRANSFORMERS_USER__" _a : str = "Dummy User" _a : str = "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" _a : Optional[Any] = "https://hub-ci.huggingface.co" _a : List[str] = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" _a : List[Any] = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" _a : List[str] = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , lowerCamelCase__ ) @pytest.fixture def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" monkeypatch.setattr("datasets.config.HF_ENDPOINT" , lowerCamelCase__ ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , lowerCamelCase__ ) @pytest.fixture def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , lowerCamelCase__ ) @pytest.fixture def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: """simple docstring""" HfFolder.save_token(lowerCamelCase__ ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def _lowercase ( ) -> Union[str, Any]: """simple docstring""" return HfApi(endpoint=lowerCamelCase__ ) @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ ) -> Tuple: """simple docstring""" __UpperCAmelCase : int = HfFolder.get_token() HfFolder.save_token(lowerCamelCase__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowerCamelCase__ ) @pytest.fixture def _lowercase ( lowerCamelCase__ ) -> Optional[int]: """simple docstring""" def _cleanup_repo(lowerCamelCase__ ): hf_api.delete_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def _lowercase ( lowerCamelCase__ ) -> Optional[int]: """simple docstring""" @contextmanager def _temporary_repo(lowerCamelCase__ ): try: yield repo_id finally: cleanup_repo(lowerCamelCase__ ) return _temporary_repo @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: """simple docstring""" __UpperCAmelCase : List[str] = f"""repo_txt_data-{int(time.time() * 1_0e3 )}""" __UpperCAmelCase : int = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" , private=lowerCamelCase__ ) hf_api.upload_file( token=lowerCamelCase__ , path_or_fileobj=str(lowerCamelCase__ ) , path_in_repo="data/text_data.txt" , repo_id=lowerCamelCase__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : str = f"""repo_zipped_txt_data-{int(time.time() * 1_0e3 )}""" __UpperCAmelCase : str = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" , private=lowerCamelCase__ ) hf_api.upload_file( token=lowerCamelCase__ , path_or_fileobj=str(lowerCamelCase__ ) , path_in_repo="data.zip" , repo_id=lowerCamelCase__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : List[str] = f"""repo_zipped_img_data-{int(time.time() * 1_0e3 )}""" __UpperCAmelCase : int = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" , private=lowerCamelCase__ ) hf_api.upload_file( token=lowerCamelCase__ , path_or_fileobj=str(lowerCamelCase__ ) , path_in_repo="data.zip" , repo_id=lowerCamelCase__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
10
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
1
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="attention" ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : Tuple = params[f"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] __UpperCAmelCase : Tuple = params[f"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] __UpperCAmelCase : str = params[f"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] __UpperCAmelCase : str = params[f"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Dict: """simple docstring""" if split_mlp_wi: __UpperCAmelCase : List[Any] = params[f"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] __UpperCAmelCase : List[Any] = params[f"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] __UpperCAmelCase : int = (wi_a, wi_a) else: __UpperCAmelCase : Optional[Any] = params[f"""{prefix}/layers_{i}/mlp/wi/kernel"""] __UpperCAmelCase : str = params[f"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" return params[f"""{prefix}/layers_{i}/{layer_name}/scale"""] def _lowercase ( lowerCamelCase__ , *, lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : int = traverse_util.flatten_dict(variables["target"] ) __UpperCAmelCase : str = {"/".join(lowerCamelCase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __UpperCAmelCase : Optional[Any] = "encoder/layers_0/mlp/wi_0/kernel" in old print("Split MLP:" , lowerCamelCase__ ) __UpperCAmelCase : str = collections.OrderedDict() # Shared embeddings. __UpperCAmelCase : Optional[int] = old["token_embedder/embedding"] # Encoder. for i in range(lowerCamelCase__ ): # Block i, layer 0 (Self Attention). __UpperCAmelCase : List[str] = tax_layer_norm_lookup(lowerCamelCase__ , lowerCamelCase__ , "encoder" , "pre_attention_layer_norm" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = tax_attention_lookup(lowerCamelCase__ , lowerCamelCase__ , "encoder" , "attention" ) __UpperCAmelCase : Union[str, Any] = layer_norm __UpperCAmelCase : Any = k.T __UpperCAmelCase : Union[str, Any] = o.T __UpperCAmelCase : Any = q.T __UpperCAmelCase : Any = v.T # Block i, layer 1 (MLP). __UpperCAmelCase : str = tax_layer_norm_lookup(lowerCamelCase__ , lowerCamelCase__ , "encoder" , "pre_mlp_layer_norm" ) __UpperCAmelCase , __UpperCAmelCase : Tuple = tax_mlp_lookup(lowerCamelCase__ , lowerCamelCase__ , "encoder" , lowerCamelCase__ ) __UpperCAmelCase : Dict = layer_norm if split_mlp_wi: __UpperCAmelCase : Any = wi[0].T __UpperCAmelCase : Optional[int] = wi[1].T else: __UpperCAmelCase : List[Any] = wi.T __UpperCAmelCase : Tuple = wo.T __UpperCAmelCase : List[Any] = old[ "encoder/relpos_bias/rel_embedding" ].T __UpperCAmelCase : Any = old["encoder/encoder_norm/scale"] if not is_encoder_only: # Decoder. for i in range(lowerCamelCase__ ): # Block i, layer 0 (Self Attention). __UpperCAmelCase : Union[str, Any] = tax_layer_norm_lookup(lowerCamelCase__ , lowerCamelCase__ , "decoder" , "pre_self_attention_layer_norm" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = tax_attention_lookup(lowerCamelCase__ , lowerCamelCase__ , "decoder" , "self_attention" ) __UpperCAmelCase : Optional[int] = layer_norm __UpperCAmelCase : Union[str, Any] = k.T __UpperCAmelCase : List[Any] = o.T __UpperCAmelCase : Union[str, Any] = q.T __UpperCAmelCase : Tuple = v.T # Block i, layer 1 (Cross Attention). __UpperCAmelCase : Optional[Any] = tax_layer_norm_lookup(lowerCamelCase__ , lowerCamelCase__ , "decoder" , "pre_cross_attention_layer_norm" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = tax_attention_lookup(lowerCamelCase__ , lowerCamelCase__ , "decoder" , "encoder_decoder_attention" ) __UpperCAmelCase : List[Any] = layer_norm __UpperCAmelCase : Union[str, Any] = k.T __UpperCAmelCase : int = o.T __UpperCAmelCase : List[str] = q.T __UpperCAmelCase : str = v.T # Block i, layer 2 (MLP). __UpperCAmelCase : Any = tax_layer_norm_lookup(lowerCamelCase__ , lowerCamelCase__ , "decoder" , "pre_mlp_layer_norm" ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = tax_mlp_lookup(lowerCamelCase__ , lowerCamelCase__ , "decoder" , lowerCamelCase__ ) __UpperCAmelCase : str = layer_norm if split_mlp_wi: __UpperCAmelCase : Any = wi[0].T __UpperCAmelCase : Dict = wi[1].T else: __UpperCAmelCase : List[Any] = wi.T __UpperCAmelCase : int = wo.T __UpperCAmelCase : List[str] = old["decoder/decoder_norm/scale"] __UpperCAmelCase : Dict = old[ "decoder/relpos_bias/rel_embedding" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __UpperCAmelCase : str = old["decoder/logits_dense/kernel"].T return new def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase : Optional[int] = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase : Optional[int] = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) __UpperCAmelCase : Tuple = state_dict["shared.weight"] return state_dict def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: """simple docstring""" __UpperCAmelCase : List[Any] = checkpoints.load_tax_checkpoint(lowerCamelCase__ ) __UpperCAmelCase : Any = convert_tax_to_pytorch(lowerCamelCase__ , num_layers=config.num_layers , is_encoder_only=lowerCamelCase__ ) __UpperCAmelCase : Optional[int] = make_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ) -> Dict: """simple docstring""" __UpperCAmelCase : Dict = TaConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __UpperCAmelCase : str = TaEncoderModel(lowerCamelCase__ ) else: __UpperCAmelCase : Optional[Any] = TaForConditionalGeneration(lowerCamelCase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCamelCase__ ) print("Done" ) if __name__ == "__main__": _a : Dict = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) _a : int = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
10
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
1
'''simple docstring''' import math class __A : def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = 0.0 __UpperCAmelCase : List[str] = 0.0 for i in range(len(UpperCamelCase_ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): for i in range(len(UpperCamelCase_ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _lowercase ( ) -> None: """simple docstring""" __UpperCAmelCase : Any = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) __UpperCAmelCase : Union[str, Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training __UpperCAmelCase : str = SelfOrganizingMap() __UpperCAmelCase : Any = 3 __UpperCAmelCase : Union[str, Any] = 0.5 for _ in range(lowerCamelCase__ ): for j in range(len(lowerCamelCase__ ) ): # training sample __UpperCAmelCase : Optional[Any] = training_samples[j] # Compute the winning vector __UpperCAmelCase : Tuple = self_organizing_map.get_winner(lowerCamelCase__ , lowerCamelCase__ ) # Update the winning vector __UpperCAmelCase : Dict = self_organizing_map.update(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # classify test sample __UpperCAmelCase : Any = [0, 0, 0, 1] __UpperCAmelCase : Any = self_organizing_map.get_winner(lowerCamelCase__ , lowerCamelCase__ ) # results print(f"""Clusters that the test sample belongs to : {winner}""" ) print(f"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
10
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __A (unittest.TestCase ): @require_torch def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = pipeline( task="zero-shot-audio-classification" , model="hf-internal-testing/tiny-clap-htsat-unfused" ) __UpperCAmelCase : Optional[int] = load_dataset("ashraq/esc50" ) __UpperCAmelCase : Union[str, Any] = dataset["train"]["audio"][-1]["array"] __UpperCAmelCase : List[Any] = audio_classifier(UpperCamelCase_ , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [{"score": 0.5_0_1, "label": "Sound of a dog"}, {"score": 0.4_9_9, "label": "Sound of vaccum cleaner"}] , ) @unittest.skip("No models are available in TF" ) def _snake_case ( self ): pass @slow @require_torch def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = pipeline( task="zero-shot-audio-classification" , model="laion/clap-htsat-unfused" , ) # This is an audio of a dog __UpperCAmelCase : Optional[int] = load_dataset("ashraq/esc50" ) __UpperCAmelCase : Optional[int] = dataset["train"]["audio"][-1]["array"] __UpperCAmelCase : List[str] = audio_classifier(UpperCamelCase_ , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [ {"score": 0.9_9_9, "label": "Sound of a dog"}, {"score": 0.0_0_1, "label": "Sound of vaccum cleaner"}, ] , ) __UpperCAmelCase : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [ [ {"score": 0.9_9_9, "label": "Sound of a dog"}, {"score": 0.0_0_1, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) __UpperCAmelCase : Optional[int] = audio_classifier( [audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] , batch_size=5 ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , [ [ {"score": 0.9_9_9, "label": "Sound of a dog"}, {"score": 0.0_0_1, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) @unittest.skip("No models are available in TF" ) def _snake_case ( self ): pass
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a : str = logging.get_logger(__name__) _a : Optional[int] = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class __A (__magic_name__ ): snake_case :Union[str, Any] = "sew" def __init__( self , UpperCamelCase_=32 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_=2 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-5 , UpperCamelCase_="group" , UpperCamelCase_="gelu" , UpperCamelCase_=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , UpperCamelCase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCamelCase_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCamelCase_=False , UpperCamelCase_=1_28 , UpperCamelCase_=16 , UpperCamelCase_=True , UpperCamelCase_=0.0_5 , UpperCamelCase_=10 , UpperCamelCase_=2 , UpperCamelCase_=0.0 , UpperCamelCase_=10 , UpperCamelCase_=0 , UpperCamelCase_="mean" , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=2_56 , UpperCamelCase_=0 , UpperCamelCase_=1 , UpperCamelCase_=2 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Tuple = feat_extract_norm __UpperCAmelCase : Optional[int] = feat_extract_activation __UpperCAmelCase : Dict = list(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = list(UpperCamelCase_ ) __UpperCAmelCase : str = list(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = conv_bias __UpperCAmelCase : Any = num_conv_pos_embeddings __UpperCAmelCase : Optional[int] = num_conv_pos_embedding_groups __UpperCAmelCase : List[str] = len(self.conv_dim ) __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Tuple = squeeze_factor __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : int = hidden_dropout __UpperCAmelCase : List[str] = attention_dropout __UpperCAmelCase : List[str] = activation_dropout __UpperCAmelCase : str = feat_proj_dropout __UpperCAmelCase : Union[str, Any] = final_dropout __UpperCAmelCase : Dict = layerdrop __UpperCAmelCase : Any = layer_norm_eps __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : Any = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[Any] = apply_spec_augment __UpperCAmelCase : int = mask_time_prob __UpperCAmelCase : Optional[int] = mask_time_length __UpperCAmelCase : Tuple = mask_time_min_masks __UpperCAmelCase : Dict = mask_feature_prob __UpperCAmelCase : Optional[int] = mask_feature_length __UpperCAmelCase : List[str] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : List[Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : List[Any] = classifier_proj_size @property def _snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
10
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
1
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowerCamelCase__ , lowerCamelCase__ ) ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: __UpperCAmelCase : int = ( "Wrong input data's dimensions... " f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(lowerCamelCase__ ) try: if dataset.shape[1] != value_array.shape[1]: __UpperCAmelCase : Optional[int] = ( "Wrong input data's shape... " f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(lowerCamelCase__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: __UpperCAmelCase : List[Any] = ( "Input data have different datatype... " f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(lowerCamelCase__ ) __UpperCAmelCase : str = [] for value in value_array: __UpperCAmelCase : int = euclidean(lowerCamelCase__ , dataset[0] ) __UpperCAmelCase : str = dataset[0].tolist() for dataset_value in dataset[1:]: __UpperCAmelCase : Optional[int] = euclidean(lowerCamelCase__ , lowerCamelCase__ ) if dist > temp_dist: __UpperCAmelCase : List[str] = temp_dist __UpperCAmelCase : List[str] = dataset_value.tolist() answer.append([vector, dist] ) return answer def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" return np.dot(lowerCamelCase__ , lowerCamelCase__ ) / (norm(lowerCamelCase__ ) * norm(lowerCamelCase__ )) if __name__ == "__main__": import doctest doctest.testmod()
10
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
1
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A (unittest.TestCase ): def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = torch.nn.Linear(10 , 10 ) __UpperCAmelCase : Any = torch.optim.SGD(model.parameters() , 0.1 ) __UpperCAmelCase : Optional[int] = Accelerator() __UpperCAmelCase : List[str] = accelerator.prepare(UpperCamelCase_ ) try: pickle.loads(pickle.dumps(UpperCamelCase_ ) ) except Exception as e: self.fail(f"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
10
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if colsa != 1: __UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if rowsa != rowsa: __UpperCAmelCase : Optional[int] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != rowsa: __UpperCAmelCase : List[str] = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}""" ) raise ValueError(lowerCamelCase__ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape strictly_diagonally_dominant(lowerCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase__ ): __UpperCAmelCase : int = [] for row in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = 0 for col in range(lowerCamelCase__ ): if col == row: __UpperCAmelCase : int = table[row][col] elif col == cols - 1: __UpperCAmelCase : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : List[Any] = (temp + val) / denom new_val.append(lowerCamelCase__ ) __UpperCAmelCase : str = new_val return [float(lowerCamelCase__ ) for i in new_val] def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape __UpperCAmelCase : str = True for i in range(0 , lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Any = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=10 , UpperCamelCase_=3 , UpperCamelCase_=32 * 8 , UpperCamelCase_=32 * 8 , UpperCamelCase_=4 , UpperCamelCase_=64 , ): __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : str = is_training __UpperCAmelCase : Tuple = use_auxiliary_loss __UpperCAmelCase : Optional[int] = num_queries __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : Optional[Any] = min_size __UpperCAmelCase : Dict = max_size __UpperCAmelCase : Any = num_labels __UpperCAmelCase : List[Any] = hidden_dim __UpperCAmelCase : str = hidden_dim def _snake_case ( self ): __UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCamelCase_ ) __UpperCAmelCase : int = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCamelCase_ ) __UpperCAmelCase : int = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCamelCase_ ) > 0.5 ).float() __UpperCAmelCase : Tuple = (torch.rand((self.batch_size, self.num_labels) , device=UpperCamelCase_ ) > 0.5).long() __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _snake_case ( self ): __UpperCAmelCase : Optional[int] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __UpperCAmelCase : Union[str, Any] = self.num_queries __UpperCAmelCase : List[str] = self.num_labels __UpperCAmelCase : int = [1, 1, 1, 1] __UpperCAmelCase : Tuple = self.num_channels __UpperCAmelCase : Union[str, Any] = 64 __UpperCAmelCase : List[str] = 1_28 __UpperCAmelCase : Tuple = self.hidden_dim __UpperCAmelCase : List[Any] = self.hidden_dim __UpperCAmelCase : Dict = self.hidden_dim return config def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() __UpperCAmelCase : List[Any] = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = output.encoder_hidden_states __UpperCAmelCase : List[str] = output.pixel_decoder_hidden_states __UpperCAmelCase : Optional[int] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCamelCase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCamelCase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCamelCase_ ) , config.decoder_layers ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): with torch.no_grad(): __UpperCAmelCase : Any = MaskaFormerModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __UpperCAmelCase : Any = model(pixel_values=UpperCamelCase_ , pixel_mask=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ , output_hidden_states=UpperCamelCase_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Tuple = MaskaFormerForUniversalSegmentation(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() def comm_check_on_output(UpperCamelCase_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __UpperCAmelCase : List[str] = model(pixel_values=UpperCamelCase_ , pixel_mask=UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = model(UpperCamelCase_ ) comm_check_on_output(UpperCamelCase_ ) __UpperCAmelCase : Dict = model( pixel_values=UpperCamelCase_ , pixel_mask=UpperCamelCase_ , mask_labels=UpperCamelCase_ , class_labels=UpperCamelCase_ ) comm_check_on_output(UpperCamelCase_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A (__magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :List[Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case :Tuple = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} snake_case :List[str] = False snake_case :Optional[int] = False snake_case :Tuple = False snake_case :Optional[Any] = False def _snake_case ( self ): __UpperCAmelCase : int = MaskaFormerModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(UpperCamelCase_ , **UpperCamelCase_ , output_hidden_states=UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*UpperCamelCase_ ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def _snake_case ( self ): pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def _snake_case ( self ): pass @unittest.skip(reason="Mask2Former is not a generative model" ) def _snake_case ( self ): pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def _snake_case ( self ): pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _snake_case ( self ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self ): pass def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Tuple = [*signature.parameters.keys()] __UpperCAmelCase : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) @slow def _snake_case ( self ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __UpperCAmelCase : Dict = MaskaFormerModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Any = (self.model_tester.min_size,) * 2 __UpperCAmelCase : str = { "pixel_values": torch.randn((2, 3, *size) , device=UpperCamelCase_ ), "mask_labels": torch.randn((2, 10, *size) , device=UpperCamelCase_ ), "class_labels": torch.zeros(2 , 10 , device=UpperCamelCase_ ).long(), } __UpperCAmelCase : int = self.model_tester.get_config() __UpperCAmelCase : str = MaskaFormerForUniversalSegmentation(UpperCamelCase_ ).to(UpperCamelCase_ ) __UpperCAmelCase : int = model(**UpperCamelCase_ ) self.assertTrue(outputs.loss is not None ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(UpperCamelCase_ , **UpperCamelCase_ , output_hidden_states=UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(UpperCamelCase_ ).to(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = model(**UpperCamelCase_ , output_attentions=UpperCamelCase_ ) self.assertTrue(outputs.attentions is not None ) def _snake_case ( self ): if not self.model_tester.is_training: return __UpperCAmelCase : Any = self.all_model_classes[1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase : Optional[int] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.train() __UpperCAmelCase : Optional[int] = model(UpperCamelCase_ , mask_labels=UpperCamelCase_ , class_labels=UpperCamelCase_ ).loss loss.backward() def _snake_case ( self ): __UpperCAmelCase : Tuple = self.all_model_classes[1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase : int = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Optional[Any] = model_class(UpperCamelCase_ ).to(UpperCamelCase_ ) model.train() __UpperCAmelCase : Dict = model(UpperCamelCase_ , mask_labels=UpperCamelCase_ , class_labels=UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __UpperCAmelCase : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __UpperCAmelCase : Dict = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __UpperCAmelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCamelCase_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _a : Tuple = 1e-4 def _lowercase ( ) -> List[str]: """simple docstring""" __UpperCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class __A (unittest.TestCase ): @cached_property def _snake_case ( self ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def _snake_case ( self ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _snake_case ( self ): __UpperCAmelCase : int = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.default_image_processor __UpperCAmelCase : List[Any] = prepare_img() __UpperCAmelCase : Tuple = image_processor(UpperCamelCase_ , return_tensors="pt" ).to(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase_ , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(UpperCamelCase_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) ) __UpperCAmelCase : Any = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(UpperCamelCase_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) ) __UpperCAmelCase : Dict = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(UpperCamelCase_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Dict = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(UpperCamelCase_ ).eval() __UpperCAmelCase : Dict = self.default_image_processor __UpperCAmelCase : List[str] = prepare_img() __UpperCAmelCase : Union[str, Any] = image_processor(UpperCamelCase_ , return_tensors="pt" ).to(UpperCamelCase_ ) __UpperCAmelCase : Any = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase_ , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**UpperCamelCase_ ) # masks_queries_logits __UpperCAmelCase : Tuple = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __UpperCAmelCase : Dict = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] __UpperCAmelCase : Optional[int] = torch.tensor(UpperCamelCase_ ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) ) # class_queries_logits __UpperCAmelCase : Any = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __UpperCAmelCase : Union[str, Any] = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(UpperCamelCase_ ).eval() __UpperCAmelCase : Optional[Any] = self.default_image_processor __UpperCAmelCase : Optional[int] = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="pt" , ) __UpperCAmelCase : Any = inputs["pixel_values"].to(UpperCamelCase_ ) __UpperCAmelCase : int = [el.to(UpperCamelCase_ ) for el in inputs["mask_labels"]] __UpperCAmelCase : int = [el.to(UpperCamelCase_ ) for el in inputs["class_labels"]] with torch.no_grad(): __UpperCAmelCase : List[str] = model(**UpperCamelCase_ ) self.assertTrue(outputs.loss is not None )
10
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ ) try: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead." __UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] ) __UpperCAmelCase : Any = "" __UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] ) __UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
10
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Any = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Union[str, Any] = "ibert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Tuple = quant_mode __UpperCAmelCase : Union[str, Any] = force_dequant class __A (__magic_name__ ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
10
1
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _lowercase ( ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : List[Any] = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } __UpperCAmelCase : Tuple = Dataset.from_dict(lowerCamelCase__ ) return dataset class __A (__magic_name__ ): def _snake_case ( self ): __UpperCAmelCase : Any = get_dataset() __UpperCAmelCase : List[Any] = make_duplicate_clusters(UpperCamelCase_ , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _snake_case ( self ): __UpperCAmelCase : Tuple = get_dataset() __UpperCAmelCase , __UpperCAmelCase : Tuple = deduplicate_dataset(UpperCamelCase_ ) self.assertEqual(len(UpperCamelCase_ ) , 2 ) print(UpperCamelCase_ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , UpperCamelCase_ )
10
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ ) try: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead." __UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] ) __UpperCAmelCase : Any = "" __UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] ) __UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
10
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _a : Any = logging.getLogger(__name__) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" return (preds == labels).mean() @dataclass class __A : snake_case :str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __A : snake_case :str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) snake_case :str = field(metadata={"help": "Should contain the data files for the task."} ) snake_case :int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case :bool = field( default=__magic_name__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , lowerCamelCase__ ) # Set seed set_seed(training_args.seed ) try: __UpperCAmelCase : Tuple = processors[data_args.task_name]() __UpperCAmelCase : str = processor.get_labels() __UpperCAmelCase : str = len(lowerCamelCase__ ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCAmelCase : int = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCAmelCase : List[str] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowerCamelCase__ ) -> Dict: __UpperCAmelCase : int = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCamelCase__ , p.label_ids )} # Data collator __UpperCAmelCase : Optional[Any] = DataCollatorWithPadding(lowerCamelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCAmelCase : Dict = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=lowerCamelCase__ , eval_dataset=lowerCamelCase__ , compute_metrics=lowerCamelCase__ , data_collator=lowerCamelCase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase : Optional[int] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __UpperCAmelCase : int = trainer.evaluate() __UpperCAmelCase : List[str] = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_master(): with open(lowerCamelCase__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , lowerCamelCase__ , lowerCamelCase__ ) writer.write("%s = %s\n" % (key, value) ) results.update(lowerCamelCase__ ) return results def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" main() if __name__ == "__main__": main()
10
