code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , _lowercase : List[str] , _lowercase : List[Any]=7 , _lowercase : Union[str, Any]=3 , _lowercase : str=18 , _lowercase : str=30 , _lowercase : Tuple=400 , _lowercase : List[Any]=True , _lowercase : Optional[Any]=None , _lowercase : Optional[Any]=True , _lowercase : Optional[int]=False , _lowercase : Any=True , _lowercase : List[str]=True , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , _lowercase : Tuple=[0.5, 0.5, 0.5] , ): """simple docstring""" _UpperCamelCase: Dict = parent _UpperCamelCase: List[str] = batch_size _UpperCamelCase: Dict = num_channels _UpperCamelCase: List[str] = image_size _UpperCamelCase: Optional[int] = min_resolution _UpperCamelCase: Tuple = max_resolution _UpperCamelCase: str = do_resize _UpperCamelCase: List[str] = size if size is not None else {'''height''': 18, '''width''': 20} _UpperCamelCase: Tuple = do_thumbnail _UpperCamelCase: Optional[Any] = do_align_axis _UpperCamelCase: Optional[Any] = do_pad _UpperCamelCase: Tuple = do_normalize _UpperCamelCase: Tuple = image_mean _UpperCamelCase: Tuple = image_std def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __magic_name__ ( __lowercase , unittest.TestCase ): """simple docstring""" lowerCAmelCase : Tuple = DonutImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: List[str] = DonutImageProcessingTester(self ) @property def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_resize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''size''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_thumbnail''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_pad''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_mean''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_std''' ) ) def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) _UpperCamelCase: List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order _UpperCamelCase: int = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def lowerCAmelCase ( self : List[str] ): """simple docstring""" pass @is_flaky() def lowerCAmelCase ( self : Dict ): """simple docstring""" _UpperCamelCase: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase: List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input _UpperCamelCase: str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _UpperCamelCase: str = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def lowerCAmelCase ( self : List[str] ): """simple docstring""" _UpperCamelCase: Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase: List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) # Test not batched input _UpperCamelCase: Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _UpperCamelCase: Optional[Any] = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase: Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) # Test not batched input _UpperCamelCase: List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _UpperCamelCase: List[Any] = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
271
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _a : Optional[Any] = 100 _a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _a (lowercase__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case = set() __snake_case = 42 __snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a (lowercase__ : int = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
56
0
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class SCREAMING_SNAKE_CASE ( snake_case , snake_case ): """simple docstring""" A_ = 1 @register_to_config def __init__( self: Any , __A: int = 10_00 , __A: Optional[Union[np.ndarray, List[float]]] = None ) -> List[str]: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__A ) # standard deviation of the initial noise distribution _A = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. _A = 4 # running values _A = [] def __A ( self: str , __A: int , __A: Union[str, torch.device] = None ) -> int: _A = num_inference_steps _A = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] _A = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: _A = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: _A = torch.sin(steps * math.pi / 2 ) ** 2 _A = (1.0 - self.betas**2) ** 0.5 _A = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] _A = timesteps.to(__A ) _A = [] def __A ( self: Tuple , __A: torch.FloatTensor , __A: int , __A: torch.FloatTensor , __A: bool = True , ) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) _A = (self.timesteps == timestep).nonzero().item() _A = timestep_index + 1 _A = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__A ) if len(self.ets ) == 1: _A = self.ets[-1] elif len(self.ets ) == 2: _A = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: _A = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: _A = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) _A = self._get_prev_sample(__A , __A , __A , __A ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__A ) def __A ( self: Optional[int] , __A: torch.FloatTensor , *__A: Tuple , **__A: List[Any] ) -> torch.FloatTensor: return sample def __A ( self: List[str] , __A: Optional[Any] , __A: Optional[Any] , __A: Any , __A: List[Any] ) -> List[Any]: _A = self.alphas[timestep_index] _A = self.betas[timestep_index] _A = self.alphas[prev_timestep_index] _A = self.betas[prev_timestep_index] _A = (sample - sigma * ets) / max(__A , 1e-8 ) _A = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self: List[str] ) -> Dict: return self.config.num_train_timesteps
62
__A = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __A = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = True _A = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_lowercase , _lowercase , _lowercase ) order.append(_lowercase ) return order def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = True _A = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_lowercase , _lowercase , _lowercase ) return component def __A ( _lowercase ): '''simple docstring''' _A = len(_lowercase ) * [False] _A = {vert: [] for vert in range(len(_lowercase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_lowercase ) _A = [] for i, was_visited in enumerate(_lowercase ): if not was_visited: order += topology_sort(_lowercase , _lowercase , _lowercase ) _A = [] _A = len(_lowercase ) * [False] for i in range(len(_lowercase ) ): _A = order[len(_lowercase ) - i - 1] if not visited[vert]: _A = find_components(_lowercase , _lowercase , _lowercase ) components_list.append(_lowercase ) return components_list
62
1
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def lowerCAmelCase (__A): """simple docstring""" random.seed(__A) np.random.seed(__A) torch.manual_seed(__A) torch.cuda.manual_seed_all(__A) # ^^ safe to call this function even if cuda is not available class __A : '''simple docstring''' def __init__(self , A , A = 0.9999 , A = 0.0 , A = 0 , A = False , A = 1.0 , A = 2 / 3 , A = None , A = None , **A , ) -> List[str]: """simple docstring""" if isinstance(A , torch.nn.Module ): _a = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , A , standard_warn=A , ) _a = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _a = True if kwargs.get('''max_value''' , A ) is not None: _a = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , A , standard_warn=A ) _a = kwargs['''max_value'''] if kwargs.get('''min_value''' , A ) is not None: _a = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , A , standard_warn=A ) _a = kwargs['''min_value'''] _a = list(A ) _a = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , A ) is not None: _a = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , A , standard_warn=A ) self.to(device=kwargs['''device'''] ) _a = None _a = decay _a = min_decay _a = update_after_step _a = use_ema_warmup _a = inv_gamma _a = power _a = 0 _a = None # set in `step()` _a = model_cls _a = model_config @classmethod def a__ (cls , A , A ) -> "EMAModel": """simple docstring""" _a , _a = model_cls.load_config(A , return_unused_kwargs=A ) _a = model_cls.from_pretrained(A ) _a = cls(model.parameters() , model_cls=A , model_config=model.config ) ema_model.load_state_dict(A ) return ema_model def a__ (self , A ) -> Tuple: """simple docstring""" if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) _a = self.model_cls.from_config(self.model_config ) _a = self.state_dict() state_dict.pop('''shadow_params''' , A ) model.register_to_config(**A ) self.copy_to(model.parameters() ) model.save_pretrained(A ) def a__ (self , A ) -> float: """simple docstring""" _a = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _a = 1 - (1 + step / self.inv_gamma) ** -self.power else: _a = (1 + step) / (10 + step) _a = min(A , self.decay ) # make sure decay is not smaller than min_decay _a = max(A , self.min_decay ) return cur_decay_value @torch.no_grad() def a__ (self , A ) -> Optional[Any]: """simple docstring""" if isinstance(A , torch.nn.Module ): _a = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , A , standard_warn=A , ) _a = parameters.parameters() _a = list(A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _a = self.get_decay(self.optimization_step ) _a = decay _a = 1 - decay _a = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _a = deepspeed.zero.GatheredParameters(A , modifier_rank=A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(A ) def a__ (self , A ) -> None: """simple docstring""" _a = list(A ) for s_param, param in zip(self.shadow_params , A ): param.data.copy_(s_param.to(param.device ).data ) def a__ (self , A=None , A=None ) -> None: """simple docstring""" _a = [ p.to(device=A , dtype=A ) if p.is_floating_point() else p.to(device=A ) for p in self.shadow_params ] def a__ (self ) -> dict: """simple docstring""" return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def a__ (self , A ) -> None: """simple docstring""" _a = [param.detach().cpu().clone() for param in parameters] def a__ (self , A ) -> None: """simple docstring""" if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , A ): param.data.copy_(c_param.data ) # Better memory-wise. _a = None def a__ (self , A ) -> None: """simple docstring""" _a = copy.deepcopy(A ) _a = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) _a = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , A ): raise ValueError('''Invalid min_decay''' ) _a = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , A ): raise ValueError('''Invalid optimization_step''' ) _a = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , A ): raise ValueError('''Invalid update_after_step''' ) _a = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , A ): raise ValueError('''Invalid use_ema_warmup''' ) _a = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) _a = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) _a = state_dict.get('''shadow_params''' , A ) if shadow_params is not None: _a = shadow_params if not isinstance(self.shadow_params , A ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(A , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
11
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) a_ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
417
0
'''simple docstring''' def a ( UpperCamelCase_ : int ) -> int: if n == 1 or not isinstance(UpperCamelCase_ , UpperCamelCase_ ): return 0 elif n == 2: return 1 else: snake_case__ =[0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def a ( UpperCamelCase_ : int ) -> int: snake_case__ =0 snake_case__ =2 while digits < n: index += 1 snake_case__ =len(str(fibonacci(UpperCamelCase_ ) ) ) return index def a ( UpperCamelCase_ : int = 1000 ) -> int: return fibonacci_digits_index(UpperCamelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
581
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def a ( ) -> Optional[int]: snake_case__ =argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=UpperCamelCase_ , default=UpperCamelCase_ , required=UpperCamelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=UpperCamelCase_ , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=UpperCamelCase_ , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=UpperCamelCase_ , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=UpperCamelCase_ , default=0 , help='cuda_id.' , ) snake_case__ =parser.parse_args() return args def a ( UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] ) -> str: if not len(UpperCamelCase_ ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) snake_case__ , snake_case__ =imgs[0].size snake_case__ =Image.new('RGB' , size=(cols * w, rows * h) ) snake_case__ , snake_case__ =grid.size for i, img in enumerate(UpperCamelCase_ ): grid.paste(UpperCamelCase_ , box=(i % cols * w, i // cols * h) ) return grid def a ( UpperCamelCase_ : Any , UpperCamelCase_ : str="robotic cat with wings" , UpperCamelCase_ : Union[str, Any]=7.5 , UpperCamelCase_ : Dict=50 , UpperCamelCase_ : int=1 , UpperCamelCase_ : int=42 , ) -> Dict: snake_case__ =torch.Generator(pipeline.device ).manual_seed(UpperCamelCase_ ) snake_case__ =pipeline( UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=UpperCamelCase_ , generator=UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ , ).images snake_case__ =int(math.sqrt(UpperCamelCase_ ) ) snake_case__ =image_grid(UpperCamelCase_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images SCREAMING_SNAKE_CASE__ : int = parse_args() # Load models and create wrapper for stable diffusion SCREAMING_SNAKE_CASE__ : Optional[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') SCREAMING_SNAKE_CASE__ : Tuple = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') SCREAMING_SNAKE_CASE__ : Tuple = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') SCREAMING_SNAKE_CASE__ : Tuple = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') SCREAMING_SNAKE_CASE__ : Union[str, Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) SCREAMING_SNAKE_CASE__ : List[str] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): SCREAMING_SNAKE_CASE__ : List[Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: SCREAMING_SNAKE_CASE__ : List[Any] = unet.to(torch.device('''cuda''', args.cuda_id)) SCREAMING_SNAKE_CASE__ : List[str] = pipeline.to(unet.device) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Tuple = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
581
1
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _lowerCAmelCase : def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError("Destination width/height should be > 0" ) snake_case : int = img snake_case : str = img.shape[1] snake_case : int = img.shape[0] snake_case : Any = dst_width snake_case : Optional[Any] = dst_height snake_case : List[Any] = self.src_w / self.dst_w snake_case : Tuple = self.src_h / self.dst_h snake_case : int = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): snake_case : Tuple = self.img[self.get_y(__SCREAMING_SNAKE_CASE )][self.get_x(__SCREAMING_SNAKE_CASE )] def lowerCamelCase ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' return int(self.ratio_x * x ) def lowerCamelCase ( self , UpperCamelCase__ ) -> str: '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": __snake_case = 800, 600 __snake_case = imread("""image_data/lena.jpg""", 1) __snake_case = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
178
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( lowercase ) -> Optional[int]: if not is_accelerate_available(): return method __lowerCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self , *lowercase , **lowercase ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
689
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
266
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class a : """simple docstring""" def __init__( self : Union[str, Any] , snake_case : List[Any] , snake_case : int , snake_case : int ) -> List[Any]: if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) __UpperCAmelCase : str = img __UpperCAmelCase : List[Any] = img.shape[1] __UpperCAmelCase : Optional[Any] = img.shape[0] __UpperCAmelCase : Dict = dst_width __UpperCAmelCase : List[str] = dst_height __UpperCAmelCase : Union[str, Any] = self.src_w / self.dst_w __UpperCAmelCase : List[str] = self.src_h / self.dst_h __UpperCAmelCase : Optional[int] = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def lowerCamelCase__ ( self : Any ) -> str: for i in range(self.dst_h ): for j in range(self.dst_w ): __UpperCAmelCase : Any = self.img[self.get_y(snake_case )][self.get_x(snake_case )] def lowerCamelCase__ ( self : int , snake_case : int ) -> int: return int(self.ratio_x * x ) def lowerCamelCase__ ( self : Optional[Any] , snake_case : int ) -> int: return int(self.ratio_y * y ) if __name__ == "__main__": __UpperCAmelCase , __UpperCAmelCase :int = 8_0_0, 6_0_0 __UpperCAmelCase :Dict = imread("image_data/lena.jpg", 1) __UpperCAmelCase :int = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
266
1
def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: _lowercase : Tuple = 0 _lowercase : Any = len(lowerCamelCase_ ) for i in range(n - 1 ): for j in range(i + 1 , lowerCamelCase_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def UpperCamelCase_( lowerCamelCase_ ) -> Dict: if len(lowerCamelCase_ ) <= 1: return arr, 0 _lowercase : Any = len(lowerCamelCase_ ) // 2 _lowercase : List[str] = arr[0:mid] _lowercase : Tuple = arr[mid:] _lowercase , _lowercase : Dict = count_inversions_recursive(lowerCamelCase_ ) _lowercase , _lowercase : Optional[int] = count_inversions_recursive(lowerCamelCase_ ) _lowercase , _lowercase : List[str] = _count_cross_inversions(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : List[Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: _lowercase : Any = [] _lowercase : Union[str, Any] = 0 while i < len(lowerCamelCase_ ) and j < len(lowerCamelCase_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(lowerCamelCase_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(lowerCamelCase_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def UpperCamelCase_( ) -> Optional[int]: _lowercase : Union[str, Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _lowercase : Optional[int] = count_inversions_bf(lowerCamelCase_ ) _lowercase , _lowercase : Any = count_inversions_recursive(lowerCamelCase_ ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , lowerCamelCase_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _lowercase : List[str] = count_inversions_bf(lowerCamelCase_ ) _lowercase , _lowercase : List[str] = count_inversions_recursive(lowerCamelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , lowerCamelCase_ ) # an empty list should also have zero inversions _lowercase : Tuple = [] _lowercase : Tuple = count_inversions_bf(lowerCamelCase_ ) _lowercase , _lowercase : List[str] = count_inversions_recursive(lowerCamelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , lowerCamelCase_ ) if __name__ == "__main__": main()
89
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
112
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): '''simple docstring''' __A =inspect.getfile(accelerate.test_utils ) __A =os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __A =test_metrics @require_cpu def __UpperCamelCase ( self ): '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __UpperCamelCase ( self ): '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def __UpperCamelCase ( self ): '''simple docstring''' self.test_metrics.main() @require_multi_gpu def __UpperCamelCase ( self ): '''simple docstring''' print(f'''Found {torch.cuda.device_count()} devices.''' ) __A =['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
711
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _lowerCamelCase : str = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. _lowerCamelCase : int = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _lowerCamelCase : Union[str, Any] = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') _lowerCamelCase : Union[str, Any] = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowerCamelCase : List[Any] = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _lowerCamelCase : int = [ ('''pretraining''', '''MODEL_FOR_PRETRAINING_MAPPING_NAMES''', '''AutoModelForPreTraining'''), ('''feature-extraction''', '''MODEL_MAPPING_NAMES''', '''AutoModel'''), ('''audio-classification''', '''MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioClassification'''), ('''text-generation''', '''MODEL_FOR_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForCausalLM'''), ('''automatic-speech-recognition''', '''MODEL_FOR_CTC_MAPPING_NAMES''', '''AutoModelForCTC'''), ('''image-classification''', '''MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForImageClassification'''), ('''image-segmentation''', '''MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES''', '''AutoModelForImageSegmentation'''), ('''fill-mask''', '''MODEL_FOR_MASKED_LM_MAPPING_NAMES''', '''AutoModelForMaskedLM'''), ('''object-detection''', '''MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForObjectDetection'''), ( '''zero-shot-object-detection''', '''MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForZeroShotObjectDetection''', ), ('''question-answering''', '''MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForQuestionAnswering'''), ('''text2text-generation''', '''MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForSeq2SeqLM'''), ('''text-classification''', '''MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForSequenceClassification'''), ('''automatic-speech-recognition''', '''MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES''', '''AutoModelForSpeechSeq2Seq'''), ( '''table-question-answering''', '''MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForTableQuestionAnswering''', ), ('''token-classification''', '''MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForTokenClassification'''), ('''multiple-choice''', '''MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES''', '''AutoModelForMultipleChoice'''), ( '''next-sentence-prediction''', '''MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES''', '''AutoModelForNextSentencePrediction''', ), ( '''audio-frame-classification''', '''MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioFrameClassification''', ), ('''audio-xvector''', '''MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES''', '''AutoModelForAudioXVector'''), ( '''document-question-answering''', '''MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForDocumentQuestionAnswering''', ), ( '''visual-question-answering''', '''MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForVisualQuestionAnswering''', ), ('''image-to-text''', '''MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES''', '''AutoModelForVision2Seq'''), ( '''zero-shot-image-classification''', '''MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForZeroShotImageClassification''', ), ('''depth-estimation''', '''MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES''', '''AutoModelForDepthEstimation'''), ('''video-classification''', '''MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForVideoClassification'''), ('''mask-generation''', '''MODEL_FOR_MASK_GENERATION_MAPPING_NAMES''', '''AutoModelForMaskGeneration'''), ] def A__ ( __A : List[str] ) ->List[str]: __A =re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , __A ) return [m.group(0 ) for m in matches] def A__ ( ) ->Tuple: __A =transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __A ={ config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __A =collections.defaultdict(__A ) __A =collections.defaultdict(__A ) __A =collections.defaultdict(__A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__A ): __A =None if _re_tf_models.match(__A ) is not None: __A =tf_models __A =_re_tf_models.match(__A ).groups()[0] elif _re_flax_models.match(__A ) is not None: __A =flax_models __A =_re_flax_models.match(__A ).groups()[0] elif _re_pt_models.match(__A ) is not None: __A =pt_models __A =_re_pt_models.match(__A ).groups()[0] if lookup_dict is not None: while len(__A ) > 0: if attr_name in model_prefix_to_model_type: __A =True break # Try again after removing the last word in the name __A =''''''.join(camel_case_split(__A )[:-1] ) __A =set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __A =list(__A ) all_models.sort() __A ={'''model_type''': all_models} __A =[pt_models[t] for t in all_models] __A =[tf_models[t] for t in all_models] __A =[flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __A ={} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __A ='''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __A ='''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __A ='''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __A ='''AutoTokenizer''' __A =[processors[t] for t in all_models] return pd.DataFrame(__A ) def A__ ( __A : List[Any] ) ->Union[str, Any]: __A =[ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __A =[model_mapping, F'''TF_{model_mapping}''', F'''FLAX_{model_mapping}'''] __A =[auto_class, F'''TF_{auto_class}''', F'''Flax_{auto_class}'''] # Loop through all three frameworks for module, cls, mapping in zip(__A , __A , __A ): # The type of pipeline may not exist in this framework if not hasattr(__A , __A ): continue # First extract all model_names __A =[] for name in getattr(__A , __A ).values(): if isinstance(__A , __A ): model_names.append(__A ) else: model_names.extend(list(__A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def A__ ( __A : int , __A : Optional[Any] ) ->Dict: __A =get_frameworks_table() __A =Dataset.from_pandas(__A ) __A =hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=__A ) __A =Dataset.from_json(__A ) __A ={ tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(__A ) ) } __A =update_pipeline_and_auto_class_table(__A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __A =sorted(table.keys() ) __A =pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __A =Dataset.from_pandas(__A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(__A , '''pipeline_tags.json''' ) ) if commit_sha is not None: __A =( F'''Update with commit {commit_sha}\n\nSee: ''' F'''https://github.com/huggingface/transformers/commit/{commit_sha}''' ) else: __A ='''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=__A , repo_type='''dataset''' , token=__A , commit_message=__A , ) def A__ ( ) ->str: __A ={tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __A =transformers_module.pipelines.SUPPORTED_TASKS __A =[] for key in pipeline_tasks: if key not in in_table: __A =pipeline_tasks[key]['''pt'''] if isinstance(__A , (list, tuple) ): __A =model[0] __A =model.__name__ if model not in in_table.values(): missing.append(__A ) if len(__A ) > 0: __A =''', '''.join(__A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F'''`utils/update_metadata.py`: {msg}. Please add them!''' ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--token''', type=str, help='''The token to use to push to the transformers-metadata dataset.''') parser.add_argument('''--commit_sha''', type=str, help='''The sha of the commit going with this update.''') parser.add_argument('''--check-only''', action='''store_true''', help='''Activate to just check all pipelines are present.''') _lowerCamelCase : Optional[Any] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
516
0
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = 42 # setable values __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = None @classmethod def __lowerCAmelCase ( cls : Tuple , A__ : CommonSchedulerState , A__ : jnp.ndarray , A__ : jnp.ndarray ) -> Union[str, Any]: '''simple docstring''' return cls(common=A__ , init_noise_sigma=A__ , timesteps=A__ ) @dataclass class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = 42 class lowerCAmelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = [e.name for e in FlaxKarrasDiffusionSchedulers] __UpperCamelCase = 42 @property def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' return True @register_to_config def __init__( self : List[str] , A__ : int = 1_0_0_0 , A__ : float = 0.0_001 , A__ : float = 0.02 , A__ : str = "linear" , A__ : Optional[jnp.ndarray] = None , A__ : str = "fixed_small" , A__ : bool = True , A__ : str = "epsilon" , A__ : jnp.dtype = jnp.floataa , ) -> str: '''simple docstring''' a__ : List[Any] = dtype def __lowerCAmelCase ( self : str , A__ : Optional[CommonSchedulerState] = None ) -> DDPMSchedulerState: '''simple docstring''' if common is None: a__ : List[str] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution a__ : int = jnp.array(1.0 , dtype=self.dtype ) a__ : List[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=A__ , init_noise_sigma=A__ , timesteps=A__ , ) def __lowerCAmelCase ( self : List[str] , A__ : DDPMSchedulerState , A__ : jnp.ndarray , A__ : Optional[int] = None ) -> jnp.ndarray: '''simple docstring''' return sample def __lowerCAmelCase ( self : str , A__ : DDPMSchedulerState , A__ : int , A__ : Tuple = () ) -> DDPMSchedulerState: '''simple docstring''' a__ : Dict = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 a__ : Optional[int] = (jnp.arange(0 , A__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=A__ , timesteps=A__ , ) def __lowerCAmelCase ( self : List[str] , A__ : DDPMSchedulerState , A__ : List[Any] , A__ : Optional[Any]=None , A__ : Any=None ) -> List[Any]: '''simple docstring''' a__ : str = state.common.alphas_cumprod[t] a__ : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample a__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: a__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": a__ : Union[str, Any] = jnp.clip(A__ , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": a__ : Any = jnp.log(jnp.clip(A__ , a_min=1E-20 ) ) elif variance_type == "fixed_large": a__ : Optional[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log a__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": a__ : str = variance a__ : str = state.common.betas[t] a__ : Union[str, Any] = (predicted_variance + 1) / 2 a__ : Optional[int] = frac * max_log + (1 - frac) * min_log return variance def __lowerCAmelCase ( self : Optional[Any] , A__ : DDPMSchedulerState , A__ : jnp.ndarray , A__ : int , A__ : jnp.ndarray , A__ : Optional[jax.random.KeyArray] = None , A__ : bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: '''simple docstring''' a__ : Optional[int] = timestep if key is None: a__ : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: a__ , a__ : Tuple = jnp.split(A__ , sample.shape[1] , axis=1 ) else: a__ : List[str] = None # 1. compute alphas, betas a__ : int = state.common.alphas_cumprod[t] a__ : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) a__ : Optional[Any] = 1 - alpha_prod_t a__ : str = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": a__ : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": a__ : List[Any] = model_output elif self.config.prediction_type == "v_prediction": a__ : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: a__ : Dict = jnp.clip(A__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a__ : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t a__ : str = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a__ : Any = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): a__ : Optional[int] = jax.random.split(A__ , num=1 ) a__ : Optional[int] = jax.random.normal(A__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(A__ , A__ , predicted_variance=A__ ) ** 0.5) * noise a__ : Tuple = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) a__ : Optional[int] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=A__ , state=A__ ) def __lowerCAmelCase ( self : List[Any] , A__ : DDPMSchedulerState , A__ : jnp.ndarray , A__ : jnp.ndarray , A__ : jnp.ndarray , ) -> jnp.ndarray: '''simple docstring''' return add_noise_common(state.common , A__ , A__ , A__ ) def __lowerCAmelCase ( self : Dict , A__ : DDPMSchedulerState , A__ : jnp.ndarray , A__ : jnp.ndarray , A__ : jnp.ndarray , ) -> jnp.ndarray: '''simple docstring''' return get_velocity_common(state.common , A__ , A__ , A__ ) def __len__( self : Dict ) -> int: '''simple docstring''' return self.config.num_train_timesteps
688
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __a ( lowerCAmelCase__ : Dict ): a__ , a__ : int = image.size a__ , a__ : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a__ : Tuple = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) a__ : List[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0 a__ : Any = image[None].transpose(0 , 3 , 1 , 2 ) a__ : Dict = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , A__ : VQModel , A__ : UNetaDModel , A__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> str: '''simple docstring''' super().__init__() self.register_modules(vqvae=A__ , unet=A__ , scheduler=A__ ) @torch.no_grad() def __call__( self : List[str] , A__ : Union[torch.Tensor, PIL.Image.Image] = None , A__ : Optional[int] = 1 , A__ : Optional[int] = 1_0_0 , A__ : Optional[float] = 0.0 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(A__ , PIL.Image.Image ): a__ : List[Any] = 1 elif isinstance(A__ , torch.Tensor ): a__ : List[str] = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A__ )}' ) if isinstance(A__ , PIL.Image.Image ): a__ : Union[str, Any] = preprocess(A__ ) a__ , a__ : Dict = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image a__ : Optional[int] = (batch_size, self.unet.config.in_channels // 2, height, width) a__ : Optional[int] = next(self.unet.parameters() ).dtype a__ : List[str] = randn_tensor(A__ , generator=A__ , device=self.device , dtype=A__ ) a__ : Any = image.to(device=self.device , dtype=A__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(A__ , device=self.device ) a__ : int = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler a__ : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a__ : Union[str, Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a__ : str = {} if accepts_eta: a__ : Dict = eta for t in self.progress_bar(A__ ): # concat latents and low resolution image in the channel dimension. a__ : str = torch.cat([latents, image] , dim=1 ) a__ : Optional[Any] = self.scheduler.scale_model_input(A__ , A__ ) # predict the noise residual a__ : Union[str, Any] = self.unet(A__ , A__ ).sample # compute the previous noisy sample x_t -> x_t-1 a__ : Union[str, Any] = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample # decode the image latents with the VQVAE a__ : List[Any] = self.vqvae.decode(A__ ).sample a__ : List[Any] = torch.clamp(A__ , -1.0 , 1.0 ) a__ : Optional[Any] = image / 2 + 0.5 a__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a__ : Union[str, Any] = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
1