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case :Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case :Any = frozenset([] ) snake_case :Optional[int] = True @property def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[str] = (16, 16) __UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) __UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) __UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): __UpperCAmelCase : List[str] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) __UpperCAmelCase : Tuple = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) __UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _snake_case ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _snake_case ( self ): __UpperCAmelCase : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name ) __UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) __UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0] outputs.append(UpperCamelCase_ ) assert check_same_shape(UpperCamelCase_ ) @require_torch_gpu @slow class __A (unittest.TestCase ): def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[int] = torch.manual_seed(33 ) __UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" __UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images __UpperCAmelCase : int = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _snake_case ( self ): __UpperCAmelCase : List[Any] = torch.manual_seed(33 ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" __UpperCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) __UpperCAmelCase : Dict = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
10
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
1
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _a : int = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main __UpperCAmelCase : List[Any] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(lowerCamelCase__ , id=lowerCamelCase__ )
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
10
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __A (__magic_name__ , __magic_name__ ): @register_to_config def __init__( self , UpperCamelCase_ = 7_68 , ): super().__init__() __UpperCAmelCase : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase_ ) ) __UpperCAmelCase : Dict = nn.Parameter(torch.ones(1 , UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ = None , UpperCamelCase_ = None , ): __UpperCAmelCase : int = nn.Parameter(self.mean.to(UpperCamelCase_ ).to(UpperCamelCase_ ) ) __UpperCAmelCase : Optional[int] = nn.Parameter(self.std.to(UpperCamelCase_ ).to(UpperCamelCase_ ) ) return self def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = (embeds - self.mean) * 1.0 / self.std return embeds def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = (embeds * self.std) + self.mean return embeds
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[Any] = logging.get_logger(__name__) _a : List[Any] = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class __A (_lowerCamelCase ): snake_case :Optional[Any] = "timesformer" def __init__( self , UpperCamelCase_=2_24 , UpperCamelCase_=16 , UpperCamelCase_=3 , UpperCamelCase_=8 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-6 , UpperCamelCase_=True , UpperCamelCase_="divided_space_time" , UpperCamelCase_=0 , **UpperCamelCase_ , ): super().__init__(**A__ ) __UpperCAmelCase : Optional[Any] = image_size __UpperCAmelCase : List[Any] = patch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : Union[str, Any] = num_frames __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : Any = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Tuple = qkv_bias __UpperCAmelCase : List[str] = attention_type __UpperCAmelCase : List[Any] = drop_path_rate
700
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _a : str = datasets.load_iris() _a : List[Any] = np.array(data["data"]) _a : Optional[Any] = np.array(data["target"]) _a : Dict = data["target_names"] _a , _a , _a , _a : Any = train_test_split(X, y) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified __UpperCAmelCase : int = [] for data_point in data: __UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 10**9 ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : List[Any] = 2 __UpperCAmelCase : int = 0 __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __UpperCAmelCase : List[str] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
701
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = set_counts __UpperCAmelCase : int = max(UpperCamelCase_ ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Any = [1] * num_sets __UpperCAmelCase : Any = list(range(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Dict = src_parent __UpperCAmelCase : Dict = self.set_counts[src_parent] __UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ ) return True def _snake_case ( self , UpperCamelCase_ ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
10
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _a : List[str] = logging.get_logger(__name__) _a : int = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class __A (snake_case__ , snake_case__ ): snake_case :Any = """focalnet""" def __init__( self , UpperCamelCase_=2_24 , UpperCamelCase_=4 , UpperCamelCase_=3 , UpperCamelCase_=96 , UpperCamelCase_=False , UpperCamelCase_=[1_92, 3_84, 7_68, 7_68] , UpperCamelCase_=[2, 2, 6, 2] , UpperCamelCase_=[2, 2, 2, 2] , UpperCamelCase_=[3, 3, 3, 3] , UpperCamelCase_="gelu" , UpperCamelCase_=4.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.1 , UpperCamelCase_=False , UpperCamelCase_=1E-4 , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-5 , UpperCamelCase_=32 , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ , ): super().__init__(**UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = image_size __UpperCAmelCase : Optional[int] = patch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : List[Any] = embed_dim __UpperCAmelCase : str = use_conv_embed __UpperCAmelCase : Optional[Any] = hidden_sizes __UpperCAmelCase : Optional[Any] = depths __UpperCAmelCase : List[str] = focal_levels __UpperCAmelCase : Union[str, Any] = focal_windows __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : Any = hidden_dropout_prob __UpperCAmelCase : List[str] = drop_path_rate __UpperCAmelCase : int = use_layerscale __UpperCAmelCase : Optional[Any] = layerscale_value __UpperCAmelCase : int = use_post_layernorm __UpperCAmelCase : Union[str, Any] = use_post_layernorm_in_modulation __UpperCAmelCase : Tuple = normalize_modulator __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps __UpperCAmelCase : str = encoder_stride __UpperCAmelCase : Any = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
702
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A (_SCREAMING_SNAKE_CASE , unittest.TestCase ): snake_case :Optional[Any] = RobertaTokenizer snake_case :Union[str, Any] = RobertaTokenizerFast snake_case :Tuple = True snake_case :Any = {"cls_token": "<s>"} def _snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] __UpperCAmelCase : Optional[Any] = dict(zip(A_ , range(len(A_ ) ) ) ) __UpperCAmelCase : Optional[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __UpperCAmelCase : Any = {"unk_token": "<unk>"} __UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(A_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(A_ ) ) def _snake_case ( self , **UpperCamelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A_ ) def _snake_case ( self , **UpperCamelCase_ ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "lower newer" __UpperCAmelCase : Dict = "lower newer" return input_text, output_text def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase : List[str] = "lower newer" __UpperCAmelCase : List[Any] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(A_ ) # , add_prefix_space=True) self.assertListEqual(A_ , A_ ) __UpperCAmelCase : Optional[int] = tokens + [tokenizer.unk_token] __UpperCAmelCase : Optional[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=A_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=A_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def _snake_case ( self ): __UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained("roberta-base" ) __UpperCAmelCase : List[Any] = tokenizer.encode("sequence builders" , add_special_tokens=A_ ) __UpperCAmelCase : List[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=A_ ) __UpperCAmelCase : Optional[int] = tokenizer.encode( "sequence builders" , add_special_tokens=A_ , add_prefix_space=A_ ) __UpperCAmelCase : List[str] = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=A_ , add_prefix_space=A_ ) __UpperCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = self.get_tokenizer() __UpperCAmelCase : Dict = "Encode this sequence." __UpperCAmelCase : Any = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments __UpperCAmelCase : Union[str, Any] = tokenizer.encode(A_ , add_special_tokens=A_ , add_prefix_space=A_ ) __UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A_ , A_ ) __UpperCAmelCase : int = tokenizer.encode(A_ , add_special_tokens=A_ , add_prefix_space=A_ ) __UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A_ , A_ ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) __UpperCAmelCase : str = tokenizer.encode(A_ , add_special_tokens=A_ ) __UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A_ , A_ ) # Testing spaces after special tokens __UpperCAmelCase : List[Any] = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(A_ , lstrip=A_ , rstrip=A_ )} ) # mask token has a left space __UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A_ ) __UpperCAmelCase : Union[str, Any] = "Encode <mask> sequence" __UpperCAmelCase : Union[str, Any] = "Encode <mask>sequence" __UpperCAmelCase : Optional[int] = tokenizer.encode(A_ ) __UpperCAmelCase : Dict = encoded.index(A_ ) __UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A_ , A_ ) __UpperCAmelCase : Tuple = tokenizer.encode(A_ ) __UpperCAmelCase : Dict = encoded.index(A_ ) __UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A_ , A_ ) def _snake_case ( self ): pass def _snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCAmelCase : List[str] = "A, <mask> AllenNLP sentence." __UpperCAmelCase : Optional[Any] = tokenizer_r.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_ ) __UpperCAmelCase : Dict = tokenizer_p.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) __UpperCAmelCase : int = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) __UpperCAmelCase : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( A_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( A_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def _snake_case ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) __UpperCAmelCase : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCAmelCase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , A_ ) self.assertEqual(post_processor_state["add_prefix_space"] , A_ ) self.assertEqual(post_processor_state["trim_offsets"] , A_ ) def _snake_case ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCAmelCase : List[str] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase : List[str] = f"""{text_of_1_token} {text_of_1_token}""" __UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) __UpperCAmelCase : str = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A_ ) + 1, len(A_ ) + 1 + len(A_ )) , ) __UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) __UpperCAmelCase : List[str] = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A_ ) + 1, len(A_ ) + 1 + len(A_ )) , ) __UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) __UpperCAmelCase : Tuple = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A_ ), len(A_ ) + 1 + len(A_ )) , ) __UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) __UpperCAmelCase : Optional[Any] = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A_ ), len(A_ ) + 1 + len(A_ )) , ) __UpperCAmelCase : Dict = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) __UpperCAmelCase : List[Any] = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A_ ) + 1, 1 + len(A_ ) + 1 + len(A_ )) , ) __UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) __UpperCAmelCase : Union[str, Any] = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A_ ), 1 + len(A_ ) + 1 + len(A_ )) , ) __UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( A_ , use_fast=A_ , add_prefix_space=A_ , trim_offsets=A_ ) __UpperCAmelCase : int = tokenizer_r(A_ , return_offsets_mapping=A_ , add_special_tokens=A_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A_ ), 1 + len(A_ ) + 1 + len(A_ )) , )
703
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' _a : List[Any] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _a : str = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _a : Dict = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
704
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
10
0
'''simple docstring''' import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) _a : List[Any] = logging.getLogger() def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[Any] = os.path.join(_A , "all_results.json" ) if os.path.exists(_A ): with open(_A , "r" ) as f: __UpperCAmelCase : Optional[Any] = json.load(_A ) else: raise ValueError(f"""can't find {path}""" ) return results _a : Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class __A (lowercase__ ): def _snake_case ( self ): import xla_spawn __UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() __UpperCAmelCase : str = f"""\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n """.split() with patch.object(__lowerCamelCase , "argv" , __lowerCamelCase ): __UpperCAmelCase : List[str] = time() xla_spawn.main() __UpperCAmelCase : int = time() __UpperCAmelCase : int = get_results(__lowerCamelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_00 ) def _snake_case ( self ): import xla_spawn __UpperCAmelCase : List[Any] = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split() with patch.object(__lowerCamelCase , "argv" , __lowerCamelCase ): xla_spawn.main()
705
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Tuple = logging.get_logger(__name__) _a : List[str] = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class __A (__lowerCamelCase ): snake_case :Optional[int] = "distilbert" snake_case :str = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=5_12 , UpperCamelCase_=False , UpperCamelCase_=6 , UpperCamelCase_=12 , UpperCamelCase_=7_68 , UpperCamelCase_=4 * 7_68 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_="gelu" , UpperCamelCase_=0.0_2 , UpperCamelCase_=0.1 , UpperCamelCase_=0.2 , UpperCamelCase_=0 , **UpperCamelCase_ , ): __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : Dict = sinusoidal_pos_embds __UpperCAmelCase : List[str] = n_layers __UpperCAmelCase : Union[str, Any] = n_heads __UpperCAmelCase : Any = dim __UpperCAmelCase : Any = hidden_dim __UpperCAmelCase : Union[str, Any] = dropout __UpperCAmelCase : Union[str, Any] = attention_dropout __UpperCAmelCase : Union[str, Any] = activation __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : str = qa_dropout __UpperCAmelCase : str = seq_classif_dropout super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ ) class __A (__lowerCamelCase ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
706
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _a : Tuple = logging.get_logger(__name__) _a : List[Any] = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __A (UpperCAmelCase_ ): snake_case :List[Any] = 'blip_2_vision_model' def __init__( self , UpperCamelCase_=14_08 , UpperCamelCase_=61_44 , UpperCamelCase_=39 , UpperCamelCase_=16 , UpperCamelCase_=2_24 , UpperCamelCase_=14 , UpperCamelCase_="gelu" , UpperCamelCase_=0.0_0_0_0_1 , UpperCamelCase_=0.0 , UpperCamelCase_=1E-10 , UpperCamelCase_=True , **UpperCamelCase_ , ): super().__init__(**_lowercase ) __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Any = patch_size __UpperCAmelCase : Dict = image_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : str = attention_dropout __UpperCAmelCase : Dict = layer_norm_eps __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : Optional[int] = qkv_bias @classmethod def _snake_case ( cls , UpperCamelCase_ , **UpperCamelCase_ ): cls._set_token_in_kwargs(_lowercase ) __UpperCAmelCase : Any = cls.get_config_dict(_lowercase , **_lowercase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": __UpperCAmelCase : Union[str, Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_lowercase , **_lowercase ) class __A (UpperCAmelCase_ ): snake_case :int = 'blip_2_qformer' def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=0 , UpperCamelCase_="absolute" , UpperCamelCase_=2 , UpperCamelCase_=14_08 , **UpperCamelCase_ , ): super().__init__(pad_token_id=_lowercase , **_lowercase ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Tuple = num_attention_heads __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : Tuple = layer_norm_eps __UpperCAmelCase : Optional[int] = position_embedding_type __UpperCAmelCase : List[str] = cross_attention_frequency __UpperCAmelCase : Optional[Any] = encoder_hidden_size @classmethod def _snake_case ( cls , UpperCamelCase_ , **UpperCamelCase_ ): cls._set_token_in_kwargs(_lowercase ) __UpperCAmelCase : str = cls.get_config_dict(_lowercase , **_lowercase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": __UpperCAmelCase : Union[str, Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_lowercase , **_lowercase ) class __A (UpperCAmelCase_ ): snake_case :Optional[Any] = 'blip-2' snake_case :str = True def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=32 , **UpperCamelCase_ ): super().__init__(**_lowercase ) if vision_config is None: __UpperCAmelCase : Tuple = {} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values." ) if qformer_config is None: __UpperCAmelCase : str = {} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values." ) if text_config is None: __UpperCAmelCase : Tuple = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) __UpperCAmelCase : List[str] = BlipaVisionConfig(**_lowercase ) __UpperCAmelCase : Union[str, Any] = BlipaQFormerConfig(**_lowercase ) __UpperCAmelCase : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' __UpperCAmelCase : Any = CONFIG_MAPPING[text_model_type](**_lowercase ) __UpperCAmelCase : int = self.text_config.tie_word_embeddings __UpperCAmelCase : int = self.text_config.is_encoder_decoder __UpperCAmelCase : Tuple = num_query_tokens __UpperCAmelCase : Tuple = self.vision_config.hidden_size __UpperCAmelCase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __UpperCAmelCase : Any = 1.0 __UpperCAmelCase : Union[str, Any] = 0.0_2 @classmethod def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_lowercase , ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : int = self.vision_config.to_dict() __UpperCAmelCase : Any = self.qformer_config.to_dict() __UpperCAmelCase : Optional[int] = self.text_config.to_dict() __UpperCAmelCase : str = self.__class__.model_type return output
707
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Dict = len(__A ), len(grid[0] ) if ( min(__A , __A ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __UpperCAmelCase : Any = 0 count += depth_first_search(__A , row + 1 , __A , __A ) count += depth_first_search(__A , row - 1 , __A , __A ) count += depth_first_search(__A , __A , col + 1 , __A ) count += depth_first_search(__A , __A , col - 1 , __A ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
708
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _a : Dict = logging.get_logger(__name__) _a : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } _a : Optional[int] = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models __UpperCAmelCase : Union[str, Any] = "lm_head" __UpperCAmelCase : Optional[int] = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: __UpperCAmelCase : Union[str, Any] = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: __UpperCAmelCase : str = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __UpperCAmelCase : int = value elif weight_type == "weight_g": __UpperCAmelCase : Tuple = value elif weight_type == "weight_v": __UpperCAmelCase : Optional[int] = value elif weight_type == "bias": __UpperCAmelCase : Optional[Any] = value else: __UpperCAmelCase : Dict = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = fairseq_model.state_dict() __UpperCAmelCase : List[str] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): __UpperCAmelCase : Tuple = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) __UpperCAmelCase : Tuple = True else: for key, mapped_key in MAPPING.items(): __UpperCAmelCase : str = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: __UpperCAmelCase : Union[str, Any] = True if "*" in mapped_key: __UpperCAmelCase : Union[str, Any] = name.split(__lowerCAmelCase )[0].split("." )[-2] __UpperCAmelCase : str = mapped_key.replace("*" , __lowerCAmelCase ) if "weight_g" in name: __UpperCAmelCase : List[Any] = "weight_g" elif "weight_v" in name: __UpperCAmelCase : List[Any] = "weight_v" elif "bias" in name: __UpperCAmelCase : str = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCAmelCase : Any = "weight" else: __UpperCAmelCase : Any = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" __UpperCAmelCase : int = full_name.split("conv_layers." )[-1] __UpperCAmelCase : Tuple = name.split("." ) __UpperCAmelCase : List[str] = int(items[0] ) __UpperCAmelCase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __UpperCAmelCase : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __UpperCAmelCase : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __UpperCAmelCase : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __UpperCAmelCase : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True ) -> str: """simple docstring""" if config_path is not None: __UpperCAmelCase : Optional[int] = UniSpeechConfig.from_pretrained(__lowerCAmelCase ) else: __UpperCAmelCase : List[str] = UniSpeechConfig() if is_finetuned: if dict_path: __UpperCAmelCase : List[Any] = Dictionary.load_from_json(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCAmelCase : Optional[Any] = target_dict.pad_index __UpperCAmelCase : str = target_dict.bos_index __UpperCAmelCase : Any = target_dict.eos_index __UpperCAmelCase : List[str] = len(target_dict.symbols ) __UpperCAmelCase : List[str] = os.path.join(__lowerCAmelCase , "vocab.json" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) __UpperCAmelCase : int = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCAmelCase : Tuple = 42 __UpperCAmelCase : int = 43 with open(__lowerCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase : int = WavaVecaPhonemeCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__lowerCAmelCase , ) __UpperCAmelCase : Dict = True if config.feat_extract_norm == "layer" else False __UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) __UpperCAmelCase : Dict = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) __UpperCAmelCase : Optional[int] = UniSpeechForCTC(__lowerCAmelCase ) else: __UpperCAmelCase : Dict = UniSpeechForPreTraining(__lowerCAmelCase ) if is_finetuned: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __UpperCAmelCase : Optional[int] = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_unispeech.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _a : Tuple = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
709
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
10
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Optional[Any] = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A (unittest.TestCase ): def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=3 , UpperCamelCase_=2_24 , UpperCamelCase_=30 , UpperCamelCase_=4_00 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=[0.5, 0.5, 0.5] , ): __UpperCAmelCase : Optional[int] = size if size is not None else {"""height""": 18, """width""": 18} __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : Union[str, Any] = image_size __UpperCAmelCase : Optional[int] = min_resolution __UpperCAmelCase : Any = max_resolution __UpperCAmelCase : Tuple = do_resize __UpperCAmelCase : int = size __UpperCAmelCase : Union[str, Any] = do_normalize __UpperCAmelCase : Any = image_mean __UpperCAmelCase : str = image_std def _snake_case ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __A (UpperCamelCase_ , unittest.TestCase ): snake_case :Dict = ViTImageProcessor if is_vision_available() else None def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = EfficientFormerImageProcessorTester(self ) @property def _snake_case ( self ): return self.image_proc_tester.prepare_image_processor_dict() def _snake_case ( self ): __UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , "image_mean" ) ) self.assertTrue(hasattr(_a , "image_std" ) ) self.assertTrue(hasattr(_a , "do_normalize" ) ) self.assertTrue(hasattr(_a , "do_resize" ) ) self.assertTrue(hasattr(_a , "size" ) ) def _snake_case ( self ): pass def _snake_case ( self ): __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Tuple = prepare_image_inputs(self.image_proc_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input __UpperCAmelCase : int = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched __UpperCAmelCase : Optional[Any] = image_processor(_a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input __UpperCAmelCase : int = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched __UpperCAmelCase : Optional[Any] = image_processor(_a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def _snake_case ( self ): __UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : Tuple = prepare_image_inputs(self.image_proc_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input __UpperCAmelCase : str = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched __UpperCAmelCase : List[str] = image_processor(_a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
711
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
0
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[str]: """simple docstring""" if nth_term == "": return [""] __UpperCAmelCase : str = int(__UpperCAmelCase ) __UpperCAmelCase : Any = int(__UpperCAmelCase ) __UpperCAmelCase : List[str] = [] for temp in range(int(__UpperCAmelCase ) ): series.append(f"""1 / {pow(temp + 1 , int(__UpperCAmelCase ) )}""" if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() _a : List[str] = int(input("Enter the last number (nth term) of the P-Series")) _a : Any = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __UpperCAmelCase : int = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(lowerCAmelCase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if colsa != 1: __UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if rowsa != rowsa: __UpperCAmelCase : Optional[int] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != rowsa: __UpperCAmelCase : List[str] = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}""" ) raise ValueError(lowerCamelCase__ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape strictly_diagonally_dominant(lowerCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase__ ): __UpperCAmelCase : int = [] for row in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = 0 for col in range(lowerCamelCase__ ): if col == row: __UpperCAmelCase : int = table[row][col] elif col == cols - 1: __UpperCAmelCase : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : List[Any] = (temp + val) / denom new_val.append(lowerCamelCase__ ) __UpperCAmelCase : str = new_val return [float(lowerCamelCase__ ) for i in new_val] def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape __UpperCAmelCase : str = True for i in range(0 , lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" assert isinstance(__A , __A ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: __UpperCAmelCase : Optional[int] = f"""The input value of [n={number}] has to be > 0""" raise ValueError(__A ) else: __UpperCAmelCase : Optional[Any] = sylvester(number - 1 ) __UpperCAmelCase : Tuple = num - 1 __UpperCAmelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
714
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Any = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(_lowerCamelCase ): if len(_lowerCamelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_lowerCamelCase ) ) return data_lists def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" __UpperCAmelCase : list[list[float]] = [] for dlist, weight in zip(_lowerCamelCase , _lowerCamelCase ): __UpperCAmelCase : List[str] = min(_lowerCamelCase ) __UpperCAmelCase : Optional[int] = max(_lowerCamelCase ) __UpperCAmelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __UpperCAmelCase : Any = f"""Invalid weight of {weight:f} provided""" raise ValueError(_lowerCamelCase ) score_lists.append(_lowerCamelCase ) return score_lists def _lowercase ( lowerCamelCase__ ) -> Any: """simple docstring""" __UpperCAmelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_lowerCamelCase ): __UpperCAmelCase : List[Any] = final_scores[j] + ele return final_scores def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : str = get_data(_lowerCamelCase ) __UpperCAmelCase : str = calculate_each_score(_lowerCamelCase , _lowerCamelCase ) __UpperCAmelCase : Any = generate_final_scores(_lowerCamelCase ) # append scores to source data for i, ele in enumerate(_lowerCamelCase ): source_data[i].append(_lowerCamelCase ) return source_data
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' _a : int = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Any = [False] * len(_lowerCamelCase ) __UpperCAmelCase : str = [s] __UpperCAmelCase : List[str] = True while queue: __UpperCAmelCase : Any = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) __UpperCAmelCase : List[str] = True __UpperCAmelCase : int = u return visited[t] def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : str = [-1] * (len(_lowerCamelCase )) __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : str = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): __UpperCAmelCase : Optional[Any] = float("Inf" ) __UpperCAmelCase : Optional[Any] = sink while s != source: # Find the minimum value in select path __UpperCAmelCase : Optional[int] = min(_lowerCamelCase , graph[parent[s]][s] ) __UpperCAmelCase : Optional[Any] = parent[s] max_flow += path_flow __UpperCAmelCase : Dict = sink while v != source: __UpperCAmelCase : Union[str, Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __UpperCAmelCase : Optional[Any] = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
716
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Any = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Union[str, Any] = "ibert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Tuple = quant_mode __UpperCAmelCase : Union[str, Any] = force_dequant class __A (__magic_name__ ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
10
0