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : int = "owlvit_text_model" def __init__( self, __magic_name__=49408, __magic_name__=512, __magic_name__=2048, __magic_name__=12, __magic_name__=8, __magic_name__=16, __magic_name__="quick_gelu", __magic_name__=1E-5, __magic_name__=0.0, __magic_name__=0.02, __magic_name__=1.0, __magic_name__=0, __magic_name__=49406, __magic_name__=49407, **__magic_name__, ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=__magic_name__, bos_token_id=__magic_name__, eos_token_id=__magic_name__, **__magic_name__ ) UpperCamelCase__ : Optional[int] = vocab_size UpperCamelCase__ : List[str] = hidden_size UpperCamelCase__ : Optional[int] = intermediate_size UpperCamelCase__ : int = num_hidden_layers UpperCamelCase__ : Optional[int] = num_attention_heads UpperCamelCase__ : str = max_position_embeddings UpperCamelCase__ : str = hidden_act UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Union[str, Any] = attention_dropout UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Dict = initializer_factor @classmethod def UpperCamelCase__ ( cls, __magic_name__, **__magic_name__ ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__magic_name__ ) UpperCamelCase__ : List[str] = cls.get_config_dict(__magic_name__, **__magic_name__ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": UpperCamelCase__ : Optional[int] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__magic_name__, **__magic_name__ ) class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : Optional[int] = "owlvit_vision_model" def __init__( self, __magic_name__=768, __magic_name__=3072, __magic_name__=12, __magic_name__=12, __magic_name__=3, __magic_name__=768, __magic_name__=32, __magic_name__="quick_gelu", __magic_name__=1E-5, __magic_name__=0.0, __magic_name__=0.02, __magic_name__=1.0, **__magic_name__, ) -> Optional[Any]: """simple docstring""" super().__init__(**__magic_name__ ) UpperCamelCase__ : Union[str, Any] = hidden_size UpperCamelCase__ : Optional[int] = intermediate_size UpperCamelCase__ : Optional[Any] = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : int = image_size UpperCamelCase__ : List[str] = patch_size UpperCamelCase__ : Optional[Any] = hidden_act UpperCamelCase__ : List[str] = layer_norm_eps UpperCamelCase__ : Optional[Any] = attention_dropout UpperCamelCase__ : Any = initializer_range UpperCamelCase__ : Tuple = initializer_factor @classmethod def UpperCamelCase__ ( cls, __magic_name__, **__magic_name__ ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = cls.get_config_dict(__magic_name__, **__magic_name__ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": UpperCamelCase__ : Any = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__magic_name__, **__magic_name__ ) class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : int = "owlvit" a : Optional[Any] = True def __init__( self, __magic_name__=None, __magic_name__=None, __magic_name__=512, __magic_name__=2.6592, __magic_name__=True, **__magic_name__, ) -> List[Any]: """simple docstring""" super().__init__(**__magic_name__ ) if text_config is None: UpperCamelCase__ : Tuple = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: UpperCamelCase__ : Union[str, Any] = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) UpperCamelCase__ : List[str] = OwlViTTextConfig(**__magic_name__ ) UpperCamelCase__ : Union[str, Any] = OwlViTVisionConfig(**__magic_name__ ) UpperCamelCase__ : Optional[int] = projection_dim UpperCamelCase__ : Union[str, Any] = logit_scale_init_value UpperCamelCase__ : int = return_dict UpperCamelCase__ : Dict = 1.0 @classmethod def UpperCamelCase__ ( cls, __magic_name__, **__magic_name__ ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__magic_name__ ) UpperCamelCase__ : Optional[Any] = cls.get_config_dict(__magic_name__, **__magic_name__ ) if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__magic_name__, **__magic_name__ ) @classmethod def UpperCamelCase__ ( cls, __magic_name__, __magic_name__, **__magic_name__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = {} UpperCamelCase__ : List[str] = text_config UpperCamelCase__ : List[str] = vision_config return cls.from_dict(__magic_name__, **__magic_name__ ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : str = copy.deepcopy(self.__dict__ ) UpperCamelCase__ : Union[str, Any] = self.text_config.to_dict() UpperCamelCase__ : List[Any] = self.vision_config.to_dict() UpperCamelCase__ : str = self.__class__.model_type return output class lowercase__ ( __lowerCamelCase ): '''simple docstring''' @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def UpperCamelCase__ ( self ) -> float: """simple docstring""" return 1E-4 def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = -1, __magic_name__ = -1, __magic_name__ = None, ) -> Mapping[str, Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = super().generate_dummy_inputs( processor.tokenizer, batch_size=__magic_name__, seq_length=__magic_name__, framework=__magic_name__ ) UpperCamelCase__ : Optional[Any] = super().generate_dummy_inputs( processor.image_processor, batch_size=__magic_name__, framework=__magic_name__ ) return {**text_input_dict, **image_input_dict} @property def UpperCamelCase__ ( self ) -> int: """simple docstring""" return 14
721
from __future__ import annotations def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: str ) -> bool: UpperCamelCase__ : List[str] = get_failure_array(__UpperCAmelCase ) # 2) Step through text searching for pattern UpperCamelCase__ ,UpperCamelCase__ : Dict = 0, 0 # index into text, pattern while i < len(__UpperCAmelCase ): if pattern[j] == text[i]: if j == (len(__UpperCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCamelCase__ : Optional[int] = failure[j - 1] continue i += 1 return False def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> list[int]: UpperCamelCase__ : Union[str, Any] = [0] UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Tuple = 1 while j < len(__UpperCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCamelCase__ : str = failure[i - 1] continue j += 1 failure.append(__UpperCAmelCase ) return failure if __name__ == "__main__": # Test 1) UpperCAmelCase_ = 'abc1abc12' UpperCAmelCase_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' UpperCAmelCase_ = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCAmelCase_ = 'ABABX' UpperCAmelCase_ = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) UpperCAmelCase_ = 'AAAB' UpperCAmelCase_ = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) UpperCAmelCase_ = 'abcdabcy' UpperCAmelCase_ = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) UpperCAmelCase_ = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
369
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase : '''simple docstring''' @staticmethod def lowercase__ ( *lowerCAmelCase_ : str , **lowerCAmelCase_ : List[str] ) -> Dict: '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = MODEL_FOR_OBJECT_DETECTION_MAPPING def lowercase__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] ) -> Tuple: '''simple docstring''' A__ : Tuple =ObjectDetectionPipeline(model=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Any ) -> Optional[Any]: '''simple docstring''' A__ : Any =object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(lowerCAmelCase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowerCAmelCase_ , { """score""": ANY(lowerCAmelCase_ ), """label""": ANY(lowerCAmelCase_ ), """box""": {"""xmin""": ANY(lowerCAmelCase_ ), """ymin""": ANY(lowerCAmelCase_ ), """xmax""": ANY(lowerCAmelCase_ ), """ymax""": ANY(lowerCAmelCase_ )}, } , ) import datasets A__ : Union[str, Any] =datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) A__ : Any =[ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] A__ : List[Any] =object_detector(lowerCAmelCase_ , threshold=0.0 ) self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for outputs in batch_outputs: self.assertGreater(len(lowerCAmelCase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowerCAmelCase_ , { """score""": ANY(lowerCAmelCase_ ), """label""": ANY(lowerCAmelCase_ ), """box""": {"""xmin""": ANY(lowerCAmelCase_ ), """ymin""": ANY(lowerCAmelCase_ ), """xmax""": ANY(lowerCAmelCase_ ), """ymax""": ANY(lowerCAmelCase_ )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' pass @require_torch def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' A__ : str ="""hf-internal-testing/tiny-detr-mobilenetsv3""" A__ : Optional[Any] =AutoModelForObjectDetection.from_pretrained(lowerCAmelCase_ ) A__ : List[str] =AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ ) A__ : Dict =ObjectDetectionPipeline(model=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) A__ : List[Any] =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ] , ) A__ : Any =object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ], [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ], ] , ) @require_torch @slow def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' A__ : int ="""facebook/detr-resnet-50""" A__ : Optional[int] =AutoModelForObjectDetection.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ ) A__ : Tuple =ObjectDetectionPipeline(model=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) A__ : Optional[Any] =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) A__ : List[Any] =object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], ] , ) @require_torch @slow def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' A__ : Tuple ="""facebook/detr-resnet-50""" A__ : Tuple =pipeline("""object-detection""" , model=lowerCAmelCase_ ) A__ : Tuple =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) A__ : int =object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], ] , ) @require_torch @slow def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Any =0.9985 A__ : Any ="""facebook/detr-resnet-50""" A__ : List[str] =pipeline("""object-detection""" , model=lowerCAmelCase_ ) A__ : Tuple =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=lowerCAmelCase_ ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) @require_torch @require_pytesseract @slow def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' A__ : Optional[int] ="""Narsil/layoutlmv3-finetuned-funsd""" A__ : Any =0.9993 A__ : Tuple =pipeline("""object-detection""" , model=lowerCAmelCase_ , threshold=lowerCAmelCase_ ) A__ : Union[str, Any] =object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_94, """ymin""": 2_54, """xmax""": 3_43, """ymax""": 2_64}}, {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_94, """ymin""": 2_54, """xmax""": 3_43, """ymax""": 2_64}}, ] , )
215
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __snake_case : str = pd.read_csv('sample_data.csv', header=None) __snake_case : int = df.shape[:1][0] # If you're using some other dataset input the target column __snake_case : Optional[int] = df.iloc[:, 1:2] __snake_case : Optional[Any] = actual_data.values.reshape(len_data, 1) __snake_case : Optional[Any] = MinMaxScaler().fit_transform(actual_data) __snake_case : List[str] = 10 __snake_case : Optional[int] = 5 __snake_case : Dict = 20 __snake_case : int = len_data - periods * look_back __snake_case : Any = actual_data[:division] __snake_case : List[str] = actual_data[division - look_back :] __snake_case , __snake_case : List[Any] = [], [] __snake_case , __snake_case : Union[str, Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __snake_case : Any = np.array(train_x) __snake_case : List[Any] = np.array(test_x) __snake_case : Tuple = np.array([list(i.ravel()) for i in train_y]) __snake_case : int = np.array([list(i.ravel()) for i in test_y]) __snake_case : Optional[int] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') __snake_case : Union[str, Any] = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) __snake_case : Any = model.predict(x_test)
215
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ="ylacombe/bark-small" _UpperCAmelCase =tempfile.mkdtemp() _UpperCAmelCase ="en_speaker_1" _UpperCAmelCase ="This is a test string" _UpperCAmelCase ="speaker_embeddings_path.json" _UpperCAmelCase ="speaker_embeddings" def SCREAMING_SNAKE_CASE ( self , **_snake_case ): return AutoTokenizer.from_pretrained(self.checkpoint , **_snake_case ) def SCREAMING_SNAKE_CASE ( self ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_tokenizer() _UpperCAmelCase =BarkProcessor(tokenizer=_snake_case ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase =BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _UpperCAmelCase =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase =BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _UpperCAmelCase =35 _UpperCAmelCase =2 _UpperCAmelCase =8 _UpperCAmelCase ={ "semantic_prompt": np.ones(_snake_case ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _UpperCAmelCase =processor(text=self.input_string , voice_preset=_snake_case ) _UpperCAmelCase =inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_snake_case , np.array([] ) ).tolist() ) # test loading voice preset from npz file _UpperCAmelCase =os.path.join(self.tmpdirname , "file.npz" ) np.savez(_snake_case , **_snake_case ) _UpperCAmelCase =processor(text=self.input_string , voice_preset=_snake_case ) _UpperCAmelCase =inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_snake_case , np.array([] ) ).tolist() ) # test loading voice preset from the hub _UpperCAmelCase =processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_tokenizer() _UpperCAmelCase =BarkProcessor(tokenizer=_snake_case ) _UpperCAmelCase =processor(text=self.input_string ) _UpperCAmelCase =tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=_snake_case , return_attention_mask=_snake_case , return_token_type_ids=_snake_case , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
592
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def lowerCamelCase__ ( _lowerCamelCase ) ->List[str]: _UpperCAmelCase =split_dict._to_yaml_list() assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _UpperCAmelCase =SplitDict._from_yaml_list(_lowerCamelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _UpperCAmelCase =None # the split name of split_dict takes over the name of the split info object _UpperCAmelCase =split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=_lowerCamelCase ), SplitInfo(dataset_name="my_dataset" )] ) def lowerCamelCase__ ( _lowerCamelCase ) ->Any: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files _UpperCAmelCase =asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
592
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''naver-clova-ix/donut-base-finetuned-docvqa''' lowerCAmelCase = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) lowerCAmelCase = '''document_qa''' lowerCAmelCase = AutoProcessor lowerCAmelCase = VisionEncoderDecoderModel lowerCAmelCase = ['''image''', '''text'''] lowerCAmelCase = ['''text'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.') super().__init__(*_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' __A : List[Any] = task_prompt.replace('{user_input}' , _UpperCAmelCase) __A : Tuple = self.pre_processor.tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors='pt').input_ids __A : Any = self.pre_processor(_UpperCAmelCase , return_tensors='pt').pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.model.generate( inputs['pixel_values'].to(self.device) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_UpperCAmelCase , ).sequences def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = self.pre_processor.batch_decode(_UpperCAmelCase)[0] __A : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , '') __A : int = sequence.replace(self.pre_processor.tokenizer.pad_token , '') __A : Any = re.sub(R'<.*?>' , '' , _UpperCAmelCase , count=1).strip() # remove first task start token __A : List[str] = self.pre_processor.tokenajson(_UpperCAmelCase) return sequence["answer"]
8
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowerCamelCase_: '''simple docstring''' def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): return None class lowerCamelCase_: '''simple docstring''' def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): return None class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' lowercase__ : Tuple = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def snake_case__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase__ , '''tf''' , 1_2 , **lowerCamelCase__ ) @require_torch @slow def snake_case__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase__ , '''pt''' , 1_2 , **lowerCamelCase__ ) @require_torch @slow def snake_case__ ( self ): from transformers import BertModel _lowerCamelCase = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words'''] with NamedTemporaryFile(mode='''w+t''' ) as vocab_file: vocab_file.write('''\n'''.join(lowerCamelCase__ ) ) vocab_file.flush() _lowerCamelCase = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _lowerCamelCase = BertModel(BertConfig(vocab_size=len(lowerCamelCase__ ) ) ) model.save_pretrained(lowerCamelCase__ ) self._test_export(lowerCamelCase__ , '''pt''' , 1_2 , lowerCamelCase__ ) @require_tf @slow def snake_case__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowerCamelCase = self._test_export(lowerCamelCase__ , '''tf''' , 1_2 , **lowerCamelCase__ ) _lowerCamelCase = quantize(Path(lowerCamelCase__ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase__ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) @require_torch @slow def snake_case__ ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowerCamelCase = self._test_export(lowerCamelCase__ , '''pt''' , 1_2 , **lowerCamelCase__ ) _lowerCamelCase = quantize(lowerCamelCase__ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase__ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ): try: # Compute path with TemporaryDirectory() as tempdir: _lowerCamelCase = Path(lowerCamelCase__ ).joinpath('''model.onnx''' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) return path except Exception as e: self.fail(lowerCamelCase__ ) @require_torch @require_tokenizers @slow def snake_case__ ( self ): from transformers import BertModel _lowerCamelCase = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) _lowerCamelCase = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(lowerCamelCase__ , lowerCamelCase__ , '''pt''' ) @require_tf @require_tokenizers @slow def snake_case__ ( self ): from transformers import TFBertModel _lowerCamelCase = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) _lowerCamelCase = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(lowerCamelCase__ , lowerCamelCase__ , '''tf''' ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = FeatureExtractionPipeline(lowerCamelCase__ , lowerCamelCase__ ) _lowerCamelCase = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1'''] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = infer_shapes(lowerCamelCase__ , lowerCamelCase__ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowerCamelCase__ ) self.assertSequenceEqual(variable_names[3:] , lowerCamelCase__ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} ) self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} ) def snake_case__ ( self ): _lowerCamelCase = ['''input_ids''', '''attention_mask''', '''token_type_ids'''] _lowerCamelCase = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]} _lowerCamelCase , _lowerCamelCase = ensure_valid_input(FuncContiguousArgs() , lowerCamelCase__ , lowerCamelCase__ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase__ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase__ ) , set(lowerCamelCase__ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase__ , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _lowerCamelCase , _lowerCamelCase = ensure_valid_input(FuncNonContiguousArgs() , lowerCamelCase__ , lowerCamelCase__ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase__ ) , 1 ) self.assertEqual(len(lowerCamelCase__ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['''input_ids'''] ) self.assertEqual(ordered_input_names[0] , '''input_ids''' ) def snake_case__ ( self ): _lowerCamelCase = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' ) self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
661
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def A ( _lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def A ( _lowercase ): SCREAMING_SNAKE_CASE : int = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def A ( ): SCREAMING_SNAKE_CASE : Any = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def A ( _lowercase , _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : List[str] = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE : str = 1_000 SCREAMING_SNAKE_CASE : Optional[Any] = '''huggingface/label-files''' SCREAMING_SNAKE_CASE : List[Any] = num_labels SCREAMING_SNAKE_CASE : List[str] = json.load(open(cached_download(hf_hub_url(_lowercase , _lowercase , repo_type='''dataset''' ) ) , '''r''' ) ) SCREAMING_SNAKE_CASE : Tuple = {int(_lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : List[Any] = idalabel SCREAMING_SNAKE_CASE : Any = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : int = CvtConfig(num_labels=_lowercase , idalabel=_lowercase , labelaid=_lowercase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": SCREAMING_SNAKE_CASE : int = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": SCREAMING_SNAKE_CASE : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: SCREAMING_SNAKE_CASE : Any = [2, 2, 20] SCREAMING_SNAKE_CASE : List[str] = [3, 12, 16] SCREAMING_SNAKE_CASE : int = [192, 768, 1_024] SCREAMING_SNAKE_CASE : Any = CvtForImageClassification(_lowercase ) SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) SCREAMING_SNAKE_CASE : Any = image_size SCREAMING_SNAKE_CASE : Any = torch.load(_lowercase , map_location=torch.device('''cpu''' ) ) SCREAMING_SNAKE_CASE : str = OrderedDict() SCREAMING_SNAKE_CASE : Union[str, Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: SCREAMING_SNAKE_CASE : List[str] = list_of_state_dict + cls_token(_lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = list_of_state_dict + embeddings(_lowercase ) for cnt in range(config.depth[idx] ): SCREAMING_SNAKE_CASE : List[Any] = list_of_state_dict + attention(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE : Any = list_of_state_dict + final() for gg in list_of_state_dict: print(_lowercase ) for i in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __UpperCamelCase : Tuple = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
705
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def A ( _lowercase ): SCREAMING_SNAKE_CASE : Any = '''huggingface/label-files''' SCREAMING_SNAKE_CASE : Any = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE : Any = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = {int(_lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Dict = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : str = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" SCREAMING_SNAKE_CASE : Optional[int] = BitConfig( conv_layer=_lowercase , num_labels=1_000 , idalabel=_lowercase , labelaid=_lowercase , ) return config def A ( _lowercase ): if "stem.conv" in name: SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): SCREAMING_SNAKE_CASE : str = '''bit.''' + name if "bit" not in name and "classifier" not in name: SCREAMING_SNAKE_CASE : Union[str, Any] = '''bit.encoder.''' + name return name def A ( ): SCREAMING_SNAKE_CASE : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE : List[str] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def A ( _lowercase , _lowercase , _lowercase=False ): SCREAMING_SNAKE_CASE : List[Any] = get_config(_lowercase ) # load original model from timm SCREAMING_SNAKE_CASE : Optional[Any] = create_model(_lowercase , pretrained=_lowercase ) timm_model.eval() # load state_dict of original model SCREAMING_SNAKE_CASE : Optional[int] = timm_model.state_dict() for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Dict = state_dict.pop(_lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = val.squeeze() if '''head''' in key else val # load HuggingFace model SCREAMING_SNAKE_CASE : str = BitForImageClassification(_lowercase ) model.eval() model.load_state_dict(_lowercase ) # create image processor SCREAMING_SNAKE_CASE : Optional[Any] = create_transform(**resolve_data_config({} , model=_lowercase ) ) SCREAMING_SNAKE_CASE : List[str] = transform.transforms SCREAMING_SNAKE_CASE : Union[str, Any] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } SCREAMING_SNAKE_CASE : Tuple = BitImageProcessor( do_resize=_lowercase , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowercase , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=_lowercase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) SCREAMING_SNAKE_CASE : Any = prepare_img() SCREAMING_SNAKE_CASE : Union[str, Any] = transform(_lowercase ).unsqueeze(0 ) SCREAMING_SNAKE_CASE : Optional[int] = processor(_lowercase , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(_lowercase , _lowercase ) # verify logits with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(_lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) SCREAMING_SNAKE_CASE : List[Any] = timm_model(_lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowercase , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if push_to_hub: print(f"""Pushing model {model_name} and processor to the hub""" ) model.push_to_hub(f"""ybelkada/{model_name}""" ) processor.push_to_hub(f"""ybelkada/{model_name}""" ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __UpperCamelCase : Optional[int] = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
34
0
import math import tensorflow as tf from packaging import version def UpperCamelCase__( UpperCamelCase__ : Optional[int] )->int: A__ = tf.convert_to_tensor(UpperCamelCase__ ) A__ = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def UpperCamelCase__( UpperCamelCase__ : Union[str, Any] )->Tuple: A__ = tf.convert_to_tensor(UpperCamelCase__ ) A__ = tf.cast(math.pi , x.dtype ) A__ = tf.cast(0.044715 , x.dtype ) A__ = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(UpperCamelCase__ , 3 )) )) return x * cdf def UpperCamelCase__( UpperCamelCase__ : Optional[int] )->Any: A__ = tf.convert_to_tensor(UpperCamelCase__ ) return x * tf.tanh(tf.math.softplus(UpperCamelCase__ ) ) def UpperCamelCase__( UpperCamelCase__ : Any )->Union[str, Any]: A__ = tf.convert_to_tensor(UpperCamelCase__ ) A__ = tf.cast(0.044715 , x.dtype ) A__ = tf.cast(0.7978845608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def UpperCamelCase__( UpperCamelCase__ : Union[str, Any] )->List[str]: A__ = tf.convert_to_tensor(UpperCamelCase__ ) A__ = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def UpperCamelCase__( UpperCamelCase__ : Optional[int] )->Dict: return tf.clip_by_value(_gelu(UpperCamelCase__ ) , -10 , 10 ) def UpperCamelCase__( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int]=-1 )->str: A__ , A__ = tf.split(UpperCamelCase__ , 2 , axis=UpperCamelCase__ ) return a * tf.math.sigmoid(UpperCamelCase__ ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def UpperCamelCase__( UpperCamelCase__ : Any )->List[str]: return tf.keras.activations.gelu(UpperCamelCase__ , approximate=UpperCamelCase__ ) a__: List[str] = tf.keras.activations.gelu a__: List[str] = approximate_gelu_wrap else: a__: Tuple = _gelu a__: Optional[int] = _gelu_new a__: Union[str, Any] = { 'gelu': gelu, 'gelu_10': gelu_aa, 'gelu_fast': gelu_fast, 'gelu_new': gelu_new, 'glu': glu, 'mish': mish, 'quick_gelu': quick_gelu, 'relu': tf.keras.activations.relu, 'sigmoid': tf.keras.activations.sigmoid, 'silu': tf.keras.activations.swish, 'swish': tf.keras.activations.swish, 'tanh': tf.keras.activations.tanh, } def UpperCamelCase__( UpperCamelCase__ : Optional[Any] )->Any: if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
190
import itertools import math def UpperCamelCase__( UpperCamelCase__ : int )->bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase__( )->Tuple: A__ = 2 while True: if is_prime(UpperCamelCase__ ): yield num num += 1 def UpperCamelCase__( UpperCamelCase__ : int = 1_00_01 )->int: return next(itertools.islice(prime_generator() , nth - 1 , UpperCamelCase__ ) ) if __name__ == "__main__": print(F"{solution() = }")
190
1
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase__ : '''simple docstring''' def __init__( self :List[Any] , a :str , a :Union[str, Any]=1_3 , a :List[Any]=3_0 , a :str=2 , a :str=3 , a :Any=True , a :List[Any]=True , a :Any=3_2 , a :List[Any]=2 , a :str=4 , a :List[Any]=3_7 , a :Dict="gelu" , a :Tuple=0.1 , a :List[Any]=0.1 , a :Tuple=1_0 , a :Optional[int]=0.02 , a :Any=3 , a :str=0.6 , a :Optional[int]=None , ) -> Any: __UpperCamelCase : int = parent __UpperCamelCase : Tuple = batch_size __UpperCamelCase : List[str] = image_size __UpperCamelCase : Any = patch_size __UpperCamelCase : int = num_channels __UpperCamelCase : int = is_training __UpperCamelCase : Tuple = use_labels __UpperCamelCase : Optional[Any] = hidden_size __UpperCamelCase : int = num_hidden_layers __UpperCamelCase : Any = num_attention_heads __UpperCamelCase : List[str] = intermediate_size __UpperCamelCase : Dict = hidden_act __UpperCamelCase : List[str] = hidden_dropout_prob __UpperCamelCase : Any = attention_probs_dropout_prob __UpperCamelCase : Any = type_sequence_label_size __UpperCamelCase : int = initializer_range __UpperCamelCase : int = mask_ratio __UpperCamelCase : Union[str, Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __UpperCamelCase : int = (image_size // patch_size) ** 2 __UpperCamelCase : Any = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowerCamelCase ( self :Any ) -> str: __UpperCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase : List[Any] = None if self.use_labels: __UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : Dict = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self :Optional[Any] ) -> Optional[Any]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _lowerCamelCase ( self :Union[str, Any] , a :List[Any] , a :Optional[Any] , a :List[str] ) -> int: __UpperCamelCase : Dict = TFViTMAEModel(config=snake_case_ ) __UpperCamelCase : Optional[Any] = model(snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self :Union[str, Any] , a :str , a :Tuple , a :str ) -> str: __UpperCamelCase : str = TFViTMAEForPreTraining(snake_case_ ) __UpperCamelCase : Any = model(snake_case_ , training=snake_case_ ) # expected sequence length = num_patches __UpperCamelCase : List[str] = (self.image_size // self.patch_size) ** 2 __UpperCamelCase : int = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __UpperCamelCase : List[Any] = 1 __UpperCamelCase : Union[str, Any] = TFViTMAEForPreTraining(snake_case_ ) __UpperCamelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase : List[Any] = model(snake_case_ , training=snake_case_ ) __UpperCamelCase : int = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _lowerCamelCase ( self :Dict ) -> Optional[int]: __UpperCamelCase : int = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) : Any = config_and_inputs __UpperCamelCase : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase__ ( _a , _a , unittest.TestCase): '''simple docstring''' _A = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _A = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} _A = False _A = False _A = False _A = False def _lowerCamelCase ( self :str ) -> Optional[int]: __UpperCamelCase : Dict = TFViTMAEModelTester(self ) __UpperCamelCase : int = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def _lowerCamelCase ( self :Optional[int] ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowerCamelCase ( self :Dict ) -> Union[str, Any]: pass def _lowerCamelCase ( self :str ) -> Any: __UpperCamelCase , __UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase : int = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , tf.keras.layers.Layer ) ) def _lowerCamelCase ( self :int ) -> Tuple: __UpperCamelCase , __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase : Tuple = model_class(snake_case_ ) __UpperCamelCase : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase : Any = [*signature.parameters.keys()] __UpperCamelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def _lowerCamelCase ( self :List[Any] ) -> str: __UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def _lowerCamelCase ( self :Optional[Any] ) -> List[Any]: __UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) def _lowerCamelCase ( self :List[str] ) -> str: # make the mask reproducible np.random.seed(2 ) __UpperCamelCase , __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) __UpperCamelCase : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __UpperCamelCase : Union[str, Any] = model_class(snake_case_ ) __UpperCamelCase : int = self._prepare_for_class(snake_case_ , snake_case_ ) __UpperCamelCase : Tuple = model(snake_case_ , noise=snake_case_ ) __UpperCamelCase : Any = copy.deepcopy(self._prepare_for_class(snake_case_ , snake_case_ ) ) __UpperCamelCase : Optional[int] = model(**snake_case_ , noise=snake_case_ ) __UpperCamelCase : Optional[Any] = outputs_dict[0].numpy() __UpperCamelCase : List[str] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def _lowerCamelCase ( self :Any ) -> str: # make the mask reproducible np.random.seed(2 ) __UpperCamelCase , __UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : str = int((config.image_size // config.patch_size) ** 2 ) __UpperCamelCase : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(a :int ): __UpperCamelCase : str = {} for k, v in inputs_dict.items(): if tf.is_tensor(snake_case_ ): __UpperCamelCase : Dict = v.numpy() else: __UpperCamelCase : List[str] = np.array(snake_case_ ) return inputs_np_dict for model_class in self.all_model_classes: __UpperCamelCase : List[Any] = model_class(snake_case_ ) __UpperCamelCase : Union[str, Any] = self._prepare_for_class(snake_case_ , snake_case_ ) __UpperCamelCase : List[str] = prepare_numpy_arrays(snake_case_ ) __UpperCamelCase : int = model(snake_case_ , noise=snake_case_ ) __UpperCamelCase : Tuple = model(**snake_case_ , noise=snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) def _lowerCamelCase ( self :Union[str, Any] , a :Union[str, Any] , a :Optional[Any] , a :Tuple ) -> Any: # make masks reproducible np.random.seed(2 ) __UpperCamelCase : Tuple = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) __UpperCamelCase : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __UpperCamelCase : str = tf.constant(snake_case_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __UpperCamelCase : Optional[int] = tf_noise super().check_pt_tf_models(snake_case_ , snake_case_ , snake_case_ ) def _lowerCamelCase ( self :Optional[Any] ) -> int: # make mask reproducible np.random.seed(2 ) __UpperCamelCase , __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Any = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(snake_case_ ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(snake_case_ , snake_case_ ),) if isinstance(snake_case_ , snake_case_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(snake_case_ , "_keras_serializable" , snake_case_ ) } __UpperCamelCase : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) __UpperCamelCase : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __UpperCamelCase : Optional[int] = tf.convert_to_tensor(snake_case_ ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: __UpperCamelCase : Dict = main_layer_class(snake_case_ ) __UpperCamelCase : str = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } __UpperCamelCase : str = tf.keras.Model(snake_case_ , outputs=main_layer(snake_case_ ) ) __UpperCamelCase : Dict = model(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase : Optional[Any] = os.path.join(snake_case_ , "keras_model.h5" ) model.save(snake_case_ ) __UpperCamelCase : Dict = tf.keras.models.load_model( snake_case_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(snake_case_ , tf.keras.Model ) __UpperCamelCase : str = model(snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) @slow def _lowerCamelCase ( self :int ) -> Any: # make mask reproducible np.random.seed(2 ) __UpperCamelCase , __UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : str = int((config.image_size // config.patch_size) ** 2 ) __UpperCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __UpperCamelCase : int = model_class(snake_case_ ) __UpperCamelCase : Optional[Any] = self._prepare_for_class(snake_case_ , snake_case_ ) __UpperCamelCase : Union[str, Any] = model(snake_case_ , noise=snake_case_ ) if model_class.__name__ == "TFViTMAEModel": __UpperCamelCase : Optional[Any] = outputs.last_hidden_state.numpy() __UpperCamelCase : Optional[int] = 0 else: __UpperCamelCase : Optional[Any] = outputs.logits.numpy() __UpperCamelCase : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) __UpperCamelCase : Tuple = model_class.from_pretrained(snake_case_ ) __UpperCamelCase : Dict = model(snake_case_ , noise=snake_case_ ) if model_class.__name__ == "TFViTMAEModel": __UpperCamelCase : Dict = after_outputs["last_hidden_state"].numpy() __UpperCamelCase : List[str] = 0 else: __UpperCamelCase : Any = after_outputs["logits"].numpy() __UpperCamelCase : Tuple = 0 __UpperCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1E-5 ) def _lowerCamelCase ( self :List[Any] ) -> Optional[Any]: # make mask reproducible np.random.seed(2 ) __UpperCamelCase , __UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Tuple = int((config.image_size // config.patch_size) ** 2 ) __UpperCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __UpperCamelCase : Optional[int] = model_class(snake_case_ ) __UpperCamelCase : str = self._prepare_for_class(snake_case_ , snake_case_ ) __UpperCamelCase : int = model(snake_case_ , noise=snake_case_ ) __UpperCamelCase : Optional[Any] = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(snake_case_ ) __UpperCamelCase : Dict = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config __UpperCamelCase : Any = model_class.from_config(model.config ) __UpperCamelCase : Any = new_model(snake_case_ ) # Build model new_model.set_weights(model.get_weights() ) __UpperCamelCase : Union[str, Any] = new_model(snake_case_ , noise=snake_case_ ) self.assert_outputs_same(snake_case_ , snake_case_ ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowerCamelCase ( self :Tuple ) -> Optional[int]: pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowerCamelCase ( self :List[Any] ) -> List[Any]: pass @slow def _lowerCamelCase ( self :Any ) -> Optional[int]: __UpperCamelCase : Union[str, Any] = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(snake_case_ ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @cached_property def _lowerCamelCase ( self :Optional[int] ) -> int: return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowerCamelCase ( self :Optional[Any] ) -> Dict: # make random mask reproducible across the PT and TF model np.random.seed(2 ) __UpperCamelCase : Union[str, Any] = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) __UpperCamelCase : str = self.default_image_processor __UpperCamelCase : Union[str, Any] = prepare_img() __UpperCamelCase : str = image_processor(images=snake_case_ , return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __UpperCamelCase : Tuple = ViTMAEConfig() __UpperCamelCase : Optional[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __UpperCamelCase : Dict = np.random.uniform(size=(1, num_patches) ) # forward pass __UpperCamelCase : Tuple = model(**snake_case_ , noise=snake_case_ ) # verify the logits __UpperCamelCase : List[str] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape , snake_case_ ) __UpperCamelCase : Optional[Any] = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , snake_case_ , atol=1E-4 )
720
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Sequence[float] , _lowerCamelCase : int , _lowerCamelCase : int) -> tuple[int | None, int | None, float]: '''simple docstring''' if not arr: return None, None, 0 if low == high: return low, high, arr[low] __UpperCamelCase : Tuple = (low + high) // 2 __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Dict = max_subarray(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = max_subarray(_lowerCamelCase , mid + 1 , _lowerCamelCase) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Dict = max_cross_sum(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Sequence[float] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int) -> tuple[int, int, float]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : Union[str, Any] = float("-inf"), -1 __UpperCamelCase , __UpperCamelCase : Optional[int] = float("-inf"), -1 __UpperCamelCase : int | float = 0 for i in range(_lowerCamelCase , low - 1 , -1): summ += arr[i] if summ > left_sum: __UpperCamelCase : Tuple = summ __UpperCamelCase : Optional[int] = i __UpperCamelCase : Union[str, Any] = 0 for i in range(mid + 1 , high + 1): summ += arr[i] if summ > right_sum: __UpperCamelCase : Union[str, Any] = summ __UpperCamelCase : Optional[int] = i return max_left, max_right, (left_sum + right_sum) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> float: '''simple docstring''' __UpperCamelCase : Tuple = [randint(1 , _lowerCamelCase) for _ in range(_lowerCamelCase)] __UpperCamelCase : Optional[Any] = time.time() max_subarray(_lowerCamelCase , 0 , input_size - 1) __UpperCamelCase : Any = time.time() return end - start def _SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCamelCase : Dict = [10, 100, 1_000, 10_000, 50_000, 100_000, 200_000, 300_000, 400_000, 500_000] __UpperCamelCase : Union[str, Any] = [time_max_subarray(_lowerCamelCase) for input_size in input_sizes] print("No of Inputs\t\tTime Taken") for input_size, runtime in zip(_lowerCamelCase , _lowerCamelCase): print(_lowerCamelCase , "\t\t" , _lowerCamelCase) plt.plot(_lowerCamelCase , _lowerCamelCase) plt.xlabel("Number of Inputs") plt.ylabel("Time taken in seconds") plt.show() if __name__ == "__main__": from doctest import testmod testmod()
94
0
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCAmelCase__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def snake_case_ ( A_ : List[Any], A_ : int=None ): '''simple docstring''' require_version(deps[pkg], A_ )
83
"""simple docstring""" import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): lowercase_ = True from torch.cuda.amp import autocast lowercase_ = logging.getLogger(__name__) def UpperCAmelCase ( _lowercase : Optional[Any]=None , _lowercase : str=None ) -> List[str]: """simple docstring""" return field(default_factory=lambda: default , metadata=_lowercase ) @dataclass class __a : lowerCamelCase : str =field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCamelCase : Optional[str] =field( default=__snake_case , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase : Optional[bool] =field( default=__snake_case , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowerCamelCase : Optional[float] =field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) lowerCamelCase : Optional[float] =field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) lowerCamelCase : Optional[float] =field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) lowerCamelCase : Optional[float] =field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) lowerCamelCase : Optional[float] =field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) lowerCamelCase : Optional[float] =field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class __a : lowerCamelCase : Optional[str] =field( default=__snake_case , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCamelCase : Optional[str] =field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase : bool =field( default=__snake_case , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCamelCase : Optional[int] =field( default=__snake_case , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase : Optional[int] =field( default=__snake_case , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase : Optional[int] =field( default=__snake_case , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) lowerCamelCase : List[str] =list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class __a : lowerCamelCase : WavaVecaProcessor lowerCamelCase : Union[bool, str] =True lowerCamelCase : Optional[int] =None lowerCamelCase : Optional[int] =None lowerCamelCase : Optional[int] =None lowerCamelCase : Optional[int] =None def __call__( self , UpperCAmelCase ): '''simple docstring''' lowerCAmelCase_ = [{'''input_values''': feature['''input_values''']} for feature in features] lowerCAmelCase_ = [{'''input_ids''': feature['''labels''']} for feature in features] lowerCAmelCase_ = self.processor.pad( UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) lowerCAmelCase_ = self.processor.pad( labels=UpperCAmelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly lowerCAmelCase_ = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) lowerCAmelCase_ = labels return batch class __a ( __snake_case ): def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' model.train() lowerCAmelCase_ = self._prepare_inputs(UpperCAmelCase ) if self.use_amp: with autocast(): lowerCAmelCase_ = self.compute_loss(UpperCAmelCase , UpperCAmelCase ) else: lowerCAmelCase_ = self.compute_loss(UpperCAmelCase , UpperCAmelCase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": lowerCAmelCase_ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowerCAmelCase_ = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: lowerCAmelCase_ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCAmelCase ).backward() elif self.use_apex: with amp.scale_loss(UpperCAmelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCAmelCase ) else: loss.backward() return loss.detach() def UpperCAmelCase ( ) -> Tuple: """simple docstring""" lowerCAmelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCAmelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , _lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: lowerCAmelCase_ = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) lowerCAmelCase_ = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer lowerCAmelCase_ = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(_lowercase : List[str] ): lowerCAmelCase_ = re.sub(_lowercase , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch lowerCAmelCase_ = train_dataset.map(_lowercase , remove_columns=['''sentence'''] ) lowerCAmelCase_ = eval_dataset.map(_lowercase , remove_columns=['''sentence'''] ) def extract_all_chars(_lowercase : str ): lowerCAmelCase_ = ''' '''.join(batch['''text'''] ) lowerCAmelCase_ = list(set(_lowercase ) ) return {"vocab": [vocab], "all_text": [all_text]} lowerCAmelCase_ = train_dataset.map( _lowercase , batched=_lowercase , batch_size=-1 , keep_in_memory=_lowercase , remove_columns=train_dataset.column_names , ) lowerCAmelCase_ = train_dataset.map( _lowercase , batched=_lowercase , batch_size=-1 , keep_in_memory=_lowercase , remove_columns=eval_dataset.column_names , ) lowerCAmelCase_ = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) lowerCAmelCase_ = {v: k for k, v in enumerate(_lowercase )} lowerCAmelCase_ = vocab_dict[''' '''] del vocab_dict[" "] lowerCAmelCase_ = len(_lowercase ) lowerCAmelCase_ = len(_lowercase ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(_lowercase , _lowercase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase_ = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) lowerCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0.0 , do_normalize=_lowercase , return_attention_mask=_lowercase ) lowerCAmelCase_ = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase ) lowerCAmelCase_ = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: lowerCAmelCase_ = min(len(_lowercase ) , data_args.max_train_samples ) lowerCAmelCase_ = train_dataset.select(range(_lowercase ) ) if data_args.max_val_samples is not None: lowerCAmelCase_ = eval_dataset.select(range(data_args.max_val_samples ) ) lowerCAmelCase_ = torchaudio.transforms.Resample(4_8_0_0_0 , 1_6_0_0_0 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(_lowercase : Union[str, Any] ): lowerCAmelCase_ , lowerCAmelCase_ = torchaudio.load(batch['''path'''] ) lowerCAmelCase_ = resampler(_lowercase ).squeeze().numpy() lowerCAmelCase_ = 1_6_0_0_0 lowerCAmelCase_ = batch['''text'''] return batch lowerCAmelCase_ = train_dataset.map( _lowercase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) lowerCAmelCase_ = eval_dataset.map( _lowercase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(_lowercase : str ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" lowerCAmelCase_ = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(_lowercase ) return batch lowerCAmelCase_ = train_dataset.map( _lowercase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , ) lowerCAmelCase_ = eval_dataset.map( _lowercase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , ) # Metric lowerCAmelCase_ = datasets.load_metric('''wer''' ) def compute_metrics(_lowercase : Optional[int] ): lowerCAmelCase_ = pred.predictions lowerCAmelCase_ = np.argmax(_lowercase , axis=-1 ) lowerCAmelCase_ = processor.tokenizer.pad_token_id lowerCAmelCase_ = processor.batch_decode(_lowercase ) # we do not want to group tokens when computing the metrics lowerCAmelCase_ = processor.batch_decode(pred.label_ids , group_tokens=_lowercase ) lowerCAmelCase_ = wer_metric.compute(predictions=_lowercase , references=_lowercase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator lowerCAmelCase_ = DataCollatorCTCWithPadding(processor=_lowercase , padding=_lowercase ) # Initialize our Trainer lowerCAmelCase_ = CTCTrainer( model=_lowercase , data_collator=_lowercase , args=_lowercase , compute_metrics=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCAmelCase_ = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): lowerCAmelCase_ = model_args.model_name_or_path else: lowerCAmelCase_ = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) lowerCAmelCase_ = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() lowerCAmelCase_ = train_result.metrics lowerCAmelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) lowerCAmelCase_ = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation lowerCAmelCase_ = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCAmelCase_ = trainer.evaluate() lowerCAmelCase_ = data_args.max_val_samples if data_args.max_val_samples is not None else len(_lowercase ) lowerCAmelCase_ = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) return results if __name__ == "__main__": main()
552
0
def A__ ( lowercase: list, lowercase: list, lowercase: int, lowercase: int, lowercase: int ) -> int: if index == number_of_items: return 0 A : Any =0 A : Optional[Any] =0 A : Dict =knapsack(lowercase, lowercase, lowercase, lowercase, index + 1 ) if weights[index] <= max_weight: A : List[Any] =values[index] + knapsack( lowercase, lowercase, lowercase, max_weight - weights[index], index + 1 ) return max(lowercase, lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
661
from typing import List from .keymap import KEYMAP, get_character def A__ ( lowercase: str ) -> List[str]: def decorator(lowercase: int ): A : Tuple =getattr(lowercase, 'handle_key', [] ) handle += [key] setattr(lowercase, 'handle_key', lowercase ) return func return decorator def A__ ( *lowercase: List[str] ) -> Dict: def decorator(lowercase: Union[str, Any] ): A : Optional[int] =getattr(lowercase, 'handle_key', [] ) handle += keys setattr(lowercase, 'handle_key', lowercase ) return func return decorator class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' def __new__( cls : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: A : Dict =super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not hasattr(SCREAMING_SNAKE_CASE__ , 'key_handler' ): setattr(SCREAMING_SNAKE_CASE__ , 'key_handler' , {} ) setattr(SCREAMING_SNAKE_CASE__ , 'handle_input' , KeyHandler.handle_input ) for value in attrs.values(): A : Optional[Any] =getattr(SCREAMING_SNAKE_CASE__ , 'handle_key' , [] ) for key in handled_keys: A : str =value return new_cls @staticmethod def SCREAMING_SNAKE_CASE_ ( cls : str ) -> Any: A : str =get_character() if char != KEYMAP["undefined"]: A : List[str] =ord(SCREAMING_SNAKE_CASE__ ) A : List[str] =cls.key_handler.get(SCREAMING_SNAKE_CASE__ ) if handler: A : List[str] =char return handler(cls ) else: return None def A__ ( cls: Optional[int] ) -> str: return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
661
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __A = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @classmethod def SCREAMING_SNAKE_CASE_ (cls : str) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =TOKEN HfFolder.save_token(UpperCAmelCase_) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[Any]) ->int: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-model-flax") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-model-flax-org") except HTTPError: pass def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: str =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) lowerCamelCase__: Dict =FlaxBertModel(UpperCAmelCase_) model.push_to_hub("test-model-flax" , use_auth_token=self._token) lowerCamelCase__: Union[str, Any] =FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""") lowerCamelCase__: str =flatten_dict(unfreeze(model.params)) lowerCamelCase__: Union[str, Any] =flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): lowerCamelCase__: List[str] =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=F"""{key} not identical""") # Reset repo delete_repo(token=self._token , repo_id="test-model-flax") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase_ , repo_id="test-model-flax" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token) lowerCamelCase__: Tuple =FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""") lowerCamelCase__: Optional[int] =flatten_dict(unfreeze(model.params)) lowerCamelCase__: List[str] =flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): lowerCamelCase__: List[Any] =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=F"""{key} not identical""") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__: Any =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) lowerCamelCase__: List[str] =FlaxBertModel(UpperCAmelCase_) model.push_to_hub("valid_org/test-model-flax-org" , use_auth_token=self._token) lowerCamelCase__: Optional[int] =FlaxBertModel.from_pretrained("valid_org/test-model-flax-org") lowerCamelCase__: int =flatten_dict(unfreeze(model.params)) lowerCamelCase__: Any =flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): lowerCamelCase__: List[str] =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=F"""{key} not identical""") # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-model-flax-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( UpperCAmelCase_ , repo_id="valid_org/test-model-flax-org" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token) lowerCamelCase__: int =FlaxBertModel.from_pretrained("valid_org/test-model-flax-org") lowerCamelCase__: Union[str, Any] =flatten_dict(unfreeze(model.params)) lowerCamelCase__: Union[str, Any] =flatten_dict(unfreeze(new_model.params)) for key in base_params.keys(): lowerCamelCase__: Tuple =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase_ , 1E-3 , msg=F"""{key} not identical""") def lowerCAmelCase_ ( __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: int =True lowerCamelCase__: Any =flatten_dict(modela.params ) lowerCamelCase__: Any =flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: lowerCamelCase__: Dict =False return models_are_equal @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : str) ->Any: '''simple docstring''' lowerCamelCase__: Optional[Any] =BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only") lowerCamelCase__: str =FlaxBertModel(UpperCAmelCase_) lowerCamelCase__: int ="bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCAmelCase_ , UpperCAmelCase_)) with self.assertRaises(UpperCAmelCase_): lowerCamelCase__: Tuple =FlaxBertModel.from_pretrained(UpperCAmelCase_) lowerCamelCase__: Optional[int] =FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_) self.assertTrue(check_models_equal(UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only") lowerCamelCase__: List[Any] =FlaxBertModel(UpperCAmelCase_) lowerCamelCase__: int ="bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCAmelCase_ , UpperCAmelCase_) , max_shard_size="10KB") with self.assertRaises(UpperCAmelCase_): lowerCamelCase__: Dict =FlaxBertModel.from_pretrained(UpperCAmelCase_) lowerCamelCase__: str =FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_) self.assertTrue(check_models_equal(UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str ="bert" lowerCamelCase__: Optional[Any] ="hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(UpperCAmelCase_): lowerCamelCase__: Union[str, Any] =FlaxBertModel.from_pretrained(UpperCAmelCase_) lowerCamelCase__: Tuple =FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] ="bert" lowerCamelCase__: Optional[int] ="hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(UpperCAmelCase_): lowerCamelCase__: Dict =FlaxBertModel.from_pretrained(UpperCAmelCase_) lowerCamelCase__: Any =FlaxBertModel.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_)
59
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """perceiver""" def __init__( self , A_=256 , A_=1280 , A_=768 , A_=1 , A_=26 , A_=8 , A_=8 , A_=None , A_=None , A_="kv" , A_=1 , A_=1 , A_="gelu" , A_=0.1 , A_=0.02 , A_=1e-12 , A_=True , A_=262 , A_=2048 , A_=56 , A_=[368, 496] , A_=16 , A_=1920 , A_=16 , A_=[1, 16, 224, 224] , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = num_latents UpperCamelCase = d_latents UpperCamelCase = d_model UpperCamelCase = num_blocks UpperCamelCase = num_self_attends_per_block UpperCamelCase = num_self_attention_heads UpperCamelCase = num_cross_attention_heads UpperCamelCase = qk_channels UpperCamelCase = v_channels UpperCamelCase = cross_attention_shape_for_attention UpperCamelCase = self_attention_widening_factor UpperCamelCase = cross_attention_widening_factor UpperCamelCase = hidden_act UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = use_query_residual # masked language modeling attributes UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings # image classification attributes UpperCamelCase = image_size # flow attributes UpperCamelCase = train_size # multimodal autoencoding attributes UpperCamelCase = num_frames UpperCamelCase = audio_samples_per_frame UpperCamelCase = samples_per_patch UpperCamelCase = output_shape class SCREAMING_SNAKE_CASE__ ( snake_case_): @property def UpperCAmelCase_ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCAmelCase_ ( self )-> float: '''simple docstring''' return 1e-4 def UpperCAmelCase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = -1 , A_ = False , A_ = None , A_ = 3 , A_ = 40 , A_ = 40 , )-> Mapping[str, Any]: '''simple docstring''' if isinstance(A_ , A_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase = preprocessor.num_special_tokens_to_add(A_ ) UpperCamelCase = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase = [' '.join(['a'] ) * seq_length] * batch_size UpperCamelCase = dict(preprocessor(A_ , return_tensors=A_ ) ) UpperCamelCase = inputs.pop('input_ids' ) return inputs elif isinstance(A_ , A_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension(A_ , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCamelCase = self._generate_dummy_images(A_ , A_ , A_ , A_ ) UpperCamelCase = dict(preprocessor(images=A_ , return_tensors=A_ ) ) UpperCamelCase = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
3
0
'''simple docstring''' def _lowerCamelCase (__lowerCamelCase : int = 100 ) -> int: a__ = set() a__ = 0 a__ = n + 1 # maximum limit for a in range(2 , __lowerCamelCase ): for b in range(2 , __lowerCamelCase ): a__ = a**b # calculates the current power collect_powers.add(__lowerCamelCase ) # adds the result to the set return len(__lowerCamelCase ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
289
'''simple docstring''' import argparse import os import re import packaging.version lowerCAmelCase_ : Optional[int] = "examples/" lowerCAmelCase_ : Optional[int] = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } lowerCAmelCase_ : Optional[int] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } lowerCAmelCase_ : List[Any] = "README.md" def _lowerCamelCase (__lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] ) -> str: with open(__lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: a__ = f.read() a__ , a__ = REPLACE_PATTERNS[pattern] a__ = replace.replace("VERSION" , __lowerCamelCase ) a__ = re_pattern.sub(__lowerCamelCase , __lowerCamelCase ) with open(__lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(__lowerCamelCase ) def _lowerCamelCase (__lowerCamelCase : Union[str, Any] ) -> Dict: for folder, directories, fnames in os.walk(__lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , pattern="examples" ) def _lowerCamelCase (__lowerCamelCase : int , __lowerCamelCase : Any=False ) -> Optional[Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not patch: update_version_in_examples(__lowerCamelCase ) def _lowerCamelCase () -> Tuple: a__ = "🤗 Transformers currently provides the following architectures" a__ = "1. Want to contribute a new model?" with open(__lowerCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: a__ = f.readlines() # Find the start of the list. a__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 a__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): a__ = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(__lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(__lowerCamelCase ) def _lowerCamelCase () -> Tuple: with open(REPLACE_FILES["init"] , "r" ) as f: a__ = f.read() a__ = REPLACE_PATTERNS["init"][0].search(__lowerCamelCase ).groups()[0] return packaging.version.parse(__lowerCamelCase ) def _lowerCamelCase (__lowerCamelCase : Any=False ) -> int: a__ = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: a__ = default_version.base_version elif patch: a__ = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: a__ = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. a__ = input(f'''Which version are you releasing? [{default_version}]''' ) if len(__lowerCamelCase ) == 0: a__ = default_version print(f'''Updating version to {version}.''' ) global_version_update(__lowerCamelCase , patch=__lowerCamelCase ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def _lowerCamelCase () -> Tuple: a__ = get_version() a__ = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' a__ = current_version.base_version # Check with the user we got that right. a__ = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(__lowerCamelCase ) == 0: a__ = dev_version print(f'''Updating version to {version}.''' ) global_version_update(__lowerCamelCase ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": lowerCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") lowerCAmelCase_ : int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
289
1
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCamelCase_ = 4 lowerCamelCase_ = 3 class __a ( snake_case__ ): """simple docstring""" pass def UpperCAmelCase_ ( __UpperCamelCase ): for shard in shards: for i in range(__SCREAMING_SNAKE_CASE ): yield {"i": i, "shard": shard} def UpperCAmelCase_ ( ): SCREAMING_SNAKE_CASE__ =int(os.environ["""RANK"""] ) SCREAMING_SNAKE_CASE__ =int(os.environ["""WORLD_SIZE"""] ) SCREAMING_SNAKE_CASE__ =ArgumentParser() parser.add_argument("""--streaming""", type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--local_rank""", type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--num_workers""", type=__SCREAMING_SNAKE_CASE, default=0 ) SCREAMING_SNAKE_CASE__ =parser.parse_args() SCREAMING_SNAKE_CASE__ =args.streaming SCREAMING_SNAKE_CASE__ =args.num_workers SCREAMING_SNAKE_CASE__ ={"""shards""": [f"""shard_{shard_idx}""" for shard_idx in range(__SCREAMING_SNAKE_CASE )]} SCREAMING_SNAKE_CASE__ =IterableDataset.from_generator(__SCREAMING_SNAKE_CASE, gen_kwargs=__SCREAMING_SNAKE_CASE ) if not streaming: SCREAMING_SNAKE_CASE__ =Dataset.from_list(list(__SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE__ =split_dataset_by_node(__SCREAMING_SNAKE_CASE, rank=__SCREAMING_SNAKE_CASE, world_size=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ =torch.utils.data.DataLoader(__SCREAMING_SNAKE_CASE, num_workers=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ =NUM_SHARDS * NUM_ITEMS_PER_SHARD SCREAMING_SNAKE_CASE__ =full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) SCREAMING_SNAKE_CASE__ =sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
151
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" def __init__( self : List[Any] ): '''simple docstring''' self.test() def __a ( self : str ): '''simple docstring''' __a = 0 __a = False while not completed: if counter == 1: self.reset() __a = self.advance() if not self.does_advance(SCREAMING_SNAKE_CASE__ ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) __a , __a , __a = self.update(SCREAMING_SNAKE_CASE__ ) counter += 1 if counter > 1_0_0_0_0: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def __a ( self : Any ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __a ( self : Optional[int] ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __a ( self : Dict ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ): '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[int] ): '''simple docstring''' super(SCREAMING_SNAKE_CASE__ , self ).__init__() if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or len(SCREAMING_SNAKE_CASE__ ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) __a = token_ids __a = len(self.token_ids ) __a = -1 # the index of the currently fulfilled step __a = False def __a ( self : Tuple ): '''simple docstring''' if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE__ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __a ( self : Dict , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE__ )}''' ) __a = False __a = False __a = False if self.does_advance(SCREAMING_SNAKE_CASE__ ): self.fulfilled_idx += 1 __a = True if self.fulfilled_idx == (self.seqlen - 1): __a = True __a = completed else: # failed to make progress. __a = True self.reset() return stepped, completed, reset def __a ( self : Any ): '''simple docstring''' __a = False __a = 0 def __a ( self : int ): '''simple docstring''' return self.seqlen - (self.fulfilled_idx + 1) def __a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict=False ): '''simple docstring''' __a = PhrasalConstraint(self.token_ids ) if stateful: __a = self.seqlen __a = self.fulfilled_idx __a = self.completed return new_constraint class lowerCAmelCase_ : """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[List[int]] , SCREAMING_SNAKE_CASE__ : Optional[int]=True ): '''simple docstring''' __a = max([len(SCREAMING_SNAKE_CASE__ ) for one in nested_token_ids] ) __a = {} for token_ids in nested_token_ids: __a = root for tidx, token_id in enumerate(SCREAMING_SNAKE_CASE__ ): if token_id not in level: __a = {} __a = level[token_id] if no_subsets and self.has_subsets(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" f''' {nested_token_ids}.''' ) __a = root def __a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' __a = self.trie for current_token in current_seq: __a = start[current_token] __a = list(start.keys() ) return next_tokens def __a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' __a = self.next_tokens(SCREAMING_SNAKE_CASE__ ) return len(SCREAMING_SNAKE_CASE__ ) == 0 def __a ( self : Any , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' __a = list(root.values() ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return 1 else: return sum([self.count_leaves(SCREAMING_SNAKE_CASE__ ) for nn in next_nodes] ) def __a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' __a = self.count_leaves(SCREAMING_SNAKE_CASE__ ) return len(SCREAMING_SNAKE_CASE__ ) != leaf_count class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[List[int]] ): '''simple docstring''' super(SCREAMING_SNAKE_CASE__ , self ).__init__() if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or len(SCREAMING_SNAKE_CASE__ ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) __a = DisjunctiveTrie(SCREAMING_SNAKE_CASE__ ) __a = nested_token_ids __a = self.trie.max_height __a = [] __a = False def __a ( self : List[Any] ): '''simple docstring''' __a = self.trie.next_tokens(self.current_seq ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return None else: return token_list def __a ( self : Dict , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE__ )}''' ) __a = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __a ( self : Any , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE__ )}''' ) __a = False __a = False __a = False if self.does_advance(SCREAMING_SNAKE_CASE__ ): self.current_seq.append(SCREAMING_SNAKE_CASE__ ) __a = True else: __a = True self.reset() __a = self.trie.reached_leaf(self.current_seq ) __a = completed return stepped, completed, reset def __a ( self : Tuple ): '''simple docstring''' __a = False __a = [] def __a ( self : List[str] ): '''simple docstring''' if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __a ( self : Any , SCREAMING_SNAKE_CASE__ : List[str]=False ): '''simple docstring''' __a = DisjunctiveConstraint(self.token_ids ) if stateful: __a = self.seqlen __a = self.current_seq __a = self.completed return new_constraint class lowerCAmelCase_ : """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[Constraint] ): '''simple docstring''' __a = constraints # max # of steps required to fulfill a given constraint __a = max([c.seqlen for c in constraints] ) __a = len(SCREAMING_SNAKE_CASE__ ) __a = False self.init_state() def __a ( self : Optional[Any] ): '''simple docstring''' __a = [] __a = None __a = [constraint.copy(stateful=SCREAMING_SNAKE_CASE__ ) for constraint in self.constraints] def __a ( self : Optional[Any] ): '''simple docstring''' __a = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __a ( self : int ): '''simple docstring''' __a = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __a = constraint.advance() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): token_list.append(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): token_list.extend(SCREAMING_SNAKE_CASE__ ) else: __a = self.inprogress_constraint.advance() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): token_list.append(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): token_list.extend(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return None else: return token_list def __a ( self : int , SCREAMING_SNAKE_CASE__ : Optional[List[int]] ): '''simple docstring''' self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __a , __a = self.add(SCREAMING_SNAKE_CASE__ ) # the entire list of constraints are fulfilled if self.completed: break def __a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) __a , __a = False, False if self.completed: __a = True __a = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __a , __a , __a = self.inprogress_constraint.update(SCREAMING_SNAKE_CASE__ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE__ ) ) __a = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __a = None if len(self.pending_constraints ) == 0: # we're done! __a = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(SCREAMING_SNAKE_CASE__ ): __a , __a , __a = pending_constraint.update(SCREAMING_SNAKE_CASE__ ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(SCREAMING_SNAKE_CASE__ ) __a = None if not complete and stepped: __a = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __a = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __a = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str]=True ): '''simple docstring''' __a = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __a = [ constraint.copy(stateful=SCREAMING_SNAKE_CASE__ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __a = self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE__ ) __a = [constraint.copy() for constraint in self.pending_constraints] return new_state