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : Dict = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=8 ) -> List[str]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : str = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __A (_UpperCAmelCase ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): super().__init__() self.register_modules( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , movq=lowerCamelCase_ , ) __UpperCAmelCase : str = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if latents is None: __UpperCAmelCase : Union[str, Any] = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=lowerCamelCase_ , dtype=lowerCamelCase_ ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) __UpperCAmelCase : List[str] = latents.to(lowerCamelCase_ ) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def _snake_case ( self , UpperCamelCase_=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) __UpperCAmelCase : Union[str, Any] = torch.device(f"""cuda:{gpu_id}""" ) __UpperCAmelCase : str = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase_ , lowerCamelCase_ ) def _snake_case ( self , UpperCamelCase_=0 ): if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) __UpperCAmelCase : Any = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowerCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase : Dict = cpu_offload_with_hook(lowerCamelCase_ , lowerCamelCase_ , prev_module_hook=lowerCamelCase_ ) # We'll offload the last model manually. __UpperCAmelCase : str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _snake_case ( self ): if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase_ ) def __call__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 5_12 , UpperCamelCase_ = 5_12 , UpperCamelCase_ = 1_00 , UpperCamelCase_ = 4.0 , UpperCamelCase_ = 1 , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = "pil" , UpperCamelCase_ = True , ): __UpperCAmelCase : Any = self._execution_device __UpperCAmelCase : Optional[int] = guidance_scale > 1.0 if isinstance(lowerCamelCase_ , lowerCamelCase_ ): __UpperCAmelCase : Optional[Any] = torch.cat(lowerCamelCase_ , dim=0 ) __UpperCAmelCase : Optional[int] = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowerCamelCase_ , lowerCamelCase_ ): __UpperCAmelCase : List[str] = torch.cat(lowerCamelCase_ , dim=0 ) if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 ) __UpperCAmelCase : str = negative_image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 ) __UpperCAmelCase : Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCamelCase_ ) self.scheduler.set_timesteps(lowerCamelCase_ , device=lowerCamelCase_ ) __UpperCAmelCase : str = self.scheduler.timesteps __UpperCAmelCase : Optional[Any] = self.unet.config.in_channels __UpperCAmelCase : List[str] = downscale_height_and_width(lowerCamelCase_ , lowerCamelCase_ , self.movq_scale_factor ) # create initial latent __UpperCAmelCase : Any = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds} __UpperCAmelCase : Optional[int] = self.unet( sample=lowerCamelCase_ , timestep=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , added_cond_kwargs=lowerCamelCase_ , return_dict=lowerCamelCase_ , )[0] if do_classifier_free_guidance: __UpperCAmelCase : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) __UpperCAmelCase : List[str] = noise_pred.chunk(2 ) __UpperCAmelCase : Any = variance_pred.chunk(2 ) __UpperCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : int = self.scheduler.step( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ , )[0] # post-processing __UpperCAmelCase : int = self.movq.decode(lowerCamelCase_ , force_not_quantize=lowerCamelCase_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: __UpperCAmelCase : Union[str, Any] = image * 0.5 + 0.5 __UpperCAmelCase : Dict = image.clamp(0 , 1 ) __UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __UpperCAmelCase : str = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
717
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ ) try: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead." __UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] ) __UpperCAmelCase : Any = "" __UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] ) __UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
10
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=10 , UpperCamelCase_=3 , UpperCamelCase_=2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=10 , UpperCamelCase_=0.0_2 , UpperCamelCase_="divided_space_time" , UpperCamelCase_=None , ): __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : int = num_frames __UpperCAmelCase : Any = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : str = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : int = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Tuple = attention_type __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : Any = scope __UpperCAmelCase : Any = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __UpperCAmelCase : List[str] = (image_size // patch_size) ** 2 __UpperCAmelCase : Tuple = (num_frames) * self.num_patches_per_frame + 1 def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : int = None if self.use_labels: __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : int = self.get_config() return config, pixel_values, labels def _snake_case ( self ): __UpperCAmelCase : List[str] = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __UpperCAmelCase : Optional[int] = self.num_labels return config def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Any = TimesformerModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCAmelCase : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[str] = TimesformerForVideoClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__UpperCamelCase ) # verify the logits shape __UpperCAmelCase : Union[str, Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __UpperCamelCase ) def _snake_case ( self ): __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __A (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): snake_case :Union[str, Any] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () snake_case :Tuple = ( {'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification} if is_torch_available() else {} ) snake_case :Optional[Any] = False snake_case :int = False snake_case :List[Any] = False snake_case :str = False def _snake_case ( self ): __UpperCAmelCase : Dict = TimesformerModelTester(self ) __UpperCAmelCase : Union[str, Any] = ConfigTester( self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): __UpperCAmelCase : str = copy.deepcopy(__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): __UpperCAmelCase : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def _snake_case ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def _snake_case ( self ): pass def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(__UpperCamelCase ) __UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Tuple = [*signature.parameters.keys()] __UpperCAmelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def _snake_case ( self ): __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__UpperCamelCase ) @slow def _snake_case ( self ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[str] = TimesformerModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _snake_case ( self ): if not self.has_attentions: pass else: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : int = True for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = self.model_tester.seq_length __UpperCAmelCase : Union[str, Any] = self.model_tester.num_frames __UpperCAmelCase : str = True __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = True __UpperCAmelCase : List[str] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : str = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) __UpperCAmelCase : Optional[Any] = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : str = True __UpperCAmelCase : str = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Dict = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) __UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __UpperCAmelCase : str = len(__UpperCamelCase ) # Check attention is always last and order is fine __UpperCAmelCase : int = True __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Dict = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(out_len + 1 , len(__UpperCamelCase ) ) __UpperCAmelCase : List[str] = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _snake_case ( self ): def check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : int = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Dict = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) __UpperCAmelCase : Optional[int] = outputs.hidden_states __UpperCAmelCase : int = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) __UpperCAmelCase : Dict = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[int] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : Optional[Any] = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) __UpperCAmelCase : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class __A (unittest.TestCase ): @cached_property def _snake_case ( self ): return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( __UpperCamelCase ) __UpperCAmelCase : Optional[int] = self.default_image_processor __UpperCAmelCase : Optional[int] = prepare_video() __UpperCAmelCase : Dict = image_processor(video[:8] , return_tensors="pt" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(**__UpperCamelCase ) # verify the logits __UpperCAmelCase : Any = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) __UpperCAmelCase : Any = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
718
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case :Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case :Any = frozenset([] ) snake_case :Optional[int] = True @property def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[str] = (16, 16) __UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) __UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) __UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): __UpperCAmelCase : List[str] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) __UpperCAmelCase : Tuple = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) __UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _snake_case ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _snake_case ( self ): __UpperCAmelCase : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name ) __UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) __UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0] outputs.append(UpperCamelCase_ ) assert check_same_shape(UpperCamelCase_ ) @require_torch_gpu @slow class __A (unittest.TestCase ): def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[int] = torch.manual_seed(33 ) __UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" __UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images __UpperCAmelCase : int = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _snake_case ( self ): __UpperCAmelCase : List[Any] = torch.manual_seed(33 ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" __UpperCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) __UpperCAmelCase : Dict = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
10
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _a : int = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
0
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" return (data["data"], data["target"]) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: """simple docstring""" __UpperCAmelCase : Dict = XGBClassifier() classifier.fit(__UpperCamelCase , __UpperCamelCase ) return classifier def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = load_iris() __UpperCAmelCase : Optional[Any] = data_handling(__UpperCamelCase ) __UpperCAmelCase : List[str] = train_test_split( __UpperCamelCase , __UpperCamelCase , test_size=0.25 ) __UpperCAmelCase : List[str] = iris["""target_names"""] # Create an XGBoost Classifier from the training data __UpperCAmelCase : List[str] = xgboost(__UpperCamelCase , __UpperCamelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , display_labels=__UpperCamelCase , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
720
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
10
0
'''simple docstring''' import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _a : Optional[int] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _a : Tuple = "main" # Default branch name _a : int = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) _a : Optional[int] = "aaaaaaa" # This commit does not exist, so we should 404. _a : Tuple = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes _a : Optional[Any] = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def _lowercase ( ) -> List[Any]: """simple docstring""" print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def _lowercase ( ) -> Any: """simple docstring""" print("Bonjour!" ) yield print("Au revoir!" ) class __A (unittest.TestCase ): def _snake_case ( self ): # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers" ) is not None class __A (unittest.TestCase ): @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _snake_case ( self , UpperCamelCase_ ): with ContextManagers([] ): print("Transformers are awesome!" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _snake_case ( self , UpperCamelCase_ ): with ContextManagers([context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _snake_case ( self , UpperCamelCase_ ): with ContextManagers([context_fr(), context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" ) @require_torch def _snake_case ( self ): self.assertEqual(find_labels(A_ ) , ["labels"] ) self.assertEqual(find_labels(A_ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(A_ ) , ["start_positions", "end_positions"] ) class __A (_lowercase ): pass self.assertEqual(find_labels(A_ ) , ["labels"] ) @require_tf def _snake_case ( self ): self.assertEqual(find_labels(A_ ) , ["labels"] ) self.assertEqual(find_labels(A_ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(A_ ) , ["start_positions", "end_positions"] ) class __A (_lowercase ): pass self.assertEqual(find_labels(A_ ) , ["labels"] ) @require_flax def _snake_case ( self ): # Flax models don't have labels self.assertEqual(find_labels(A_ ) , [] ) self.assertEqual(find_labels(A_ ) , [] ) self.assertEqual(find_labels(A_ ) , [] ) class __A (_lowercase ): pass self.assertEqual(find_labels(A_ ) , [] )
721
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import numpy as np def _lowercase ( lowerCamelCase__ ) -> np.ndarray: """simple docstring""" return 1 / (1 + np.exp(-vector )) def _lowercase ( lowerCamelCase__ ) -> np.ndarray: """simple docstring""" return vector * sigmoid(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _a : str = datasets.load_iris() _a : List[Any] = np.array(data["data"]) _a : Optional[Any] = np.array(data["target"]) _a : Dict = data["target_names"] _a , _a , _a , _a : Any = train_test_split(X, y) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified __UpperCAmelCase : int = [] for data_point in data: __UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
10
0
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _a : Optional[Any] = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) _a : Dict = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) _a : Optional[Any] = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) _a : List[str] = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) _a : Optional[int] = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) _a : int = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) _a : Optional[int] = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def _lowercase ( ) -> str: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = randrange(len(lowerCamelCase__ ) ), randrange(len(lowerCamelCase__ ) ) __UpperCAmelCase : Optional[int] = ["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] __UpperCAmelCase , __UpperCAmelCase : List[str] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _lowercase ( lowerCamelCase__ = 100 ) -> Any: """simple docstring""" return (generate_random_hand() for _ in range(lowerCamelCase__ )) @pytest.mark.parametrize("hand, expected" , lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" assert PokerHand(lowerCamelCase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" assert PokerHand(lowerCamelCase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Optional[Any] = PokerHand(lowerCamelCase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" assert PokerHand(lowerCamelCase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" assert PokerHand(lowerCamelCase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" assert PokerHand(lowerCamelCase__ ).compare_with(PokerHand(lowerCamelCase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" assert PokerHand(lowerCamelCase__ ).compare_with(PokerHand(lowerCamelCase__ ) ) == expected def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Optional[int] = [PokerHand(lowerCamelCase__ ) for hand in SORTED_HANDS] __UpperCAmelCase : List[Any] = poker_hands.copy() shuffle(lowerCamelCase__ ) __UpperCAmelCase : Any = chain(sorted(lowerCamelCase__ ) ) for index, hand in enumerate(lowerCamelCase__ ): assert hand == poker_hands[index] def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : List[str] = [PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowerCamelCase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _lowercase ( ) -> List[str]: """simple docstring""" __UpperCAmelCase : Tuple = PokerHand("2C 4S AS 3D 5C" ) __UpperCAmelCase : int = True __UpperCAmelCase : Optional[Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _lowercase ( ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : List[Any] = os.path.abspath(os.path.dirname(lowerCamelCase__ ) ) __UpperCAmelCase : Dict = os.path.join(lowerCamelCase__ , "poker_hands.txt" ) with open(lowerCamelCase__ ) as file_hand: for line in file_hand: __UpperCAmelCase : Union[str, Any] = line[:14].strip() __UpperCAmelCase : Optional[int] = line[15:].strip() __UpperCAmelCase , __UpperCAmelCase : Tuple = PokerHand(lowerCamelCase__ ), PokerHand(lowerCamelCase__ ) __UpperCAmelCase : str = player.compare_with(lowerCamelCase__ ) if output == "Win": answer += 1 assert answer == 376
701
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = set_counts __UpperCAmelCase : int = max(UpperCamelCase_ ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Any = [1] * num_sets __UpperCAmelCase : Any = list(range(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Dict = src_parent __UpperCAmelCase : Dict = self.set_counts[src_parent] __UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ ) return True def _snake_case ( self , UpperCamelCase_ ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
10
0
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __A (UpperCamelCase_ ): snake_case :Optional[Any] = 42 class __A (UpperCamelCase_ , UpperCamelCase_ ): @register_to_config def __init__( self , UpperCamelCase_ = 32 , UpperCamelCase_ = 64 , UpperCamelCase_ = 20 , UpperCamelCase_ = 7_68 , UpperCamelCase_=77 , UpperCamelCase_=4 , UpperCamelCase_ = 0.0 , UpperCamelCase_ = "silu" , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = "linear" , UpperCamelCase_ = "prd" , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , ): super().__init__() __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Any = attention_head_dim __UpperCAmelCase : Union[str, Any] = num_attention_heads * attention_head_dim __UpperCAmelCase : Optional[Any] = additional_embeddings __UpperCAmelCase : Tuple = time_embed_dim or inner_dim __UpperCAmelCase : Optional[int] = embedding_proj_dim or embedding_dim __UpperCAmelCase : Dict = clip_embed_dim or embedding_dim __UpperCAmelCase : List[Any] = Timesteps(__A , __A , 0 ) __UpperCAmelCase : int = TimestepEmbedding(__A , __A , out_dim=__A , act_fn=__A ) __UpperCAmelCase : List[str] = nn.Linear(__A , __A ) if embedding_proj_norm_type is None: __UpperCAmelCase : int = None elif embedding_proj_norm_type == "layer": __UpperCAmelCase : int = nn.LayerNorm(__A ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __UpperCAmelCase : List[str] = nn.Linear(__A , __A ) if encoder_hid_proj_type is None: __UpperCAmelCase : str = None elif encoder_hid_proj_type == "linear": __UpperCAmelCase : Optional[Any] = nn.Linear(__A , __A ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __UpperCAmelCase : Any = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __A ) ) if added_emb_type == "prd": __UpperCAmelCase : int = nn.Parameter(torch.zeros(1 , 1 , __A ) ) elif added_emb_type is None: __UpperCAmelCase : Tuple = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.""" ) __UpperCAmelCase : List[str] = nn.ModuleList( [ BasicTransformerBlock( __A , __A , __A , dropout=__A , activation_fn="gelu" , attention_bias=__A , ) for d in range(__A ) ] ) if norm_in_type == "layer": __UpperCAmelCase : Any = nn.LayerNorm(__A ) elif norm_in_type is None: __UpperCAmelCase : str = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __UpperCAmelCase : Optional[int] = nn.LayerNorm(__A ) __UpperCAmelCase : Optional[Any] = nn.Linear(__A , __A ) __UpperCAmelCase : Optional[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) __UpperCAmelCase : int = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , __A , persistent=__A ) __UpperCAmelCase : Tuple = nn.Parameter(torch.zeros(1 , __A ) ) __UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.zeros(1 , __A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _snake_case ( self ): __UpperCAmelCase : Tuple = {} def fn_recursive_add_processors(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if hasattr(__A , "set_processor" ): __UpperCAmelCase : List[str] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , __A , __A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__A , __A , __A ) return processors def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = len(self.attn_processors.keys() ) if isinstance(__A , __A ) and len(__A ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(__A )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if hasattr(__A , "set_processor" ): if not isinstance(__A , __A ): module.set_processor(__A ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , __A , __A ) for name, module in self.named_children(): fn_recursive_attn_processor(__A , __A , __A ) def _snake_case ( self ): self.set_attn_processor(AttnProcessor() ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = True , ): __UpperCAmelCase : List[str] = hidden_states.shape[0] __UpperCAmelCase : int = timestep if not torch.is_tensor(__A ): __UpperCAmelCase : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__A ) and len(timesteps.shape ) == 0: __UpperCAmelCase : Union[str, Any] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[Any] = timesteps * torch.ones(__A , dtype=timesteps.dtype , device=timesteps.device ) __UpperCAmelCase : Any = self.time_proj(__A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __UpperCAmelCase : int = timesteps_projected.to(dtype=self.dtype ) __UpperCAmelCase : List[str] = self.time_embedding(__A ) if self.embedding_proj_norm is not None: __UpperCAmelCase : List[str] = self.embedding_proj_norm(__A ) __UpperCAmelCase : str = self.embedding_proj(__A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __UpperCAmelCase : Any = self.encoder_hidden_states_proj(__A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) __UpperCAmelCase : List[str] = self.proj_in(__A ) __UpperCAmelCase : Union[str, Any] = self.positional_embedding.to(hidden_states.dtype ) __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Dict = 0 if encoder_hidden_states is not None: additional_embeds.append(__A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __UpperCAmelCase : Tuple = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __UpperCAmelCase : Dict = hidden_states[:, None, :] __UpperCAmelCase : Any = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __UpperCAmelCase : Any = self.prd_embedding.to(hidden_states.dtype ).expand(__A , -1 , -1 ) additional_embeds.append(__A ) __UpperCAmelCase : Dict = torch.cat( __A , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __UpperCAmelCase : List[Any] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __UpperCAmelCase : Union[str, Any] = F.pad( __A , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __UpperCAmelCase : List[Any] = hidden_states + positional_embeddings if attention_mask is not None: __UpperCAmelCase : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 __UpperCAmelCase : Tuple = F.pad(__A , (0, self.additional_embeddings) , value=0.0 ) __UpperCAmelCase : Dict = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __UpperCAmelCase : List[str] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __UpperCAmelCase : Optional[int] = self.norm_in(__A ) for block in self.transformer_blocks: __UpperCAmelCase : Union[str, Any] = block(__A , attention_mask=__A ) __UpperCAmelCase : Optional[int] = self.norm_out(__A ) if self.prd_embedding is not None: __UpperCAmelCase : Dict = hidden_states[:, -1] else: __UpperCAmelCase : Optional[int] = hidden_states[:, additional_embeddings_len:] __UpperCAmelCase : Union[str, Any] = self.proj_to_clip_embeddings(__A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__A ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
702
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
0
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def _lowercase ( lowerCamelCase__="ro" , lowerCamelCase__="en" , lowerCamelCase__="wmt16" , lowerCamelCase__=None ) -> Optional[int]: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) __UpperCAmelCase : Any = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) __UpperCAmelCase : str = datasets.load_dataset(_lowerCamelCase , _lowerCamelCase ) if save_dir is None: __UpperCAmelCase : str = f"""{dataset}-{pair}""" __UpperCAmelCase : List[Any] = Path(_lowerCamelCase ) save_dir.mkdir(exist_ok=_lowerCamelCase ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets __UpperCAmelCase : Union[str, Any] = "val" if split == "validation" else split __UpperCAmelCase : Optional[int] = save_dir.joinpath(f"""{fn}.source""" ) __UpperCAmelCase : Tuple = save_dir.joinpath(f"""{fn}.target""" ) __UpperCAmelCase : Optional[Any] = src_path.open("w+" ) __UpperCAmelCase : str = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __UpperCAmelCase : Optional[Any] = x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
703
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=10 , UpperCamelCase_=3 , UpperCamelCase_=32 * 8 , UpperCamelCase_=32 * 8 , UpperCamelCase_=4 , UpperCamelCase_=64 , ): __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : Optional[Any] = batch_size __UpperCAmelCase : Dict = is_training __UpperCAmelCase : str = use_auxiliary_loss __UpperCAmelCase : Optional[int] = num_queries __UpperCAmelCase : Union[str, Any] = num_channels __UpperCAmelCase : Optional[Any] = min_size __UpperCAmelCase : Union[str, Any] = max_size __UpperCAmelCase : int = num_labels __UpperCAmelCase : Dict = hidden_dim __UpperCAmelCase : Optional[int] = hidden_dim def _snake_case ( self ): __UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _a ) __UpperCAmelCase : List[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_a ) __UpperCAmelCase : Any = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_a ) > 0.5 ).float() __UpperCAmelCase : List[str] = (torch.rand((self.batch_size, self.num_labels) , device=_a ) > 0.5).long() __UpperCAmelCase : int = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _snake_case ( self ): __UpperCAmelCase : List[str] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __UpperCAmelCase : Optional[Any] = self.num_queries __UpperCAmelCase : Any = self.num_labels __UpperCAmelCase : Dict = [1, 1, 1, 1] __UpperCAmelCase : str = self.num_channels __UpperCAmelCase : List[Any] = 64 __UpperCAmelCase : Optional[Any] = 1_28 __UpperCAmelCase : List[str] = self.hidden_dim __UpperCAmelCase : str = self.hidden_dim __UpperCAmelCase : List[Any] = self.hidden_dim return config def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() __UpperCAmelCase : int = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : int = output.encoder_hidden_states __UpperCAmelCase : Tuple = output.pixel_decoder_hidden_states __UpperCAmelCase : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , config.decoder_layers ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): with torch.no_grad(): __UpperCAmelCase : Optional[Any] = MaskaFormerModel(config=_a ) model.to(_a ) model.eval() __UpperCAmelCase : Dict = model(pixel_values=_a , pixel_mask=_a ) __UpperCAmelCase : str = model(_a , output_hidden_states=_a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_a , _a ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = MaskaFormerForUniversalSegmentation(config=_a ) model.to(_a ) model.eval() def comm_check_on_output(UpperCamelCase_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(pixel_values=_a , pixel_mask=_a ) __UpperCAmelCase : Dict = model(_a ) comm_check_on_output(_a ) __UpperCAmelCase : Union[str, Any] = model( pixel_values=_a , pixel_mask=_a , mask_labels=_a , class_labels=_a ) comm_check_on_output(_a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): snake_case :Dict = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case :str = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} snake_case :Optional[int] = False snake_case :str = False snake_case :List[str] = False snake_case :Tuple = False def _snake_case ( self ): __UpperCAmelCase : Tuple = MaskaFormerModelTester(self ) __UpperCAmelCase : Dict = ConfigTester(self , config_class=_a , has_text_modality=_a ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a , **_a , output_hidden_states=_a ) def _snake_case ( self ): __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_a ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def _snake_case ( self ): pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def _snake_case ( self ): pass @unittest.skip(reason="Mask2Former is not a generative model" ) def _snake_case ( self ): pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def _snake_case ( self ): pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _snake_case ( self ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self ): pass def _snake_case ( self ): __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class(_a ) __UpperCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[str] = [*signature.parameters.keys()] __UpperCAmelCase : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) @slow def _snake_case ( self ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __UpperCAmelCase : str = MaskaFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = (self.model_tester.min_size,) * 2 __UpperCAmelCase : Any = { """pixel_values""": torch.randn((2, 3, *size) , device=_a ), """mask_labels""": torch.randn((2, 10, *size) , device=_a ), """class_labels""": torch.zeros(2 , 10 , device=_a ).long(), } __UpperCAmelCase : Optional[Any] = self.model_tester.get_config() __UpperCAmelCase : List[str] = MaskaFormerForUniversalSegmentation(_a ).to(_a ) __UpperCAmelCase : int = model(**_a ) self.assertTrue(outputs.loss is not None ) def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a , **_a , output_hidden_states=_a ) def _snake_case ( self ): __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Dict = model_class(_a ).to(_a ) __UpperCAmelCase : Optional[int] = model(**_a , output_attentions=_a ) self.assertTrue(outputs.attentions is not None ) def _snake_case ( self ): if not self.model_tester.is_training: return __UpperCAmelCase : List[Any] = self.all_model_classes[1] __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase : Tuple = model_class(_a ) model.to(_a ) model.train() __UpperCAmelCase : Dict = model(_a , mask_labels=_a , class_labels=_a ).loss loss.backward() def _snake_case ( self ): __UpperCAmelCase : Dict = self.all_model_classes[1] __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase : int = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Union[str, Any] = model_class(_a ).to(_a ) model.train() __UpperCAmelCase : Dict = model(_a , mask_labels=_a , class_labels=_a ) __UpperCAmelCase : Optional[int] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __UpperCAmelCase : List[Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __UpperCAmelCase : int = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __UpperCAmelCase : List[str] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _a : Optional[int] = 1e-4 def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class __A (unittest.TestCase ): @cached_property def _snake_case ( self ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def _snake_case ( self ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _snake_case ( self ): __UpperCAmelCase : Any = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_a ) __UpperCAmelCase : Dict = self.default_image_processor __UpperCAmelCase : Optional[int] = prepare_img() __UpperCAmelCase : Union[str, Any] = image_processor(_a , return_tensors="pt" ).to(_a ) __UpperCAmelCase : str = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(**_a ) __UpperCAmelCase : Tuple = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) __UpperCAmelCase : Optional[Any] = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) __UpperCAmelCase : str = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _a , atol=_a ) ) def _snake_case ( self ): __UpperCAmelCase : Dict = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() __UpperCAmelCase : str = self.default_image_processor __UpperCAmelCase : str = prepare_img() __UpperCAmelCase : str = image_processor(_a , return_tensors="pt" ).to(_a ) __UpperCAmelCase : Optional[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 3_84, 3_84) ) with torch.no_grad(): __UpperCAmelCase : str = model(**_a ) # masks_queries_logits __UpperCAmelCase : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __UpperCAmelCase : List[str] = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] __UpperCAmelCase : Any = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _a , atol=_a ) ) # class_queries_logits __UpperCAmelCase : List[str] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __UpperCAmelCase : Dict = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _a , atol=_a ) ) def _snake_case ( self ): __UpperCAmelCase : List[str] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() __UpperCAmelCase : Optional[int] = self.default_image_processor __UpperCAmelCase : Tuple = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="pt" , ) __UpperCAmelCase : Optional[int] = inputs["""pixel_values"""].to(_a ) __UpperCAmelCase : int = [el.to(_a ) for el in inputs["""mask_labels"""]] __UpperCAmelCase : Any = [el.to(_a ) for el in inputs["""class_labels"""]] with torch.no_grad(): __UpperCAmelCase : Tuple = model(**_a ) self.assertTrue(outputs.loss is not None )
704
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
10
0
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Optional[int] = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Optional[Any] = { "Salesforce/codegen-350M-mono": 2048, } class __A (__a ): snake_case :str = VOCAB_FILES_NAMES snake_case :Tuple = PRETRAINED_VOCAB_FILES_MAP snake_case :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :str = ["input_ids", "attention_mask"] snake_case :Tuple = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( a_ , a_ , tokenizer_file=a_ , unk_token=a_ , bos_token=a_ , eos_token=a_ , add_prefix_space=a_ , **a_ , ) if kwargs.pop("add_bos_token" , a_ ): __UpperCAmelCase : Union[str, Any] = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(a_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Dict = add_prefix_space __UpperCAmelCase : List[Any] = pre_tok_class(**a_ ) __UpperCAmelCase : List[str] = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = kwargs.get("is_split_into_words" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_ , **a_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.get("is_split_into_words" , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*a_ , **a_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_ , **a_ , ) if truncate_before_pattern is not None and len(a_ ) > 0: __UpperCAmelCase : int = self.truncate(a_ , a_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : str = pattern.search(a_ , a_ ) return m.start() if m else -1 __UpperCAmelCase : Optional[int] = [re.compile(a_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : List[str] = list(re.finditer("^print" , a_ , re.MULTILINE ) ) if len(a_ ) > 1: __UpperCAmelCase : List[str] = completion[: prints[1].start()] __UpperCAmelCase : List[Any] = list(re.finditer("^def" , a_ , re.MULTILINE ) ) if len(a_ ) > 1: __UpperCAmelCase : Optional[int] = completion[: defs[1].start()] __UpperCAmelCase : str = 0 __UpperCAmelCase : str = [ pos for pos in [find_re(a_ , a_ , a_ ) for terminal in terminals] if pos != -1 ] if len(a_ ) > 0: return completion[: min(a_ )] else: return completion
705
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
0
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Any: """simple docstring""" __UpperCAmelCase : Optional[int] = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict __UpperCAmelCase : Any = torch.load(hf_hub_download(repo_id=__snake_case , filename="pytorch_model.bin" ) ) __UpperCAmelCase : Optional[int] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): __UpperCAmelCase : Optional[int] = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue __UpperCAmelCase : List[Any] = tensor_value __UpperCAmelCase : Tuple = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer __UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": _a : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _a : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
706
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
0
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __A (_UpperCAmelCase ): snake_case :int = (CMStochasticIterativeScheduler,) snake_case :int = 10 def _snake_case ( self , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = { """num_train_timesteps""": 2_01, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } config.update(**lowercase_ ) return config def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 10 __UpperCAmelCase : Any = self.get_scheduler_config() __UpperCAmelCase : Dict = self.scheduler_classes[0](**lowercase_ ) scheduler.set_timesteps(lowercase_ ) __UpperCAmelCase : Dict = scheduler.timesteps[0] __UpperCAmelCase : Optional[int] = scheduler.timesteps[1] __UpperCAmelCase : Optional[Any] = self.dummy_sample __UpperCAmelCase : Any = 0.1 * sample __UpperCAmelCase : List[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample __UpperCAmelCase : Optional[int] = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _snake_case ( self ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowercase_ ) def _snake_case ( self ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowercase_ ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.scheduler_classes[0] __UpperCAmelCase : Any = self.get_scheduler_config() __UpperCAmelCase : Dict = scheduler_class(**lowercase_ ) __UpperCAmelCase : Optional[int] = 1 scheduler.set_timesteps(lowercase_ ) __UpperCAmelCase : Any = scheduler.timesteps __UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) __UpperCAmelCase : Optional[int] = self.dummy_model() __UpperCAmelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowercase_ ): # 1. scale model input __UpperCAmelCase : int = scheduler.scale_model_input(lowercase_ , lowercase_ ) # 2. predict noise residual __UpperCAmelCase : Optional[int] = model(lowercase_ , lowercase_ ) # 3. predict previous sample x_t-1 __UpperCAmelCase : List[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample __UpperCAmelCase : str = pred_prev_sample __UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowercase_ ) ) __UpperCAmelCase : List[Any] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_92.76_14 ) < 1E-2 assert abs(result_mean.item() - 0.2_5_1_0 ) < 1E-3 def _snake_case ( self ): __UpperCAmelCase : int = self.scheduler_classes[0] __UpperCAmelCase : List[Any] = self.get_scheduler_config() __UpperCAmelCase : List[str] = scheduler_class(**lowercase_ ) __UpperCAmelCase : List[Any] = [1_06, 0] scheduler.set_timesteps(timesteps=lowercase_ ) __UpperCAmelCase : str = scheduler.timesteps __UpperCAmelCase : Any = torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = self.dummy_model() __UpperCAmelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input __UpperCAmelCase : Any = scheduler.scale_model_input(lowercase_ , lowercase_ ) # 2. predict noise residual __UpperCAmelCase : List[Any] = model(lowercase_ , lowercase_ ) # 3. predict previous sample x_t-1 __UpperCAmelCase : Optional[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample __UpperCAmelCase : Dict = pred_prev_sample __UpperCAmelCase : List[str] = torch.sum(torch.abs(lowercase_ ) ) __UpperCAmelCase : str = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 3_47.63_57 ) < 1E-2 assert abs(result_mean.item() - 0.4_5_2_7 ) < 1E-3 def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] __UpperCAmelCase : List[Any] = self.get_scheduler_config() __UpperCAmelCase : Optional[Any] = scheduler_class(**lowercase_ ) __UpperCAmelCase : List[Any] = [39, 30, 12, 15, 0] with self.assertRaises(lowercase_ , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=lowercase_ ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.scheduler_classes[0] __UpperCAmelCase : Optional[Any] = self.get_scheduler_config() __UpperCAmelCase : Optional[Any] = scheduler_class(**lowercase_ ) __UpperCAmelCase : Union[str, Any] = [39, 30, 12, 1, 0] __UpperCAmelCase : Optional[Any] = len(lowercase_ ) with self.assertRaises(lowercase_ , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=lowercase_ , timesteps=lowercase_ ) def _snake_case ( self ): __UpperCAmelCase : List[str] = self.scheduler_classes[0] __UpperCAmelCase : str = self.get_scheduler_config() __UpperCAmelCase : Optional[int] = scheduler_class(**lowercase_ ) __UpperCAmelCase : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( lowercase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=lowercase_ )
707
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
0
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate _a : Dict = trt.Logger(trt.Logger.WARNING) _a : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) _a : str = logging.getLogger(__name__) _a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) _a : Optional[int] = parser.parse_args() if args.tokenizer_name: _a : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) _a : Tuple = args.per_device_eval_batch_size _a : Dict = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties _a : Dict = True _a : List[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: _a : Optional[int] = '''temp_engine/bert-fp16.engine''' if args.inta: _a : List[str] = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") _a : Optional[Any] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network _a : List[str] = [network.get_input(i) for i in range(network.num_inputs)] _a : str = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: _a : str = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) _a : Optional[int] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) _a : int = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = np.asarray(inputs["input_ids"] , dtype=np.intaa ) __UpperCAmelCase : Any = np.asarray(inputs["attention_mask"] , dtype=np.intaa ) __UpperCAmelCase : Optional[Any] = np.asarray(inputs["token_type_ids"] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _lowercase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _lowercase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _lowercase ) # start time __UpperCAmelCase : Optional[int] = time.time() # Run inference context.execute_async( bindings=[int(_lowercase ) for d_inp in d_inputs] + [int(_lowercase ), int(_lowercase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_lowercase , _lowercase , _lowercase ) cuda.memcpy_dtoh_async(_lowercase , _lowercase , _lowercase ) # Synchronize the stream and take time stream.synchronize() # end time __UpperCAmelCase : str = time.time() __UpperCAmelCase : Any = end_time - start_time __UpperCAmelCase : List[Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. _a : int = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. _a : int = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. _a : Dict = raw_datasets['''validation'''].column_names _a : Tuple = '''question''' if '''question''' in column_names else column_names[0] _a : Dict = '''context''' if '''context''' in column_names else column_names[1] _a : Any = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). _a : Any = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _a : int = min(args.max_seq_length, tokenizer.model_max_length) def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : List[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __UpperCAmelCase : Optional[int] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=_lowercase , stride=args.doc_stride , return_overflowing_tokens=_lowercase , return_offsets_mapping=_lowercase , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __UpperCAmelCase : List[str] = tokenized_examples.pop("overflow_to_sample_mapping" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __UpperCAmelCase : str = [] for i in range(len(tokenized_examples["input_ids"] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __UpperCAmelCase : Tuple = tokenized_examples.sequence_ids(_lowercase ) __UpperCAmelCase : Optional[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __UpperCAmelCase : Dict = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __UpperCAmelCase : Any = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i] ) ] return tokenized_examples _a : Union[str, Any] = raw_datasets['''validation'''] # Validation Feature Creation _a : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) _a : Optional[int] = default_data_collator _a : Tuple = eval_dataset.remove_columns(["example_id", "offset_mapping"]) _a : Optional[Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="eval" ) -> List[str]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = postprocess_qa_predictions( examples=_lowercase , features=_lowercase , predictions=_lowercase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_lowercase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __UpperCAmelCase : Optional[Any] = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: __UpperCAmelCase : List[str] = [{"id": k, "prediction_text": v} for k, v in predictions.items()] __UpperCAmelCase : Optional[Any] = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_lowercase , label_ids=_lowercase ) _a : Union[str, Any] = load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _lowercase ( lowerCamelCase__ ) -> List[Any]: """simple docstring""" return trt.volume(engine.get_binding_shape(_lowercase ) ) * engine.get_binding_dtype(_lowercase ).itemsize # Allocate device memory for inputs and outputs. _a : Dict = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer _a : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) _a : Union[str, Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) _a : List[Any] = cuda.mem_alloc(h_outputa.nbytes) _a : List[str] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. _a : int = cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") _a : str = 0.0 _a : List[Any] = 0 _a : Any = timeit.default_timer() _a : Optional[int] = None for step, batch in enumerate(eval_dataloader): _a : Optional[int] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 _a : Any = outputs _a : Tuple = torch.tensor(start_logits) _a : Union[str, Any] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered _a : int = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) _a : List[str] = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) _a : Tuple = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) _a : str = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: _a : Any = nested_truncate(all_preds, len(eval_dataset)) _a : Union[str, Any] = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1000 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1000)) logger.info("Total Number of Inference = %d", niter) _a : Union[str, Any] = post_processing_function(eval_examples, eval_dataset, all_preds) _a : int = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
708
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" if ( (cp >= 0X4_e_0_0 and cp <= 0X9_f_f_f) or (cp >= 0X3_4_0_0 and cp <= 0X4_d_b_f) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_a_6_d_f) # or (cp >= 0X2_a_7_0_0 and cp <= 0X2_b_7_3_f) # or (cp >= 0X2_b_7_4_0 and cp <= 0X2_b_8_1_f) # or (cp >= 0X2_b_8_2_0 and cp <= 0X2_c_e_a_f) # or (cp >= 0Xf_9_0_0 and cp <= 0Xf_a_f_f) or (cp >= 0X2_f_8_0_0 and cp <= 0X2_f_a_1_f) # ): # return True return False def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" for char in word: __UpperCAmelCase : Any = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = set() for token in tokens: __UpperCAmelCase : Any = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) __UpperCAmelCase : List[str] = list(UpperCAmelCase__ ) return word_list def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" if not chinese_word_set: return bert_tokens __UpperCAmelCase : Union[str, Any] = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) __UpperCAmelCase : List[str] = bert_tokens __UpperCAmelCase , __UpperCAmelCase : Any = 0, len(UpperCAmelCase__ ) while start < end: __UpperCAmelCase : Any = True if is_chinese(bert_word[start] ): __UpperCAmelCase : Union[str, Any] = min(end - start , UpperCAmelCase__ ) for i in range(UpperCAmelCase__ , 1 , -1 ): __UpperCAmelCase : Optional[int] = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __UpperCAmelCase : int = "##" + bert_word[j] __UpperCAmelCase : List[Any] = start + i __UpperCAmelCase : Union[str, Any] = False break if single_word: start += 1 return bert_word def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: """simple docstring""" __UpperCAmelCase : Optional[Any] = [] for i in range(0 , len(UpperCAmelCase__ ) , 100 ): __UpperCAmelCase : str = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws __UpperCAmelCase : int = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) __UpperCAmelCase : Union[str, Any] = [] for i in range(0 , len(UpperCAmelCase__ ) , 100 ): __UpperCAmelCase : List[str] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) __UpperCAmelCase : Any = [] for input_ids, chinese_word in zip(UpperCAmelCase__ , UpperCAmelCase__ ): __UpperCAmelCase : str = [] for id in input_ids: __UpperCAmelCase : Optional[int] = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) __UpperCAmelCase : Any = add_sub_symbol(UpperCAmelCase__ , UpperCAmelCase__ ) __UpperCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": __UpperCAmelCase : int = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" with open(args.file_name , "r" , encoding="utf-8" ) as f: __UpperCAmelCase : List[Any] = f.readlines() __UpperCAmelCase : str = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __UpperCAmelCase : Union[str, Any] = LTP(args.ltp ) # faster in GPU device __UpperCAmelCase : str = BertTokenizer.from_pretrained(args.bert ) __UpperCAmelCase : int = prepare_ref(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) with open(args.save_path , "w" , encoding="utf-8" ) as f: __UpperCAmelCase : Tuple = [json.dumps(UpperCAmelCase__ ) + "\n" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": _a : int = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) _a : List[str] = parser.parse_args() main(args)
709
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
10
0
import collections import importlib.util import os import re from pathlib import Path _a : Tuple = "src/transformers" # Matches is_xxx_available() _a : Tuple = re.compile(R"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} _a : List[str] = re.compile(R"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _a : Tuple = re.compile(R"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available _a : Optional[int] = re.compile(R"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") _a : Optional[Any] = re.compile(R"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _a : Any = re.compile(R"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", _a : Any = re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], _a : Optional[int] = re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo _a : Union[str, Any] = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: _a : Union[str, Any] = re.compile(R"^\s*try:") # Catches a line with else: _a : List[Any] = re.compile(R"^\s*else:") def _lowercase ( lowerCamelCase__ ) -> Any: """simple docstring""" if _re_test_backend.search(_snake_case ) is None: return None __UpperCAmelCase : Union[str, Any] = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _lowercase ( lowerCamelCase__ ) -> List[str]: """simple docstring""" with open(_snake_case , "r" , encoding="utf-8" , newline="\n" ) as f: __UpperCAmelCase : List[Any] = f.readlines() __UpperCAmelCase : Dict = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure __UpperCAmelCase : List[str] = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: __UpperCAmelCase : Union[str, Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): __UpperCAmelCase : List[Any] = _re_one_line_import_struct.search(_snake_case ).groups()[0] __UpperCAmelCase : Dict = re.findall("\[([^\]]+)\]" , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue __UpperCAmelCase : int = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: __UpperCAmelCase : Dict = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 __UpperCAmelCase : Dict = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. __UpperCAmelCase : Union[str, Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __UpperCAmelCase : Optional[int] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __UpperCAmelCase : int = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): __UpperCAmelCase : str = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: __UpperCAmelCase : Dict = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(", " ) __UpperCAmelCase : Optional[int] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: __UpperCAmelCase : int = _re_between_brackets.search(_snake_case ).groups()[0].split(", " ) __UpperCAmelCase : Tuple = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 __UpperCAmelCase : Optional[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __UpperCAmelCase : str = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): __UpperCAmelCase : int = lines[line_index] __UpperCAmelCase : Union[str, Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 __UpperCAmelCase : List[str] = {"none": objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. __UpperCAmelCase : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __UpperCAmelCase : Optional[int] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __UpperCAmelCase : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): __UpperCAmelCase : Tuple = lines[line_index] __UpperCAmelCase : Any = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 __UpperCAmelCase : Dict = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" def find_duplicates(lowerCamelCase__ ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __UpperCAmelCase : Optional[Any] = [] for key in import_dict_objects.keys(): __UpperCAmelCase : Union[str, Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __UpperCAmelCase : str = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __UpperCAmelCase : List[Any] = "base imports" if key == "none" else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Any = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: __UpperCAmelCase : Optional[int] = os.path.join(_snake_case , "__init__.py" ) __UpperCAmelCase : Any = parse_init(_snake_case ) if objects is not None: __UpperCAmelCase : int = analyze_results(*_snake_case ) if len(_snake_case ) > 0: __UpperCAmelCase : Optional[Any] = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("\n".join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError("\n\n".join(_snake_case ) ) def _lowercase ( ) -> Any: """simple docstring""" __UpperCAmelCase : Union[str, Any] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob("*.py" ) ) ) == 0: continue __UpperCAmelCase : str = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) __UpperCAmelCase : List[str] = short_path.replace(os.path.sep , "." ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue __UpperCAmelCase : Any = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) __UpperCAmelCase : int = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(_snake_case ) return submodules _a : int = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", ] def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : int = importlib.util.spec_from_file_location( "transformers" , os.path.join(_snake_case , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __UpperCAmelCase : str = spec.loader.load_module() __UpperCAmelCase : Optional[int] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: __UpperCAmelCase : List[Any] = "\n".join(f"""- {module}""" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" f"""{list_of_modules}\n""" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
710
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _a : Optional[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _a : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) __UpperCAmelCase : str = val def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : List[str] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __UpperCAmelCase : List[str] = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) __UpperCAmelCase : str = value else: __UpperCAmelCase : str = value return new_state_dict def _lowercase ( lowerCamelCase__ ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __UpperCAmelCase : Dict = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) __UpperCAmelCase : List[str] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : Tuple = in_proj_weight[:256, :] __UpperCAmelCase : int = in_proj_bias[:256] __UpperCAmelCase : Optional[Any] = in_proj_weight[256:512, :] __UpperCAmelCase : List[str] = in_proj_bias[256:512] __UpperCAmelCase : Tuple = in_proj_weight[-256:, :] __UpperCAmelCase : Optional[Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __UpperCAmelCase : Optional[int] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __UpperCAmelCase : Dict = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : str = in_proj_weight[:256, :] __UpperCAmelCase : List[str] = in_proj_bias[:256] __UpperCAmelCase : Any = in_proj_weight[256:512, :] __UpperCAmelCase : Any = in_proj_bias[256:512] __UpperCAmelCase : List[Any] = in_proj_weight[-256:, :] __UpperCAmelCase : List[str] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __UpperCAmelCase : Any = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) __UpperCAmelCase : List[str] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __UpperCAmelCase : Tuple = in_proj_weight_cross_attn[:256, :] __UpperCAmelCase : Optional[Any] = in_proj_bias_cross_attn[:256] __UpperCAmelCase : Dict = in_proj_weight_cross_attn[256:512, :] __UpperCAmelCase : Tuple = in_proj_bias_cross_attn[256:512] __UpperCAmelCase : Optional[int] = in_proj_weight_cross_attn[-256:, :] __UpperCAmelCase : Dict = in_proj_bias_cross_attn[-256:] def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : List[str] = image.size __UpperCAmelCase : Tuple = max(_lowercase , _lowercase ) __UpperCAmelCase : Tuple = 800 if '''detection''' in checkpoint_url else 1000 __UpperCAmelCase : str = target_max_size / current_max_size __UpperCAmelCase : List[str] = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def _lowercase ( lowerCamelCase__ ) -> Dict: """simple docstring""" __UpperCAmelCase : Optional[Any] = F.to_tensor(_lowercase ) __UpperCAmelCase : str = F.normalize(_lowercase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" logger.info("Converting model..." ) # load original state dict __UpperCAmelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __UpperCAmelCase : Any = '''model.''' for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): __UpperCAmelCase : int = state_dict.pop(_lowercase ) __UpperCAmelCase : int = val # create HuggingFace model and load state dict __UpperCAmelCase : Optional[int] = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: __UpperCAmelCase : Optional[Any] = 15 __UpperCAmelCase : int = 2 __UpperCAmelCase : Optional[int] = {0: '''table''', 1: '''table rotated'''} __UpperCAmelCase : Dict = idalabel __UpperCAmelCase : int = {v: k for k, v in idalabel.items()} else: __UpperCAmelCase : List[str] = 125 __UpperCAmelCase : Optional[int] = 6 __UpperCAmelCase : Union[str, Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } __UpperCAmelCase : Optional[int] = idalabel __UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : Union[str, Any] = DetrImageProcessor( format="coco_detection" , max_size=800 if "detection" in checkpoint_url else 1000 ) __UpperCAmelCase : int = TableTransformerForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # verify our conversion __UpperCAmelCase : List[Any] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' __UpperCAmelCase : int = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=_lowercase ) __UpperCAmelCase : List[Any] = Image.open(_lowercase ).convert("RGB" ) __UpperCAmelCase : List[str] = normalize(resize(_lowercase , _lowercase ) ).unsqueeze(0 ) __UpperCAmelCase : List[Any] = model(_lowercase ) if "detection" in checkpoint_url: __UpperCAmelCase : Dict = (1, 15, 3) __UpperCAmelCase : Optional[Any] = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) __UpperCAmelCase : Optional[int] = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: __UpperCAmelCase : int = (1, 125, 7) __UpperCAmelCase : Tuple = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) __UpperCAmelCase : Optional[Any] = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _lowercase , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _lowercase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) __UpperCAmelCase : Dict = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(_lowercase ) image_processor.push_to_hub(_lowercase ) if __name__ == "__main__": _a : str = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _a : Optional[int] = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