582
0
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @property def lowercase__ ( self): torch.manual_seed(0) lowerCAmelCase_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def lowercase__ ( self): lowerCAmelCase_ = self.dummy_uncond_unet lowerCAmelCase_ = ScoreSdeVeScheduler() lowerCAmelCase_ = ScoreSdeVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase) sde_ve.to(_UpperCAmelCase) sde_ve.set_progress_bar_config(disable=_UpperCAmelCase) lowerCAmelCase_ = torch.manual_seed(0) lowerCAmelCase_ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=_UpperCAmelCase).images lowerCAmelCase_ = torch.manual_seed(0) lowerCAmelCase_ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=_UpperCAmelCase , return_dict=_UpperCAmelCase)[ 0 ] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self): lowerCAmelCase_ = '''google/ncsnpp-church-256''' lowerCAmelCase_ = UNetaDModel.from_pretrained(_UpperCAmelCase) lowerCAmelCase_ = ScoreSdeVeScheduler.from_pretrained(_UpperCAmelCase) lowerCAmelCase_ = ScoreSdeVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase) sde_ve.to(_UpperCAmelCase) sde_ve.set_progress_bar_config(disable=_UpperCAmelCase) lowerCAmelCase_ = torch.manual_seed(0) lowerCAmelCase_ = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=_UpperCAmelCase).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase_ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
413
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self): lowerCAmelCase_ = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , ['''c''']) self.assertEqual(_UpperCAmelCase , [2]) # Out indices set to match out features lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices(['''a''', '''c'''] , _UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , ['''a''', '''c''']) self.assertEqual(_UpperCAmelCase , [0, 2]) # Out features set to match out indices lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices(_UpperCAmelCase , [0, 2] , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , ['''a''', '''c''']) self.assertEqual(_UpperCAmelCase , [0, 2]) # Out features selected from negative indices lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices(_UpperCAmelCase , [-3, -1] , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , ['''a''', '''c''']) self.assertEqual(_UpperCAmelCase , [-3, -1]) def lowercase__ ( self): # Stage names must be set with self.assertRaises(_UpperCAmelCase): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , _UpperCAmelCase) # Out features must be a list with self.assertRaises(_UpperCAmelCase): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b''']) # Out features must be a subset of stage names with self.assertRaises(_UpperCAmelCase): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a''']) # Out indices must be a list or tuple with self.assertRaises(_UpperCAmelCase): verify_out_features_out_indices(_UpperCAmelCase , 0 , ['''a''', '''b''']) # Out indices must be a subset of stage names with self.assertRaises(_UpperCAmelCase): verify_out_features_out_indices(_UpperCAmelCase , (0, 1) , ['''a''']) # Out features and out indices must be the same length with self.assertRaises(_UpperCAmelCase): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c''']) # Out features should match out indices with self.assertRaises(_UpperCAmelCase): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c''']) # Out features and out indices should be in order with self.assertRaises(_UpperCAmelCase): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b''']) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d''']) def lowercase__ ( self): lowerCAmelCase_ = BackboneMixin() lowerCAmelCase_ = ['''a''', '''b''', '''c'''] lowerCAmelCase_ = ['''a''', '''c'''] lowerCAmelCase_ = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c''']) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly lowerCAmelCase_ = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b''']) self.assertEqual(backbone.out_indices , [0, 1]) lowerCAmelCase_ = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c''']) self.assertEqual(backbone.out_indices , [-3, -1])
413
1
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class A ( _a ): def __init__( self : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : Optional[int] ) -> Dict: """simple docstring""" _a = parent _a = config_class _a = has_text_modality _a = kwargs _a = common_properties def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _a = self.config_class(**self.inputs_dict ) _a = ( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) , msg=F'`{prop}` does not exist' ) # Test that config has the common properties as setter for idx, name in enumerate(lowerCAmelCase_ ): try: setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.parent.assertEqual( getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ , msg=F'`{name} value {idx} expected, but was {getattr(lowerCAmelCase_ , lowerCAmelCase_ )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(lowerCAmelCase_ ): try: _a = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ , msg=F'`{name} value {idx} expected, but was {getattr(lowerCAmelCase_ , lowerCAmelCase_ )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _a = self.config_class(**self.inputs_dict ) _a = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _a = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a = os.path.join(lowerCAmelCase_ , '''config.json''' ) config_first.to_json_file(lowerCAmelCase_ ) _a = self.config_class.from_json_file(lowerCAmelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" _a = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(lowerCAmelCase_ ) _a = self.config_class.from_pretrained(lowerCAmelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" _a = self.config_class(**self.inputs_dict ) _a = '''test''' with tempfile.TemporaryDirectory() as tmpdirname: _a = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) config_first.save_pretrained(lowerCAmelCase_ ) _a = self.config_class.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" _a = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _a = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def __lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" if self.config_class.is_composition: return _a = self.config_class() self.parent.assertIsNotNone(lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _a = copy.deepcopy(lowerCAmelCase_ ) _a = self.config_class(**lowerCAmelCase_ ) _a = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(lowerCAmelCase_ , lowerCAmelCase_ ) != value: wrong_values.append((key, getattr(lowerCAmelCase_ , lowerCAmelCase_ ), value) ) if len(lowerCAmelCase_ ) > 0: _a = '''\n'''.join([F'- {v[0]}: got {v[1]} instead of {v[2]}' for v in wrong_values] ) raise ValueError(F'The following keys were not properly set in the config:\n{errors}' ) def __lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
22
def _lowercase ( __SCREAMING_SNAKE_CASE ) -> str: return " ".join( ''.join(word[::-1] ) if len(__SCREAMING_SNAKE_CASE ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
410
0
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A: def __init__( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : int=3_2 , __UpperCamelCase : Any=3 , __UpperCamelCase : List[str]=1_0 , __UpperCamelCase : int=[1_0, 2_0, 3_0, 4_0] , __UpperCamelCase : List[str]=[1, 1, 2, 1] , __UpperCamelCase : str=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : Dict="relu" , __UpperCamelCase : int=3 , __UpperCamelCase : Dict=None , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = embeddings_size lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_act lowerCamelCase_ = num_labels lowerCamelCase_ = scope lowerCamelCase_ = len(__UpperCamelCase ) def lowercase__ ( self : Any ): lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : str ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = TFRegNetModel(config=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , training=__UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] ): lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFRegNetForImageClassification(__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : int ): lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __A( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowercase__ ( self : Tuple ): lowerCamelCase_ = TFRegNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] ): return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowercase__ ( self : Optional[int] ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def lowercase__ ( self : Tuple ): super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : Dict ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(__UpperCamelCase ) lowerCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowercase__ ( self : Any ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : int ): def check_hidden_states_output(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Any ): lowerCamelCase_ = model_class(__UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) , training=__UpperCamelCase ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase_ = layer_type lowerCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Optional[Any] ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any]={} ): lowerCamelCase_ = model(__UpperCamelCase , return_dict=__UpperCamelCase , **__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , return_dict=__UpperCamelCase , **__UpperCamelCase ).to_tuple() def recursive_check(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): if isinstance(__UpperCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__UpperCamelCase , __UpperCamelCase ): recursive_check(__UpperCamelCase , __UpperCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__UpperCamelCase , __UpperCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(__UpperCamelCase , __UpperCamelCase ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(__UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) check_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) check_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) check_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , {"""output_hidden_states""": True} ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) check_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , {"""output_hidden_states""": True} ) def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : List[Any] ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFRegNetModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __lowerCAmelCase ( ) -> Optional[int]: lowerCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __A( unittest.TestCase ): @cached_property def lowercase__ ( self : Union[str, Any] ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self : List[str] ): lowerCamelCase_ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=__UpperCamelCase , return_tensors="""tf""" ) # forward pass lowerCamelCase_ = model(**__UpperCamelCase , training=__UpperCamelCase ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) lowerCamelCase_ = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 )
103
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __A: @staticmethod def lowercase__ ( *__UpperCamelCase : str , **__UpperCamelCase : Dict ): pass def __lowerCAmelCase ( UpperCAmelCase__ : Image ) -> str: lowerCamelCase_ = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __A( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : int ): lowerCamelCase_ = DepthEstimationPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , __UpperCamelCase ) import datasets lowerCamelCase_ = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) lowerCamelCase_ = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] , __UpperCamelCase , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def lowercase__ ( self : Optional[int] ): pass @slow @require_torch def lowercase__ ( self : List[Any] ): lowerCamelCase_ = """Intel/dpt-large""" lowerCamelCase_ = pipeline("""depth-estimation""" , model=__UpperCamelCase ) lowerCamelCase_ = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) lowerCamelCase_ = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 ) @require_torch def lowercase__ ( self : Dict ): # This is highly irregular to have no small tests. self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
103
1
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
78
def __snake_case ( ) -> int: return 1 def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else ten_pence(x - 1_0 ) + five_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else twenty_pence(x - 2_0 ) + ten_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else fifty_pence(x - 5_0 ) + twenty_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else one_pound(x - 1_0_0 ) + fifty_pence(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ ) -> int: return 0 if x < 0 else two_pound(x - 2_0_0 ) + one_pound(lowerCAmelCase_ ) def __snake_case ( lowerCAmelCase_ = 2_0_0 ) -> int: return two_pound(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(input().strip())))
100
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Tuple = 1 A_ : str = 2 while i * i <= n: A_ : Optional[Any] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _SCREAMING_SNAKE_CASE ( ): A_ : Union[str, Any] = 1 A_ : Optional[int] = 1 while True: i += 1 t_num += i if count_divisors(SCREAMING_SNAKE_CASE ) > 500: break return t_num if __name__ == "__main__": print(solution())
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
152
0
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _lowerCamelCase : Dict = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: _lowerCamelCase : Tuple = json.load(f) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : List[str] , lowercase : Optional[int] ): '''simple docstring''' return FSMTTokenizer.from_pretrained(lowercase ) def A ( self : Dict , lowercase : Any ): '''simple docstring''' _snake_case = FSMTForConditionalGeneration.from_pretrained(lowercase ).to(lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def A ( self : Optional[int] , lowercase : Any , lowercase : int ): '''simple docstring''' _snake_case = f'''facebook/wmt19-{pair}''' _snake_case = self.get_tokenizer(lowercase ) _snake_case = self.get_model(lowercase ) _snake_case = bleu_data[pair]['src'] _snake_case = bleu_data[pair]['tgt'] _snake_case = tokenizer(lowercase , return_tensors='pt' , truncation=lowercase , padding='longest' ).to(lowercase ) _snake_case = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _snake_case = tokenizer.batch_decode( lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) _snake_case = calculate_bleu(lowercase , lowercase ) print(lowercase ) self.assertGreaterEqual(scores['bleu'] , lowercase )
686
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
1
'''simple docstring''' import operator as op def snake_case__ ( _A: Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase = [] lowerCAmelCase = lambda _A , _A : int(x / y ) # noqa: E731 integer division operation lowerCAmelCase = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(12 ) , """Stack""" , sep=""" | """ ) print("""-""" * (30 + len(_A )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_A ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(12 ) , """,""".join(_A ) , sep=""" | """ ) else: lowerCAmelCase = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(12 ) , """,""".join(_A ) , sep=""" | """ ) lowerCAmelCase = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(12 ) , """,""".join(_A ) , sep=""" | """ ) stack.append( str(opr[x](int(_A ) , int(_A ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(12 ) , """,""".join(_A ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": __lowercase = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
605
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class a__( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = "arrow" , **__lowerCAmelCase , ): """simple docstring""" super().__init__( split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCAmelCase = load_from_cache_file lowerCAmelCase = file_format lowerCAmelCase = Spark( df=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , working_dir=__lowerCAmelCase , **__lowerCAmelCase , ) def a_ ( self): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split) lowerCAmelCase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__lowerCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split)
605
1
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
60
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING A : Dict = logging.get_logger(__name__) @add_end_docstrings(a ) class __A( a ): def __init__( self , *_snake_case , **_snake_case ) -> Optional[int]: '''simple docstring''' super().__init__(*_snake_case , **_snake_case ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case=None , _snake_case=None , _snake_case=None ) -> Tuple: '''simple docstring''' __a = {} __a = {} if prompt is not None: __a = prompt if generate_kwargs is not None: __a = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __a = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) __a = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _snake_case , **_snake_case ) -> List[Any]: '''simple docstring''' return super().__call__(_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=None ) -> Optional[int]: '''simple docstring''' __a = load_image(_snake_case ) if prompt is not None: if not isinstance(_snake_case , _snake_case ): raise ValueError( F"""Received an invalid text input, got - {type(_snake_case )} - but expected a single string. """ '''Note also that one single text can be provided for conditional image to text generation.''' ) __a = self.model.config.model_type if model_type == "git": __a = self.image_processor(images=_snake_case , return_tensors=self.framework ) __a = self.tokenizer(text=_snake_case , add_special_tokens=_snake_case ).input_ids __a = [self.tokenizer.cls_token_id] + input_ids __a = torch.tensor(_snake_case ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": __a = self.image_processor(images=_snake_case , header_text=_snake_case , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __a = self.image_processor(images=_snake_case , return_tensors=self.framework ) __a = self.tokenizer(_snake_case , return_tensors=self.framework ) model_inputs.update(_snake_case ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: __a = self.image_processor(images=_snake_case , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __a = None return model_inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=None ) -> str: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , _snake_case ) and all(x is None for x in model_inputs['''input_ids'''] ) ): __a = None if generate_kwargs is None: __a = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __a = model_inputs.pop(self.model.main_input_name ) __a = self.model.generate(_snake_case , **_snake_case , **_snake_case ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Dict: '''simple docstring''' __a = [] for output_ids in model_outputs: __a = { '''generated_text''': self.tokenizer.decode( _snake_case , skip_special_tokens=_snake_case , ) } records.append(_snake_case ) return records
219
0
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( lowercase_ , unittest.TestCase): """simple docstring""" lowerCAmelCase_ = XLMTokenizer lowerCAmelCase_ = False def UpperCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _UpperCamelCase =dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) _UpperCamelCase =['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] _UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) def UpperCamelCase__ ( self : str , UpperCamelCase__ : str ) -> Optional[Any]: _UpperCamelCase ='''lower newer''' _UpperCamelCase ='''lower newer''' return input_text, output_text def UpperCamelCase__ ( self : List[str] ) -> int: _UpperCamelCase =XLMTokenizer(self.vocab_file , self.merges_file ) _UpperCamelCase ='''lower''' _UpperCamelCase =['''low''', '''er</w>'''] _UpperCamelCase =tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _UpperCamelCase =tokens + ['''<unk>'''] _UpperCamelCase =[14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) @slow def UpperCamelCase__ ( self : Union[str, Any] ) -> int: _UpperCamelCase =XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) _UpperCamelCase =tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase__ ) _UpperCamelCase =tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase__ ) _UpperCamelCase =tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) _UpperCamelCase =tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
271
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : int = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCAmelCase ( lowercase_): """simple docstring""" lowerCAmelCase_ = """mobilenet_v2""" def __init__( self : Tuple , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Dict=224 , UpperCamelCase__ : str=1.0 , UpperCamelCase__ : List[Any]=8 , UpperCamelCase__ : Union[str, Any]=8 , UpperCamelCase__ : str=6 , UpperCamelCase__ : str=32 , UpperCamelCase__ : str=True , UpperCamelCase__ : int=True , UpperCamelCase__ : str="relu6" , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : List[str]=0.8 , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : str=0.001 , UpperCamelCase__ : Dict=255 , **UpperCamelCase__ : Tuple , ) -> List[Any]: super().__init__(**UpperCamelCase__ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _UpperCamelCase =num_channels _UpperCamelCase =image_size _UpperCamelCase =depth_multiplier _UpperCamelCase =depth_divisible_by _UpperCamelCase =min_depth _UpperCamelCase =expand_ratio _UpperCamelCase =output_stride _UpperCamelCase =first_layer_is_expansion _UpperCamelCase =finegrained_output _UpperCamelCase =hidden_act _UpperCamelCase =tf_padding _UpperCamelCase =classifier_dropout_prob _UpperCamelCase =initializer_range _UpperCamelCase =layer_norm_eps _UpperCamelCase =semantic_loss_ignore_index class UpperCAmelCase ( lowercase_): """simple docstring""" lowerCAmelCase_ = version.parse("""1.11""") @property def UpperCamelCase__ ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def UpperCamelCase__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def UpperCamelCase__ ( self : List[Any] ) -> float: return 1E-4
271
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class a ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self : Optional[Any] ): UpperCAmelCase_ = inspect.getfile(accelerate.test_utils ) UpperCAmelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) UpperCAmelCase_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) UpperCAmelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def lowerCamelCase_ ( self : str ): print(F'Found {torch.cuda.device_count()} devices.' ) UpperCAmelCase_ = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() ) @require_multi_gpu def lowerCamelCase_ ( self : Tuple ): print(F'Found {torch.cuda.device_count()} devices.' ) UpperCAmelCase_ = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(F'Command: {cmd}' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() ) @require_multi_gpu def lowerCamelCase_ ( self : List[str] ): UpperCAmelCase_ = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() ) @require_multi_gpu def lowerCamelCase_ ( self : int ): print(F'Found {torch.cuda.device_count()} devices, using 2 devices only' ) UpperCAmelCase_ = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(__snake_case , env=os.environ.copy() ) if __name__ == "__main__": _lowerCamelCase = Accelerator() _lowerCamelCase = (accelerator.state.process_index + 2, 10) _lowerCamelCase = torch.randint(0, 10, shape).to(accelerator.device) _lowerCamelCase = '' _lowerCamelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCamelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCamelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
144
# using dfs for finding eulerian path traversal def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : List[str]=None ) -> Optional[Any]: UpperCAmelCase_ = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: UpperCAmelCase_ , UpperCAmelCase_ = True, True UpperCAmelCase_ = dfs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return path def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] ) -> List[Any]: UpperCAmelCase_ = 0 UpperCAmelCase_ = -1 for i in range(__UpperCamelCase ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 UpperCAmelCase_ = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> str: UpperCAmelCase_ = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] UpperCAmelCase_ , UpperCAmelCase_ = check_circuit_or_path(__UpperCamelCase , __UpperCamelCase ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return UpperCAmelCase_ = 1 if check == 2: UpperCAmelCase_ = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) UpperCAmelCase_ = dfs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) print(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: UpperCAmelCase_ = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} UpperCAmelCase_ = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} UpperCAmelCase_ = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} UpperCAmelCase_ = {1: [2, 3], 2: [1, 3], 3: [1, 2]} UpperCAmelCase_ = { 1: [], 2: [] # all degree is zero } UpperCAmelCase_ = 10 check_euler(__UpperCamelCase , __UpperCamelCase ) check_euler(__UpperCamelCase , __UpperCamelCase ) check_euler(__UpperCamelCase , __UpperCamelCase ) check_euler(__UpperCamelCase , __UpperCamelCase ) check_euler(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
144
1
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( A__ , A__ , A__ ): # Initialise PyTorch model lowercase__ = RemBertConfig.from_json_file(A__ ) print('Building PyTorch model from configuration: {}'.format(str(A__ ) ) ) lowercase__ = RemBertModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(A__ , A__ , A__ ) # Save pytorch-model print('Save PyTorch model to {}'.format(A__ ) ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a__ : Tuple = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
642
import math import sys def _lowerCAmelCase ( A__ ): lowercase__ = '' try: with open(A__ , 'rb' ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = {'0': '0', '1': '1'} lowercase__, lowercase__ = '', '' lowercase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id lowercase__ = last_match_id + '0' if math.loga(A__ ).is_integer(): lowercase__ = {} for curr_key in list(A__ ): lowercase__ = lexicon.pop(A__ ) lowercase__ = new_lex lowercase__ = last_match_id + '1' index += 1 lowercase__ = '' return result def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 8 try: with open(A__ , 'wb' ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase__ = data_bits[counter:] lowercase__ = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( A__ , A__ ): lowercase__ = read_file_binary(A__ ) lowercase__ = remove_prefix(A__ ) lowercase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
642
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any ={ "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] =["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] =[ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys _lowercase : Tuple =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
364
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _a ( lowercase__ : int = 3 ): '''simple docstring''' if isinstance(lowercase__ , lowercase__ ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(lowercase__ ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) SCREAMING_SNAKE_CASE__ : Tuple = QuantumRegister(lowercase__ , 'qr' ) SCREAMING_SNAKE_CASE__ : int = ClassicalRegister(lowercase__ , 'cr' ) SCREAMING_SNAKE_CASE__ : Tuple = QuantumCircuit(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE__ : Tuple = number_of_qubits for i in range(lowercase__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(lowercase__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , lowercase__ , lowercase__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(lowercase__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(lowercase__ , lowercase__ ) # simulate with 10000 shots SCREAMING_SNAKE_CASE__ : Optional[int] = Aer.get_backend('qasm_simulator' ) SCREAMING_SNAKE_CASE__ : Tuple = execute(lowercase__ , lowercase__ , shots=1_00_00 ) return job.result().get_counts(lowercase__ ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
85
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase : """simple docstring""" def __init__( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any]=13 , UpperCamelCase__ : int=10 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Optional[int]=2 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : str=5 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Union[str, Any]=37 , UpperCamelCase__ : int="gelu" , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Optional[int]=10 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : str=0.9 , UpperCamelCase__ : Optional[Any]=None , ) -> int: _UpperCamelCase =parent _UpperCamelCase =batch_size _UpperCamelCase =image_size _UpperCamelCase =num_channels _UpperCamelCase =patch_size _UpperCamelCase =tubelet_size _UpperCamelCase =num_frames _UpperCamelCase =is_training _UpperCamelCase =use_labels _UpperCamelCase =hidden_size _UpperCamelCase =num_hidden_layers _UpperCamelCase =num_attention_heads _UpperCamelCase =intermediate_size _UpperCamelCase =hidden_act _UpperCamelCase =hidden_dropout_prob _UpperCamelCase =attention_probs_dropout_prob _UpperCamelCase =type_sequence_label_size _UpperCamelCase =initializer_range _UpperCamelCase =mask_ratio _UpperCamelCase =scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _UpperCamelCase =(image_size // patch_size) ** 2 _UpperCamelCase =(num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _UpperCamelCase =int(mask_ratio * self.seq_length ) def UpperCamelCase__ ( self : Any ) -> Tuple: _UpperCamelCase =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase =None if self.use_labels: _UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase =self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self : List[str] ) -> str: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] ) -> Dict: _UpperCamelCase =VideoMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCamelCase =model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any ) -> int: _UpperCamelCase =VideoMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCamelCase =torch.ones((self.num_masks,) ) _UpperCamelCase =torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _UpperCamelCase =mask.expand(self.batch_size , -1 ).bool() _UpperCamelCase =model(__lowerCAmelCase , __lowerCAmelCase ) # model only returns predictions for masked patches _UpperCamelCase =mask.sum().item() _UpperCamelCase =3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def UpperCamelCase__ ( self : Optional[int] ) -> Union[str, Any]: _UpperCamelCase =self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase =config_and_inputs _UpperCamelCase ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase): """simple docstring""" lowerCAmelCase_ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCAmelCase_ = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCamelCase__ ( self : List[Any] ) -> List[Any]: _UpperCamelCase =VideoMAEModelTester(self ) _UpperCamelCase =ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def UpperCamelCase__ ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple=False ) -> Tuple: _UpperCamelCase =copy.deepcopy(__lowerCAmelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCamelCase =torch.ones((self.model_tester.num_masks,) ) _UpperCamelCase =torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _UpperCamelCase =mask.expand(self.model_tester.batch_size , -1 ).bool() _UpperCamelCase =bool_masked_pos.to(__lowerCAmelCase ) if return_labels: if model_class in [ *get_values(__lowerCAmelCase ), ]: _UpperCamelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def UpperCamelCase__ ( self : str ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def UpperCamelCase__ ( self : List[Any] ) -> int: pass def UpperCamelCase__ ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase , _UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase =model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def UpperCamelCase__ ( self : Dict ) -> Optional[Any]: _UpperCamelCase , _UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase =model_class(__lowerCAmelCase ) _UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase =[*signature.parameters.keys()] _UpperCamelCase =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def UpperCamelCase__ ( self : Optional[Any] ) -> Tuple: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def UpperCamelCase__ ( self : List[str] ) -> int: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) @slow def UpperCamelCase__ ( self : Any ) -> Union[str, Any]: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase =VideoMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def UpperCamelCase__ ( self : List[Any] ) -> Tuple: if not self.has_attentions: pass else: _UpperCamelCase , _UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase =True for model_class in self.all_model_classes: _UpperCamelCase =self.model_tester.seq_length - self.model_tester.num_masks _UpperCamelCase =( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _UpperCamelCase =True _UpperCamelCase =False _UpperCamelCase =True _UpperCamelCase =model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _UpperCamelCase =model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) _UpperCamelCase =outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCamelCase =True _UpperCamelCase =model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _UpperCamelCase =model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) _UpperCamelCase =outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _UpperCamelCase =len(__lowerCAmelCase ) # Check attention is always last and order is fine _UpperCamelCase =True _UpperCamelCase =True _UpperCamelCase =model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _UpperCamelCase =model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertEqual(out_len + 1 , len(__lowerCAmelCase ) ) _UpperCamelCase =outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCamelCase__ ( self : List[str] ) -> Tuple: def check_hidden_states_output(UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] ): _UpperCamelCase =model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _UpperCamelCase =model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) _UpperCamelCase =outputs.hidden_states _UpperCamelCase =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) _UpperCamelCase =self.model_tester.seq_length - self.model_tester.num_masks _UpperCamelCase =num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _UpperCamelCase , _UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase =True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase =True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase__ ( self : List[str] ) -> str: pass def _a (): """simple docstring""" _UpperCamelCase =hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) _UpperCamelCase =np.load(__snake_case ) return list(__snake_case ) @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase__ ( self : List[Any] ) -> List[str]: return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self : str ) -> Optional[int]: _UpperCamelCase =VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( __lowerCAmelCase ) _UpperCamelCase =self.default_image_processor _UpperCamelCase =prepare_video() _UpperCamelCase =image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _UpperCamelCase =model(**__lowerCAmelCase ) # verify the logits _UpperCamelCase =torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) _UpperCamelCase =torch.tensor([0.3669, -0.0688, -0.2421] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self : Union[str, Any] ) -> Dict: _UpperCamelCase =VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(__lowerCAmelCase ) _UpperCamelCase =self.default_image_processor _UpperCamelCase =prepare_video() _UpperCamelCase =image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # add boolean mask, indicating which patches to mask _UpperCamelCase =hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) _UpperCamelCase =torch.load(__lowerCAmelCase ) # forward pass with torch.no_grad(): _UpperCamelCase =model(**__lowerCAmelCase ) # verify the logits _UpperCamelCase =torch.Size([1, 1408, 1536] ) _UpperCamelCase =torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=__lowerCAmelCase ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _UpperCamelCase =torch.tensor([0.5142] , device=__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , __lowerCAmelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _UpperCamelCase =VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=__lowerCAmelCase ).to( __lowerCAmelCase ) with torch.no_grad(): _UpperCamelCase =model(**__lowerCAmelCase ) _UpperCamelCase =torch.tensor(torch.tensor([0.6469] ) , device=__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , __lowerCAmelCase , atol=1E-4 ) )