711
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _lowercase ( ) -> List[str]: """simple docstring""" __UpperCAmelCase : Optional[Any] = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=__UpperCamelCase , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=__UpperCamelCase , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=__UpperCamelCase ) return parser.parse_args() def _lowercase ( ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : int = parse_args() # Import training_script as a module. __UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __UpperCAmelCase : int = script_fpath.stem __UpperCAmelCase : List[Any] = importlib.import_module(__UpperCamelCase ) # Patch sys.argv __UpperCAmelCase : int = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Any = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 27, 3] __UpperCAmelCase : Union[str, Any] = [128, 256, 512, 1024] __UpperCAmelCase : List[Any] = 512 if "large" in model_name: __UpperCAmelCase : List[str] = [3, 3, 27, 3] __UpperCAmelCase : Union[str, Any] = [192, 384, 768, 1536] __UpperCAmelCase : Tuple = 768 if "xlarge" in model_name: __UpperCAmelCase : Optional[Any] = [3, 3, 27, 3] __UpperCAmelCase : int = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : Any = 150 __UpperCAmelCase : Union[str, Any] = """huggingface/label-files""" __UpperCAmelCase : Dict = """ade20k-id2label.json""" __UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) __UpperCAmelCase : List[str] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} __UpperCAmelCase : Optional[Any] = ConvNextConfig( depths=lowerCamelCase__ , hidden_sizes=lowerCamelCase__ , out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : Optional[Any] = UperNetConfig( backbone_config=lowerCamelCase__ , auxiliary_in_channels=lowerCamelCase__ , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid=lowerCamelCase__ , ) return config def _lowercase ( lowerCamelCase__ ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : Dict = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.{j}.gamma""", f"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((f"""backbone.downsample_layers.{i}.0.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.0.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: """simple docstring""" __UpperCAmelCase : List[Any] = dct.pop(lowerCamelCase__ ) __UpperCAmelCase : int = val def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: """simple docstring""" __UpperCAmelCase : str = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } __UpperCAmelCase : Tuple = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location="cpu" )["""state_dict"""] __UpperCAmelCase : Optional[Any] = get_upernet_config(lowerCamelCase__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(lowerCamelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : Any = state_dict.pop(lowerCamelCase__ ) if "bn" in key: __UpperCAmelCase : Dict = key.replace("bn" , "batch_norm" ) __UpperCAmelCase : Dict = val # rename keys __UpperCAmelCase : Dict = create_rename_keys(lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # verify on image __UpperCAmelCase : Optional[Any] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" __UpperCAmelCase : str = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ).convert("RGB" ) __UpperCAmelCase : List[str] = SegformerImageProcessor() __UpperCAmelCase : List[str] = processor(lowerCamelCase__ , return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Tuple = model(lowerCamelCase__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : List[Any] = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Any = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : str = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : str = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Tuple = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": _a : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[f"""upernet-convnext-{size}""" for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _a : Optional[int] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
713
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if colsa != 1: __UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if rowsa != rowsa: __UpperCAmelCase : Optional[int] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != rowsa: __UpperCAmelCase : List[str] = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}""" ) raise ValueError(lowerCamelCase__ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape strictly_diagonally_dominant(lowerCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase__ ): __UpperCAmelCase : int = [] for row in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = 0 for col in range(lowerCamelCase__ ): if col == row: __UpperCAmelCase : int = table[row][col] elif col == cols - 1: __UpperCAmelCase : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : List[Any] = (temp + val) / denom new_val.append(lowerCamelCase__ ) __UpperCAmelCase : str = new_val return [float(lowerCamelCase__ ) for i in new_val] def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape __UpperCAmelCase : str = True for i in range(0 , lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=2 , UpperCamelCase_=24 , UpperCamelCase_=16 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=10 , UpperCamelCase_=0.0_2 , UpperCamelCase_=None , UpperCamelCase_=2 , UpperCamelCase_=2 , ): __UpperCAmelCase : Dict = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[int] = patch_size __UpperCAmelCase : List[Any] = max_length __UpperCAmelCase : Optional[Any] = num_mel_bins __UpperCAmelCase : Union[str, Any] = is_training __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : int = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Tuple = num_attention_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = type_sequence_label_size __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : Union[str, Any] = frequency_stride __UpperCAmelCase : int = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __UpperCAmelCase : int = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __UpperCAmelCase : Any = (self.max_length - self.patch_size) // self.time_stride + 1 __UpperCAmelCase : int = frequency_out_dimension * time_out_dimension __UpperCAmelCase : Optional[int] = num_patches + 2 def _snake_case ( self ): __UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __UpperCAmelCase : int = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : str = self.get_config() return config, input_values, labels def _snake_case ( self ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowercase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = ASTModel(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : str = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self ): __UpperCAmelCase : str = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : Tuple = {"input_values": input_values} return config, inputs_dict @require_torch class __A (lowercase__ , lowercase__ , unittest.TestCase ): snake_case :List[Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) snake_case :Dict = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) snake_case :Optional[Any] = False snake_case :Union[str, Any] = False snake_case :int = False snake_case :List[str] = False def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _snake_case ( self ): __UpperCAmelCase : int = ASTModelTester(self ) __UpperCAmelCase : Dict = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def _snake_case ( self ): pass def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase , nn.Linear ) ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__lowercase ) __UpperCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Optional[Any] = ["input_values"] self.assertListEqual(arg_names[:1] , __lowercase ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) @slow def _snake_case ( self ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[str] = ASTModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : Optional[int] = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) __UpperCAmelCase , __UpperCAmelCase : Any = torchaudio.load(SCREAMING_SNAKE_CASE_ ) return audio, sampling_rate @require_torch @require_torchaudio class __A (unittest.TestCase ): @cached_property def _snake_case ( self ): return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def _snake_case ( self ): __UpperCAmelCase : Tuple = self.default_feature_extractor __UpperCAmelCase : Tuple = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(__lowercase ) __UpperCAmelCase : Tuple = self.default_feature_extractor __UpperCAmelCase , __UpperCAmelCase : List[Any] = prepare_audio() __UpperCAmelCase : List[str] = audio.squeeze().numpy() __UpperCAmelCase : List[Any] = feature_extractor(__lowercase , sampling_rate=__lowercase , return_tensors="pt" ).to(__lowercase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Dict = model(**__lowercase ) # verify the logits __UpperCAmelCase : Optional[Any] = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape , __lowercase ) __UpperCAmelCase : str = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) )
714
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Any = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __A (__snake_case ): def __init__( self , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=0 ): __UpperCAmelCase : Tuple = 1.0 if scale is None else scale __UpperCAmelCase : int = 0.0 if loc is None else loc super().__init__(A_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=A_ )] ) @property def _snake_case ( self ): return self.base_dist.mean * self.scale + self.loc @property def _snake_case ( self ): return self.base_dist.variance * self.scale**2 @property def _snake_case ( self ): return self.variance.sqrt() class __A (nn.Module ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ): super().__init__(**A_ ) __UpperCAmelCase : Any = args_dim __UpperCAmelCase : List[Any] = nn.ModuleList([nn.Linear(A_ , A_ ) for dim in args_dim.values()] ) __UpperCAmelCase : Tuple = domain_map def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Dict = [proj(A_ ) for proj in self.proj] return self.domain_map(*A_ ) class __A (nn.Module ): def __init__( self , UpperCamelCase_ ): super().__init__() __UpperCAmelCase : int = function def _snake_case ( self , UpperCamelCase_ , *UpperCamelCase_ ): return self.function(A_ , *A_ ) class __A : snake_case :type snake_case :int snake_case :Dict[str, int] def __init__( self , UpperCamelCase_ = 1 ): __UpperCAmelCase : Tuple = dim __UpperCAmelCase : Optional[int] = {k: dim * self.args_dim[k] for k in self.args_dim} def _snake_case ( self , UpperCamelCase_ ): if self.dim == 1: return self.distribution_class(*A_ ) else: return Independent(self.distribution_class(*A_ ) , 1 ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , ): __UpperCAmelCase : List[Any] = self._base_distribution(A_ ) if loc is None and scale is None: return distr else: return AffineTransformed(A_ , loc=A_ , scale=A_ , event_dim=self.event_dim ) @property def _snake_case ( self ): return () if self.dim == 1 else (self.dim,) @property def _snake_case ( self ): return len(self.event_shape ) @property def _snake_case ( self ): return 0.0 def _snake_case ( self , UpperCamelCase_ ): return ParameterProjection( in_features=A_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _snake_case ( self , *UpperCamelCase_ ): raise NotImplementedError() @staticmethod def _snake_case ( UpperCamelCase_ ): return (x + torch.sqrt(torch.square(A_ ) + 4.0 )) / 2.0 class __A (__snake_case ): snake_case :Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} snake_case :type = StudentT @classmethod def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Any = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) __UpperCAmelCase : Dict = 2.0 + cls.squareplus(A_ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __A (__snake_case ): snake_case :Dict[str, int] = {"loc": 1, "scale": 1} snake_case :type = Normal @classmethod def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __A (__snake_case ): snake_case :Dict[str, int] = {"total_count": 1, "logits": 1} snake_case :type = NegativeBinomial @classmethod def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : str = cls.squareplus(A_ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Any = distr_args if self.dim == 1: return self.distribution_class(total_count=A_ , logits=A_ ) else: return Independent(self.distribution_class(total_count=A_ , logits=A_ ) , 1 ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None ): __UpperCAmelCase : Optional[int] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _a : Dict = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = ['''MobileNetV2FeatureExtractor'''] _a : Any = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
716
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Any = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Union[str, Any] = "ibert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Tuple = quant_mode __UpperCAmelCase : Union[str, Any] = force_dequant class __A (__magic_name__ ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
10
0
'''simple docstring''' import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for a, b in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertAlmostEqual(lowerCamelCase__ , lowerCamelCase__ , delta=lowerCamelCase__ ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(lowerCamelCase__ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def _snake_case ( self ): __UpperCAmelCase : int = None ops.enable_eager_execution_internal() __UpperCAmelCase : Optional[int] = tf.config.list_physical_devices("CPU" ) if len(lowerCamelCase__ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __UpperCAmelCase : List[Any] = tf.config.list_logical_devices(device_type="CPU" ) __UpperCAmelCase : Union[str, Any] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __UpperCAmelCase : Dict = GradientAccumulator() __UpperCAmelCase : Optional[Any] = tf.Variable([4.0, 3.0] ) __UpperCAmelCase : int = create_optimizer(5E-5 , 10 , 5 ) __UpperCAmelCase : Optional[int] = tf.Variable([0.0, 0.0] , trainable=lowerCamelCase__ ) def accumulate_on_replica(UpperCamelCase_ ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(UpperCamelCase_ , UpperCamelCase_ ): with strategy.scope(): __UpperCAmelCase : Union[str, Any] = strategy.experimental_local_results(lowerCamelCase__ ) local_variables[0].assign(lowerCamelCase__ ) local_variables[1].assign(lowerCamelCase__ ) strategy.run(lowerCamelCase__ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(lowerCamelCase__ ) def _check_local_values(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Any = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , lowerCamelCase__ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , lowerCamelCase__ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
717
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ ) try: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead." __UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] ) __UpperCAmelCase : Any = "" __UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] ) __UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
10
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule _a : Optional[int] = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
718
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case :Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case :Any = frozenset([] ) snake_case :Optional[int] = True @property def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[str] = (16, 16) __UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) __UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) __UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): __UpperCAmelCase : List[str] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) __UpperCAmelCase : Tuple = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) __UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _snake_case ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _snake_case ( self ): __UpperCAmelCase : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name ) __UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) __UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0] outputs.append(UpperCamelCase_ ) assert check_same_shape(UpperCamelCase_ ) @require_torch_gpu @slow class __A (unittest.TestCase ): def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[int] = torch.manual_seed(33 ) __UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" __UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images __UpperCAmelCase : int = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _snake_case ( self ): __UpperCAmelCase : List[Any] = torch.manual_seed(33 ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" __UpperCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) __UpperCAmelCase : Dict = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
10
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _a : Any = None _a : List[Any] = logging.get_logger(__name__) _a : int = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} _a : int = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } _a : Optional[Any] = { 'google/rembert': 256, } _a : Tuple = '▁' class __A (__lowercase ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :Optional[int] = PRETRAINED_VOCAB_FILES_MAP snake_case :Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = RemBertTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_="[CLS]" , UpperCamelCase_="[SEP]" , UpperCamelCase_="<unk>" , UpperCamelCase_="[SEP]" , UpperCamelCase_="<pad>" , UpperCamelCase_="[CLS]" , UpperCamelCase_="[MASK]" , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Dict = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , **__a , ) __UpperCAmelCase : Optional[Any] = do_lower_case __UpperCAmelCase : str = remove_space __UpperCAmelCase : Any = keep_accents __UpperCAmelCase : Optional[Any] = vocab_file __UpperCAmelCase : Optional[int] = False if not self.vocab_file else True def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Optional[Any] = [self.sep_token_id] __UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(__a ): logger.error("Vocabulary path ({}) should be a directory".format(__a ) ) return __UpperCAmelCase : Optional[Any] = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
0
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem _a : Optional[Any] = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 _a : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def _lowercase ( lowerCamelCase__ ) -> Tuple: """simple docstring""" if "://" in dataset_path: __UpperCAmelCase : Optional[int] = dataset_path.split("://" )[1] return dataset_path def _lowercase ( lowerCamelCase__ ) -> Optional[int]: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = not is_remote_filesystem(_UpperCamelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_UpperCamelCase ) , fs._strip_protocol(_UpperCamelCase ) ) else: fs.mv(_UpperCamelCase , _UpperCamelCase , recursive=_UpperCamelCase ) def _lowercase ( ) -> List[Any]: """simple docstring""" if hasattr(fsspec.asyn , "reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __UpperCAmelCase : int = None __UpperCAmelCase : int = None __UpperCAmelCase : Union[str, Any] = threading.Lock()
720
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
10
0
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _a : Optional[int] = logging.getLogger(__name__) class __A : def __init__( self ): __UpperCAmelCase : int = False def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if not self.initialized: __UpperCAmelCase : Optional[int] = RagRetriever( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) __UpperCAmelCase : Any = True def _snake_case ( self ): self.retriever.index.init_index() def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.retriever._main_retrieve(A__ , A__ ) return doc_ids, retrieved_doc_embeds class __A (__a ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ): if index is not None and index.is_initialized() and len(A__ ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you\'ll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) __UpperCAmelCase : Optional[int] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A__ , A__ , A__ , A__ ) for worker in self.retrieval_workers ] ) def _snake_case ( self ): logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCAmelCase : Any = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCAmelCase , __UpperCAmelCase : Dict = ray.get(random_worker.retrieve.remote(A__ , A__ ) ) else: __UpperCAmelCase , __UpperCAmelCase : Tuple = self._main_retrieve(A__ , A__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A__ ) @classmethod def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_=None , **UpperCamelCase_ ): return super(A__ , cls ).get_tokenizers(A__ , A__ , **A__ ) @classmethod def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , **UpperCamelCase_ ): __UpperCAmelCase : List[Any] = kwargs.pop("config" , A__ ) or RagConfig.from_pretrained(A__ , **A__ ) __UpperCAmelCase : Union[str, Any] = RagTokenizer.from_pretrained(A__ , config=A__ ) __UpperCAmelCase : str = rag_tokenizer.question_encoder __UpperCAmelCase : Any = rag_tokenizer.generator if indexed_dataset is not None: __UpperCAmelCase : Optional[int] = "custom" __UpperCAmelCase : Dict = CustomHFIndex(config.retrieval_vector_size , A__ ) else: __UpperCAmelCase : Optional[int] = cls._build_index(A__ ) return cls( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , retrieval_workers=A__ , index=A__ , )
721
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def _lowercase ( lowerCamelCase__=None ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : str = argparse.ArgumentParser(add_help=_SCREAMING_SNAKE_CASE , allow_abbrev=_SCREAMING_SNAKE_CASE ) # The main config parser __UpperCAmelCase : Any = config_command_parser(_SCREAMING_SNAKE_CASE ) # The subparser to add commands to __UpperCAmelCase : List[str] = config_parser.add_subparsers(title="subcommands" , dest="subcommand" ) # Then add other parsers with the parent parser default_command_parser(_SCREAMING_SNAKE_CASE , parents=[parent_parser] ) update_command_parser(_SCREAMING_SNAKE_CASE , parents=[parent_parser] ) return config_parser def _lowercase ( ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : Any = get_config_parser() __UpperCAmelCase : Union[str, Any] = config_parser.parse_args() if not hasattr(_SCREAMING_SNAKE_CASE , "func" ): config_parser.print_help() exit(1 ) # Run args.func(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
700
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _a : str = datasets.load_iris() _a : List[Any] = np.array(data["data"]) _a : Optional[Any] = np.array(data["target"]) _a : Dict = data["target_names"] _a , _a , _a , _a : Any = train_test_split(X, y) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified __UpperCAmelCase : int = [] for data_point in data: __UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
10
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=None , ): __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : int = seq_length __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : Optional[int] = use_input_mask __UpperCAmelCase : Union[str, Any] = use_token_type_ids __UpperCAmelCase : Tuple = use_labels __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : int = hidden_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : Any = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Any = num_labels __UpperCAmelCase : Union[str, Any] = num_choices __UpperCAmelCase : List[str] = scope def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Optional[int] = None if self.use_input_mask: __UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : int = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = LlamaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) __UpperCAmelCase : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : List[Any] = LlamaModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , ) __UpperCAmelCase : Dict = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , ) __UpperCAmelCase : Optional[int] = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : int = True __UpperCAmelCase : Dict = True __UpperCAmelCase : int = LlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # first forward pass __UpperCAmelCase : int = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase , ) __UpperCAmelCase : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : str = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["hidden_states"][0] __UpperCAmelCase : List[Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["hidden_states"][0] # select random slice __UpperCAmelCase : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : str = config_and_inputs __UpperCAmelCase : str = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __A (__snake_case , __snake_case , __snake_case , unittest.TestCase ): snake_case :List[str] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () snake_case :str = (LlamaForCausalLM,) if is_torch_available() else () snake_case :Union[str, Any] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) snake_case :Optional[int] = False snake_case :Union[str, Any] = False def _snake_case ( self ): __UpperCAmelCase : Dict = LlamaModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _snake_case ( self ): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : int = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : Optional[int] = input_dict["input_ids"] __UpperCAmelCase : Dict = input_ids.ne(1 ).to(__UpperCamelCase ) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : int = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCAmelCase : Any = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = 3 __UpperCAmelCase : Any = "single_label_classification" __UpperCAmelCase : Tuple = input_dict["input_ids"] __UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(__UpperCamelCase ) __UpperCAmelCase : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : str = "multi_label_classification" __UpperCAmelCase : Tuple = input_dict["input_ids"] __UpperCAmelCase : Tuple = input_ids.ne(1 ).to(__UpperCamelCase ) __UpperCAmelCase : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : Any = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCAmelCase : int = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def _snake_case ( self ): pass @parameterized.expand([("linear",), ("dynamic",)] ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Union[str, Any] = ids_tensor([1, 10] , config.vocab_size ) __UpperCAmelCase : Dict = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : str = LlamaModel(__UpperCamelCase ) original_model.to(__UpperCamelCase ) original_model.eval() __UpperCAmelCase : List[str] = original_model(__UpperCamelCase ).last_hidden_state __UpperCAmelCase : int = original_model(__UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Tuple = {"type": scaling_type, "factor": 1_0.0} __UpperCAmelCase : Any = LlamaModel(__UpperCamelCase ) scaled_model.to(__UpperCamelCase ) scaled_model.eval() __UpperCAmelCase : int = scaled_model(__UpperCamelCase ).last_hidden_state __UpperCAmelCase : List[str] = scaled_model(__UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) @require_torch class __A (unittest.TestCase ): @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def _snake_case ( self ): __UpperCAmelCase : Optional[int] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) __UpperCAmelCase : Optional[int] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCAmelCase : List[str] = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Any = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __UpperCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) __UpperCAmelCase : int = model(torch.tensor(__UpperCamelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : List[Any] = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Tuple = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def _snake_case ( self ): __UpperCAmelCase : str = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __UpperCAmelCase : List[Any] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) __UpperCAmelCase : Optional[int] = model(torch.tensor(__UpperCamelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : Optional[Any] = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : str = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) __UpperCAmelCase : List[str] = model(torch.tensor(__UpperCamelCase ) ) __UpperCAmelCase : Any = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCAmelCase : List[Any] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Model is curently gated" ) @slow def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" __UpperCAmelCase : Union[str, Any] = "Simply put, the theory of relativity states that " __UpperCAmelCase : Tuple = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) __UpperCAmelCase : Dict = tokenizer.encode(__UpperCamelCase , return_tensors="pt" ) __UpperCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=__UpperCamelCase ) # greedy generation outputs __UpperCAmelCase : int = model.generate(__UpperCamelCase , max_new_tokens=64 , top_p=__UpperCamelCase , temperature=1 , do_sample=__UpperCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
701
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = set_counts __UpperCAmelCase : int = max(UpperCamelCase_ ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Any = [1] * num_sets __UpperCAmelCase : Any = list(range(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Dict = src_parent __UpperCAmelCase : Dict = self.set_counts[src_parent] __UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ ) return True def _snake_case ( self , UpperCamelCase_ ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
10
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar _a : List[str] = TypeVar("T") class __A (Generic[T] ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Any | T = None __UpperCAmelCase : int = len(lowercase__ ) __UpperCAmelCase : list[T] = [any_type for _ in range(self.N )] + arr __UpperCAmelCase : Optional[Any] = fnc self.build() def _snake_case ( self ): for p in range(self.N - 1 , 0 , -1 ): __UpperCAmelCase : Optional[int] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): p += self.N __UpperCAmelCase : int = v while p > 1: __UpperCAmelCase : str = p // 2 __UpperCAmelCase : str = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): # noqa: E741 __UpperCAmelCase : Optional[Any] = l + self.N, r + self.N __UpperCAmelCase : T | None = None while l <= r: if l % 2 == 1: __UpperCAmelCase : Any = self.st[l] if res is None else self.fn(lowercase__ , self.st[l] ) if r % 2 == 0: __UpperCAmelCase : List[str] = self.st[r] if res is None else self.fn(lowercase__ , self.st[r] ) __UpperCAmelCase : Any = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce _a : Any = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] _a : Union[str, Any] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } _a : Optional[int] = SegmentTree(test_array, min) _a : Dict = SegmentTree(test_array, max) _a : Tuple = SegmentTree(test_array, lambda a, b: a + b) def _lowercase ( ) -> Optional[int]: """simple docstring""" for i in range(len(lowerCAmelCase_ ) ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __UpperCAmelCase : List[str] = reduce(lowerCAmelCase_ , test_array[i : j + 1] ) __UpperCAmelCase : Optional[int] = reduce(lowerCAmelCase_ , test_array[i : j + 1] ) __UpperCAmelCase : Dict = reduce(lambda lowerCamelCase__ , lowerCamelCase__ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(lowerCAmelCase_ , lowerCAmelCase_ ) assert max_range == max_segment_tree.query(lowerCAmelCase_ , lowerCAmelCase_ ) assert sum_range == sum_segment_tree.query(lowerCAmelCase_ , lowerCAmelCase_ ) test_all_segments() for index, value in test_updates.items(): _a : Tuple = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
702
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
0
'''simple docstring''' import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _a : List[Any] = get_logger(__name__) _a : Tuple = Path(__file__).parent / "model_card_template.md" _a : Dict = uuida().hex _a : Tuple = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES _a : Any = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES _a : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def _lowercase ( lowerCamelCase__ = None ) -> str: """simple docstring""" __UpperCAmelCase : List[Any] = f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None ) -> Optional[Any]: """simple docstring""" if token is None: __UpperCAmelCase : Optional[Any] = HfFolder.get_token() if organization is None: __UpperCAmelCase : Tuple = whoami(SCREAMING_SNAKE_CASE__ )["""name"""] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(SCREAMING_SNAKE_CASE__ , "local_rank" ) and args.local_rank not in [-1, 0]: return __UpperCAmelCase : Optional[int] = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , "hub_token" ) else None __UpperCAmelCase : Union[str, Any] = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) __UpperCAmelCase : Optional[Any] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) __UpperCAmelCase : Tuple = os.path.join(args.output_dir , "README.md" ) model_card.save(SCREAMING_SNAKE_CASE__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = None ) -> List[str]: """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash __UpperCAmelCase : Optional[int] = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) __UpperCAmelCase : List[str] = re.search(R"snapshots/([^/]+)/" , SCREAMING_SNAKE_CASE__ ) if search is None: return None __UpperCAmelCase : Union[str, Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _a : Union[str, Any] = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) _a : str = os.path.join(hf_cache_home, "diffusers") def _lowercase ( lowerCamelCase__ = None , lowerCamelCase__ = None ) -> int: """simple docstring""" if new_cache_dir is None: __UpperCAmelCase : Tuple = DIFFUSERS_CACHE if old_cache_dir is None: __UpperCAmelCase : List[Any] = old_diffusers_cache __UpperCAmelCase : List[str] = Path(SCREAMING_SNAKE_CASE__ ).expanduser() __UpperCAmelCase : Union[str, Any] = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __UpperCAmelCase : Union[str, Any] = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _a : Union[str, Any] = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): _a : str = 0 else: with open(cache_version_file) as f: try: _a : Dict = int(f.read()) except ValueError: _a : Tuple = 0 if cache_version < 1: _a : Tuple = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: _a : List[Any] = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ "the directory exists and can be written to." ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = None ) -> Union[str, Any]: """simple docstring""" if variant is not None: __UpperCAmelCase : int = weights_name.split("." ) __UpperCAmelCase : Dict = splits[:-1] + [variant] + splits[-1:] __UpperCAmelCase : int = """.""".join(SCREAMING_SNAKE_CASE__ ) return weights_name def _lowercase ( lowerCamelCase__ , *, lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : int = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint __UpperCAmelCase : str = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): __UpperCAmelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse("0.20.0" ) ): try: __UpperCAmelCase : Tuple = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.""" , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.""" , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual __UpperCAmelCase : List[str] = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ "this model name. Check the model page at " f"""\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f"""Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from """ "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f"""Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
703
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _a : Optional[Any] = logging.get_logger(__name__) def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["stage2", "stage3", "stage4"] , ) __UpperCAmelCase : Dict = DetaConfig( backbone_config=a_ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=a_ , with_box_refine=a_ , two_stage=a_ , ) # set labels __UpperCAmelCase : Dict = '''huggingface/label-files''' if "o365" in model_name: __UpperCAmelCase : int = 366 __UpperCAmelCase : str = '''object365-id2label.json''' else: __UpperCAmelCase : List[Any] = 91 __UpperCAmelCase : int = '''coco-detection-id2label.json''' __UpperCAmelCase : List[Any] = num_labels __UpperCAmelCase : Union[str, Any] = json.load(open(cached_download(hf_hub_url(a_ , a_ , repo_type="dataset" ) ) , "r" ) ) __UpperCAmelCase : List[Any] = {int(a_ ): v for k, v in idalabel.items()} __UpperCAmelCase : Dict = idalabel __UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config def _lowercase ( lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Tuple = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.reduction.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.bias""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", f"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", f"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", f"""model.encoder.layers.{i}.self_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", f"""model.encoder.layers.{i}.self_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", f"""model.encoder.layers.{i}.self_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", f"""model.encoder.layers.{i}.self_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.weight""", f"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""model.encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""model.encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""model.encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""model.encoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""model.encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""model.encoder.layers.{i}.final_layer_norm.bias""") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.weight""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""model.decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""model.decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.weight""", f"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.bias""", f"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""model.decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""model.decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""model.decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""model.decoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""model.decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""model.decoder.layers.{i}.final_layer_norm.bias""") ) # fmt: on return rename_keys def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" __UpperCAmelCase : List[Any] = dct.pop(a_ ) __UpperCAmelCase : Tuple = val def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Tuple = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCAmelCase : Optional[int] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCAmelCase : List[str] = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __UpperCAmelCase : Dict = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : Tuple = in_proj_weight[:dim, :] __UpperCAmelCase : List[str] = in_proj_bias[: dim] __UpperCAmelCase : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] __UpperCAmelCase : Optional[int] = in_proj_bias[ dim : dim * 2 ] __UpperCAmelCase : Dict = in_proj_weight[ -dim :, : ] __UpperCAmelCase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __UpperCAmelCase : Any = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : Dict = in_proj_weight[:hidden_size, :] __UpperCAmelCase : Any = in_proj_bias[:hidden_size] __UpperCAmelCase : Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] __UpperCAmelCase : Any = in_proj_bias[hidden_size : hidden_size * 2] __UpperCAmelCase : Optional[int] = in_proj_weight[-hidden_size:, :] __UpperCAmelCase : Union[str, Any] = in_proj_bias[-hidden_size:] def _lowercase ( ) -> Tuple: """simple docstring""" __UpperCAmelCase : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : List[Any] = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = get_deta_config(a_ ) # load original state dict if model_name == "deta-swin-large": __UpperCAmelCase : Optional[Any] = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase : Optional[Any] = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth" ) else: raise ValueError(f"""Model name {model_name} not supported""" ) __UpperCAmelCase : int = torch.load(a_ , map_location="cpu" )['''model'''] # original state dict for name, param in state_dict.items(): print(a_ , param.shape ) # rename keys __UpperCAmelCase : Union[str, Any] = create_rename_keys(a_ ) for src, dest in rename_keys: rename_key(a_ , a_ , a_ ) read_in_swin_q_k_v(a_ , config.backbone_config ) read_in_decoder_q_k_v(a_ , a_ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __UpperCAmelCase : List[str] = state_dict.pop(a_ ) __UpperCAmelCase : List[str] = val if "input_proj" in key: __UpperCAmelCase : Optional[Any] = state_dict.pop(a_ ) __UpperCAmelCase : str = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __UpperCAmelCase : Dict = state_dict.pop(a_ ) __UpperCAmelCase : str = val # finally, create HuggingFace model and load state dict __UpperCAmelCase : Tuple = DetaForObjectDetection(a_ ) model.load_state_dict(a_ ) model.eval() __UpperCAmelCase : Any = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(a_ ) # load image processor __UpperCAmelCase : Tuple = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image __UpperCAmelCase : int = prepare_img() __UpperCAmelCase : List[str] = processor(images=a_ , return_tensors="pt" ) __UpperCAmelCase : int = encoding['''pixel_values'''] __UpperCAmelCase : List[str] = model(pixel_values.to(a_ ) ) # verify logits print("Logits:" , outputs.logits[0, :3, :3] ) print("Boxes:" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __UpperCAmelCase : str = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) __UpperCAmelCase : Optional[int] = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase : Optional[int] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) __UpperCAmelCase : List[Any] = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(a_ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(a_ ) , atol=1e-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) processor.save_pretrained(a_ ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(f"""jozhang97/{model_name}""" ) processor.push_to_hub(f"""jozhang97/{model_name}""" ) if __name__ == "__main__": _a : Tuple = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _a : List[str] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
704
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
10
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A (__magic_name__ ): snake_case :str = ["image_processor", "tokenizer"] snake_case :Union[str, Any] = "LayoutLMv3ImageProcessor" snake_case :List[str] = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ): __UpperCAmelCase : str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCamelCase_ , ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("feature_extractor" ) __UpperCAmelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCamelCase_ , UpperCamelCase_ ) def __call__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = 0 , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = True , UpperCamelCase_ = None , **UpperCamelCase_ , ): if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor __UpperCAmelCase : str = self.image_processor(images=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __UpperCAmelCase : Dict = features["words"] __UpperCAmelCase : Union[str, Any] = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) # add pixel values __UpperCAmelCase : Tuple = features.pop("pixel_values" ) if return_overflowing_tokens is True: __UpperCAmelCase : List[str] = self.get_overflowing_images(UpperCamelCase_ , encoded_inputs["overflow_to_sample_mapping"] ) __UpperCAmelCase : List[str] = images return encoded_inputs def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : int = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f""" {len(UpperCamelCase_ )} and {len(UpperCamelCase_ )}""" ) return images_with_overflow def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property def _snake_case ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _snake_case ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCamelCase_ , ) return self.image_processor_class @property def _snake_case ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCamelCase_ , ) return self.image_processor
705
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _a : Any = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = ["OwlViTFeatureExtractor"] _a : Optional[Any] = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _a : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
706
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A (UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): snake_case :Any = IFInpaintingPipeline snake_case :Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case :List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case :Dict = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ): return self._get_dummy_components() def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(_snake_case ).startswith("mps" ): __UpperCAmelCase : int = torch.manual_seed(_snake_case ) else: __UpperCAmelCase : str = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __UpperCAmelCase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) __UpperCAmelCase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) __UpperCAmelCase : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _snake_case ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _snake_case ( self ): super().test_save_load_floataa(expected_max_diff=1E-1 ) def _snake_case ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _snake_case ( self ): self._test_save_load_local() def _snake_case ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
707
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
0
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __A : def _snake_case ( self , UpperCamelCase_ ): raise NotImplementedError() def _snake_case ( self ): raise NotImplementedError() class __A (_lowerCAmelCase ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ = False , **UpperCamelCase_ ): __UpperCAmelCase : Any = tokenizer __UpperCAmelCase : Any = skip_prompt __UpperCAmelCase : Optional[int] = decode_kwargs # variables used in the streaming process __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Any = 0 __UpperCAmelCase : Any = True def _snake_case ( self , UpperCamelCase_ ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: __UpperCAmelCase : Tuple = value[0] if self.skip_prompt and self.next_tokens_are_prompt: __UpperCAmelCase : int = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) __UpperCAmelCase : str = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): __UpperCAmelCase : Tuple = text[self.print_len :] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Dict = 0 # If the last token is a CJK character, we print the characters. elif len(_lowerCAmelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): __UpperCAmelCase : int = text[self.print_len :] self.print_len += len(_lowerCAmelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: __UpperCAmelCase : Dict = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(_lowerCAmelCase ) self.on_finalized_text(_lowerCAmelCase ) def _snake_case ( self ): if len(self.token_cache ) > 0: __UpperCAmelCase : Any = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) __UpperCAmelCase : Optional[Any] = text[self.print_len :] __UpperCAmelCase : Any = [] __UpperCAmelCase : List[Any] = 0 else: __UpperCAmelCase : Tuple = "" __UpperCAmelCase : List[Any] = True self.on_finalized_text(_lowerCAmelCase , stream_end=_lowerCAmelCase ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False ): print(_lowerCAmelCase , flush=_lowerCAmelCase , end="" if not stream_end else None ) def _snake_case ( self , UpperCamelCase_ ): if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False class __A (_lowerCAmelCase ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , **UpperCamelCase_ ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) __UpperCAmelCase : List[Any] = Queue() __UpperCAmelCase : Any = None __UpperCAmelCase : Any = timeout def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False ): self.text_queue.put(_lowerCAmelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ): return self def _snake_case ( self ): __UpperCAmelCase : Tuple = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
708
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = len(snake_case_ ) print("The following activities are selected:" ) # The first activity is always selected __UpperCAmelCase : Tuple = 0 print(snake_case_ , end="," ) # Consider rest of the activities for j in range(snake_case_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case_ , end="," ) __UpperCAmelCase : Optional[int] = j if __name__ == "__main__": import doctest doctest.testmod() _a : Tuple = [1, 3, 0, 5, 8, 5] _a : Optional[int] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
709
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
10
0
import collections import importlib.util import os import re from pathlib import Path _a : List[str] = 'src/transformers' # Matches is_xxx_available() _a : Union[str, Any] = re.compile(R"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} _a : Tuple = re.compile(R"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _a : List[Any] = re.compile(R"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available _a : Optional[int] = re.compile(R"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") _a : Dict = re.compile(R"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _a : Any = re.compile(R"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", _a : int = re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], _a : int = re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo _a : List[str] = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: _a : Optional[Any] = re.compile(R"^\s*try:") # Catches a line with else: _a : Tuple = re.compile(R"^\s*else:") def _lowercase ( lowerCamelCase__ ) -> List[str]: """simple docstring""" if _re_test_backend.search(__UpperCamelCase ) is None: return None __UpperCAmelCase : Dict = [b[0] for b in _re_backend.findall(__UpperCamelCase )] backends.sort() return "_and_".join(__UpperCamelCase ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" with open(__UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: __UpperCAmelCase : str = f.readlines() __UpperCAmelCase : Optional[Any] = 0 while line_index < len(__UpperCamelCase ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__UpperCamelCase ): return None # First grab the objects without a specific backend in _import_structure __UpperCAmelCase : Union[str, Any] = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: __UpperCAmelCase : Optional[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__UpperCamelCase ): __UpperCAmelCase : Dict = _re_one_line_import_struct.search(__UpperCamelCase ).groups()[0] __UpperCAmelCase : str = re.findall("\[([^\]]+)\]" , __UpperCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue __UpperCAmelCase : Union[str, Any] = _re_import_struct_key_value.search(__UpperCamelCase ) if single_line_import_search is not None: __UpperCAmelCase : Union[str, Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(__UpperCamelCase ) > 0] objects.extend(__UpperCamelCase ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 __UpperCAmelCase : List[Any] = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. __UpperCAmelCase : Union[str, Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __UpperCAmelCase : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __UpperCAmelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): __UpperCAmelCase : Tuple = lines[line_index] if _re_import_struct_add_one.search(__UpperCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(__UpperCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__UpperCamelCase ) is not None: __UpperCAmelCase : Dict = _re_import_struct_add_many.search(__UpperCamelCase ).groups()[0].split(", " ) __UpperCAmelCase : Optional[Any] = [obj[1:-1] for obj in imports if len(__UpperCamelCase ) > 0] objects.extend(__UpperCamelCase ) elif _re_between_brackets.search(__UpperCamelCase ) is not None: __UpperCAmelCase : int = _re_between_brackets.search(__UpperCamelCase ).groups()[0].split(", " ) __UpperCAmelCase : str = [obj[1:-1] for obj in imports if len(__UpperCamelCase ) > 0] objects.extend(__UpperCamelCase ) elif _re_quote_object.search(__UpperCamelCase ) is not None: objects.append(_re_quote_object.search(__UpperCamelCase ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 __UpperCAmelCase : Any = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __UpperCAmelCase : Union[str, Any] = [] while ( line_index < len(__UpperCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): __UpperCAmelCase : Optional[int] = lines[line_index] __UpperCAmelCase : Union[str, Any] = _re_import.search(__UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 __UpperCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(__UpperCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. __UpperCAmelCase : int = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __UpperCAmelCase : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __UpperCAmelCase : Optional[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): __UpperCAmelCase : Tuple = lines[line_index] __UpperCAmelCase : Optional[Any] = _re_import.search(__UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 __UpperCAmelCase : List[str] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" def find_duplicates(lowerCamelCase__ ): return [k for k, v in collections.Counter(__UpperCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __UpperCAmelCase : Any = [] for key in import_dict_objects.keys(): __UpperCAmelCase : Optional[int] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __UpperCAmelCase : Union[str, Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __UpperCAmelCase : List[Any] = '''base imports''' if key == '''none''' else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def _lowercase ( ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : List[Any] = [] for root, _, files in os.walk(__UpperCamelCase ): if "__init__.py" in files: __UpperCAmelCase : Tuple = os.path.join(__UpperCamelCase , "__init__.py" ) __UpperCAmelCase : str = parse_init(__UpperCamelCase ) if objects is not None: __UpperCAmelCase : int = analyze_results(*__UpperCamelCase ) if len(__UpperCamelCase ) > 0: __UpperCAmelCase : Any = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("\n".join(__UpperCamelCase ) ) if len(__UpperCamelCase ) > 0: raise ValueError("\n\n".join(__UpperCamelCase ) ) def _lowercase ( ) -> List[str]: """simple docstring""" __UpperCAmelCase : Any = [] for path, directories, files in os.walk(__UpperCamelCase ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(__UpperCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__UpperCamelCase ) / folder).glob("*.py" ) ) ) == 0: continue __UpperCAmelCase : List[str] = str((Path(__UpperCamelCase ) / folder).relative_to(__UpperCamelCase ) ) __UpperCAmelCase : Optional[int] = short_path.replace(os.path.sep , "." ) submodules.append(__UpperCamelCase ) for fname in files: if fname == "__init__.py": continue __UpperCAmelCase : Union[str, Any] = str((Path(__UpperCamelCase ) / fname).relative_to(__UpperCamelCase ) ) __UpperCAmelCase : List[Any] = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(__UpperCamelCase ) return submodules _a : Tuple = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def _lowercase ( ) -> str: """simple docstring""" __UpperCAmelCase : List[Any] = importlib.util.spec_from_file_location( "transformers" , os.path.join(__UpperCamelCase , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __UpperCAmelCase : Optional[Any] = spec.loader.load_module() __UpperCAmelCase : Any = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__UpperCamelCase ) > 0: __UpperCAmelCase : List[Any] = '''\n'''.join(f"""- {module}""" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" f"""{list_of_modules}\n""" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
710
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Optional[int] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _a : List[str] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _a : List[Any] = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _a : List[Any] = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _a : List[str] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } _a : List[Any] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } _a : int = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } _a : Dict = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _a : str = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _a : int = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class __A (lowerCAmelCase__ ): snake_case :Any = VOCAB_FILES_NAMES snake_case :Optional[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case :List[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :List[str] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __A (lowerCAmelCase__ ): snake_case :str = VOCAB_FILES_NAMES snake_case :List[str] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case :Any = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :List[Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _a : Union[str, Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _a : Dict = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _a : Dict = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(lowerCAmelCase__ ) class __A : def __call__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): if titles is None and texts is None: return super().__call__( _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) elif titles is None or texts is None: __UpperCAmelCase : str = titles if texts is None else texts return super().__call__( _lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) __UpperCAmelCase : Optional[Any] = titles if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [titles] __UpperCAmelCase : Optional[Any] = texts if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [texts] __UpperCAmelCase : Any = len(_lowerCamelCase ) __UpperCAmelCase : List[Any] = questions if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [questions] * n_passages if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError( f"""There should be as many titles than texts but got {len(_lowerCamelCase )} titles and {len(_lowerCamelCase )} texts.""" ) __UpperCAmelCase : Optional[int] = super().__call__(_lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )["input_ids"] __UpperCAmelCase : int = super().__call__(_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )["input_ids"] __UpperCAmelCase : Any = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowerCamelCase , _lowerCamelCase ) ] } if return_attention_mask is not False: __UpperCAmelCase : Dict = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __UpperCAmelCase : Union[str, Any] = attention_mask return self.pad(_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 16 , UpperCamelCase_ = 64 , UpperCamelCase_ = 4 , ): __UpperCAmelCase : Any = reader_input["input_ids"] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = reader_output[:3] __UpperCAmelCase : Optional[Any] = len(_lowerCamelCase ) __UpperCAmelCase : str = sorted(range(_lowerCamelCase ) , reverse=_lowerCamelCase , key=relevance_logits.__getitem__ ) __UpperCAmelCase : int = [] for doc_id in sorted_docs: __UpperCAmelCase : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __UpperCAmelCase : List[Any] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __UpperCAmelCase : Tuple = sequence_ids.index(self.pad_token_id ) else: __UpperCAmelCase : str = len(_lowerCamelCase ) __UpperCAmelCase : List[str] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowerCamelCase , top_spans=_lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowerCamelCase , start_index=_lowerCamelCase , end_index=_lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : Dict = [] for start_index, start_score in enumerate(_lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __UpperCAmelCase : str = sorted(_lowerCamelCase , key=lambda UpperCamelCase_ : x[1] , reverse=_lowerCamelCase ) __UpperCAmelCase : Any = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) __UpperCAmelCase : Optional[Any] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCAmelCase__ ) class __A (lowerCAmelCase__ , lowerCAmelCase__ ): snake_case :Tuple = VOCAB_FILES_NAMES snake_case :List[str] = READER_PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[int] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION snake_case :int = ["input_ids", "attention_mask"]