707
'''simple docstring''' from collections.abc import Generator from math import sin def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" if len(__SCREAMING_SNAKE_CASE ) != 32: raise ValueError('''Input must be of length 32''' ) _UpperCamelCase =b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''' ) _UpperCamelCase =format(__SCREAMING_SNAKE_CASE , '''08x''' )[-8:] _UpperCamelCase =b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =b'''''' for char in message: bit_string += format(__SCREAMING_SNAKE_CASE , '''08b''' ).encode('''utf-8''' ) _UpperCamelCase =format(len(__SCREAMING_SNAKE_CASE ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__SCREAMING_SNAKE_CASE ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" if len(__SCREAMING_SNAKE_CASE ) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(__SCREAMING_SNAKE_CASE ) , 512 ): _UpperCamelCase =bit_string[pos : pos + 512] _UpperCamelCase =[] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''' ) _UpperCamelCase =format(__SCREAMING_SNAKE_CASE , '''032b''' ) _UpperCamelCase ='''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(__SCREAMING_SNAKE_CASE , 2 ) def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" return (a + b) % 2**32 def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =preprocess(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =[int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _UpperCamelCase =0X6745_2301 _UpperCamelCase =0Xefcd_ab89 _UpperCamelCase =0X98ba_dcfe _UpperCamelCase =0X1032_5476 _UpperCamelCase =[ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__SCREAMING_SNAKE_CASE ): _UpperCamelCase =aa _UpperCamelCase =ba _UpperCamelCase =ca _UpperCamelCase =da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _UpperCamelCase =d ^ (b & (c ^ d)) _UpperCamelCase =i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _UpperCamelCase =c ^ (d & (b ^ c)) _UpperCamelCase =(5 * i + 1) % 16 elif i <= 47: _UpperCamelCase =b ^ c ^ d _UpperCamelCase =(3 * i + 5) % 16 else: _UpperCamelCase =c ^ (b | not_aa(__SCREAMING_SNAKE_CASE )) _UpperCamelCase =(7 * i) % 16 _UpperCamelCase =(f + a + added_consts[i] + block_words[g]) % 2**32 _UpperCamelCase =d _UpperCamelCase =c _UpperCamelCase =b _UpperCamelCase =sum_aa(__SCREAMING_SNAKE_CASE , left_rotate_aa(__SCREAMING_SNAKE_CASE , shift_amounts[i] ) ) # Add hashed chunk to running total _UpperCamelCase =sum_aa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _UpperCamelCase =sum_aa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _UpperCamelCase =sum_aa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _UpperCamelCase =sum_aa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _UpperCamelCase =reformat_hex(__SCREAMING_SNAKE_CASE ) + reformat_hex(__SCREAMING_SNAKE_CASE ) + reformat_hex(__SCREAMING_SNAKE_CASE ) + reformat_hex(__SCREAMING_SNAKE_CASE ) return digest if __name__ == "__main__": import doctest doctest.testmod()
271
0
def lowerCAmelCase_ ( A_): UpperCamelCase__: List[Any] = [0] * len(A_) UpperCamelCase__: Any = [] UpperCamelCase__: str = [] UpperCamelCase__: Any = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(A_)): if indegree[i] == 0: queue.append(A_) while queue: UpperCamelCase__: Dict = queue.pop(0) cnt += 1 topo.append(A_) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(A_) if cnt != len(A_): print("Cycle exists") else: print(A_) # Adjacency List of Graph A__: Dict = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
380
import math def lowerCAmelCase_ ( A_ ,A_): UpperCamelCase__: Dict = len(A_) UpperCamelCase__: Optional[Any] = int(math.floor(math.sqrt(A_))) UpperCamelCase__: Union[str, Any] = 0 while arr[min(A_ ,A_) - 1] < x: UpperCamelCase__: Any = step step += int(math.floor(math.sqrt(A_))) if prev >= n: return -1 while arr[prev] < x: UpperCamelCase__: Dict = prev + 1 if prev == min(A_ ,A_): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A__: Tuple = input('''Enter numbers separated by a comma:\n''').strip() A__: List[Any] = [int(item) for item in user_input.split(''',''')] A__: int = int(input('''Enter the number to be searched:\n''')) A__: Any = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f"Number {x} is at index {res}")
380
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> bool: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Optional[Any] = f'Input value of [number={number}] must be an integer' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 0: return False SCREAMING_SNAKE_CASE_ : Tuple = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
311
from string import ascii_lowercase, ascii_uppercase def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> str: if not sentence: return "" SCREAMING_SNAKE_CASE_ : int = dict(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
311
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass A_ = (3, 9, -11, 0, 7, 5, 1, -1) A_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __lowerCamelCase : a__: int a__: Node | None class __lowerCamelCase : def __init__( self , UpperCAmelCase ): lowerCamelCase_ = None for i in sorted(UpperCAmelCase , reverse=UpperCAmelCase ): lowerCamelCase_ = Node(UpperCAmelCase , self.head ) def __iter__( self ): lowerCamelCase_ = self.head while node: yield node.data lowerCamelCase_ = node.next_node def __len__( self ): return sum(1 for _ in self ) def __str__( self ): return " -> ".join([str(UpperCAmelCase ) for node in self] ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return SortedLinkedList(list(lowerCAmelCase__ ) + list(lowerCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() A_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
29
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase (a_ :List[Any] , a_ :Union[str, Any] , a_ :Tuple , a_ :List[str] , a_ :str=True , a_ :str="pt") -> List[str]: lowercase :Optional[int] = {'''add_prefix_space''': True} if isinstance(a_ , a_) and not line.startswith(''' ''') else {} lowercase :Optional[int] = padding_side return tokenizer( [line] , max_length=a_ , padding='''max_length''' if pad_to_max_length else None , truncation=a_ , return_tensors=a_ , add_special_tokens=a_ , **a_ , ) def lowerCamelCase (a_ :str , a_ :Tuple , a_ :Optional[Any]=None , ) -> Tuple: lowercase :Optional[Any] = input_ids.ne(a_).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __magic_name__ ( __UpperCAmelCase ): def __init__( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : str="train" , snake_case__ : Optional[Any]=None , snake_case__ : Tuple=None , snake_case__ : Any=None , snake_case__ : Dict="" , ): '''simple docstring''' super().__init__() lowercase :Tuple = Path(snake_case__ ).joinpath(type_path + '''.source''' ) lowercase :Union[str, Any] = Path(snake_case__ ).joinpath(type_path + '''.target''' ) lowercase :List[Any] = self.get_char_lens(self.src_file ) lowercase :Tuple = max_source_length lowercase :Optional[int] = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" lowercase :Any = tokenizer lowercase :Tuple = prefix if n_obs is not None: lowercase :List[str] = self.src_lens[:n_obs] lowercase :List[Any] = src_lang lowercase :str = tgt_lang def __len__( self : Any ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : str , snake_case__ : Any ): '''simple docstring''' lowercase :Optional[int] = index + 1 # linecache starts at 1 lowercase :Optional[Any] = self.prefix + linecache.getline(str(self.src_file ) , snake_case__ ).rstrip('''\n''' ) lowercase :Dict = linecache.getline(str(self.tgt_file ) , snake_case__ ).rstrip('''\n''' ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowercase :Dict = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer ) lowercase :Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer lowercase :Optional[int] = encode_line(snake_case__ , snake_case__ , self.max_source_length , '''right''' ) lowercase :Tuple = encode_line(snake_case__ , snake_case__ , self.max_target_length , '''right''' ) lowercase :List[str] = source_inputs['''input_ids'''].squeeze() lowercase :Optional[Any] = target_inputs['''input_ids'''].squeeze() lowercase :List[str] = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __snake_case ( snake_case__ : Optional[int] ): '''simple docstring''' return [len(snake_case__ ) for x in Path(snake_case__ ).open().readlines()] def __snake_case ( self : Tuple , snake_case__ : Union[str, Any] ): '''simple docstring''' lowercase :Optional[Any] = torch.stack([x['''input_ids'''] for x in batch] ) lowercase :Tuple = torch.stack([x['''attention_mask'''] for x in batch] ) lowercase :Tuple = torch.stack([x['''decoder_input_ids'''] for x in batch] ) lowercase :str = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) lowercase :Optional[int] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) lowercase :List[Any] = trim_batch(snake_case__ , snake_case__ ) lowercase , lowercase :List[str] = trim_batch(snake_case__ , snake_case__ , attention_mask=snake_case__ ) lowercase :Optional[int] = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch UpperCAmelCase = getLogger(__name__) def lowerCamelCase (a_ :List[List]) -> Tuple: return list(itertools.chain.from_iterable(a_)) def lowerCamelCase (a_ :str) -> None: lowercase :List[str] = get_git_info() save_json(a_ , os.path.join(a_ , '''git_log.json''')) def lowerCamelCase (a_ :Optional[int] , a_ :Optional[int] , a_ :Optional[Any]=4 , **a_ :Optional[Any]) -> str: with open(a_ , '''w''') as f: json.dump(a_ , a_ , indent=a_ , **a_) def lowerCamelCase (a_ :Dict) -> Union[str, Any]: with open(a_) as f: return json.load(a_) def lowerCamelCase () -> List[str]: lowercase :Dict = git.Repo(search_parent_directories=a_) lowercase :int = { '''repo_id''': str(a_), '''repo_sha''': str(repo.head.object.hexsha), '''repo_branch''': str(repo.active_branch), '''hostname''': str(socket.gethostname()), } return repo_infos def lowerCamelCase (a_ :Callable , a_ :Iterable) -> List: return list(map(a_ , a_)) def lowerCamelCase (a_ :Optional[Any] , a_ :str) -> Any: with open(a_ , '''wb''') as f: return pickle.dump(a_ , a_) def lowerCamelCase (a_ :List[str]) -> List[str]: def remove_articles(a_ :Union[str, Any]): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , a_) def white_space_fix(a_ :Tuple): return " ".join(text.split()) def remove_punc(a_ :int): lowercase :List[Any] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(a_ :int): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a_)))) def lowerCamelCase (a_ :List[str] , a_ :Any) -> List[str]: lowercase :Dict = normalize_answer(a_).split() lowercase :int = normalize_answer(a_).split() lowercase :List[Any] = Counter(a_) & Counter(a_) lowercase :Optional[int] = sum(common.values()) if num_same == 0: return 0 lowercase :str = 1.0 * num_same / len(a_) lowercase :Tuple = 1.0 * num_same / len(a_) lowercase :Tuple = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase (a_ :Tuple , a_ :Optional[Any]) -> List[Any]: return normalize_answer(a_) == normalize_answer(a_) def lowerCamelCase (a_ :List[str] , a_ :List[str]) -> Dict: assert len(a_) == len(a_) lowercase :Any = 0 for hypo, pred in zip(a_ , a_): em += exact_match_score(a_ , a_) if len(a_) > 0: em /= len(a_) return {"em": em} def lowerCamelCase (a_ :Union[str, Any]) -> Optional[Any]: return model_prefix.startswith('''rag''') def lowerCamelCase (a_ :List[str] , a_ :Tuple , a_ :List[str]) -> Any: lowercase :List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowercase :str = '''dropout_rate''' for p in extra_params: if getattr(a_ , a_ , a_): if not hasattr(a_ , a_) and not hasattr(a_ , equivalent_param[p]): logger.info('''config doesn\'t have a `{}` attribute'''.format(a_)) delattr(a_ , a_) continue lowercase :List[str] = p if hasattr(a_ , a_) else equivalent_param[p] setattr(a_ , a_ , getattr(a_ , a_)) delattr(a_ , a_) return hparams, config
677
0
from random import shuffle import tensorflow as tf from numpy import array def _lowerCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = int(__lowerCamelCase ) assert noofclusters < len(__lowerCamelCase ) # Find out the dimensionality __SCREAMING_SNAKE_CASE : List[str] = len(vectors[0] ) # Will help select random centroids from among the available vectors __SCREAMING_SNAKE_CASE : List[Any] = list(range(len(__lowerCamelCase ) ) ) shuffle(__lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __SCREAMING_SNAKE_CASE : Optional[int] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __SCREAMING_SNAKE_CASE : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __SCREAMING_SNAKE_CASE : Union[str, Any] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values __SCREAMING_SNAKE_CASE : List[Any] = tf.placeholder("float64" , [dim] ) __SCREAMING_SNAKE_CASE : int = [] for centroid in centroids: cent_assigns.append(tf.assign(__lowerCamelCase , __lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __SCREAMING_SNAKE_CASE : Dict = [tf.Variable(0 ) for i in range(len(__lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value __SCREAMING_SNAKE_CASE : Tuple = tf.placeholder("int32" ) __SCREAMING_SNAKE_CASE : str = [] for assignment in assignments: cluster_assigns.append(tf.assign(__lowerCamelCase , __lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __SCREAMING_SNAKE_CASE : Tuple = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __SCREAMING_SNAKE_CASE : Any = tf.reduce_mean(__lowerCamelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input __SCREAMING_SNAKE_CASE : List[Any] = tf.placeholder("float" , [dim] ) __SCREAMING_SNAKE_CASE : Optional[int] = tf.placeholder("float" , [dim] ) __SCREAMING_SNAKE_CASE : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__lowerCamelCase , __lowerCamelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __SCREAMING_SNAKE_CASE : Tuple = tf.placeholder("float" , [noofclusters] ) __SCREAMING_SNAKE_CASE : Optional[int] = tf.argmin(__lowerCamelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __SCREAMING_SNAKE_CASE : Optional[int] = tf.initialize_all_variables() # Initialize all variables sess.run(__lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __SCREAMING_SNAKE_CASE : Optional[Any] = 100 for _ in range(__lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__lowerCamelCase ) ): __SCREAMING_SNAKE_CASE : List[Any] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __SCREAMING_SNAKE_CASE : Tuple = [ sess.run(__lowerCamelCase , feed_dict={va: vect, va: sess.run(__lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __SCREAMING_SNAKE_CASE : Optional[Any] = sess.run( __lowerCamelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__lowerCamelCase ): # Collect all the vectors assigned to this cluster __SCREAMING_SNAKE_CASE : Any = [ vectors[i] for i in range(len(__lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __SCREAMING_SNAKE_CASE : Union[str, Any] = sess.run( __lowerCamelCase , feed_dict={mean_input: array(__lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __SCREAMING_SNAKE_CASE : List[Any] = sess.run(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = sess.run(__lowerCamelCase ) return centroids, assignments
447
from collections.abc import Generator from math import sin def _lowerCAmelCase ( __lowerCamelCase : bytes ): """simple docstring""" if len(__lowerCamelCase ) != 32: raise ValueError("Input must be of length 32" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _lowerCAmelCase ( __lowerCamelCase : int ): """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) __SCREAMING_SNAKE_CASE : Any = format(__lowerCamelCase , "08x" )[-8:] __SCREAMING_SNAKE_CASE : Optional[Any] = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def _lowerCAmelCase ( __lowerCamelCase : bytes ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = b"" for char in message: bit_string += format(__lowerCamelCase , "08b" ).encode("utf-8" ) __SCREAMING_SNAKE_CASE : List[str] = format(len(__lowerCamelCase ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__lowerCamelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _lowerCAmelCase ( __lowerCamelCase : bytes ): """simple docstring""" if len(__lowerCamelCase ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__lowerCamelCase ) , 512 ): __SCREAMING_SNAKE_CASE : int = bit_string[pos : pos + 512] __SCREAMING_SNAKE_CASE : Tuple = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _lowerCAmelCase ( __lowerCamelCase : int ): """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = format(__lowerCamelCase , "032b" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__lowerCamelCase , 2 ) def _lowerCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" return (a + b) % 2**32 def _lowerCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _lowerCAmelCase ( __lowerCamelCase : bytes ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = preprocess(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __SCREAMING_SNAKE_CASE : Tuple = 0X67452301 __SCREAMING_SNAKE_CASE : Optional[Any] = 0Xefcdab89 __SCREAMING_SNAKE_CASE : Optional[int] = 0X98badcfe __SCREAMING_SNAKE_CASE : Optional[Any] = 0X10325476 __SCREAMING_SNAKE_CASE : List[Any] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Any = aa __SCREAMING_SNAKE_CASE : Union[str, Any] = ba __SCREAMING_SNAKE_CASE : str = ca __SCREAMING_SNAKE_CASE : Dict = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __SCREAMING_SNAKE_CASE : Union[str, Any] = d ^ (b & (c ^ d)) __SCREAMING_SNAKE_CASE : Optional[Any] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __SCREAMING_SNAKE_CASE : int = c ^ (d & (b ^ c)) __SCREAMING_SNAKE_CASE : int = (5 * i + 1) % 16 elif i <= 47: __SCREAMING_SNAKE_CASE : List[str] = b ^ c ^ d __SCREAMING_SNAKE_CASE : Union[str, Any] = (3 * i + 5) % 16 else: __SCREAMING_SNAKE_CASE : Any = c ^ (b | not_aa(__lowerCamelCase )) __SCREAMING_SNAKE_CASE : str = (7 * i) % 16 __SCREAMING_SNAKE_CASE : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32 __SCREAMING_SNAKE_CASE : Dict = d __SCREAMING_SNAKE_CASE : str = c __SCREAMING_SNAKE_CASE : Tuple = b __SCREAMING_SNAKE_CASE : Optional[int] = sum_aa(__lowerCamelCase , left_rotate_aa(__lowerCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total __SCREAMING_SNAKE_CASE : Dict = sum_aa(__lowerCamelCase , __lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = sum_aa(__lowerCamelCase , __lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = sum_aa(__lowerCamelCase , __lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = sum_aa(__lowerCamelCase , __lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = reformat_hex(__lowerCamelCase ) + reformat_hex(__lowerCamelCase ) + reformat_hex(__lowerCamelCase ) + reformat_hex(__lowerCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
447
1
'''simple docstring''' from typing import List import numpy as np def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Any = {key: len(UpperCAmelCase_ ) for key, value in gen_kwargs.items() if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( 'Sharding is ambiguous for this dataset: ' + 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n' + '\n'.join(f'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ' + 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.' ) ) _UpperCamelCase : Tuple = max(lists_lengths.values() , default=0 ) return max(1 , UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Dict = [] for group_idx in range(UpperCAmelCase_ ): _UpperCamelCase : int = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _UpperCamelCase : Tuple = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _UpperCamelCase : Tuple = range(UpperCAmelCase_ , start + num_shards_to_add ) shards_indices_per_group.append(UpperCAmelCase_ ) return shards_indices_per_group def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Tuple = _number_of_shards_in_gen_kwargs(UpperCAmelCase_ ) if num_shards == 1: return [dict(UpperCAmelCase_ )] else: _UpperCamelCase : str = _distribute_shards(num_shards=UpperCAmelCase_ , max_num_jobs=UpperCAmelCase_ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(UpperCAmelCase_ ) ) ] def A__ ( UpperCAmelCase_ ): return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , UpperCAmelCase_ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : int = {len(UpperCAmelCase_ ) for value in gen_kwargs.values() if isinstance(UpperCAmelCase_ , UpperCAmelCase_ )} _UpperCamelCase : Union[str, Any] = {} for size in list_sizes: _UpperCamelCase : str = list(range(UpperCAmelCase_ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _UpperCamelCase : Union[str, Any] = dict(UpperCAmelCase_ ) for key, value in shuffled_kwargs.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Dict = [value[i] for i in indices_per_size[len(UpperCAmelCase_ )]] return shuffled_kwargs
195
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case_ : Tuple = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = ['LayoutLMv2FeatureExtractor'] snake_case_ : str = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys snake_case_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
195
1
'''simple docstring''' from itertools import product def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase_ : Tuple =sides_number lowerCAmelCase_ : Tuple =max_face_number * dice_number lowerCAmelCase_ : Tuple =[0] * (max_total + 1) lowerCAmelCase_ : Any =1 lowerCAmelCase_ : Dict =range(_SCREAMING_SNAKE_CASE , max_face_number + 1 ) for dice_numbers in product(_SCREAMING_SNAKE_CASE , repeat=_SCREAMING_SNAKE_CASE ): lowerCAmelCase_ : Union[str, Any] =sum(_SCREAMING_SNAKE_CASE ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ): lowerCAmelCase_ : Dict =total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCAmelCase_ : Any =total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCAmelCase_ : str =0 lowerCAmelCase_ : Any =9 lowerCAmelCase_ : Tuple =4 * 9 lowerCAmelCase_ : Union[str, Any] =6 for peter_total in range(_SCREAMING_SNAKE_CASE , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCAmelCase_ : List[Any] =(4**9) * (6**6) lowerCAmelCase_ : Tuple =peter_wins_count / total_games_number lowerCAmelCase_ : Optional[int] =round(_SCREAMING_SNAKE_CASE , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'{solution() = }')
305
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : str = '''gpt_bigcode''' _UpperCamelCase : Optional[int] = ['''past_key_values'''] _UpperCamelCase : Any = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=50257 , UpperCamelCase_ : List[Any]=1024 , UpperCamelCase_ : List[Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : List[str]=12 , UpperCamelCase_ : str=None , UpperCamelCase_ : Dict="gelu_pytorch_tanh" , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Any=1E-5 , UpperCamelCase_ : Dict=0.0_2 , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Union[str, Any]=50256 , UpperCamelCase_ : List[str]=50256 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : Tuple=True , **UpperCamelCase_ : str , ): lowerCAmelCase_ : Optional[Any] =vocab_size lowerCAmelCase_ : Optional[int] =n_positions lowerCAmelCase_ : Union[str, Any] =n_embd lowerCAmelCase_ : str =n_layer lowerCAmelCase_ : int =n_head lowerCAmelCase_ : List[str] =n_inner lowerCAmelCase_ : Tuple =activation_function lowerCAmelCase_ : List[str] =resid_pdrop lowerCAmelCase_ : List[str] =embd_pdrop lowerCAmelCase_ : Any =attn_pdrop lowerCAmelCase_ : int =layer_norm_epsilon lowerCAmelCase_ : int =initializer_range lowerCAmelCase_ : str =scale_attn_weights lowerCAmelCase_ : Union[str, Any] =use_cache lowerCAmelCase_ : int =attention_softmax_in_fpaa lowerCAmelCase_ : List[Any] =scale_attention_softmax_in_fpaa lowerCAmelCase_ : Optional[int] =multi_query lowerCAmelCase_ : Optional[int] =bos_token_id lowerCAmelCase_ : Any =eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
305
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : List[str] = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] lowerCAmelCase : Union[str, Any] = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
543
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __SCREAMING_SNAKE_CASE : Optional[int] = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __SCREAMING_SNAKE_CASE : List[str] = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' __SCREAMING_SNAKE_CASE : Optional[Any] = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def lowerCAmelCase_( lowercase_ : Union[str, Any] ) -> str: def remove_articles(lowercase_ : int ): _lowerCamelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(lowercase_ , ''' ''' , lowercase_ ) def white_space_fix(lowercase_ : List[Any] ): return " ".join(text.split() ) def remove_punc(lowercase_ : Dict ): _lowerCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase_ : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase_ ) ) ) ) def lowerCAmelCase_( lowercase_ : List[str] , lowercase_ : Optional[Any] ) -> Union[str, Any]: return int(normalize_answer(lowercase_ ) == normalize_answer(lowercase_ ) ) def lowerCAmelCase_( lowercase_ : Any , lowercase_ : Tuple ) -> Tuple: _lowerCamelCase = [any(compute_exact(lowercase_ , lowercase_ ) for ref in refs ) for pred, refs in zip(lowercase_ , lowercase_ )] return (sum(lowercase_ ) / len(lowercase_ )) * 1_00 def lowerCAmelCase_( lowercase_ : Tuple , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : str ) -> Optional[int]: _lowerCamelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _lowerCamelCase = Counter(lowercase_ ) _lowerCamelCase = Counter(lowercase_ ) _lowerCamelCase = Counter() for sgram, scount in sgramcounter.items(): _lowerCamelCase = scount * numref _lowerCamelCase = Counter(lowercase_ ) _lowerCamelCase = Counter() for cgram, ccount in cgramcounter.items(): _lowerCamelCase = ccount * numref # KEEP _lowerCamelCase = sgramcounter_rep & cgramcounter_rep _lowerCamelCase = keepgramcounter_rep & rgramcounter _lowerCamelCase = sgramcounter_rep & rgramcounter _lowerCamelCase = 0 _lowerCamelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCamelCase = 1 _lowerCamelCase = 1 if len(lowercase_ ) > 0: _lowerCamelCase = keeptmpscorea / len(lowercase_ ) if len(lowercase_ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _lowerCamelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _lowerCamelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _lowerCamelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _lowerCamelCase = sgramcounter_rep - cgramcounter_rep _lowerCamelCase = delgramcounter_rep - rgramcounter _lowerCamelCase = sgramcounter_rep - rgramcounter _lowerCamelCase = 0 _lowerCamelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCamelCase = 1 if len(lowercase_ ) > 0: _lowerCamelCase = deltmpscorea / len(lowercase_ ) # ADDITION _lowerCamelCase = set(lowercase_ ) - set(lowercase_ ) _lowerCamelCase = set(lowercase_ ) & set(lowercase_ ) _lowerCamelCase = set(lowercase_ ) - set(lowercase_ ) _lowerCamelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _lowerCamelCase = 1 _lowerCamelCase = 1 if len(lowercase_ ) > 0: _lowerCamelCase = addtmpscore / len(lowercase_ ) if len(lowercase_ ) > 0: _lowerCamelCase = addtmpscore / len(lowercase_ ) _lowerCamelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _lowerCamelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowerCAmelCase_( lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : str ) -> List[str]: _lowerCamelCase = len(lowercase_ ) _lowerCamelCase = ssent.split(''' ''' ) _lowerCamelCase = csent.split(''' ''' ) _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = [] for rsent in rsents: _lowerCamelCase = rsent.split(''' ''' ) _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = [] ragramslist.append(lowercase_ ) for i in range(0 , len(lowercase_ ) - 1 ): if i < len(lowercase_ ) - 1: _lowerCamelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(lowercase_ ) if i < len(lowercase_ ) - 2: _lowerCamelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(lowercase_ ) if i < len(lowercase_ ) - 3: _lowerCamelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(lowercase_ ) ragramslist.append(lowercase_ ) ragramslist.append(lowercase_ ) ragramslist.append(lowercase_ ) for i in range(0 , len(lowercase_ ) - 1 ): if i < len(lowercase_ ) - 1: _lowerCamelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(lowercase_ ) if i < len(lowercase_ ) - 2: _lowerCamelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(lowercase_ ) if i < len(lowercase_ ) - 3: _lowerCamelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(lowercase_ ) for i in range(0 , len(lowercase_ ) - 1 ): if i < len(lowercase_ ) - 1: _lowerCamelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(lowercase_ ) if i < len(lowercase_ ) - 2: _lowerCamelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(lowercase_ ) if i < len(lowercase_ ) - 3: _lowerCamelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(lowercase_ ) ((_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase)) = SARIngram(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ((_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase)) = SARIngram(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ((_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase)) = SARIngram(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ((_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase)) = SARIngram(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) _lowerCamelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _lowerCamelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _lowerCamelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _lowerCamelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowerCAmelCase_( lowercase_ : List[str] , lowercase_ : bool = True , lowercase_ : str = "13a" , lowercase_ : bool = True ) -> int: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _lowerCamelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _lowerCamelCase = sacrebleu.metrics.bleu._get_tokenizer(lowercase_ )()(lowercase_ ) else: _lowerCamelCase = sacrebleu.TOKENIZERS[tokenizer]()(lowercase_ ) elif tokenizer == "moses": _lowerCamelCase = sacremoses.MosesTokenizer().tokenize(lowercase_ , return_str=lowercase_ , escape=lowercase_ ) elif tokenizer == "penn": _lowerCamelCase = sacremoses.MosesTokenizer().penn_tokenize(lowercase_ , return_str=lowercase_ ) else: _lowerCamelCase = sentence if not return_str: _lowerCamelCase = normalized_sent.split() return normalized_sent def lowerCAmelCase_( lowercase_ : Any , lowercase_ : Any , lowercase_ : List[Any] ) -> Optional[int]: if not (len(lowercase_ ) == len(lowercase_ ) == len(lowercase_ )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _lowerCamelCase = 0 for src, pred, refs in zip(lowercase_ , lowercase_ , lowercase_ ): sari_score += SARIsent(normalize(lowercase_ ) , normalize(lowercase_ ) , [normalize(lowercase_ ) for sent in refs] ) _lowerCamelCase = sari_score / len(lowercase_ ) return 1_00 * sari_score def lowerCAmelCase_( lowercase_ : Any , lowercase_ : Any , lowercase_ : List[Any]="exp" , lowercase_ : List[Any]=None , lowercase_ : Optional[Any]=False , lowercase_ : List[Any]=False , lowercase_ : List[Any]=False , ) -> Dict: _lowerCamelCase = len(references[0] ) if any(len(lowercase_ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _lowerCamelCase = [[refs[i] for refs in references] for i in range(lowercase_ )] _lowerCamelCase = sacrebleu.corpus_bleu( lowercase_ , lowercase_ , smooth_method=lowercase_ , smooth_value=lowercase_ , force=lowercase_ , lowercase=lowercase_ , use_effective_order=lowercase_ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCamelCase_( datasets.Metric ): '''simple docstring''' def snake_case__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = {} result.update({'''sari''': compute_sari(sources=lowerCamelCase__ , predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) result.update({'''exact''': compute_em(predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) return result
661
0
'''simple docstring''' import os from collections.abc import Iterator def _lowerCAmelCase( UpperCAmelCase_ : str = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(_lowerCamelCase ): lowerCAmelCase__ = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_lowerCamelCase )[1] in (".py", ".ipynb"): yield os.path.join(_lowerCamelCase , _lowerCamelCase ).lstrip("""./""" ) def _lowerCAmelCase( UpperCAmelCase_ : List[str] ) -> Any: return F'''{i * " "}*''' if i else "\n##" def _lowerCAmelCase( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> str: lowerCAmelCase__ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_lowerCamelCase ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(_lowerCamelCase )} {new_part.replace("_" , " " ).title()}''' ) return new_path def _lowerCAmelCase( UpperCAmelCase_ : str = "." ) -> None: lowerCAmelCase__ = "" for filepath in sorted(good_file_paths(_lowerCamelCase ) ): lowerCAmelCase__ = os.path.split(_lowerCamelCase ) if filepath != old_path: lowerCAmelCase__ = print_path(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase__ = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase__ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) lowerCAmelCase__ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(_lowerCamelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(""".""")
706
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _lowerCAmelCase( UpperCAmelCase_ : List[Any] ) -> List[str]: lowerCAmelCase__ = SwinConfig(image_size=192 ) if "base" in model_name: lowerCAmelCase__ = 6 lowerCAmelCase__ = 128 lowerCAmelCase__ = (2, 2, 18, 2) lowerCAmelCase__ = (4, 8, 16, 32) elif "large" in model_name: lowerCAmelCase__ = 12 lowerCAmelCase__ = 192 lowerCAmelCase__ = (2, 2, 18, 2) lowerCAmelCase__ = (6, 12, 24, 48) else: raise ValueError("""Model not supported, only supports base and large variants""" ) lowerCAmelCase__ = window_size lowerCAmelCase__ = embed_dim lowerCAmelCase__ = depths lowerCAmelCase__ = num_heads return config def _lowerCAmelCase( UpperCAmelCase_ : str ) -> List[str]: if "encoder.mask_token" in name: lowerCAmelCase__ = name.replace("""encoder.mask_token""" , """embeddings.mask_token""" ) if "encoder.patch_embed.proj" in name: lowerCAmelCase__ = name.replace("""encoder.patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "encoder.patch_embed.norm" in name: lowerCAmelCase__ = name.replace("""encoder.patch_embed.norm""" , """embeddings.norm""" ) if "attn.proj" in name: lowerCAmelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCAmelCase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCAmelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCAmelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowerCAmelCase__ = """layernorm.weight""" if name == "encoder.norm.bias": lowerCAmelCase__ = """layernorm.bias""" if "decoder" in name: pass else: lowerCAmelCase__ = """swin.""" + name return name def _lowerCAmelCase( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ) -> Union[str, Any]: for key in orig_state_dict.copy().keys(): lowerCAmelCase__ = orig_state_dict.pop(UpperCAmelCase_ ) if "attn_mask" in key: pass elif "qkv" in key: lowerCAmelCase__ = key.split(""".""" ) lowerCAmelCase__ = int(key_split[2] ) lowerCAmelCase__ = int(key_split[4] ) lowerCAmelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[ dim : dim * 2, : ] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[ :dim ] lowerCAmelCase__ = val[ dim : dim * 2 ] lowerCAmelCase__ = val[ -dim: ] else: lowerCAmelCase__ = val return orig_state_dict def _lowerCAmelCase( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] ) -> Tuple: lowerCAmelCase__ = torch.load(UpperCAmelCase_ , map_location="""cpu""" )["""model"""] lowerCAmelCase__ = get_swin_config(UpperCAmelCase_ ) lowerCAmelCase__ = SwinForMaskedImageModeling(UpperCAmelCase_ ) model.eval() lowerCAmelCase__ = convert_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) lowerCAmelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase__ = ViTImageProcessor(size={"""height""": 192, """width""": 192} ) lowerCAmelCase__ = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) lowerCAmelCase__ = image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with torch.no_grad(): lowerCAmelCase__ = model(**UpperCAmelCase_ ).logits print(outputs.keys() ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _UpperCamelCase = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
211
0
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = False, False, False @dataclass class lowerCAmelCase : __lowercase : List[str] = None __lowercase : Dict = True __lowercase : Tuple = True __lowercase : Union[str, Any] = None # Automatically constructed __lowercase : List[str] = '''dict''' __lowercase : Union[str, Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()}) __lowercase : int = field(default='''Audio''' , init=__lowercase , repr=__lowercase) def __call__( self ) -> Any: '''simple docstring''' return self.pa_type def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"bytes": None, "path": value} elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __snake_case = BytesIO() sf.write(_SCREAMING_SNAKE_CASE , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __snake_case = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_2767 else: __snake_case = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_2767 __snake_case = BytesIO(bytes() ) sf.write(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( F'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> str: '''simple docstring''' if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) __snake_case , __snake_case = (value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(F'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err __snake_case = xsplitext(_SCREAMING_SNAKE_CASE )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. ''' ) if file is None: __snake_case = token_per_repo_id or {} __snake_case = path.split('''::''' )[-1] try: __snake_case = string_to_dict(_SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL )['''repo_id'''] __snake_case = token_per_repo_id[repo_id] except (ValueError, KeyError): __snake_case = None with xopen(_SCREAMING_SNAKE_CASE , '''rb''' , use_auth_token=_SCREAMING_SNAKE_CASE ) as f: __snake_case , __snake_case = sf.read(_SCREAMING_SNAKE_CASE ) else: __snake_case , __snake_case = sf.read(_SCREAMING_SNAKE_CASE ) __snake_case = array.T if self.mono: __snake_case = librosa.to_mono(_SCREAMING_SNAKE_CASE ) if self.sampling_rate and self.sampling_rate != sampling_rate: __snake_case = librosa.resample(_SCREAMING_SNAKE_CASE , orig_sr=_SCREAMING_SNAKE_CASE , target_sr=self.sampling_rate ) __snake_case = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCAmelCase ( self ) -> int: '''simple docstring''' from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' if pa.types.is_string(storage.type ): __snake_case = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) __snake_case = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __snake_case = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) __snake_case = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): __snake_case = pa.array([Audio().encode_example(_SCREAMING_SNAKE_CASE ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: __snake_case = storage.field('''bytes''' ) else: __snake_case = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: __snake_case = storage.field('''path''' ) else: __snake_case = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) __snake_case = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(__SCREAMING_SNAKE_CASE ): with xopen(_SCREAMING_SNAKE_CASE , '''rb''' ) as f: __snake_case = f.read() return bytes_ __snake_case = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __snake_case = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) __snake_case = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type )
24
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES a = logging.get_logger(__name__) a = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) a = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) a = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) a = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) a = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) a = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) a = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) a = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) a = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) a = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) a = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) a = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) a = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) a = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _A ( _BaseAutoModelClass ): __a = FLAX_MODEL_MAPPING a = auto_class_update(FlaxAutoModel) class _A ( _BaseAutoModelClass ): __a = FLAX_MODEL_FOR_PRETRAINING_MAPPING a = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class _A ( _BaseAutoModelClass ): __a = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING a = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class _A ( _BaseAutoModelClass ): __a = FLAX_MODEL_FOR_MASKED_LM_MAPPING a = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class _A ( _BaseAutoModelClass ): __a = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class _A ( _BaseAutoModelClass ): __a = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class _A ( _BaseAutoModelClass ): __a = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING a = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class _A ( _BaseAutoModelClass ): __a = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING a = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class _A ( _BaseAutoModelClass ): __a = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING a = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class _A ( _BaseAutoModelClass ): __a = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING a = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class _A ( _BaseAutoModelClass ): __a = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING a = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class _A ( _BaseAutoModelClass ): __a = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING a = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class _A ( _BaseAutoModelClass ): __a = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING a = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
518
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCamelCase_ = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __magic_name__ ( __a : Any ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __magic_name__ ( __a : List[Any] , __a : Any ): if args.student_type == "roberta": UpperCamelCase__ = False elif args.student_type == "gpt2": UpperCamelCase__ = False def __magic_name__ ( __a : int , __a : Dict ): if args.student_type == "roberta": UpperCamelCase__ = False def __magic_name__ ( ): UpperCamelCase__ = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=__a , required=__a , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=__a , required=__a , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=__a , choices=["""distilbert""", """roberta""", """gpt2"""] , required=__a , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=__a , required=__a , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=__a , type=__a , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=__a , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=__a , required=__a , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=__a , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=__a , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=__a , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=__a , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=__a , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=__a , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=__a , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=__a , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=__a , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=__a , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=__a , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=__a , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=__a , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=__a , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=__a , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=__a , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=__a , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5E-4 , type=__a , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=__a , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=__a , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=__a , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=__a , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=__a , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=__a , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=__a , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=__a , default=500 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=__a , default=4_000 , help="""Checkpoint interval.""" ) UpperCamelCase__ = parser.parse_args() sanity_checks(__a ) # ARGS # init_gpu_params(__a ) set_seed(__a ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(f"Param: {args}" ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(__a ) , __a , indent=4 ) git_log(args.dump_path ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = MODEL_CLASSES[args.student_type] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCamelCase__ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCamelCase__ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCamelCase__ = tokenizer.all_special_tokens.index(__a ) UpperCamelCase__ = tokenizer.all_special_ids[idx] logger.info(f"Special tokens {special_tok_ids}" ) UpperCamelCase__ = special_tok_ids UpperCamelCase__ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"Loading data from {args.data_file}" ) with open(args.data_file , """rb""" ) as fp: UpperCamelCase__ = pickle.load(__a ) if args.mlm: logger.info(f"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , """rb""" ) as fp: UpperCamelCase__ = pickle.load(__a ) UpperCamelCase__ = np.maximum(__a , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCamelCase__ = 0.0 # do not predict special tokens UpperCamelCase__ = torch.from_numpy(__a ) else: UpperCamelCase__ = None UpperCamelCase__ = LmSeqsDataset(params=__a , data=__a ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f"Loading student config from {args.student_config}" ) UpperCamelCase__ = student_config_class.from_pretrained(args.student_config ) UpperCamelCase__ = True if args.student_pretrained_weights is not None: logger.info(f"Loading pretrained weights from {args.student_pretrained_weights}" ) UpperCamelCase__ = student_model_class.from_pretrained(args.student_pretrained_weights , config=__a ) else: UpperCamelCase__ = student_model_class(__a ) if args.n_gpu > 0: student.to(f"cuda:{args.local_rank}" ) logger.info("""Student loaded.""" ) # TEACHER # UpperCamelCase__ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__a ) if args.n_gpu > 0: teacher.to(f"cuda:{args.local_rank}" ) logger.info(f"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__a , __a ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__a , __a ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCamelCase__ = Distiller( params=__a , dataset=__a , token_probs=__a , student=__a , teacher=__a ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
704
lowerCamelCase_ = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def __magic_name__ ( __a : int ): '''simple docstring''' UpperCamelCase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowerCamelCase_ = [None] * 10_00_00_00 lowerCamelCase_ = True lowerCamelCase_ = False def __magic_name__ ( __a : int ): '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCamelCase__ = chain(next_number(__a ) ) UpperCamelCase__ = number_chain while number < 10_000_000: UpperCamelCase__ = number_chain number *= 10 return number_chain def __magic_name__ ( __a : int = 10_000_000 ): '''simple docstring''' for i in range(1 , __a ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__a ) if __name__ == "__main__": import doctest doctest.testmod() print(f'{solution() = }')
86
0
from ..utils import DummyObject, requires_backends class __a( metaclass=_a ): """simple docstring""" lowerCAmelCase = ['''flax''', '''transformers'''] def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[Any]: requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls ,['''flax''', '''transformers'''] ) class __a( metaclass=_a ): """simple docstring""" lowerCAmelCase = ['''flax''', '''transformers'''] def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> str: requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(cls ,['''flax''', '''transformers'''] ) class __a( metaclass=_a ): """simple docstring""" lowerCAmelCase = ['''flax''', '''transformers'''] def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(cls ,['''flax''', '''transformers'''] ) class __a( metaclass=_a ): """simple docstring""" lowerCAmelCase = ['''flax''', '''transformers'''] def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(cls ,['''flax''', '''transformers'''] )
30
from math import pow, sqrt def snake_case (*__lowercase ) -> bool: '''simple docstring''' _snake_case : str = len(__lowercase ) > 0 and all(value > 0.0 for value in values ) return result def snake_case (__lowercase , __lowercase ) -> float | ValueError: '''simple docstring''' return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__lowercase , __lowercase ) else ValueError("Input Error: Molar mass values must greater than 0." ) ) def snake_case (__lowercase , __lowercase , __lowercase ) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__lowercase , __lowercase , __lowercase ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def snake_case (__lowercase , __lowercase , __lowercase ) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__lowercase , __lowercase , __lowercase ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def snake_case (__lowercase , __lowercase , __lowercase ) -> float | ValueError: '''simple docstring''' return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(__lowercase , __lowercase , __lowercase ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def snake_case (__lowercase , __lowercase , __lowercase ) -> float | ValueError: '''simple docstring''' return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(__lowercase , __lowercase , __lowercase ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) )
670
0
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class a__ ( unittest.TestCase ): def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = jnp.ones((batch_size, length) ) / length return scores def snake_case__ ( self ): '''simple docstring''' lowercase__ = None lowercase__ = 20 lowercase__ = self._get_uniform_logits(batch_size=2, length=_a ) # tweak scores to not be uniform anymore lowercase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowercase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowercase__ = jax.nn.softmax(_a, axis=-1 ) lowercase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase__ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowercase__ = jax.nn.softmax(temp_dist_warper_sharper(_a, scores.copy(), cur_len=_a ), axis=-1 ) lowercase__ = jax.nn.softmax(temp_dist_warper_smoother(_a, scores.copy(), cur_len=_a ), axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :], warped_prob_sharp[0, :], atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :], warped_prob_smooth[0, :], atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max(), warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min(), warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max(), warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min(), warped_prob_smooth[1, :].min() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = None lowercase__ = 10 lowercase__ = 2 # create ramp distribution lowercase__ = np.broadcast_to(np.arange(_a )[None, :], (batch_size, vocab_size) ).copy() lowercase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowercase__ = FlaxTopKLogitsWarper(3 ) lowercase__ = top_k_warp(_a, _a, cur_len=_a ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist(), 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist(), 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowercase__ = 5 lowercase__ = FlaxTopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3 ) lowercase__ = np.broadcast_to(np.arange(_a )[None, :], (batch_size, length) ).copy() lowercase__ = top_k_warp_safety_check(_a, _a, cur_len=_a ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist(), [2, 2] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = None lowercase__ = 10 lowercase__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowercase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowercase__ = FlaxTopPLogitsWarper(0.8 ) lowercase__ = np.exp(top_p_warp(_a, _a, cur_len=_a ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowercase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_a, _a, atol=1E-3 ) ) # check edge cases with negative and extreme logits lowercase__ = np.broadcast_to(np.arange(_a )[None, :], (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowercase__ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowercase__ = FlaxTopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0 ) lowercase__ = top_p_warp(_a, _a, cur_len=_a ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist(), [3, 2] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = 20 lowercase__ = 4 lowercase__ = 0 lowercase__ = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=_a ) # check that min length is applied at length 5 lowercase__ = ids_tensor((batch_size, 20), vocab_size=20 ) lowercase__ = 5 lowercase__ = self._get_uniform_logits(_a, _a ) lowercase__ = min_dist_processor(_a, _a, cur_len=_a ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(), 4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 lowercase__ = self._get_uniform_logits(_a, _a ) lowercase__ = 15 lowercase__ = min_dist_processor(_a, _a, cur_len=_a ) self.assertFalse(jnp.isinf(_a ).any() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = 20 lowercase__ = 4 lowercase__ = 0 lowercase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_a ) # check that all scores are -inf except the bos_token_id score lowercase__ = ids_tensor((batch_size, 1), vocab_size=20 ) lowercase__ = 1 lowercase__ = self._get_uniform_logits(_a, _a ) lowercase__ = logits_processor(_a, _a, cur_len=_a ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist(), 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowercase__ = 3 lowercase__ = self._get_uniform_logits(_a, _a ) lowercase__ = logits_processor(_a, _a, cur_len=_a ) self.assertFalse(jnp.isinf(_a ).any() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = 20 lowercase__ = 4 lowercase__ = 0 lowercase__ = 5 lowercase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_a, eos_token_id=_a ) # check that all scores are -inf except the eos_token_id when max_length is reached lowercase__ = ids_tensor((batch_size, 4), vocab_size=20 ) lowercase__ = 4 lowercase__ = self._get_uniform_logits(_a, _a ) lowercase__ = logits_processor(_a, _a, cur_len=_a ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist(), 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowercase__ = 3 lowercase__ = self._get_uniform_logits(_a, _a ) lowercase__ = logits_processor(_a, _a, cur_len=_a ) self.assertFalse(jnp.isinf(_a ).any() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = 4 lowercase__ = 10 lowercase__ = 15 lowercase__ = 2 lowercase__ = 1 lowercase__ = 15 # dummy input_ids and scores lowercase__ = ids_tensor((batch_size, sequence_length), _a ) lowercase__ = input_ids.copy() lowercase__ = self._get_uniform_logits(_a, _a ) lowercase__ = scores.copy() # instantiate all dist processors lowercase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase__ = FlaxTopKLogitsWarper(3 ) lowercase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowercase__ = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=_a ) lowercase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_a ) lowercase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_a, eos_token_id=_a ) lowercase__ = 10 # no processor list lowercase__ = temp_dist_warp(_a, _a, cur_len=_a ) lowercase__ = top_k_warp(_a, _a, cur_len=_a ) lowercase__ = top_p_warp(_a, _a, cur_len=_a ) lowercase__ = min_dist_proc(_a, _a, cur_len=_a ) lowercase__ = bos_dist_proc(_a, _a, cur_len=_a ) lowercase__ = eos_dist_proc(_a, _a, cur_len=_a ) # with processor list lowercase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowercase__ = processor(_a, _a, cur_len=_a ) # scores should be equal self.assertTrue(jnp.allclose(_a, _a, atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = 4 lowercase__ = 10 lowercase__ = 15 lowercase__ = 2 lowercase__ = 1 lowercase__ = 15 # dummy input_ids and scores lowercase__ = ids_tensor((batch_size, sequence_length), _a ) lowercase__ = input_ids.copy() lowercase__ = self._get_uniform_logits(_a, _a ) lowercase__ = scores.copy() # instantiate all dist processors lowercase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase__ = FlaxTopKLogitsWarper(3 ) lowercase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowercase__ = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=_a ) lowercase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_a ) lowercase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_a, eos_token_id=_a ) lowercase__ = 10 # no processor list def run_no_processor_list(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): lowercase__ = temp_dist_warp(_a, _a, cur_len=_a ) lowercase__ = top_k_warp(_a, _a, cur_len=_a ) lowercase__ = top_p_warp(_a, _a, cur_len=_a ) lowercase__ = min_dist_proc(_a, _a, cur_len=_a ) lowercase__ = bos_dist_proc(_a, _a, cur_len=_a ) lowercase__ = eos_dist_proc(_a, _a, cur_len=_a ) return scores # with processor list def run_processor_list(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): lowercase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowercase__ = processor(_a, _a, cur_len=_a ) return scores lowercase__ = jax.jit(_a ) lowercase__ = jax.jit(_a ) lowercase__ = jitted_run_no_processor_list(_a, _a, _a ) lowercase__ = jitted_run_processor_list(_a, _a, _a ) # scores should be equal self.assertTrue(jnp.allclose(_a, _a, atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() )
710
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ): '''simple docstring''' lowercase__ = symbols(A ) lowercase__ = lambdify(A , A ) lowercase__ = lambdify(A , diff(A , A ) ) lowercase__ = starting_point while True: if diff_function(A ) != 0: lowercase__ = prev_guess - multiplicity * func(A ) / diff_function( A ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( "The root of log(y) - 1 = 0 is ", F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
668
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __snake_case :str =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCAmelCase__ : Any ) -> str: '''simple docstring''' A = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) A = DetaConfig( backbone_config=__lowerCAmelCase , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=__lowerCAmelCase , with_box_refine=__lowerCAmelCase , two_stage=__lowerCAmelCase , ) # set labels A = 'huggingface/label-files' if "o365" in model_name: A = 366 A = 'object365-id2label.json' else: A = 91 A = 'coco-detection-id2label.json' A = num_labels A = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) ) , 'r' ) ) A = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' A = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def lowerCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' A = dct.pop(__lowerCAmelCase ) A = val def lowerCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] ) -> Dict: '''simple docstring''' A = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) A = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[:dim, :] A = in_proj_bias[: dim] A = in_proj_weight[ dim : dim * 2, : ] A = in_proj_bias[ dim : dim * 2 ] A = in_proj_weight[ -dim :, : ] A = in_proj_bias[-dim :] # fmt: on def lowerCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any ) -> Any: '''simple docstring''' A = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention A = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) A = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[:hidden_size, :] A = in_proj_bias[:hidden_size] A = in_proj_weight[ hidden_size : hidden_size * 2, : ] A = in_proj_bias[hidden_size : hidden_size * 2] A = in_proj_weight[-hidden_size:, :] A = in_proj_bias[-hidden_size:] def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int ) -> Optional[Any]: '''simple docstring''' A = get_deta_config(__lowerCAmelCase ) # load original state dict if model_name == "deta-swin-large": A = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": A = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(F'''Model name {model_name} not supported''' ) A = torch.load(__lowerCAmelCase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowerCAmelCase , param.shape ) # rename keys A = create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_swin_q_k_v(__lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: A = state_dict.pop(__lowerCAmelCase ) A = val if "input_proj" in key: A = state_dict.pop(__lowerCAmelCase ) A = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: A = state_dict.pop(__lowerCAmelCase ) A = val # finally, create HuggingFace model and load state dict A = DetaForObjectDetection(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() A = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowerCAmelCase ) # load image processor A = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image A = prepare_img() A = processor(images=__lowerCAmelCase , return_tensors='pt' ) A = encoding['pixel_values'] A = model(pixel_values.to(__lowerCAmelCase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": A = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) A = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": A = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) A = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowerCAmelCase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowerCAmelCase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(F'''jozhang97/{model_name}''' ) processor.push_to_hub(F'''jozhang97/{model_name}''' ) if __name__ == "__main__": __snake_case :List[str] =argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __snake_case :Tuple =parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
106
"""simple docstring""" from math import factorial UpperCAmelCase : Tuple = {str(d): factorial(d) for d in range(10)} def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(__lowerCAmelCase ) ) def _SCREAMING_SNAKE_CASE () -> int: '''simple docstring''' lowercase_ = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , __lowerCAmelCase ) if sum_of_digit_factorial(__lowerCAmelCase ) == i ) if __name__ == "__main__": print(F"{solution() = }")
567
0
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__UpperCamelCase ,n - 1 ,__UpperCamelCase ) * a) % mod else: lowerCamelCase_ = binary_exponentiation(__UpperCamelCase ,n / 2 ,__UpperCamelCase ) return (b * b) % mod # a prime number A_ = 701 A_ = 1_000_000_000 A_ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
384
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class UpperCAmelCase : '''simple docstring''' @staticmethod def UpperCamelCase( *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' pass def _UpperCamelCase ( __UpperCamelCase ) -> str: lowerCamelCase_ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _UpperCamelCase ( __UpperCamelCase ) -> Dict: lowerCamelCase_ = np.array(__UpperCamelCase ) lowerCamelCase_ = npimg.shape return {"hash": hashimage(__UpperCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) SCREAMING_SNAKE_CASE_ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = MaskGenerationPipeline(model=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def UpperCamelCase( self ) -> int: '''simple docstring''' pass @slow @require_torch def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) lowerCamelCase_ = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=256 ) # Shortening by hashing lowerCamelCase_ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_444}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.021}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_132}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_053}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9_967}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.993}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9_909}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9_879}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9_834}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9_716}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9_612}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9_599}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9_552}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9_532}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9_516}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9_499}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9_483}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9_464}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9_408}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9_335}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9_326}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9_262}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8_999}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8_986}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8_984}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8_873}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8_871} ] , ) # fmt: on @require_torch @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = 'facebook/sam-vit-huge' lowerCamelCase_ = pipeline('mask-generation' , model=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing lowerCamelCase_ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_444}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_210}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_132}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_053}, ] , )
384
1
def __a ( A__ : int ): if not isinstance(A__ , A__ ): SCREAMING_SNAKE_CASE = F"Input value of [number={number}] must be an integer" raise TypeError(A__ ) if number < 0: return False SCREAMING_SNAKE_CASE = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
16
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( a_ ): """simple docstring""" A__ : str = ['image_processor', 'tokenizer'] A__ : Dict = 'CLIPImageProcessor' A__ : str = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> List[Any]: _UpperCamelCase : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) _UpperCamelCase : Optional[Any] = kwargs.pop('''feature_extractor''' ) _UpperCamelCase : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Dict: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _UpperCamelCase : List[str] = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: _UpperCamelCase : str = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: _UpperCamelCase : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def _lowercase ( self , *_snake_case , **_snake_case ) -> Tuple: return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def _lowercase ( self , *_snake_case , **_snake_case ) -> Any: return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def _lowercase ( self ) -> int: _UpperCamelCase : Optional[int] = self.tokenizer.model_input_names _UpperCamelCase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
683
0
from __future__ import annotations class __a : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__ , lowercase__: Dict = text, pattern lowercase__ , lowercase__: List[str] = len(lowerCAmelCase__ ), len(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE__ ( self ) -> list[int]: '''simple docstring''' # searches pattern in text and returns index positions lowercase__: Optional[int] = [] for i in range(self.textLen - self.patLen + 1 ): lowercase__: Optional[int] = self.mismatch_in_text(lowerCAmelCase__ ) if mismatch_index == -1: positions.append(lowerCAmelCase__ ) else: lowercase__: Any = self.match_in_pattern(self.text[mismatch_index] ) lowercase__: Tuple = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __lowerCAmelCase = '''ABAABA''' __lowerCAmelCase = '''AB''' __lowerCAmelCase = BoyerMooreSearch(text, pattern) __lowerCAmelCase = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
335
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED __lowerCAmelCase = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } __lowerCAmelCase = { '''allenai/led-base-16384''': 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ) -> str: lowercase__: Dict = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowercase__: Any = bs[:] lowercase__: int = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case ) cs.append(2**8 + n ) n += 1 lowercase__: Any = [chr(snake_case ) for n in cs] return dict(zip(snake_case , snake_case ) ) def snake_case_ ( snake_case ) -> Optional[Any]: lowercase__: Optional[int] = set() lowercase__: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__: Dict = char return pairs class __a ( __UpperCamelCase ): __lowercase : str = VOCAB_FILES_NAMES __lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[str] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Any: '''simple docstring''' lowercase__: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token lowercase__: Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token lowercase__: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token lowercase__: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token lowercase__: Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token lowercase__: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__: Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding='utf-8' ) as vocab_handle: lowercase__: int = json.load(lowerCAmelCase__ ) lowercase__: int = {v: k for k, v in self.encoder.items()} lowercase__: Any = errors # how to handle errors in decoding lowercase__: Optional[Any] = bytes_to_unicode() lowercase__: Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding='utf-8' ) as merges_handle: lowercase__: Any = merges_handle.read().split('\n' )[1:-1] lowercase__: int = [tuple(merge.split() ) for merge in bpe_merges] lowercase__: Optional[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) lowercase__: Any = {} lowercase__: str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__: Tuple = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Any: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase__: List[Any] = tuple(lowerCAmelCase__ ) lowercase__: str = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowercase__: str = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__: Optional[Any] = bigram lowercase__: str = [] lowercase__: Tuple = 0 while i < len(lowerCAmelCase__ ): try: lowercase__: Dict = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__: Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__: Optional[int] = tuple(lowerCAmelCase__ ) lowercase__: List[Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowercase__: List[str] = get_pairs(lowerCAmelCase__ ) lowercase__: Optional[int] = ' '.join(lowerCAmelCase__ ) lowercase__: Dict = word return word def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__: List[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__ ): lowercase__: Optional[Any] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(' ' ) ) return bpe_tokens def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Any: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: Tuple = ''.join(lowerCAmelCase__ ) lowercase__: Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowercase__: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + '\n' ) lowercase__: Optional[Any] = 0 with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) lowercase__: Optional[int] = token_index writer.write(' '.join(lowerCAmelCase__ ) + '\n' ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__: Union[str, Any] = [self.cls_token_id] lowercase__: Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' lowercase__: Optional[int] = [self.sep_token_id] lowercase__: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> str: '''simple docstring''' lowercase__: int = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowercase__: List[str] = ' ' + text return (text, kwargs) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> dict: '''simple docstring''' lowercase__: Optional[Any] = super()._pad( encoded_inputs=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding_strategy=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) # Load from model defaults if return_attention_mask is None: lowercase__: Tuple = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase__: int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase__: Tuple = len(encoded_inputs['global_attention_mask'] ) != len(lowerCAmelCase__ ) if needs_to_be_padded: lowercase__: Optional[Any] = len(lowerCAmelCase__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase__: str = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": lowercase__: Optional[Any] = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
335
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ : Union[str, Any] = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = ["ConditionalDetrFeatureExtractor"] UpperCAmelCase__ : Dict = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[str] = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
48
from collections.abc import Sequence def __lowerCAmelCase ( _UpperCamelCase : Sequence[int] | None = None ) -> int: '''simple docstring''' if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) SCREAMING_SNAKE_CASE = nums[0] for i in range(1 , len(_UpperCamelCase ) ): SCREAMING_SNAKE_CASE = nums[i] SCREAMING_SNAKE_CASE = max(_UpperCamelCase , ans + num , _UpperCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user a_ : str = int(input("Enter number of elements : ").strip()) a_ : Any = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
439