711
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool _a : str = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class __A (_A ): snake_case :Optional[int] = "facebook/nllb-200-distilled-600M" snake_case :Any = ( "This is a tool that translates text from a language to another. It takes three inputs: `text`, which should " "be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, " "which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in " "plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`." ) snake_case :Union[str, Any] = "translator" snake_case :str = AutoTokenizer snake_case :List[Any] = AutoModelForSeqaSeqLM snake_case :Union[str, Any] = LANGUAGE_CODES snake_case :Tuple = ["text", "text", "text"] snake_case :Any = ["text"] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) __UpperCAmelCase : Optional[Any] = self.lang_to_code[src_lang] __UpperCAmelCase : Union[str, Any] = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCamelCase_ , return_tensors="pt" , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return self.model.generate(**UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCamelCase_ )
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : int = logging.get_logger(__name__) _a : Tuple = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class __A (__lowercase ): '''simple docstring''' snake_case :List[str] = 'data2vec-text' def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=True , UpperCamelCase_=None , **UpperCamelCase_ , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : Tuple = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Any = layer_norm_eps __UpperCAmelCase : Optional[Any] = position_embedding_type __UpperCAmelCase : Dict = use_cache __UpperCAmelCase : List[str] = classifier_dropout class __A (__lowercase ): '''simple docstring''' @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Union[str, Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
713
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if colsa != 1: __UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if rowsa != rowsa: __UpperCAmelCase : Optional[int] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != rowsa: __UpperCAmelCase : List[str] = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}""" ) raise ValueError(lowerCamelCase__ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape strictly_diagonally_dominant(lowerCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase__ ): __UpperCAmelCase : int = [] for row in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = 0 for col in range(lowerCamelCase__ ): if col == row: __UpperCAmelCase : int = table[row][col] elif col == cols - 1: __UpperCAmelCase : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : List[Any] = (temp + val) / denom new_val.append(lowerCamelCase__ ) __UpperCAmelCase : str = new_val return [float(lowerCamelCase__ ) for i in new_val] def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape __UpperCAmelCase : str = True for i in range(0 , lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _a : List[str] = logging.get_logger(__name__) _a : Dict = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class __A (UpperCamelCase__ , UpperCamelCase__ ): snake_case :Any = "focalnet" def __init__( self , UpperCamelCase_=2_24 , UpperCamelCase_=4 , UpperCamelCase_=3 , UpperCamelCase_=96 , UpperCamelCase_=False , UpperCamelCase_=[1_92, 3_84, 7_68, 7_68] , UpperCamelCase_=[2, 2, 6, 2] , UpperCamelCase_=[2, 2, 2, 2] , UpperCamelCase_=[3, 3, 3, 3] , UpperCamelCase_="gelu" , UpperCamelCase_=4.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.1 , UpperCamelCase_=False , UpperCamelCase_=1E-4 , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-5 , UpperCamelCase_=32 , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ , ): super().__init__(**__A ) __UpperCAmelCase : Dict = image_size __UpperCAmelCase : int = patch_size __UpperCAmelCase : str = num_channels __UpperCAmelCase : Dict = embed_dim __UpperCAmelCase : Union[str, Any] = use_conv_embed __UpperCAmelCase : List[str] = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : List[Any] = focal_levels __UpperCAmelCase : Dict = focal_windows __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = drop_path_rate __UpperCAmelCase : str = use_layerscale __UpperCAmelCase : Optional[Any] = layerscale_value __UpperCAmelCase : Any = use_post_layernorm __UpperCAmelCase : Dict = use_post_layernorm_in_modulation __UpperCAmelCase : Dict = normalize_modulator __UpperCAmelCase : int = initializer_range __UpperCAmelCase : Optional[Any] = layer_norm_eps __UpperCAmelCase : List[Any] = encoder_stride __UpperCAmelCase : Any = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __UpperCAmelCase , __UpperCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names )
714
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Any = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _a : Dict = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class __A (__UpperCAmelCase , unittest.TestCase ): snake_case :List[str] = GPTSwaTokenizer snake_case :Dict = False snake_case :int = True snake_case :List[Any] = False def _snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : List[str] = GPTSwaTokenizer(__SCREAMING_SNAKE_CASE , eos_token="<unk>" , bos_token="<unk>" , pad_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Dict = "This is a test" __UpperCAmelCase : List[str] = "This is a test" return input_text, output_text def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = "<s>" __UpperCAmelCase : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): __UpperCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 20_00 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 20_00 ) def _snake_case ( self ): __UpperCAmelCase : int = GPTSwaTokenizer(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Union[str, Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [4_65, 2_87, 2_65, 6_31, 8_42] ) __UpperCAmelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) # fmt: off self.assertListEqual( __SCREAMING_SNAKE_CASE , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] , ) # fmt: on __UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , ) __UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) # fmt: off self.assertListEqual( __SCREAMING_SNAKE_CASE , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] ) # fmt: on def _snake_case ( self ): __UpperCAmelCase : Optional[int] = GPTSwaTokenizer(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Optional[int] = ["This is a test", "I was born in 92000, and this is falsé."] __UpperCAmelCase : Optional[Any] = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertListEqual(tokenizer.encode_fast(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # Test that decode_fast returns the input text for text, token_ids in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.decode_fast(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self ): __UpperCAmelCase : Optional[int] = [ "<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')", "Hey there, how are you doing this fine day?", "This is a text with a trailing spaces followed by a dot .", "Häj sväjs lillebrör! =)", "Det är inget fel på Mr. Cool", ] # fmt: off __UpperCAmelCase : Optional[int] = {"input_ids": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name="AI-Sweden/gpt-sw3-126m" , sequences=__SCREAMING_SNAKE_CASE , )
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __A (unittest.TestCase ): def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=30 , UpperCamelCase_=4_00 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=True , UpperCamelCase_=1 / 2_55 , UpperCamelCase_=True , ): __UpperCAmelCase : Union[str, Any] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} __UpperCAmelCase : Tuple = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Union[str, Any] = num_channels __UpperCAmelCase : str = min_resolution __UpperCAmelCase : Tuple = max_resolution __UpperCAmelCase : List[str] = do_resize __UpperCAmelCase : int = size __UpperCAmelCase : Optional[Any] = do_normalize __UpperCAmelCase : Any = image_mean __UpperCAmelCase : Any = image_std __UpperCAmelCase : Optional[Any] = do_rescale __UpperCAmelCase : Optional[Any] = rescale_factor __UpperCAmelCase : List[str] = do_pad def _snake_case ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False ): if not batched: __UpperCAmelCase : List[str] = image_inputs[0] if isinstance(__a , Image.Image ): __UpperCAmelCase : Tuple = image.size else: __UpperCAmelCase : str = image.shape[1], image.shape[2] if w < h: __UpperCAmelCase : List[Any] = int(self.size["shortest_edge"] * h / w ) __UpperCAmelCase : List[Any] = self.size['shortest_edge'] elif w > h: __UpperCAmelCase : Optional[Any] = self.size['shortest_edge'] __UpperCAmelCase : List[str] = int(self.size["shortest_edge"] * w / h ) else: __UpperCAmelCase : Any = self.size['shortest_edge'] __UpperCAmelCase : str = self.size['shortest_edge'] else: __UpperCAmelCase : List[Any] = [] for image in image_inputs: __UpperCAmelCase : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCAmelCase : Optional[Any] = max(__a , key=lambda UpperCamelCase_ : item[0] )[0] __UpperCAmelCase : int = max(__a , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __A (UpperCamelCase_ , unittest.TestCase ): snake_case :List[Any] = DetaImageProcessor if is_vision_available() else None def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = DetaImageProcessingTester(self ) @property def _snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ): __UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "image_mean" ) ) self.assertTrue(hasattr(__a , "image_std" ) ) self.assertTrue(hasattr(__a , "do_normalize" ) ) self.assertTrue(hasattr(__a , "do_resize" ) ) self.assertTrue(hasattr(__a , "do_rescale" ) ) self.assertTrue(hasattr(__a , "do_pad" ) ) self.assertTrue(hasattr(__a , "size" ) ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , __a ) def _snake_case ( self ): pass def _snake_case ( self ): __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input __UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __UpperCAmelCase : Any = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(__a , batched=__a ) __UpperCAmelCase : List[Any] = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input __UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __UpperCAmelCase : List[str] = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase : Any = image_processing(__a , return_tensors="pt" ).pixel_values __UpperCAmelCase : List[str] = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ): __UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input __UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __UpperCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase : Any = image_processing(__a , return_tensors="pt" ).pixel_values __UpperCAmelCase : str = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ): __UpperCAmelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: __UpperCAmelCase : Optional[int] = json.loads(f.read() ) __UpperCAmelCase : str = {'image_id': 3_97_69, 'annotations': target} # encode them __UpperCAmelCase : List[Any] = DetaImageProcessor() __UpperCAmelCase : Optional[Any] = image_processing(images=__a , annotations=__a , return_tensors="pt" ) # verify pixel values __UpperCAmelCase : Union[str, Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , __a ) __UpperCAmelCase : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __a , atol=1E-4 ) ) # verify area __UpperCAmelCase : Optional[int] = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __a ) ) # verify boxes __UpperCAmelCase : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __a ) __UpperCAmelCase : str = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __a , atol=1E-3 ) ) # verify image_id __UpperCAmelCase : List[str] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __a ) ) # verify is_crowd __UpperCAmelCase : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __a ) ) # verify class_labels __UpperCAmelCase : Optional[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __a ) ) # verify orig_size __UpperCAmelCase : Dict = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __a ) ) # verify size __UpperCAmelCase : Dict = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __a ) ) @slow def _snake_case ( self ): __UpperCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: __UpperCAmelCase : List[Any] = json.loads(f.read() ) __UpperCAmelCase : List[str] = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} __UpperCAmelCase : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them __UpperCAmelCase : Union[str, Any] = DetaImageProcessor(format="coco_panoptic" ) __UpperCAmelCase : Dict = image_processing(images=__a , annotations=__a , masks_path=__a , return_tensors="pt" ) # verify pixel values __UpperCAmelCase : List[Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , __a ) __UpperCAmelCase : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __a , atol=1E-4 ) ) # verify area __UpperCAmelCase : Dict = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __a ) ) # verify boxes __UpperCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __a ) __UpperCAmelCase : Tuple = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __a , atol=1E-3 ) ) # verify image_id __UpperCAmelCase : Dict = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __a ) ) # verify is_crowd __UpperCAmelCase : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __a ) ) # verify class_labels __UpperCAmelCase : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __a ) ) # verify masks __UpperCAmelCase : Optional[int] = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __a ) # verify orig_size __UpperCAmelCase : Optional[int] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __a ) ) # verify size __UpperCAmelCase : Tuple = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __a ) )
716
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Any = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Union[str, Any] = "ibert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Tuple = quant_mode __UpperCAmelCase : Union[str, Any] = force_dequant class __A (__magic_name__ ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
10
0
'''simple docstring''' from __future__ import annotations class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float." ) if len(__A ) != 0: __UpperCAmelCase : Optional[Any] = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__A ) != cols: raise error for value in row: if not isinstance(__A , (int, float) ): raise error __UpperCAmelCase : Union[str, Any] = rows else: __UpperCAmelCase : List[str] = [] def _snake_case ( self ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _snake_case ( self ): return len(self.rows ) @property def _snake_case ( self ): return len(self.rows[0] ) @property def _snake_case ( self ): return (self.num_rows, self.num_columns) @property def _snake_case ( self ): return self.order[0] == self.order[1] def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__A ) def _snake_case ( self ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _snake_case ( self ): return bool(self.determinant() ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Any = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__A ).determinant() def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): if (row + column) % 2 == 0: return self.get_minor(__A , __A ) return -1 * self.get_minor(__A , __A ) def _snake_case ( self ): return Matrix( [ [self.get_minor(__A , __A ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _snake_case ( self ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__A ) def _snake_case ( self ): __UpperCAmelCase : Any = self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse" ) return self.adjugate() * (1 / determinant) def __repr__( self ): return str(self.rows ) def __str__( self ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(__A ) for value in row] ) + ".]" for row in self.rows ] ) + "]" ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Tuple = TypeError("Row must be a list containing all ints and/or floats" ) if not isinstance(__A , __A ): raise type_error for value in row: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix" ) if position is None: self.rows.append(__A ) else: __UpperCAmelCase : str = self.rows[0:position] + [row] + self.rows[position:] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Optional[int] = TypeError( "Column must be a list containing all ints and/or floats" ) if not isinstance(__A , __A ): raise type_error for value in column: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix" ) if position is None: __UpperCAmelCase : str = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __UpperCAmelCase : Any = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , UpperCamelCase_ ): if not isinstance(__A , __A ): return NotImplemented return self.rows == other.rows def __ne__( self , UpperCamelCase_ ): return not self == other def __neg__( self ): return self * -1 def __add__( self , UpperCamelCase_ ): if self.order != other.order: raise ValueError("Addition requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , UpperCamelCase_ ): if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , UpperCamelCase_ ): if isinstance(__A , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__A , __A ): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second" ) return Matrix( [ [Matrix.dot_product(__A , __A ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix" ) def __pow__( self , UpperCamelCase_ ): if not isinstance(__A , __A ): raise TypeError("A Matrix can only be raised to the power of an int" ) if not self.is_square: raise ValueError("Only square matrices can be raised to a power" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power" ) __UpperCAmelCase : Optional[Any] = self for _ in range(other - 1 ): result *= self return result @classmethod def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ ): return sum(row[i] * column[i] for i in range(len(__A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ ) try: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead." __UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] ) __UpperCAmelCase : Any = "" __UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] ) __UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
10
0
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _a : Tuple = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) _a : Dict = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) _a : List[str] = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) _a : Any = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) _a : Dict = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) _a : Tuple = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) _a : Union[str, Any] = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : Optional[Any] = randrange(len(_lowerCamelCase ) ), randrange(len(_lowerCamelCase ) ) __UpperCAmelCase : Optional[Any] = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] __UpperCAmelCase : List[str] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _lowercase ( lowerCamelCase__ = 100 ) -> List[str]: """simple docstring""" return (generate_random_hand() for _ in range(_lowerCamelCase )) @pytest.mark.parametrize("hand, expected" , _lowerCamelCase ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" assert PokerHand(_lowerCamelCase )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , _lowerCamelCase ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" assert PokerHand(_lowerCamelCase )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , _lowerCamelCase ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: """simple docstring""" __UpperCAmelCase : Tuple = PokerHand(_lowerCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , _lowerCamelCase ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: """simple docstring""" assert PokerHand(_lowerCamelCase )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , _lowerCamelCase ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Any: """simple docstring""" assert PokerHand(_lowerCamelCase )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , _lowerCamelCase ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: """simple docstring""" assert PokerHand(_lowerCamelCase ).compare_with(PokerHand(_lowerCamelCase ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" assert PokerHand(_lowerCamelCase ).compare_with(PokerHand(_lowerCamelCase ) ) == expected def _lowercase ( ) -> List[str]: """simple docstring""" __UpperCAmelCase : List[str] = [PokerHand(_lowerCamelCase ) for hand in SORTED_HANDS] __UpperCAmelCase : Dict = poker_hands.copy() shuffle(_lowerCamelCase ) __UpperCAmelCase : Any = chain(sorted(_lowerCamelCase ) ) for index, hand in enumerate(_lowerCamelCase ): assert hand == poker_hands[index] def _lowercase ( ) -> Any: """simple docstring""" __UpperCAmelCase : Union[str, Any] = [PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=_lowerCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _lowercase ( ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : str = PokerHand("2C 4S AS 3D 5C" ) __UpperCAmelCase : str = True __UpperCAmelCase : List[str] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _lowercase ( ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : int = os.path.abspath(os.path.dirname(_lowerCamelCase ) ) __UpperCAmelCase : Optional[Any] = os.path.join(_lowerCamelCase , "poker_hands.txt" ) with open(_lowerCamelCase ) as file_hand: for line in file_hand: __UpperCAmelCase : Tuple = line[:14].strip() __UpperCAmelCase : Union[str, Any] = line[15:].strip() __UpperCAmelCase : List[str] = PokerHand(_lowerCamelCase ), PokerHand(_lowerCamelCase ) __UpperCAmelCase : int = player.compare_with(_lowerCamelCase ) if output == "Win": answer += 1 assert answer == 376
718
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case :Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case :Any = frozenset([] ) snake_case :Optional[int] = True @property def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[str] = (16, 16) __UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) __UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) __UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): __UpperCAmelCase : List[str] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) __UpperCAmelCase : Tuple = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) __UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _snake_case ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _snake_case ( self ): __UpperCAmelCase : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name ) __UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) __UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0] outputs.append(UpperCamelCase_ ) assert check_same_shape(UpperCamelCase_ ) @require_torch_gpu @slow class __A (unittest.TestCase ): def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[int] = torch.manual_seed(33 ) __UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" __UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images __UpperCAmelCase : int = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _snake_case ( self ): __UpperCAmelCase : List[Any] = torch.manual_seed(33 ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" __UpperCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) __UpperCAmelCase : Dict = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
10
0
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=2_24 , UpperCamelCase_=10_00 , UpperCamelCase_=[3, 3, 6, 4] , UpperCamelCase_=[48, 56, 1_12, 2_20] , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : Union[str, Any] = is_training __UpperCAmelCase : Tuple = use_labels __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Dict = num_labels __UpperCAmelCase : List[Any] = image_size __UpperCAmelCase : List[Any] = layer_depths __UpperCAmelCase : str = embed_dims def _snake_case ( self ): __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : int = None if self.use_labels: __UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def _snake_case ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=A__ , layer_scale_init_value=1E-5 , ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = SwiftFormerModel(config=A__ ) model.to(A__ ) model.eval() __UpperCAmelCase : List[Any] = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : Tuple = SwiftFormerForImageClassification(A__ ) model.to(A__ ) model.eval() __UpperCAmelCase : int = model(A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase : List[str] = SwiftFormerForImageClassification(A__ ) model.to(A__ ) model.eval() __UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Optional[int] = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self ): (__UpperCAmelCase) : Tuple = self.prepare_config_and_inputs() __UpperCAmelCase : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A (__magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Dict = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () snake_case :List[Any] = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) snake_case :Dict = False snake_case :Union[str, Any] = False snake_case :Any = False snake_case :int = False snake_case :Any = False def _snake_case ( self ): __UpperCAmelCase : List[str] = SwiftFormerModelTester(self ) __UpperCAmelCase : int = ConfigTester( self , config_class=A__ , has_text_modality=A__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _snake_case ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def _snake_case ( self ): pass def _snake_case ( self ): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = model_class(A__ ) __UpperCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ , nn.Linear ) ) def _snake_case ( self ): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Any = model_class(A__ ) __UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Dict = [*signature.parameters.keys()] __UpperCAmelCase : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A__ ) def _snake_case ( self ): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def _snake_case ( self ): __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A__ ) @slow def _snake_case ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = SwiftFormerModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def _snake_case ( self ): pass def _snake_case ( self ): def check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Any = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Any = model(**self._prepare_for_class(A__ , A__ ) ) __UpperCAmelCase : str = outputs.hidden_states __UpperCAmelCase : Tuple = 8 self.assertEqual(len(A__ ) , A__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(A__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Any = True check_hidden_states_output(A__ , A__ , A__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : List[Any] = True check_hidden_states_output(A__ , A__ , A__ ) def _snake_case ( self ): def _config_zero_init(UpperCamelCase_ ): __UpperCAmelCase : str = copy.deepcopy(A__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(A__ , A__ , 1E-10 ) if isinstance(getattr(A__ , A__ , A__ ) , A__ ): __UpperCAmelCase : Optional[Any] = _config_zero_init(getattr(A__ , A__ ) ) setattr(A__ , A__ , A__ ) return configs_no_init __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = _config_zero_init(A__ ) for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(config=A__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self ): pass def _lowercase ( ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __A (unittest.TestCase ): @cached_property def _snake_case ( self ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def _snake_case ( self ): __UpperCAmelCase : List[Any] = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(A__ ) __UpperCAmelCase : Any = self.default_image_processor __UpperCAmelCase : List[Any] = prepare_img() __UpperCAmelCase : Optional[Any] = image_processor(images=A__ , return_tensors="pt" ).to(A__ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Dict = model(**A__ ) # verify the logits __UpperCAmelCase : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , A__ ) __UpperCAmelCase : Any = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(A__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A__ , atol=1E-4 ) )
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
0
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _a : List[Any] = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" warnings.warn(lowerCAmelCase__ , lowerCAmelCase__ ) requires_backends(lowerCAmelCase__ , "sklearn" ) return (preds == labels).mean() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" warnings.warn(lowerCAmelCase__ , lowerCAmelCase__ ) requires_backends(lowerCAmelCase__ , "sklearn" ) __UpperCAmelCase : Optional[Any] = simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = fa_score(y_true=lowerCAmelCase__ , y_pred=lowerCAmelCase__ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" warnings.warn(lowerCAmelCase__ , lowerCAmelCase__ ) requires_backends(lowerCAmelCase__ , "sklearn" ) __UpperCAmelCase : int = pearsonr(lowerCAmelCase__ , lowerCAmelCase__ )[0] __UpperCAmelCase : int = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" warnings.warn(lowerCAmelCase__ , lowerCAmelCase__ ) requires_backends(lowerCAmelCase__ , "sklearn" ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ), f"""Predictions and labels have mismatched lengths {len(lowerCAmelCase__ )} and {len(lowerCAmelCase__ )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "mrpc": return acc_and_fa(lowerCAmelCase__ , lowerCAmelCase__ ) elif task_name == "sts-b": return pearson_and_spearman(lowerCAmelCase__ , lowerCAmelCase__ ) elif task_name == "qqp": return acc_and_fa(lowerCAmelCase__ , lowerCAmelCase__ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "qnli": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "rte": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "wnli": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "hans": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} else: raise KeyError(lowerCAmelCase__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" warnings.warn(lowerCAmelCase__ , lowerCAmelCase__ ) requires_backends(lowerCAmelCase__ , "sklearn" ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(lowerCAmelCase__ )} and {len(lowerCAmelCase__ )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} else: raise KeyError(lowerCAmelCase__ )