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch A__: Dict = logging.get_logger(__name__) class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Tuple = ["pixel_values"] def __init__( self :Optional[Any] , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE :PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Dict[str, int] = None , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE :Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE :Optional[Any] , ) -> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : int =size if size is not None else {"""shortest_edge""": 2_5_6} _a : int =get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} _a : Tuple =get_size_dict(SCREAMING_SNAKE_CASE , param_name="""crop_size""" ) _a : Tuple =do_resize _a : Optional[Any] =size _a : Any =resample _a : Any =do_center_crop _a : Optional[int] =crop_size _a : int =do_rescale _a : Union[str, Any] =rescale_factor _a : List[Any] =do_normalize _a : Optional[int] =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : int =image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :np.ndarray , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE :Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE :int , ) -> np.ndarray: '''simple docstring''' _a : List[str] =get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) _a : Union[str, Any] =get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=size["""shortest_edge"""] , default_to_square=SCREAMING_SNAKE_CASE ) return resize(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :np.ndarray , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE :int , ) -> np.ndarray: '''simple docstring''' _a : str =get_size_dict(SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :np.ndarray , SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE :List[Any] ) -> np.ndarray: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :np.ndarray , SCREAMING_SNAKE_CASE :Union[float, List[float]] , SCREAMING_SNAKE_CASE :Union[float, List[float]] , SCREAMING_SNAKE_CASE :Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE :Dict , ) -> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :ImageInput , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :Dict[str, int] = None , SCREAMING_SNAKE_CASE :PILImageResampling = None , SCREAMING_SNAKE_CASE :bool = None , SCREAMING_SNAKE_CASE :Dict[str, int] = None , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :Optional[float] = None , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE :Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE :Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE :Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE :str , ) -> Tuple: '''simple docstring''' _a : Optional[Any] =do_resize if do_resize is not None else self.do_resize _a : List[Any] =size if size is not None else self.size _a : List[str] =get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) _a : List[Any] =resample if resample is not None else self.resample _a : Optional[Any] =do_center_crop if do_center_crop is not None else self.do_center_crop _a : List[Any] =crop_size if crop_size is not None else self.crop_size _a : int =get_size_dict(SCREAMING_SNAKE_CASE , param_name="""crop_size""" ) _a : Optional[Any] =do_rescale if do_rescale is not None else self.do_rescale _a : Optional[int] =rescale_factor if rescale_factor is not None else self.rescale_factor _a : Optional[Any] =do_normalize if do_normalize is not None else self.do_normalize _a : List[Any] =image_mean if image_mean is not None else self.image_mean _a : Any =image_std if image_std is not None else self.image_std _a : Optional[int] =make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _a : str =[to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_resize: _a : Any =[self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: _a : int =[self.center_crop(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: _a : Optional[int] =[self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: _a : Optional[int] =[self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images] _a : Dict =[to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] _a : Dict ={"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :List[Tuple] = None ) -> List[Any]: '''simple docstring''' _a : Any =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(SCREAMING_SNAKE_CASE ): _a : List[str] =target_sizes.numpy() _a : List[str] =[] for idx in range(len(SCREAMING_SNAKE_CASE ) ): _a : List[str] =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=SCREAMING_SNAKE_CASE ) _a : Any =resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE ) else: _a : Optional[int] =logits.argmax(dim=1 ) _a : List[str] =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
710
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A__: Any = logging.get_logger(__name__) class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict = ["pixel_values"] def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE :PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Dict[str, int] = None , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE :Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE :Optional[int] , ) -> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : Any =size if size is not None else {"""shortest_edge""": 2_5_6} _a : int =get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} _a : Union[str, Any] =get_size_dict(SCREAMING_SNAKE_CASE ) _a : List[Any] =do_resize _a : Optional[int] =size _a : Union[str, Any] =resample _a : List[Any] =do_center_crop _a : Optional[Any] =crop_size _a : List[Any] =do_rescale _a : Optional[int] =rescale_factor _a : int =do_normalize _a : Tuple =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : Any =image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :np.ndarray , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE :Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE :Any , ) -> np.ndarray: '''simple docstring''' _a : Any =get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) _a : Union[str, Any] =get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=size["""shortest_edge"""] , default_to_square=SCREAMING_SNAKE_CASE ) return resize(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :np.ndarray , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE :Union[str, Any] , ) -> np.ndarray: '''simple docstring''' _a : List[str] =get_size_dict(SCREAMING_SNAKE_CASE ) return center_crop(SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :np.ndarray , SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE :Optional[Any] ) -> np.ndarray: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :np.ndarray , SCREAMING_SNAKE_CASE :Union[float, List[float]] , SCREAMING_SNAKE_CASE :Union[float, List[float]] , SCREAMING_SNAKE_CASE :Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE :List[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :ImageInput , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :Dict[str, int] = None , SCREAMING_SNAKE_CASE :PILImageResampling = None , SCREAMING_SNAKE_CASE :bool = None , SCREAMING_SNAKE_CASE :Dict[str, int] = None , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :Optional[float] = None , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE :Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE :Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE :Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE :Optional[Any] , ) -> Optional[Any]: '''simple docstring''' _a : Optional[Any] =do_resize if do_resize is not None else self.do_resize _a : int =size if size is not None else self.size _a : str =get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) _a : int =resample if resample is not None else self.resample _a : Optional[int] =do_center_crop if do_center_crop is not None else self.do_center_crop _a : Union[str, Any] =crop_size if crop_size is not None else self.crop_size _a : Any =get_size_dict(SCREAMING_SNAKE_CASE ) _a : Any =do_rescale if do_rescale is not None else self.do_rescale _a : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor _a : str =do_normalize if do_normalize is not None else self.do_normalize _a : Union[str, Any] =image_mean if image_mean is not None else self.image_mean _a : Optional[Any] =image_std if image_std is not None else self.image_std _a : List[Any] =make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _a : int =[to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_resize: _a : Tuple =[self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: _a : Union[str, Any] =[self.center_crop(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: _a : int =[self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: _a : Any =[self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images] _a : Tuple =[to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] _a : Any ={"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
506
0
'''simple docstring''' def lowerCAmelCase (__A = 4_000_000): """simple docstring""" _a = [] _a , _a = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__A) _a , _a = b, a + b return sum(__A) if __name__ == "__main__": print(F"""{solution() = }""")
11
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class UpperCamelCase ( unittest.TestCase ): @parameterized.expand([(None,), ("foo.json",)] ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = GenerationConfig( do_sample=snake_case__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , config_name=snake_case__ ) _SCREAMING_SNAKE_CASE : List[str] = GenerationConfig.from_pretrained(snake_case__ , config_name=snake_case__ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , snake_case__ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained("gpt2" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = GenerationConfig.from_model_config(snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(snake_case__ , snake_case__ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = GenerationConfig() _SCREAMING_SNAKE_CASE : str = { "max_new_tokens": 1024, "foo": "bar", } _SCREAMING_SNAKE_CASE : List[str] = copy.deepcopy(snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[int] = generation_config.update(**snake_case__ ) # update_kwargs was not modified (no side effects) self.assertEqual(snake_case__ , snake_case__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(snake_case__ , {"foo": "bar"} ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = GenerationConfig() _SCREAMING_SNAKE_CASE : Dict = "bar" with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir: generation_config.save_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE : List[Any] = GenerationConfig.from_pretrained(snake_case__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar" ) _SCREAMING_SNAKE_CASE : Any = GenerationConfig.from_model_config(snake_case__ ) assert not hasattr(snake_case__ , "foo" ) # no new kwargs should be initialized if from config def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , snake_case__ ) self.assertEqual(default_config.num_beams , 1 ) _SCREAMING_SNAKE_CASE : Dict = GenerationConfig( do_sample=snake_case__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , snake_case__ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE : Any = GenerationConfig.from_pretrained(snake_case__ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , snake_case__ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class UpperCamelCase ( unittest.TestCase ): @classmethod def __SCREAMING_SNAKE_CASE ( cls ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def __SCREAMING_SNAKE_CASE ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-generation-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org" ) except HTTPError: pass def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = GenerationConfig( do_sample=snake_case__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE : Any = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="test-generation-config" , push_to_hub=snake_case__ , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE : Optional[int] = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = GenerationConfig( do_sample=snake_case__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE : Tuple = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="valid_org/test-generation-config-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE : int = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) )
572
0
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): return image elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): __A : Optional[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): __A : Dict = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] __A : int = np.concatenate(_SCREAMING_SNAKE_CASE , axis=0 ) __A : Tuple = np.array(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 2_55.0 __A : str = image.transpose(0 , 3 , 1 , 2 ) __A : Optional[Any] = 2.0 * image - 1.0 __A : List[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ) elif isinstance(image[0] , torch.Tensor ): __A : List[str] = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) return image def _lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any]=0.99_95 ) -> Any: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): __A : str = True __A : Union[str, Any] = va.device __A : List[Any] = va.cpu().numpy() __A : Tuple = va.cpu().numpy() __A : Any = np.sum(va * va / (np.linalg.norm(_SCREAMING_SNAKE_CASE ) * np.linalg.norm(_SCREAMING_SNAKE_CASE )) ) if np.abs(_SCREAMING_SNAKE_CASE ) > DOT_THRESHOLD: __A : Union[str, Any] = (1 - t) * va + t * va else: __A : Optional[int] = np.arccos(_SCREAMING_SNAKE_CASE ) __A : List[Any] = np.sin(_SCREAMING_SNAKE_CASE ) __A : Optional[int] = theta_a * t __A : Optional[Any] = np.sin(_SCREAMING_SNAKE_CASE ) __A : int = np.sin(theta_a - theta_t ) / sin_theta_a __A : str = sin_theta_t / sin_theta_a __A : Any = sa * va + sa * va if inputs_are_torch: __A : List[str] = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) return va def _lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Dict ) -> int: '''simple docstring''' __A : List[Any] = F.normalize(_SCREAMING_SNAKE_CASE , dim=-1 ) __A : str = F.normalize(_SCREAMING_SNAKE_CASE , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def _lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: '''simple docstring''' for param in model.parameters(): __A : Any = value class __snake_case( A_ ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ): '''simple docstring''' super().__init__() self.register_modules( vae=__lowerCamelCase , text_encoder=__lowerCamelCase , clip_model=__lowerCamelCase , tokenizer=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase , feature_extractor=__lowerCamelCase , coca_model=__lowerCamelCase , coca_tokenizer=__lowerCamelCase , coca_transform=__lowerCamelCase , ) __A : str = ( feature_extractor.size if isinstance(feature_extractor.size , __lowerCamelCase ) else feature_extractor.size['shortest_edge'] ) __A : int = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __lowerCamelCase ) set_requires_grad(self.clip_model , __lowerCamelCase ) def _a ( self , __lowerCamelCase = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __A : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCamelCase ) def _a ( self ): '''simple docstring''' self.enable_attention_slicing(__lowerCamelCase ) def _a ( self ): '''simple docstring''' set_requires_grad(self.vae , __lowerCamelCase ) def _a ( self ): '''simple docstring''' set_requires_grad(self.vae , __lowerCamelCase ) def _a ( self ): '''simple docstring''' set_requires_grad(self.unet , __lowerCamelCase ) def _a ( self ): '''simple docstring''' set_requires_grad(self.unet , __lowerCamelCase ) def _a ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = min(int(num_inference_steps * strength ) , __lowerCamelCase ) __A : int = max(num_inference_steps - init_timestep , 0 ) __A : Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _a ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ): '''simple docstring''' if not isinstance(__lowerCamelCase , torch.Tensor ): raise ValueError(F'`image` has to be of type `torch.Tensor` but is {type(__lowerCamelCase )}' ) __A : Union[str, Any] = image.to(device=__lowerCamelCase , dtype=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): __A : Optional[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCamelCase ) ] __A : List[Any] = torch.cat(__lowerCamelCase , dim=0 ) else: __A : Tuple = self.vae.encode(__lowerCamelCase ).latent_dist.sample(__lowerCamelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __A : Optional[int] = 0.1_82_15 * init_latents __A : Optional[int] = init_latents.repeat_interleave(__lowerCamelCase , dim=0 ) __A : List[Any] = randn_tensor(init_latents.shape , generator=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase ) # get latents __A : Optional[int] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __A : Optional[int] = init_latents return latents def _a ( self , __lowerCamelCase ): '''simple docstring''' __A : int = self.coca_transform(__lowerCamelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __A : List[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) __A : Optional[int] = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def _a ( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = self.feature_extractor.preprocess(__lowerCamelCase ) __A : List[str] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() __A : int = self.clip_model.get_image_features(__lowerCamelCase ) __A : Tuple = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__lowerCamelCase ) __A : Dict = image_embeddings_clip.repeat_interleave(__lowerCamelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def _a ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' __A : Dict = latents.detach().requires_grad_() __A : Dict = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase ) # predict the noise residual __A : Optional[Any] = self.unet(__lowerCamelCase , __lowerCamelCase , encoder_hidden_states=__lowerCamelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __A : Union[str, Any] = self.scheduler.alphas_cumprod[timestep] __A : Any = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __A : str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __A : List[str] = torch.sqrt(__lowerCamelCase ) __A : int = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __lowerCamelCase ): __A : List[Any] = self.scheduler.sigmas[index] __A : Union[str, Any] = latents - sigma * noise_pred else: raise ValueError(F'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __A : Tuple = 1 / 0.1_82_15 * sample __A : List[Any] = self.vae.decode(__lowerCamelCase ).sample __A : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) __A : Optional[Any] = transforms.Resize(self.feature_extractor_size )(__lowerCamelCase ) __A : Optional[int] = self.normalize(__lowerCamelCase ).to(latents.dtype ) __A : List[str] = self.clip_model.get_image_features(__lowerCamelCase ) __A : Tuple = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__lowerCamelCase ) __A : str = spherical_dist_loss(__lowerCamelCase , __lowerCamelCase ).mean() * clip_guidance_scale __A : List[str] = -torch.autograd.grad(__lowerCamelCase , __lowerCamelCase )[0] if isinstance(self.scheduler , __lowerCamelCase ): __A : int = latents.detach() + grads * (sigma**2) __A : Any = noise_pred_original else: __A : Any = noise_pred_original - torch.sqrt(__lowerCamelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 512 , __lowerCamelCase = 512 , __lowerCamelCase = 0.6 , __lowerCamelCase = 50 , __lowerCamelCase = 7.5 , __lowerCamelCase = 1 , __lowerCamelCase = 0.0 , __lowerCamelCase = 100 , __lowerCamelCase = None , __lowerCamelCase = "pil" , __lowerCamelCase = True , __lowerCamelCase = 0.8 , __lowerCamelCase = 0.1 , __lowerCamelCase = 0.1 , ): '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError(F'You have passed {batch_size} batch_size, but only {len(__lowerCamelCase )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(__lowerCamelCase , torch.Generator ) and batch_size > 1: __A : str = [generator] + [None] * (batch_size - 1) __A : str = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] __A : List[str] = [x[0] for x in coca_is_none if x[1]] __A : Optional[int] = ', '.join(__lowerCamelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__lowerCamelCase ): raise ValueError( F'Content prompt is None and CoCa [{coca_is_none_str}] is None.' F'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) __A : int = self.get_image_description(__lowerCamelCase ) if style_prompt is None: if len(__lowerCamelCase ): raise ValueError( F'Style prompt is None and CoCa [{coca_is_none_str}] is None.' F' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) __A : Dict = self.get_image_description(__lowerCamelCase ) # get prompt text embeddings for content and style __A : int = self.tokenizer( __lowerCamelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=__lowerCamelCase , return_tensors='pt' , ) __A : Union[str, Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __A : str = self.tokenizer( __lowerCamelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=__lowerCamelCase , return_tensors='pt' , ) __A : List[Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __A : Tuple = slerp(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # duplicate text embeddings for each generation per prompt __A : Union[str, Any] = text_embeddings.repeat_interleave(__lowerCamelCase , dim=0 ) # set timesteps __A : Optional[int] = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __A : Dict = {} if accepts_offset: __A : str = 1 self.scheduler.set_timesteps(__lowerCamelCase , **__lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __A , __A : Tuple = self.get_timesteps(__lowerCamelCase , __lowerCamelCase , self.device ) __A : List[Any] = timesteps[:1].repeat(__lowerCamelCase ) # Preprocess image __A : Dict = preprocess(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __A : Optional[Any] = self.prepare_latents( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , text_embeddings.dtype , self.device , __lowerCamelCase ) __A : str = preprocess(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __A : Tuple = self.prepare_latents( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , text_embeddings.dtype , self.device , __lowerCamelCase ) __A : Optional[Any] = slerp(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if clip_guidance_scale > 0: __A : Dict = self.get_clip_image_embeddings(__lowerCamelCase , __lowerCamelCase ) __A : int = self.get_clip_image_embeddings(__lowerCamelCase , __lowerCamelCase ) __A : Union[str, Any] = slerp( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __A : Any = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __A : Any = content_text_input.input_ids.shape[-1] __A : List[str] = self.tokenizer([''] , padding='max_length' , max_length=__lowerCamelCase , return_tensors='pt' ) __A : Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __A : Optional[Any] = uncond_embeddings.repeat_interleave(__lowerCamelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __A : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __A : List[str] = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __A : Optional[int] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __A : List[str] = torch.randn(__lowerCamelCase , generator=__lowerCamelCase , device='cpu' , dtype=__lowerCamelCase ).to( self.device ) else: __A : Optional[Any] = torch.randn(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=__lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __A : str = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __A : Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __A : Union[str, Any] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __A : Optional[int] = {} if accepts_eta: __A : Any = eta # check if the scheduler accepts generator __A : Union[str, Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __A : Optional[Any] = generator with self.progress_bar(total=__lowerCamelCase ): for i, t in enumerate(__lowerCamelCase ): # expand the latents if we are doing classifier free guidance __A : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __A : Optional[Any] = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase ) # predict the noise residual __A : Optional[Any] = self.unet(__lowerCamelCase , __lowerCamelCase , encoder_hidden_states=__lowerCamelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: __A , __A : str = noise_pred.chunk(2 ) __A : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __A : Optional[int] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __A , __A : List[Any] = self.cond_fn( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) # compute the previous noisy sample x_t -> x_t-1 __A : List[str] = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __A : Union[str, Any] = 1 / 0.1_82_15 * latents __A : Dict = self.vae.decode(__lowerCamelCase ).sample __A : Dict = (image / 2 + 0.5).clamp(0 , 1 ) __A : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __A : List[str] = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__lowerCamelCase , nsfw_content_detected=__lowerCamelCase )
237
"""simple docstring""" from __future__ import annotations from random import random from typing import Generic, TypeVar lowerCamelCase : Tuple =TypeVar('''KT''') lowerCamelCase : Dict =TypeVar('''VT''') class __snake_case( Generic[KT, VT] ): '''simple docstring''' def __init__( self , __lowerCamelCase = "root" , __lowerCamelCase = None ): '''simple docstring''' __A : str = key __A : int = value __A : list[Node[KT, VT]] = [] def __repr__( self ): '''simple docstring''' return F'Node({self.key}: {self.value})' @property def _a ( self ): '''simple docstring''' return len(self.forward ) class __snake_case( Generic[KT, VT] ): '''simple docstring''' def __init__( self , __lowerCamelCase = 0.5 , __lowerCamelCase = 16 ): '''simple docstring''' __A : Node[KT, VT] = Node[KT, VT]() __A : str = 0 __A : Tuple = p __A : Union[str, Any] = max_level def __str__( self ): '''simple docstring''' __A : List[Any] = list(self ) if len(__lowerCamelCase ) == 0: return F'SkipList(level={self.level})' __A : Any = max((len(str(__lowerCamelCase ) ) for item in items) , default=4 ) __A : int = max(__lowerCamelCase , 4 ) + 4 __A : Optional[int] = self.head __A : Union[str, Any] = [] __A : int = node.forward.copy() lines.append(F'[{node.key}]'.ljust(__lowerCamelCase , '-' ) + '* ' * len(__lowerCamelCase ) ) lines.append(' ' * label_size + '| ' * len(__lowerCamelCase ) ) while len(node.forward ) != 0: __A : List[Any] = node.forward[0] lines.append( F'[{node.key}]'.ljust(__lowerCamelCase , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(__lowerCamelCase ) ) __A : Tuple = node.forward lines.append('None'.ljust(__lowerCamelCase ) + '* ' * len(__lowerCamelCase ) ) return F'SkipList(level={self.level})\n' + "\n".join(__lowerCamelCase ) def __iter__( self ): '''simple docstring''' __A : Dict = self.head while len(node.forward ) != 0: yield node.forward[0].key __A : Any = node.forward[0] def _a ( self ): '''simple docstring''' __A : Tuple = 1 while random() < self.p and level < self.max_level: level += 1 return level def _a ( self , __lowerCamelCase ): '''simple docstring''' __A : Dict = [] __A : List[str] = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: __A : Any = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__lowerCamelCase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _a ( self , __lowerCamelCase ): '''simple docstring''' __A , __A : Optional[int] = self._locate_node(__lowerCamelCase ) if node is not None: for i, update_node in enumerate(__lowerCamelCase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: __A : Any = node.forward[i] else: __A : int = update_node.forward[:i] def _a ( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A , __A : Any = self._locate_node(__lowerCamelCase ) if node is not None: __A : Optional[Any] = value else: __A : str = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __lowerCamelCase ): update_vector.append(self.head ) __A : Union[str, Any] = level __A : str = Node(__lowerCamelCase , __lowerCamelCase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(__lowerCamelCase ) else: __A : str = new_node def _a ( self , __lowerCamelCase ): '''simple docstring''' __A , __A : str = self._locate_node(__lowerCamelCase ) if node is not None: return node.value return None def _lowercase ( ) -> Any: '''simple docstring''' __A : int = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 12 ) skip_list.insert('Key3' , 41 ) skip_list.insert('Key4' , -19 ) __A : List[Any] = skip_list.head __A : str = {} while node.level != 0: __A : Optional[Any] = node.forward[0] __A : Optional[Any] = node.value assert len(_SCREAMING_SNAKE_CASE ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def _lowercase ( ) -> Any: '''simple docstring''' __A : Tuple = SkipList() skip_list.insert('Key1' , 10 ) skip_list.insert('Key1' , 12 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 10 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 10 ) __A : Union[str, Any] = skip_list.head __A : Optional[Any] = {} while node.level != 0: __A : str = node.forward[0] __A : Tuple = node.value if len(_SCREAMING_SNAKE_CASE ) != 4: print() assert len(_SCREAMING_SNAKE_CASE ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def _lowercase ( ) -> int: '''simple docstring''' __A : Optional[Any] = SkipList() assert skip_list.find('Some key' ) is None def _lowercase ( ) -> Any: '''simple docstring''' __A : List[str] = SkipList() skip_list.insert('Key2' , 20 ) assert skip_list.find('Key2' ) == 20 skip_list.insert('Some Key' , 10 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 13 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 10 assert skip_list.find('V' ) == 13 def _lowercase ( ) -> str: '''simple docstring''' __A : int = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def _lowercase ( ) -> Dict: '''simple docstring''' __A : Union[str, Any] = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def _lowercase ( ) -> Dict: '''simple docstring''' __A : Dict = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 14 assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 15 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def _lowercase ( ) -> Union[str, Any]: '''simple docstring''' __A : int = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 142 ) skip_list.insert('Key2' , 15 ) skip_list.delete('X' ) def traverse_keys(_SCREAMING_SNAKE_CASE : Union[str, Any] ): yield node.key for forward_node in node.forward: yield from traverse_keys(_SCREAMING_SNAKE_CASE ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def _lowercase ( ) -> Tuple: '''simple docstring''' def is_sorted(_SCREAMING_SNAKE_CASE : Optional[int] ): return all(next_item >= item for item, next_item in zip(_SCREAMING_SNAKE_CASE , lst[1:] ) ) __A : Tuple = SkipList() for i in range(10 ): skip_list.insert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) def _lowercase ( ) -> Optional[int]: '''simple docstring''' for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _lowercase ( ) -> Any: '''simple docstring''' __A : Optional[int] = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
237
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _lowerCamelCase = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any ): inspect_dataset(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = path + """.py""" assert script_name in os.listdir(UpperCamelCase__ ) assert "__pycache__" not in os.listdir(UpperCamelCase__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ): inspect_metric(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = path + """.py""" assert script_name in os.listdir(UpperCamelCase__ ) assert "__pycache__" not in os.listdir(UpperCamelCase__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] , UpperCamelCase__: List[str] , UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = get_dataset_config_info(UpperCamelCase__ , config_name=UpperCamelCase__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: str , UpperCamelCase__: List[str] ): with pytest.raises(UpperCamelCase__ ): get_dataset_config_info(UpperCamelCase__ , config_name=UpperCamelCase__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = get_dataset_config_names(UpperCamelCase__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = get_dataset_infos(UpperCamelCase__ ) assert list(infos.keys() ) == expected_configs SCREAMING_SNAKE_CASE__ = expected_configs[0] assert expected_config in infos SCREAMING_SNAKE_CASE__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: int , UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = get_dataset_infos(UpperCamelCase__ ) assert expected_config in infos SCREAMING_SNAKE_CASE__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: int ): with pytest.raises(UpperCamelCase__ ): get_dataset_split_names(UpperCamelCase__ , config_name=UpperCamelCase__ )
6
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCAmelCase__ ( )-> List[str]: A__ = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' A__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert('''RGB''' ) return image def lowerCAmelCase__ ( UpperCamelCase_ : Dict )-> Any: A__ = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"visual_encoder.blocks.{i}.norm1.weight", f"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm1.bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.weight", f"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.qkv.weight", f"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.weight", f"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.bias", f"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.weight", f"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.weight", f"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def lowerCAmelCase__ ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int )-> List[Any]: A__ = dct.pop(UpperCamelCase_ ) A__ = val def lowerCAmelCase__ ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] )-> Optional[int]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases A__ = state_dict.pop(f"visual_encoder.blocks.{i}.attn.q_bias" ) A__ = state_dict.pop(f"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict A__ = torch.cat((q_bias, torch.zeros_like(UpperCamelCase_ , requires_grad=UpperCamelCase_ ), v_bias) ) A__ = qkv_bias def lowerCAmelCase__ ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] )-> int: A__ = 3_6_4 if '''coco''' in model_name else 2_2_4 A__ = BlipaVisionConfig(image_size=UpperCamelCase_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: A__ = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=UpperCamelCase_ ).to_dict() elif "opt-6.7b" in model_name: A__ = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=UpperCamelCase_ ).to_dict() elif "t5-xl" in model_name: A__ = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: A__ = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() A__ = BlipaConfig(vision_config=UpperCamelCase_ , text_config=UpperCamelCase_ ) return config, image_size @torch.no_grad() def lowerCAmelCase__ ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Any=False )-> Optional[Any]: A__ = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) A__ = tokenizer('''\n''' , add_special_tokens=UpperCamelCase_ ).input_ids[0] A__ , A__ = get_blipa_config(UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) A__ = BlipaForConditionalGeneration(UpperCamelCase_ ).eval() A__ = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } A__ , A__ = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) A__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' A__ , A__ , A__ = load_model_and_preprocess( name=UpperCamelCase_ , model_type=UpperCamelCase_ , is_eval=UpperCamelCase_ , device=UpperCamelCase_ ) original_model.eval() print('''Done!''' ) # update state dict keys A__ = original_model.state_dict() A__ = create_rename_keys(UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): A__ = state_dict.pop(UpperCamelCase_ ) if key.startswith('''Qformer.bert''' ): A__ = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: A__ = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: A__ = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: A__ = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): A__ = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): A__ = key.replace('''t5''' , '''language''' ) A__ = val # read in qv biases read_in_q_v_bias(UpperCamelCase_ , UpperCamelCase_ ) A__ , A__ = hf_model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) assert len(UpperCamelCase_ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] A__ = load_demo_image() A__ = vis_processors['''eval'''](UpperCamelCase_ ).unsqueeze(0 ).to(UpperCamelCase_ ) A__ = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(UpperCamelCase_ ) # create processor A__ = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ ) A__ = BlipaProcessor(image_processor=UpperCamelCase_ , tokenizer=UpperCamelCase_ ) A__ = processor(images=UpperCamelCase_ , return_tensors='''pt''' ).pixel_values.to(UpperCamelCase_ ) # make sure processor creates exact same pixel values assert torch.allclose(UpperCamelCase_ , UpperCamelCase_ ) original_model.to(UpperCamelCase_ ) hf_model.to(UpperCamelCase_ ) with torch.no_grad(): if "opt" in model_name: A__ = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits A__ = hf_model(UpperCamelCase_ , UpperCamelCase_ ).logits else: A__ = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits A__ = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) A__ = hf_model(UpperCamelCase_ , UpperCamelCase_ , labels=UpperCamelCase_ ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": A__ = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=UpperCamelCase_ ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase_ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": A__ = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=UpperCamelCase_ ) else: # cast to same type A__ = logits.dtype assert torch.allclose(original_logits.to(UpperCamelCase_ ) , UpperCamelCase_ , atol=1E-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) A__ = '''''' A__ = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ).input_ids.to(UpperCamelCase_ ) A__ = original_model.generate({'''image''': original_pixel_values} ) A__ = hf_model.generate( UpperCamelCase_ , UpperCamelCase_ , do_sample=UpperCamelCase_ , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , UpperCamelCase_ ) A__ = input_ids.shape[1] A__ = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=UpperCamelCase_ ) A__ = [text.strip() for text in output_text] print('''HF generation:''' , UpperCamelCase_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCamelCase_ ) hf_model.save_pretrained(UpperCamelCase_ ) if push_to_hub: processor.push_to_hub(f"nielsr/{model_name}" ) hf_model.push_to_hub(f"nielsr/{model_name}" ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() _lowercase = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) _lowercase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
632
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self :str ) -> Union[str, Any]: __UpperCamelCase : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) __UpperCamelCase : List[Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__snake_case ) __UpperCamelCase : Optional[Any] = -1 __UpperCamelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) __UpperCamelCase : Tuple = model.generate(__snake_case , max_new_tokens=1_0 , do_sample=__snake_case ) __UpperCamelCase : str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __UpperCamelCase : str = TextStreamer(__snake_case ) model.generate(__snake_case , max_new_tokens=1_0 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCamelCase : Optional[int] = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def _lowerCamelCase ( self :Dict ) -> Tuple: __UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) __UpperCamelCase : int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__snake_case ) __UpperCamelCase : List[Any] = -1 __UpperCamelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) __UpperCamelCase : Tuple = model.generate(__snake_case , max_new_tokens=1_0 , do_sample=__snake_case ) __UpperCamelCase : List[Any] = tokenizer.decode(greedy_ids[0] ) __UpperCamelCase : List[str] = TextIteratorStreamer(__snake_case ) __UpperCamelCase : List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} __UpperCamelCase : Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() __UpperCamelCase : Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__snake_case , __snake_case ) def _lowerCamelCase ( self :str ) -> Union[str, Any]: __UpperCamelCase : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) __UpperCamelCase : Dict = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__snake_case ) __UpperCamelCase : List[str] = -1 __UpperCamelCase : Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) __UpperCamelCase : Optional[Any] = model.generate(__snake_case , max_new_tokens=1_0 , do_sample=__snake_case ) __UpperCamelCase : List[str] = greedy_ids[:, input_ids.shape[1] :] __UpperCamelCase : Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __UpperCamelCase : List[str] = TextStreamer(__snake_case , skip_prompt=__snake_case ) model.generate(__snake_case , max_new_tokens=1_0 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __UpperCamelCase : int = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def _lowerCamelCase ( self :Optional[int] ) -> Optional[int]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained("distilgpt2" ) __UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__snake_case ) __UpperCamelCase : Optional[int] = -1 __UpperCamelCase : Union[str, Any] = torch.ones((1, 5) , device=__snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: __UpperCamelCase : Dict = TextStreamer(__snake_case , skip_special_tokens=__snake_case ) model.generate(__snake_case , max_new_tokens=1 , do_sample=__snake_case , streamer=__snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __UpperCamelCase : Tuple = cs.out[:-1] # Remove the final "\n" __UpperCamelCase : int = tokenizer(__snake_case , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _lowerCamelCase ( self :List[Any] ) -> Dict: __UpperCamelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) __UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__snake_case ) __UpperCamelCase : Optional[int] = -1 __UpperCamelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) __UpperCamelCase : List[Any] = TextIteratorStreamer(__snake_case , timeout=0.001 ) __UpperCamelCase : Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} __UpperCamelCase : Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__snake_case ): __UpperCamelCase : Dict = '''''' for new_text in streamer: streamer_text += new_text