720
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
10
0
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _a : List[str] = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , "sklearn" ) return (preds == labels).mean() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , "sklearn" ) __UpperCAmelCase : List[Any] = simple_accuracy(_lowerCamelCase , _lowerCamelCase ) __UpperCAmelCase : Optional[int] = fa_score(y_true=_lowerCamelCase , y_pred=_lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , "sklearn" ) __UpperCAmelCase : Tuple = pearsonr(_lowerCamelCase , _lowerCamelCase )[0] __UpperCAmelCase : List[str] = spearmanr(_lowerCamelCase , _lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , "sklearn" ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(_lowerCamelCase )} and {len(_lowerCamelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(_lowerCamelCase , _lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(_lowerCamelCase , _lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(_lowerCamelCase , _lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(_lowerCamelCase , _lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} else: raise KeyError(_lowerCamelCase ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , "sklearn" ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(_lowerCamelCase )} and {len(_lowerCamelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} else: raise KeyError(_lowerCamelCase )
721
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import math def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Tuple = 2 __UpperCAmelCase : int = int(math.sqrt(lowerCamelCase__ ) ) # Size of every segment __UpperCAmelCase : str = [True] * (end + 1) __UpperCAmelCase : int = [] while start <= end: if temp[start] is True: in_prime.append(lowerCamelCase__ ) for i in range(start * start , end + 1 , lowerCamelCase__ ): __UpperCAmelCase : List[str] = False start += 1 prime += in_prime __UpperCAmelCase : Optional[int] = end + 1 __UpperCAmelCase : str = min(2 * end , lowerCamelCase__ ) while low <= n: __UpperCAmelCase : int = [True] * (high - low + 1) for each in in_prime: __UpperCAmelCase : int = math.floor(low / each ) * each if t < low: t += each for j in range(lowerCamelCase__ , high + 1 , lowerCamelCase__ ): __UpperCAmelCase : int = False for j in range(len(lowerCamelCase__ ) ): if temp[j] is True: prime.append(j + low ) __UpperCAmelCase : str = high + 1 __UpperCAmelCase : List[Any] = min(high + end , lowerCamelCase__ ) return prime print(sieve(10**6))
700
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _a : str = datasets.load_iris() _a : List[Any] = np.array(data["data"]) _a : Optional[Any] = np.array(data["target"]) _a : Dict = data["target_names"] _a , _a , _a , _a : Any = train_test_split(X, y) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified __UpperCAmelCase : int = [] for data_point in data: __UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
10
0
'''simple docstring''' import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __A (_UpperCAmelCase ): def __init__( self , *UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(*lowercase__ , **lowercase__ ) __UpperCAmelCase : List[str] = eval_examples __UpperCAmelCase : int = post_process_function def _snake_case ( self , UpperCamelCase_ = None , UpperCamelCase_=None , UpperCamelCase_ = None , UpperCamelCase_ = "eval" , **UpperCamelCase_ , ): __UpperCAmelCase : Any = gen_kwargs.copy() __UpperCAmelCase : List[str] = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) __UpperCAmelCase : Dict = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) __UpperCAmelCase : Optional[int] = gen_kwargs __UpperCAmelCase : Union[str, Any] = self.eval_dataset if eval_dataset is None else eval_dataset __UpperCAmelCase : List[str] = self.get_eval_dataloader(lowercase__ ) __UpperCAmelCase : Optional[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __UpperCAmelCase : int = self.compute_metrics __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : List[str] = time.time() __UpperCAmelCase : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __UpperCAmelCase : str = eval_loop( lowercase__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase__ , metric_key_prefix=lowercase__ , ) finally: __UpperCAmelCase : List[str] = compute_metrics __UpperCAmelCase : Any = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowercase__ , lowercase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __UpperCAmelCase : Any = self.post_process_function(lowercase__ , lowercase__ , lowercase__ ) __UpperCAmelCase : str = self.compute_metrics(lowercase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __UpperCAmelCase : Tuple = metrics.pop(lowercase__ ) metrics.update(output.metrics ) else: __UpperCAmelCase : Tuple = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __UpperCAmelCase : Optional[int] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase__ ) return metrics def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_ = "test" , **UpperCamelCase_ ): __UpperCAmelCase : Dict = gen_kwargs.copy() __UpperCAmelCase : List[str] = self.get_test_dataloader(lowercase__ ) # Temporarily disable metric computation, we will do it in the loop here. __UpperCAmelCase : List[str] = self.compute_metrics __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : Dict = time.time() __UpperCAmelCase : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __UpperCAmelCase : Union[str, Any] = eval_loop( lowercase__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase__ , metric_key_prefix=lowercase__ , ) finally: __UpperCAmelCase : str = compute_metrics __UpperCAmelCase : Tuple = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowercase__ , lowercase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __UpperCAmelCase : List[Any] = self.post_process_function(lowercase__ , lowercase__ , lowercase__ , "predict" ) __UpperCAmelCase : Dict = self.compute_metrics(lowercase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __UpperCAmelCase : int = metrics.pop(lowercase__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase__ )
701
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = set_counts __UpperCAmelCase : int = max(UpperCamelCase_ ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Any = [1] * num_sets __UpperCAmelCase : Any = list(range(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Dict = src_parent __UpperCAmelCase : Dict = self.set_counts[src_parent] __UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ ) return True def _snake_case ( self , UpperCamelCase_ ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError("String lengths must match!" ) __UpperCAmelCase : Tuple = 0 for chara, chara in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
0
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version _a : Optional[Any] = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(__lowercase ) , version.parse(__lowercase ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = None ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : int = f"""\n{hint}""" if hint is not None else '' # non-versioned check if re.match(R"^[\w_\-\d]+$" , __lowercase ): __UpperCAmelCase : List[str] = requirement, None, None else: __UpperCAmelCase : Optional[int] = re.findall(R"^([^!=<>\s]+)([\s!=<>]{1,2}.+)" , __lowercase ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but" f""" got {requirement}""" ) __UpperCAmelCase : Tuple = match[0] __UpperCAmelCase : Optional[Any] = want_full.split("," ) # there could be multiple requirements __UpperCAmelCase : Optional[int] = {} for w in want_range: __UpperCAmelCase : int = re.findall(R"^([\s!=<>]{1,2})(.+)" , __lowercase ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23," f""" but got {requirement}""" ) __UpperCAmelCase : Any = match[0] __UpperCAmelCase : int = want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": __UpperCAmelCase : Union[str, Any] = '.'.join([str(__lowercase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) return # check if any version is installed try: __UpperCAmelCase : Dict = importlib.metadata.version(__lowercase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The \'{requirement}\' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) def _lowercase ( lowerCamelCase__ ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : int = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(__lowercase , __lowercase )
703
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : int = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys _a : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
10
0
'''simple docstring''' from __future__ import annotations _a : Optional[Any] = '''Muhammad Umer Farooq''' _a : List[Any] = '''MIT''' _a : List[str] = '''1.0.0''' _a : Union[str, Any] = '''Muhammad Umer Farooq''' _a : Any = '''[email protected]''' _a : Optional[Any] = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class __A (__a ): def __init__( self , UpperCamelCase_ ): super().__init__() __UpperCAmelCase : str = [] __UpperCAmelCase : List[Any] = domain def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __UpperCAmelCase : Optional[int] = parse.urljoin(self.domain , snake_case__ ) self.urls.append(snake_case__ ) def _lowercase ( lowerCamelCase__ ) -> List[Any]: """simple docstring""" return ".".join(get_sub_domain_name(lowerCAmelCase__ ).split("." )[-2:] ) def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" return parse.urlparse(lowerCAmelCase__ ).netloc def _lowercase ( lowerCamelCase__ = "https://github.com" ) -> List[Any]: """simple docstring""" __UpperCAmelCase : str = get_domain_name(lowerCAmelCase__ ) # Initialize the parser __UpperCAmelCase : Tuple = Parser(lowerCAmelCase__ ) try: # Open URL __UpperCAmelCase : int = requests.get(lowerCAmelCase__ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __UpperCAmelCase : List[Any] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __UpperCAmelCase : Optional[Any] = requests.get(lowerCAmelCase__ ) # Get the valid email. __UpperCAmelCase : Union[str, Any] = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(lowerCAmelCase__ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(lowerCAmelCase__ ) if __name__ == "__main__": _a : Optional[Any] = emails_from_url("https://github.com") print(f"""{len(emails)} emails found:""") print("\n".join(sorted(emails)))
705
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
0
def _lowercase ( lowerCamelCase__ = 5000_0000 ) -> Tuple: """simple docstring""" __UpperCAmelCase : int = set() __UpperCAmelCase : List[str] = int((limit - 24) ** (1 / 2) ) __UpperCAmelCase : Any = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowerCAmelCase_ ) ) ) for primea in primes: __UpperCAmelCase : Union[str, Any] = primea * primea for primea in primes: __UpperCAmelCase : Dict = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: __UpperCAmelCase : int = primea * primea * primea * primea __UpperCAmelCase : int = square + cube + tetr if total >= limit: break ret.add(lowerCAmelCase_ ) return len(lowerCAmelCase_ ) if __name__ == "__main__": print(f"""{solution() = }""")
706
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[Any] = logging.get_logger(__name__) _a : Dict = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class __A (__magic_name__ ): snake_case :Union[str, Any] = "open-llama" def __init__( self , UpperCamelCase_=10_00_00 , UpperCamelCase_=40_96 , UpperCamelCase_=1_10_08 , UpperCamelCase_=32 , UpperCamelCase_=32 , UpperCamelCase_="silu" , UpperCamelCase_=20_48 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-6 , UpperCamelCase_=True , UpperCamelCase_=0 , UpperCamelCase_=1 , UpperCamelCase_=2 , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=None , **UpperCamelCase_ , ): __UpperCAmelCase : Optional[int] = vocab_size __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : int = initializer_range __UpperCAmelCase : Optional[int] = rms_norm_eps __UpperCAmelCase : List[Any] = use_cache __UpperCAmelCase : int = kwargs.pop( "use_memorry_efficient_attention" , UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : str = attention_dropout_prob __UpperCAmelCase : Union[str, Any] = use_stable_embedding __UpperCAmelCase : List[str] = shared_input_output_embedding __UpperCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , tie_word_embeddings=UpperCamelCase_ , **UpperCamelCase_ , ) def _snake_case ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCamelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) __UpperCAmelCase : List[Any] = self.rope_scaling.get("type" , UpperCamelCase_ ) __UpperCAmelCase : Dict = self.rope_scaling.get("factor" , UpperCamelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}""" )
707
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_=12 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=0.0_2 , UpperCamelCase_=0 , UpperCamelCase_=None , ): __UpperCAmelCase : str = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : Dict = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : Optional[Any] = use_input_mask __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : int = vocab_size __UpperCAmelCase : int = hidden_size __UpperCAmelCase : Optional[Any] = projection_dim __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : int = dropout __UpperCAmelCase : Union[str, Any] = attention_dropout __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : Union[str, Any] = bos_token_id def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Optional[int] = None if self.use_input_mask: __UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: __UpperCAmelCase : int = input_mask.numpy() __UpperCAmelCase , __UpperCAmelCase : Dict = input_mask.shape __UpperCAmelCase : Optional[Any] = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_SCREAMING_SNAKE_CASE ): __UpperCAmelCase : Union[str, Any] = 1 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = self.get_config() return config, input_ids, tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) def _snake_case ( self ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = TFBlipTextModel(config=_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : str = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : str = model(_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self ): __UpperCAmelCase : Any = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : str = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __A (lowerCAmelCase__ , unittest.TestCase ): snake_case :List[str] = (TFBlipTextModel,) if is_tf_available() else () snake_case :str = False snake_case :Tuple = False snake_case :Optional[Any] = False def _snake_case ( self ): __UpperCAmelCase : Dict = BlipTextModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self ): pass def _snake_case ( self ): pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def _snake_case ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def _snake_case ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def _snake_case ( self ): pass @slow def _snake_case ( self ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = TFBlipTextModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , UpperCamelCase_=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_SCREAMING_SNAKE_CASE )
708
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __A (metaclass=_A ): snake_case :Union[str, Any] = ["torch", "transformers", "onnx"] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def _snake_case ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def _snake_case ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class __A (metaclass=_A ): snake_case :int = ["torch", "transformers", "onnx"] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def _snake_case ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def _snake_case ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class __A (metaclass=_A ): snake_case :Dict = ["torch", "transformers", "onnx"] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def _snake_case ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def _snake_case ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class __A (metaclass=_A ): snake_case :Optional[Any] = ["torch", "transformers", "onnx"] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def _snake_case ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def _snake_case ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class __A (metaclass=_A ): snake_case :Any = ["torch", "transformers", "onnx"] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def _snake_case ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def _snake_case ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class __A (metaclass=_A ): snake_case :Tuple = ["torch", "transformers", "onnx"] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def _snake_case ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def _snake_case ( cls , *UpperCamelCase_ , **UpperCamelCase_ ): requires_backends(cls , ["torch", "transformers", "onnx"] )
709
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
10
0
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) _a : Optional[int] = logging.getLogger() def _lowercase ( lowerCamelCase__ ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : Any = {} __UpperCAmelCase : str = os.path.join(lowerCamelCase__ , "all_results.json" ) if os.path.exists(lowerCamelCase__ ): with open(lowerCamelCase__ , "r" ) as f: __UpperCAmelCase : List[str] = json.load(lowerCamelCase__ ) else: raise ValueError(f"""can't find {path}""" ) return results _a : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class __A (snake_case__ ): def _snake_case ( self ): import xla_spawn __UpperCAmelCase : str = self.get_auto_remove_tmp_dir() __UpperCAmelCase : List[str] = f""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_A , "argv" , _A ): __UpperCAmelCase : Optional[Any] = time() xla_spawn.main() __UpperCAmelCase : Optional[Any] = time() __UpperCAmelCase : str = get_results(_A ) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_00 ) def _snake_case ( self ): import xla_spawn __UpperCAmelCase : Optional[Any] = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(_A , "argv" , _A ): xla_spawn.main()
710
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _a : List[str] = None _a : Any = logging.get_logger(__name__) _a : List[str] = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} _a : List[str] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } _a : Union[str, Any] = { "google/rembert": 256, } _a : Union[str, Any] = "▁" class __A (__magic_name__ ): snake_case :List[Any] = VOCAB_FILES_NAMES snake_case :Tuple = PRETRAINED_VOCAB_FILES_MAP snake_case :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = RemBertTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_="[CLS]" , UpperCamelCase_="[SEP]" , UpperCamelCase_="<unk>" , UpperCamelCase_="[SEP]" , UpperCamelCase_="<pad>" , UpperCamelCase_="[CLS]" , UpperCamelCase_="[MASK]" , **UpperCamelCase_ , ): __UpperCAmelCase : Optional[int] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , **__a , ) __UpperCAmelCase : int = do_lower_case __UpperCAmelCase : Union[str, Any] = remove_space __UpperCAmelCase : Union[str, Any] = keep_accents __UpperCAmelCase : List[str] = vocab_file __UpperCAmelCase : int = False if not self.vocab_file else True def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] __UpperCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(__a ): logger.error("Vocabulary path ({}) should be a directory".format(__a ) ) return __UpperCAmelCase : Optional[Any] = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
711
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
0
'''simple docstring''' from importlib import import_module from .logging import get_logger _a : Union[str, Any] = get_logger(__name__) class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_=None ): __UpperCAmelCase : Union[str, Any] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) __UpperCAmelCase : Any = module._original_module if isinstance(lowerCamelCase_ , _PatchedModuleObj ) else module class __A : snake_case :Tuple = [] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ): __UpperCAmelCase : List[str] = obj __UpperCAmelCase : List[Any] = target __UpperCAmelCase : int = new __UpperCAmelCase : List[Any] = target.split("." )[0] __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : List[str] = attrs or [] def __enter__( self ): __UpperCAmelCase : Union[str, Any] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCamelCase_ ) ): try: __UpperCAmelCase : Optional[Any] = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCamelCase_ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCamelCase_ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __UpperCAmelCase : Optional[int] = obj_attr # patch at top level setattr(self.obj , lowerCamelCase_ , _PatchedModuleObj(lowerCamelCase_ , attrs=self.attrs ) ) __UpperCAmelCase : Optional[int] = getattr(self.obj , lowerCamelCase_ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCamelCase_ , lowerCamelCase_ , _PatchedModuleObj(getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) , attrs=self.attrs ) ) __UpperCAmelCase : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_ ) # finally set the target attribute setattr(lowerCamelCase_ , lowerCamelCase_ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __UpperCAmelCase : str = getattr(import_module(".".join(lowerCamelCase_ ) ) , lowerCamelCase_ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCamelCase_ ) is attr_value: __UpperCAmelCase : Optional[int] = getattr(self.obj , lowerCamelCase_ ) setattr(self.obj , lowerCamelCase_ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __UpperCAmelCase : Union[str, Any] = globals()["""__builtins__"""][target_attr] setattr(self.obj , lowerCamelCase_ , self.new ) else: raise RuntimeError(f"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self , *UpperCamelCase_ ): for attr in list(self.original ): setattr(self.obj , lowerCamelCase_ , self.original.pop(lowerCamelCase_ ) ) def _snake_case ( self ): self.__enter__() self._active_patches.append(self ) def _snake_case ( self ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
0
'''simple docstring''' from manim import * class __A (__lowerCamelCase ): '''simple docstring''' def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) __UpperCAmelCase : str = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) __UpperCAmelCase : Optional[int] = Rectangle(height=0.2_5 , width=0.2_5 ) __UpperCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] __UpperCAmelCase : List[Any] = [mem.copy() for i in range(6 )] __UpperCAmelCase : Any = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) __UpperCAmelCase : int = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) __UpperCAmelCase : Union[str, Any] = VGroup(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) __UpperCAmelCase : List[Any] = Text("CPU" , font_size=24 ) __UpperCAmelCase : List[str] = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCamelCase_ ) __UpperCAmelCase : Any = [mem.copy() for i in range(4 )] __UpperCAmelCase : Optional[Any] = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) __UpperCAmelCase : Tuple = Text("GPU" , font_size=24 ) __UpperCAmelCase : List[Any] = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] __UpperCAmelCase : Union[str, Any] = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) __UpperCAmelCase : Tuple = Text("Model" , font_size=24 ) __UpperCAmelCase : List[Any] = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : str = [] for i, rect in enumerate(UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCamelCase_ , opacity=0.8 ) target.move_to(UpperCamelCase_ ) model_arr.append(UpperCamelCase_ ) __UpperCAmelCase : List[str] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(UpperCamelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCamelCase_ ) self.add(*UpperCamelCase_ , *UpperCamelCase_ ) __UpperCAmelCase : List[Any] = [meta_mem.copy() for i in range(6 )] __UpperCAmelCase : List[Any] = [meta_mem.copy() for i in range(6 )] __UpperCAmelCase : List[Any] = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) __UpperCAmelCase : Any = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) __UpperCAmelCase : List[Any] = VGroup(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) __UpperCAmelCase : Any = Text("Disk" , font_size=24 ) __UpperCAmelCase : Union[str, Any] = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) disk.move_to([-4, -1.2_5, 0] ) self.add(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Dict = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __UpperCAmelCase : int = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Any = MarkupText( f"""<span fgcolor=\'{BLUE}\'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(UpperCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCamelCase_ ) __UpperCAmelCase : str = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase_ ) ) __UpperCAmelCase : int = Square(0.3 ) input.set_fill(UpperCamelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCamelCase_ , buff=0.5 ) self.play(Write(UpperCamelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCamelCase_ , buff=0.0_2 ) self.play(MoveToTarget(UpperCamelCase_ ) ) self.play(FadeOut(UpperCamelCase_ ) ) __UpperCAmelCase : List[Any] = Arrow(start=UpperCamelCase_ , end=UpperCamelCase_ , color=UpperCamelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCamelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) __UpperCAmelCase : List[Any] = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase_ , run_time=3 ) ) __UpperCAmelCase : List[str] = {"run_time": 1, "fade_in": True, "fade_out": True, "buff": 0.0_2} self.play( Write(UpperCamelCase_ ) , Circumscribe(model_arr[0] , color=UpperCamelCase_ , **UpperCamelCase_ ) , Circumscribe(model_cpu_arr[0] , color=UpperCamelCase_ , **UpperCamelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCamelCase_ , **UpperCamelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) __UpperCAmelCase : str = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.0_2 , UpperCamelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.0_2 ) __UpperCAmelCase : Optional[Any] = AnimationGroup( FadeOut(UpperCamelCase_ , run_time=0.5 ) , MoveToTarget(UpperCamelCase_ , run_time=0.5 ) , FadeIn(UpperCamelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCamelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: __UpperCAmelCase : List[Any] = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCamelCase_ ) , Circumscribe(cpu_left_col_base[i] , **UpperCamelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCamelCase_ , **UpperCamelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCamelCase_ , **UpperCamelCase_ ) , Circumscribe(model_arr[i + 1] , color=UpperCamelCase_ , **UpperCamelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.0_2 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCamelCase_ , **UpperCamelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCamelCase_ , **UpperCamelCase_ ) , Circumscribe(gpu_rect[0] , color=UpperCamelCase_ , **UpperCamelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) __UpperCAmelCase : str = a_c __UpperCAmelCase : Any = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.0_2 , buff=0.5 ) self.play( FadeOut(UpperCamelCase_ ) , FadeOut(UpperCamelCase_ , run_time=0.5 ) , ) __UpperCAmelCase : Optional[int] = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase_ , run_time=3 ) , MoveToTarget(UpperCamelCase_ ) ) self.wait()
713
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if colsa != 1: __UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if rowsa != rowsa: __UpperCAmelCase : Optional[int] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != rowsa: __UpperCAmelCase : List[str] = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}""" ) raise ValueError(lowerCamelCase__ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape strictly_diagonally_dominant(lowerCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase__ ): __UpperCAmelCase : int = [] for row in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = 0 for col in range(lowerCamelCase__ ): if col == row: __UpperCAmelCase : int = table[row][col] elif col == cols - 1: __UpperCAmelCase : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : List[Any] = (temp + val) / denom new_val.append(lowerCamelCase__ ) __UpperCAmelCase : str = new_val return [float(lowerCamelCase__ ) for i in new_val] def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape __UpperCAmelCase : str = True for i in range(0 , lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments _a : Optional[int] = logging.getLogger(__name__) @dataclass class __A (_UpperCamelCase ): snake_case :Optional[int] = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) snake_case :List[str] = field(default=_UpperCamelCase , metadata={"help": "Whether to SortishSamler or not."} ) snake_case :Optional[int] = field( default=_UpperCamelCase , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) snake_case :List[Any] = field(default=_UpperCamelCase , metadata={"help": "whether to use adafactor"} ) snake_case :Optional[int] = field( default=_UpperCamelCase , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) snake_case :Optional[Any] = field( default=_UpperCamelCase , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) snake_case :Any = field(default=_UpperCamelCase , metadata={"help": "Dropout probability. Goes into model.config."} ) snake_case :List[str] = field( default=_UpperCamelCase , metadata={"help": "Attention dropout probability. Goes into model.config."} ) snake_case :Optional[int] = field( default="linear" , metadata={"help": f"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
714
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Any = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
10
0