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Optional[Any] = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCamelCase__ ( A__ ): __lowerCamelCase = (DPMSolverSinglestepScheduler,) __lowerCamelCase = (("""num_inference_steps""", 25),) def lowerCamelCase_ ( self : Union[str, Any] , **__a : List[Any] ): '''simple docstring''' lowerCamelCase__: List[str] = { """num_train_timesteps""": 1000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """prediction_type""": """epsilon""", """thresholding""": False, """sample_max_value""": 1.0, """algorithm_type""": """dpmsolver++""", """solver_type""": """midpoint""", """lambda_min_clipped""": -float("""inf""" ), """variance_type""": None, } config.update(**__a ) return config def lowerCamelCase_ ( self : Union[str, Any] , __a : str=0 , **__a : Optional[Any] ): '''simple docstring''' lowerCamelCase__: List[Any] = dict(self.forward_default_kwargs ) lowerCamelCase__: Optional[int] = kwargs.pop("""num_inference_steps""" , __a ) lowerCamelCase__: Tuple = self.dummy_sample lowerCamelCase__: Dict = 0.1 * sample lowerCamelCase__: Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCamelCase__: Optional[Any] = self.get_scheduler_config(**__a ) lowerCamelCase__: Dict = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals lowerCamelCase__: List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) lowerCamelCase__: Dict = scheduler_class.from_pretrained(__a ) new_scheduler.set_timesteps(__a ) # copy over dummy past residuals lowerCamelCase__: Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCamelCase__ , lowerCamelCase__: List[str] = sample, sample for t in range(__a , time_step + scheduler.config.solver_order + 1 ): lowerCamelCase__: int = scheduler.step(__a , __a , __a , **__a ).prev_sample lowerCamelCase__: List[str] = new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' pass def lowerCamelCase_ ( self : Union[str, Any] , __a : int=0 , **__a : Optional[Any] ): '''simple docstring''' lowerCamelCase__: int = dict(self.forward_default_kwargs ) lowerCamelCase__: Optional[int] = kwargs.pop("""num_inference_steps""" , __a ) lowerCamelCase__: Tuple = self.dummy_sample lowerCamelCase__: List[Any] = 0.1 * sample lowerCamelCase__: Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCamelCase__: Optional[int] = self.get_scheduler_config() lowerCamelCase__: Tuple = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals (must be after setting timesteps) lowerCamelCase__: Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) lowerCamelCase__: Any = scheduler_class.from_pretrained(__a ) # copy over dummy past residuals new_scheduler.set_timesteps(__a ) # copy over dummy past residual (must be after setting timesteps) lowerCamelCase__: Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCamelCase__: Any = scheduler.step(__a , __a , __a , **__a ).prev_sample lowerCamelCase__: Optional[Any] = new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCamelCase_ ( self : List[str] , __a : str=None , **__a : Optional[Any] ): '''simple docstring''' if scheduler is None: lowerCamelCase__: List[Any] = self.scheduler_classes[0] lowerCamelCase__: Optional[int] = self.get_scheduler_config(**__a ) lowerCamelCase__: Optional[Any] = scheduler_class(**__a ) lowerCamelCase__: Optional[Any] = self.scheduler_classes[0] lowerCamelCase__: str = self.get_scheduler_config(**__a ) lowerCamelCase__: Tuple = scheduler_class(**__a ) lowerCamelCase__: Optional[Any] = 10 lowerCamelCase__: str = self.dummy_model() lowerCamelCase__: int = self.dummy_sample_deter scheduler.set_timesteps(__a ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase__: Any = model(__a , __a ) lowerCamelCase__: Any = scheduler.step(__a , __a , __a ).prev_sample return sample def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__: int = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCamelCase__: str = 50 lowerCamelCase__: str = self.dummy_model() lowerCamelCase__: str = self.dummy_sample_deter scheduler.set_timesteps(__a ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): lowerCamelCase__: Optional[Any] = model(__a , __a ) lowerCamelCase__: Union[str, Any] = scheduler.step(__a , __a , __a ).prev_sample lowerCamelCase__: List[Any] = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.2_574 ) < 1e-3 def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__: Dict = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCamelCase__: List[str] = self.full_loop(scheduler=__a ) lowerCamelCase__: Dict = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 lowerCamelCase__: Dict = DEISMultistepScheduler.from_config(scheduler.config ) lowerCamelCase__: int = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCamelCase__: Optional[int] = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCamelCase__: int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCamelCase__: int = self.full_loop(scheduler=__a ) lowerCamelCase__: Tuple = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' self.check_over_configs(thresholding=__a ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , algorithm_type="""dpmsolver++""" , solver_order=__a , solver_type=__a , ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCamelCase_ ( self : int ): '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__a , solver_type=__a , prediction_type=__a , algorithm_type=__a , ) lowerCamelCase__: Dict = self.full_loop( solver_order=__a , solver_type=__a , prediction_type=__a , algorithm_type=__a , ) assert not torch.isnan(__a ).any(), "Samples have nan numbers" def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' self.check_over_configs(lower_order_final=__a ) self.check_over_configs(lower_order_final=__a ) def lowerCamelCase_ ( self : str ): '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float("""inf""" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def lowerCamelCase_ ( self : int ): '''simple docstring''' self.check_over_configs(variance_type=__a ) self.check_over_configs(variance_type="""learned_range""" ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__a , time_step=0 ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: List[str] = self.full_loop() lowerCamelCase__: List[Any] = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__: Optional[int] = self.full_loop(use_karras_sigmas=__a ) lowerCamelCase__: Optional[Any] = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.2_248 ) < 1e-3 def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: List[Any] = self.full_loop(prediction_type="""v_prediction""" ) lowerCamelCase__: Tuple = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.1_453 ) < 1e-3 def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__: Dict = self.full_loop(prediction_type="""v_prediction""" , use_karras_sigmas=__a ) lowerCamelCase__: Union[str, Any] = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.0_649 ) < 1e-3 def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowerCamelCase__: Optional[Any] = self.scheduler_classes[0] lowerCamelCase__: Optional[Any] = self.get_scheduler_config(thresholding=__a , dynamic_thresholding_ratio=0 ) lowerCamelCase__: int = scheduler_class(**__a ) lowerCamelCase__: List[str] = 10 lowerCamelCase__: Union[str, Any] = self.dummy_model() lowerCamelCase__: str = self.dummy_sample_deter.half() scheduler.set_timesteps(__a ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase__: str = model(__a , __a ) lowerCamelCase__: Optional[Any] = scheduler.step(__a , __a , __a ).prev_sample assert sample.dtype == torch.floataa
306
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = 'Hello world! cécé herlolip' def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: '''simple docstring''' lowerCamelCase__: Any = FairseqRobertaModel.from_pretrained(_UpperCamelCase ) roberta.eval() # disable dropout lowerCamelCase__: Any = roberta.model.encoder.sentence_encoder lowerCamelCase__: Any = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: lowerCamelCase__: Union[str, Any] = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , _UpperCamelCase ) lowerCamelCase__: str = XLMRobertaXLForSequenceClassification(_UpperCamelCase ) if classification_head else XLMRobertaXLForMaskedLM(_UpperCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase__: Union[str, Any] = roberta_sent_encoder.embed_tokens.weight lowerCamelCase__: List[str] = roberta_sent_encoder.embed_positions.weight lowerCamelCase__: Optional[int] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowerCamelCase__: Any = roberta_sent_encoder.layer_norm.weight lowerCamelCase__: Tuple = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase__: BertLayer = model.roberta.encoder.layer[i] lowerCamelCase__: TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] lowerCamelCase__: RobertaAttention = layer.attention lowerCamelCase__: Union[str, Any] = roberta_layer.self_attn_layer_norm.weight lowerCamelCase__: Any = roberta_layer.self_attn_layer_norm.bias # self attention lowerCamelCase__: BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowerCamelCase__: Tuple = roberta_layer.self_attn.q_proj.weight lowerCamelCase__: Optional[int] = roberta_layer.self_attn.q_proj.bias lowerCamelCase__: Optional[int] = roberta_layer.self_attn.k_proj.weight lowerCamelCase__: int = roberta_layer.self_attn.k_proj.bias lowerCamelCase__: Union[str, Any] = roberta_layer.self_attn.v_proj.weight lowerCamelCase__: List[str] = roberta_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase__: BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowerCamelCase__: int = roberta_layer.self_attn.out_proj.weight lowerCamelCase__: Tuple = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowerCamelCase__: Any = roberta_layer.final_layer_norm.weight lowerCamelCase__: Optional[int] = roberta_layer.final_layer_norm.bias # intermediate lowerCamelCase__: BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowerCamelCase__: Tuple = roberta_layer.fca.weight lowerCamelCase__: Tuple = roberta_layer.fca.bias # output lowerCamelCase__: BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowerCamelCase__: Any = roberta_layer.fca.weight lowerCamelCase__: Optional[int] = roberta_layer.fca.bias # end of layer if classification_head: lowerCamelCase__: Dict = roberta.model.classification_heads["""mnli"""].dense.weight lowerCamelCase__: Union[str, Any] = roberta.model.classification_heads["""mnli"""].dense.bias lowerCamelCase__: str = roberta.model.classification_heads["""mnli"""].out_proj.weight lowerCamelCase__: List[str] = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head lowerCamelCase__: List[Any] = roberta.model.encoder.lm_head.dense.weight lowerCamelCase__: List[Any] = roberta.model.encoder.lm_head.dense.bias lowerCamelCase__: Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight lowerCamelCase__: Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias lowerCamelCase__: List[Any] = roberta.model.encoder.lm_head.weight lowerCamelCase__: Dict = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase__: torch.Tensor = roberta.encode(_UpperCamelCase ).unsqueeze(0 ) # batch of size 1 lowerCamelCase__: Dict = model(_UpperCamelCase )[0] if classification_head: lowerCamelCase__: Optional[int] = roberta.model.classification_heads["""mnli"""](roberta.extract_features(_UpperCamelCase ) ) else: lowerCamelCase__: List[Any] = roberta.model(_UpperCamelCase )[0] print(our_output.shape , their_output.shape ) lowerCamelCase__: Optional[int] = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase__: List[Any] = torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(_UpperCamelCase ).mkdir(parents=_UpperCamelCase , exist_ok=_UpperCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) _lowercase = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
306
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) UpperCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids UpperCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids UpperCamelCase = model(input_ids.to(_SCREAMING_SNAKE_CASE ) , labels=labels.to(_SCREAMING_SNAKE_CASE ) ).loss UpperCamelCase = -(labels.shape[-1] * loss.item()) UpperCamelCase = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
410
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer __magic_name__ : Optional[Any] = logging.get_logger(__name__) __magic_name__ : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ : str = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } __magic_name__ : Any = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } __magic_name__ : Any = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class A__ ( __snake_case ): '''simple docstring''' snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = RealmTokenizer def __init__( self : str , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Optional[Any]=True , _SCREAMING_SNAKE_CASE : Tuple="[UNK]" , _SCREAMING_SNAKE_CASE : Optional[int]="[SEP]" , _SCREAMING_SNAKE_CASE : Dict="[PAD]" , _SCREAMING_SNAKE_CASE : Any="[CLS]" , _SCREAMING_SNAKE_CASE : int="[MASK]" , _SCREAMING_SNAKE_CASE : int=True , _SCREAMING_SNAKE_CASE : List[str]=None , **_SCREAMING_SNAKE_CASE : int , ): """simple docstring""" super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('strip_accents' , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCamelCase = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop('type' ) ) UpperCamelCase = do_lower_case UpperCamelCase = strip_accents UpperCamelCase = tokenize_chinese_chars UpperCamelCase = normalizer_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = do_lower_case def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase = PaddingStrategy.MAX_LENGTH UpperCamelCase = text UpperCamelCase = kwargs.pop('text_pair' , _SCREAMING_SNAKE_CASE ) UpperCamelCase = kwargs.pop('return_tensors' , _SCREAMING_SNAKE_CASE ) UpperCamelCase = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(_SCREAMING_SNAKE_CASE ): if batch_text_pair is not None: UpperCamelCase = batch_text_pair[idx] else: UpperCamelCase = None UpperCamelCase = super().__call__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = encoded_candidates.get('input_ids' ) UpperCamelCase = encoded_candidates.get('attention_mask' ) UpperCamelCase = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(_SCREAMING_SNAKE_CASE ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_SCREAMING_SNAKE_CASE ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = {key: item for key, item in output_data.items() if len(_SCREAMING_SNAKE_CASE ) != 0} return BatchEncoding(_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any]=None ): """simple docstring""" UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : int , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" UpperCamelCase = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
410
1
import qiskit def __SCREAMING_SNAKE_CASE ( a__ : int = 2 ) -> Optional[int]: __A : str = qubits # Using Aer's simulator __A : List[Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register __A : Tuple = qiskit.QuantumCircuit(a__ ,a__ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 ,a__ ): # Adding CX (CNOT) gate circuit.cx(i - 1 ,a__ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(a__ ) ) ,list(range(a__ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator __A : Tuple = qiskit.execute(a__ ,a__ ,shots=1000 ) return job.result().get_counts(a__ ) if __name__ == "__main__": print(f"""Total count for various states are: {quantum_entanglement(3)}""")
17
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : Optional[Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
from graphs.minimum_spanning_tree_kruskal import kruskal def _A ( ): a__ : Optional[Any] = 9 a__ : Dict = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] a__ : List[str] = kruskal(lowerCamelCase , lowerCamelCase ) a__ : str = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(lowerCamelCase ) == sorted(lowerCamelCase )
629
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Any = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
629
1
_lowerCAmelCase : List[Any] = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' _lowerCAmelCase : Tuple = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _lowerCAmelCase : Any = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
454
from math import sqrt def __snake_case ( _lowerCAmelCase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __snake_case ( _lowerCAmelCase : int = 10001 ) -> int: A_ : Any = 0 A_ : Tuple = 1 while count != nth and number < 3: number += 1 if is_prime(_lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(_lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
454
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( _A , unittest.TestCase ): a: Optional[int] = KandinskyVaaControlnetImgaImgPipeline a: Any = ["image_embeds", "negative_image_embeds", "image", "hint"] a: Optional[Any] = ["image_embeds", "negative_image_embeds", "image", "hint"] a: Any = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a: int = False @property def _A ( self: List[Any] ): return 32 @property def _A ( self: Tuple ): return 32 @property def _A ( self: str ): return self.time_input_dim @property def _A ( self: List[Any] ): return self.time_input_dim * 4 @property def _A ( self: Union[str, Any] ): return 100 @property def _A ( self: List[Any] ): torch.manual_seed(0 ) _a = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _a = UNetaDConditionModel(**__UpperCamelCase ) return model @property def _A ( self: Optional[int] ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _A ( self: str ): torch.manual_seed(0 ) _a = VQModel(**self.dummy_movq_kwargs ) return model def _A ( self: List[Any] ): _a = self.dummy_unet _a = self.dummy_movq _a = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } _a = DDIMScheduler(**__UpperCamelCase ) _a = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _A ( self: Dict , __UpperCamelCase: Optional[int] , __UpperCamelCase: Optional[int]=0 ): _a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) _a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __UpperCamelCase ) # create init_image _a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint _a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith('''mps''' ): _a = torch.manual_seed(__UpperCamelCase ) else: _a = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) _a = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def _A ( self: Optional[Any] ): _a = "cpu" _a = self.get_dummy_components() _a = self.pipeline_class(**__UpperCamelCase ) _a = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) _a = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) _a = output.images _a = pipe( **self.get_dummy_inputs(__UpperCamelCase ) , return_dict=__UpperCamelCase , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def _A ( self: Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self: Tuple ): _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a = init_image.resize((512, 512) ) _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) _a = torch.from_numpy(np.array(__UpperCamelCase ) ).float() / 2_5_5.0 _a = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _a = "A robot, 4k photo" _a = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCamelCase ) _a = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) _a = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) _a = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a = pipe_prior( __UpperCamelCase , image=__UpperCamelCase , strength=0.8_5 , generator=__UpperCamelCase , negative_prompt='''''' , ).to_tuple() _a = pipeline( image=__UpperCamelCase , image_embeds=__UpperCamelCase , negative_image_embeds=__UpperCamelCase , hint=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) _a = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
713
def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_UpperCamelCase ) ) def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> bool: # Base Case if index == len(_UpperCamelCase ): return True # Recursive Step for i in range(_UpperCamelCase ): if valid_coloring(graph[index] , _UpperCamelCase , _UpperCamelCase ): # Color current vertex _a = i # Validate coloring if util_color(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , index + 1 ): return True # Backtrack _a = -1 return False def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> list[int]: _a = [-1] * len(_UpperCamelCase ) if util_color(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , 0 ): return colored_vertices return []
346
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class a ( __lowerCAmelCase ): """simple docstring""" __lowerCAmelCase = """roberta""" def __init__( self , snake_case_=5_0265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.0_2 , snake_case_=1e-1_2 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_="absolute" , snake_case_=True , snake_case_=None , **snake_case_ , ): '''simple docstring''' super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) __UpperCAmelCase: Tuple = vocab_size __UpperCAmelCase: Optional[int] = hidden_size __UpperCAmelCase: Optional[int] = num_hidden_layers __UpperCAmelCase: Dict = num_attention_heads __UpperCAmelCase: Tuple = hidden_act __UpperCAmelCase: Any = intermediate_size __UpperCAmelCase: Optional[Any] = hidden_dropout_prob __UpperCAmelCase: Optional[int] = attention_probs_dropout_prob __UpperCAmelCase: Optional[int] = max_position_embeddings __UpperCAmelCase: List[str] = type_vocab_size __UpperCAmelCase: List[str] = initializer_range __UpperCAmelCase: str = layer_norm_eps __UpperCAmelCase: Union[str, Any] = position_embedding_type __UpperCAmelCase: Tuple = use_cache __UpperCAmelCase: Any = classifier_dropout class a ( __lowerCAmelCase ): """simple docstring""" @property def lowercase_ ( self ): '''simple docstring''' if self.task == "multiple-choice": __UpperCAmelCase: Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __UpperCAmelCase: Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
523
'''simple docstring''' class a : """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: List[Any] = None __UpperCAmelCase: Tuple = None __UpperCAmelCase: List[Any] = graph self._normalize_graph(snake_case_ , snake_case_ ) __UpperCAmelCase: Union[str, Any] = len(snake_case_ ) __UpperCAmelCase: List[str] = None def lowercase_ ( self , snake_case_ , snake_case_ ): '''simple docstring''' if sources is int: __UpperCAmelCase: List[Any] = [sources] if sinks is int: __UpperCAmelCase: Optional[Any] = [sinks] if len(snake_case_ ) == 0 or len(snake_case_ ) == 0: return __UpperCAmelCase: Any = sources[0] __UpperCAmelCase: int = sinks[0] # make fake vertex if there are more # than one source or sink if len(snake_case_ ) > 1 or len(snake_case_ ) > 1: __UpperCAmelCase: Union[str, Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __UpperCAmelCase: List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __UpperCAmelCase: Tuple = max_input_flow __UpperCAmelCase: Any = 0 __UpperCAmelCase: Tuple = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __UpperCAmelCase: Tuple = max_input_flow __UpperCAmelCase: Tuple = size - 1 def lowercase_ ( self ): '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = algorithm(self ) class a : """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Tuple = flow_network __UpperCAmelCase: Dict = flow_network.verticesCount __UpperCAmelCase: List[Any] = flow_network.sourceIndex __UpperCAmelCase: int = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __UpperCAmelCase: Dict = flow_network.graph __UpperCAmelCase: Optional[int] = False def lowercase_ ( self ): '''simple docstring''' if not self.executed: self._algorithm() __UpperCAmelCase: str = True def lowercase_ ( self ): '''simple docstring''' pass class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' super().__init__(snake_case_ ) # use this to save your result __UpperCAmelCase: int = -1 def lowercase_ ( self ): '''simple docstring''' if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' super().__init__(snake_case_ ) __UpperCAmelCase: Optional[int] = [[0] * self.verticies_count for i in range(self.verticies_count )] __UpperCAmelCase: Union[str, Any] = [0] * self.verticies_count __UpperCAmelCase: Tuple = [0] * self.verticies_count def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __UpperCAmelCase: int = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __UpperCAmelCase: List[Any] = 0 while i < len(snake_case_ ): __UpperCAmelCase: Optional[int] = vertices_list[i] __UpperCAmelCase: Optional[int] = self.heights[vertex_index] self.process_vertex(snake_case_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(snake_case_ ) ) __UpperCAmelCase: Union[str, Any] = 0 else: i += 1 __UpperCAmelCase: Tuple = sum(self.preflow[self.source_index] ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(snake_case_ , snake_case_ ) self.relabel(snake_case_ ) def lowercase_ ( self , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __UpperCAmelCase: str = self.heights[to_index] if min_height is not None: __UpperCAmelCase: Optional[Any] = min_height + 1 if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = [0] SCREAMING_SNAKE_CASE_ = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] SCREAMING_SNAKE_CASE_ = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network SCREAMING_SNAKE_CASE_ = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate SCREAMING_SNAKE_CASE_ = flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
523
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase : def __init__( self ,A__ ,A__=2 ,A__=3 ,A__=4 ,A__=2 ,A__=7 ,A__=True ,A__=True ,A__=True ,A__=True ,A__=9_9 ,A__=3_6 ,A__=3 ,A__=4 ,A__=3_7 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=5_1_2 ,A__=1_6 ,A__=2 ,A__=0.02 ,A__=6 ,A__=6 ,A__=3 ,A__=4 ,A__=None ,A__=1_0_0_0 ,): lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = patch_size lowercase = text_seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = coordinate_size lowercase = shape_size lowercase = num_labels lowercase = num_choices lowercase = scope lowercase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowercase = text_seq_length lowercase = (image_size // patch_size) ** 2 + 1 lowercase = self.text_seq_length + self.image_seq_length def A__ ( self): lowercase = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size) lowercase = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase = bbox[i, j, 3] lowercase = bbox[i, j, 1] lowercase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase = bbox[i, j, 2] lowercase = bbox[i, j, 0] lowercase = t lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.text_seq_length]) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size) lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size) lowercase = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels) lowercase = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = LayoutLMvaModel(config=A__) model.to(A__) model.eval() # text + image lowercase = model(A__ ,pixel_values=A__) lowercase = model( A__ ,bbox=A__ ,pixel_values=A__ ,attention_mask=A__ ,token_type_ids=A__) lowercase = model(A__ ,bbox=A__ ,pixel_values=A__ ,token_type_ids=A__) lowercase = model(A__ ,bbox=A__ ,pixel_values=A__) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size)) # text only lowercase = model(A__) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size)) # image only lowercase = model(pixel_values=A__) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = self.num_labels lowercase = LayoutLMvaForSequenceClassification(A__) model.to(A__) model.eval() lowercase = model( A__ ,bbox=A__ ,pixel_values=A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = self.num_labels lowercase = LayoutLMvaForTokenClassification(config=A__) model.to(A__) model.eval() lowercase = model( A__ ,bbox=A__ ,pixel_values=A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = LayoutLMvaForQuestionAnswering(config=A__) model.to(A__) model.eval() lowercase = model( A__ ,bbox=A__ ,pixel_values=A__ ,attention_mask=A__ ,token_type_ids=A__ ,start_positions=A__ ,end_positions=A__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length)) def A__ ( self): lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : List[str] =False lowercase_ : int =False lowercase_ : Union[str, Any] =False lowercase_ : Optional[Any] =( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowercase_ : Union[str, Any] =( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def A__ ( self): lowercase = LayoutLMvaModelTester(self) lowercase = ConfigTester(self ,config_class=A__ ,hidden_size=3_7) def A__ ( self ,A__ ,A__ ,A__=False): lowercase = copy.deepcopy(A__) if model_class in get_values(A__): lowercase = { k: v.unsqueeze(1).expand(-1 ,self.model_tester.num_choices ,-1).contiguous() if isinstance(A__ ,torch.Tensor) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A__): lowercase = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A__) elif model_class in get_values(A__): lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A__) lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A__) elif model_class in [ *get_values(A__), ]: lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A__) elif model_class in [ *get_values(A__), ]: lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A__ ,) return inputs_dict def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase = type self.model_tester.create_and_check_model(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__) @slow def A__ ( self): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = LayoutLMvaModel.from_pretrained(A__) self.assertIsNotNone(A__) def UpperCamelCase ( ): '''simple docstring''' lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowercase ( unittest.TestCase ): @cached_property def A__ ( self): return LayoutLMvaImageProcessor(apply_ocr=A__) if is_vision_available() else None @slow def A__ ( self): lowercase = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''').to(A__) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=A__ ,return_tensors='''pt''').pixel_values.to(A__) lowercase = torch.tensor([[1, 2]]) lowercase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).unsqueeze(0) # forward pass lowercase = model( input_ids=input_ids.to(A__) ,bbox=bbox.to(A__) ,pixel_values=pixel_values.to(A__) ,) # verify the logits lowercase = torch.Size((1, 1_9_9, 7_6_8)) self.assertEqual(outputs.last_hidden_state.shape ,A__) lowercase = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]]).to(A__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A__ ,atol=1E-4))
633
import logging from transformers import PretrainedConfig lowercase__ :int = logging.getLogger(__name__) lowercase__ :Dict = { "bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json", } class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Optional[int] ='''bertabs''' def __init__( self ,A__=3_0_5_2_2 ,A__=5_1_2 ,A__=6 ,A__=5_1_2 ,A__=8 ,A__=5_1_2 ,A__=0.2 ,A__=6 ,A__=7_6_8 ,A__=8 ,A__=2_0_4_8 ,A__=0.2 ,**A__ ,): super().__init__(**A__) lowercase = vocab_size lowercase = max_pos lowercase = enc_layers lowercase = enc_hidden_size lowercase = enc_heads lowercase = enc_ff_size lowercase = enc_dropout lowercase = dec_layers lowercase = dec_hidden_size lowercase = dec_heads lowercase = dec_ff_size lowercase = dec_dropout
633
1
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a : def __init__( self : Optional[int] ) -> str: lowerCamelCase_ = '' lowerCamelCase_ = '' lowerCamelCase_ = [] lowerCamelCase_ = 0 lowerCamelCase_ = 256 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 def UpperCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: lowerCamelCase_ = cva.imread(__SCREAMING_SNAKE_CASE , 0 ) lowerCamelCase_ = copy.deepcopy(self.img ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) lowerCamelCase_ = np.sum(__SCREAMING_SNAKE_CASE ) for i in range(len(__SCREAMING_SNAKE_CASE ) ): lowerCamelCase_ = x[i] / self.k self.sk += prk lowerCamelCase_ = (self.L - 1) * self.sk if self.rem != 0: lowerCamelCase_ = int(last % last ) lowerCamelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCamelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCamelCase_ = self.img[j][i] if num != self.last_list[num]: lowerCamelCase_ = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase ( self : Tuple ) -> str: plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCamelCase ( self : str ) -> str: cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') _SCREAMING_SNAKE_CASE : Any = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
549
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset _SCREAMING_SNAKE_CASE : int = pd.read_csv( '''https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/''' '''position_salaries.csv''' ) _SCREAMING_SNAKE_CASE : List[Any] = dataset.iloc[:, 1:2].values _SCREAMING_SNAKE_CASE : str = dataset.iloc[:, 2].values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = train_test_split(X, y, test_size=0.2, random_state=0) _SCREAMING_SNAKE_CASE : Optional[int] = PolynomialFeatures(degree=4) _SCREAMING_SNAKE_CASE : Union[str, Any] = poly_reg.fit_transform(X) _SCREAMING_SNAKE_CASE : List[str] = LinearRegression() pol_reg.fit(X_poly, y) def lowerCamelCase__ ( ) -> List[str]: plt.scatter(_lowerCamelCase , _lowerCamelCase , color='red' ) plt.plot(_lowerCamelCase , pol_reg.predict(poly_reg.fit_transform(_lowerCamelCase ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
549
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : torch.FloatTensor class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" @register_to_config def __init__( self ,UpperCAmelCase_ = 16 ,UpperCAmelCase_ = 88 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = 0.0 ,UpperCAmelCase_ = 32 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "geglu" ,UpperCAmelCase_ = True ,UpperCAmelCase_ = True ,): super().__init__() _lowercase : Optional[Any] = num_attention_heads _lowercase : Tuple = attention_head_dim _lowercase : List[str] = num_attention_heads * attention_head_dim _lowercase : int = in_channels _lowercase : Optional[int] = torch.nn.GroupNorm(num_groups=UpperCAmelCase_ ,num_channels=UpperCAmelCase_ ,eps=1E-6 ,affine=UpperCAmelCase_ ) _lowercase : Dict = nn.Linear(UpperCAmelCase_ ,UpperCAmelCase_ ) # 3. Define transformers blocks _lowercase : List[str] = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dropout=UpperCAmelCase_ ,cross_attention_dim=UpperCAmelCase_ ,activation_fn=UpperCAmelCase_ ,attention_bias=UpperCAmelCase_ ,double_self_attention=UpperCAmelCase_ ,norm_elementwise_affine=UpperCAmelCase_ ,) for d in range(UpperCAmelCase_ ) ] ) _lowercase : Union[str, Any] = nn.Linear(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=1 ,UpperCAmelCase_=None ,UpperCAmelCase_ = True ,): _lowercase , _lowercase , _lowercase , _lowercase : Dict = hidden_states.shape _lowercase : Optional[int] = batch_frames // num_frames _lowercase : Dict = hidden_states _lowercase : List[str] = hidden_states[None, :].reshape(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : int = hidden_states.permute(0 ,2 ,1 ,3 ,4 ) _lowercase : Union[str, Any] = self.norm(UpperCAmelCase_ ) _lowercase : Any = hidden_states.permute(0 ,3 ,4 ,2 ,1 ).reshape(batch_size * height * width ,UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : Optional[Any] = self.proj_in(UpperCAmelCase_ ) # 2. Blocks for block in self.transformer_blocks: _lowercase : Optional[int] = block( UpperCAmelCase_ ,encoder_hidden_states=UpperCAmelCase_ ,timestep=UpperCAmelCase_ ,cross_attention_kwargs=UpperCAmelCase_ ,class_labels=UpperCAmelCase_ ,) # 3. Output _lowercase : Optional[Any] = self.proj_out(UpperCAmelCase_ ) _lowercase : Optional[int] = ( hidden_states[None, None, :] .reshape(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) .permute(0 ,3 ,4 ,1 ,2 ) .contiguous() ) _lowercase : int = hidden_states.reshape(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : Optional[int] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase_ )
600
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase: str = logging.get_logger(__name__) UpperCAmelCase: Optional[Any] = { """facebook/wav2vec2-base-960h""": """https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json""", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "wav2vec2" def __init__( self ,UpperCAmelCase_=32 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-5 ,UpperCAmelCase_="group" ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) ,UpperCAmelCase_=(5, 2, 2, 2, 2, 2, 2) ,UpperCAmelCase_=(10, 3, 3, 3, 3, 2, 2) ,UpperCAmelCase_=False ,UpperCAmelCase_=1_28 ,UpperCAmelCase_=16 ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,UpperCAmelCase_=0.05 ,UpperCAmelCase_=10 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=10 ,UpperCAmelCase_=0 ,UpperCAmelCase_=3_20 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=1_00 ,UpperCAmelCase_=2_56 ,UpperCAmelCase_=2_56 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_="sum" ,UpperCAmelCase_=False ,UpperCAmelCase_=False ,UpperCAmelCase_=2_56 ,UpperCAmelCase_=(5_12, 5_12, 5_12, 5_12, 15_00) ,UpperCAmelCase_=(5, 3, 3, 1, 1) ,UpperCAmelCase_=(1, 2, 3, 1, 1) ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0 ,UpperCAmelCase_=1 ,UpperCAmelCase_=2 ,UpperCAmelCase_=False ,UpperCAmelCase_=3 ,UpperCAmelCase_=2 ,UpperCAmelCase_=3 ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ,pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ) _lowercase : List[Any] = hidden_size _lowercase : Any = feat_extract_norm _lowercase : Tuple = feat_extract_activation _lowercase : Tuple = list(UpperCAmelCase_ ) _lowercase : List[str] = list(UpperCAmelCase_ ) _lowercase : List[Any] = list(UpperCAmelCase_ ) _lowercase : List[Any] = conv_bias _lowercase : Optional[Any] = num_conv_pos_embeddings _lowercase : Dict = num_conv_pos_embedding_groups _lowercase : List[Any] = len(self.conv_dim ) _lowercase : str = num_hidden_layers _lowercase : Any = intermediate_size _lowercase : int = hidden_act _lowercase : int = num_attention_heads _lowercase : Union[str, Any] = hidden_dropout _lowercase : Dict = attention_dropout _lowercase : Tuple = activation_dropout _lowercase : str = feat_proj_dropout _lowercase : List[str] = final_dropout _lowercase : Tuple = layerdrop _lowercase : List[str] = layer_norm_eps _lowercase : Any = initializer_range _lowercase : Any = vocab_size _lowercase : Optional[Any] = do_stable_layer_norm _lowercase : Union[str, Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase : Union[str, Any] = apply_spec_augment _lowercase : Optional[Any] = mask_time_prob _lowercase : Optional[int] = mask_time_length _lowercase : Dict = mask_time_min_masks _lowercase : Optional[int] = mask_feature_prob _lowercase : Tuple = mask_feature_length _lowercase : Optional[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowercase : str = num_codevectors_per_group _lowercase : Union[str, Any] = num_codevector_groups _lowercase : Optional[Any] = contrastive_logits_temperature _lowercase : Tuple = feat_quantizer_dropout _lowercase : Optional[int] = num_negatives _lowercase : str = codevector_dim _lowercase : Optional[int] = proj_codevector_dim _lowercase : int = diversity_loss_weight # ctc loss _lowercase : Optional[int] = ctc_loss_reduction _lowercase : str = ctc_zero_infinity # adapter _lowercase : str = add_adapter _lowercase : List[str] = adapter_kernel_size _lowercase : Any = adapter_stride _lowercase : List[Any] = num_adapter_layers _lowercase : Optional[Any] = output_hidden_size or hidden_size _lowercase : str = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase : int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase : List[str] = list(UpperCAmelCase_ ) _lowercase : List[Any] = list(UpperCAmelCase_ ) _lowercase : Tuple = list(UpperCAmelCase_ ) _lowercase : List[Any] = xvector_output_dim @property def lowerCamelCase__ ( self ): return functools.reduce(operator.mul ,self.conv_stride ,1 )
600
1
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = str(lowerCAmelCase__ ) return n == n[::-1] def lowercase ( lowerCAmelCase__ = 1_000_000 ): lowerCamelCase_ = 0 for i in range(1 ,lowerCAmelCase__ ): if is_palindrome(lowerCAmelCase__ ) and is_palindrome(bin(lowerCAmelCase__ ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
29
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = (DEISMultistepScheduler,) SCREAMING_SNAKE_CASE_ = (('''num_inference_steps''', 25),) def __SCREAMING_SNAKE_CASE ( self , **__SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase__ : Union[str, Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**__SCREAMING_SNAKE_CASE ) return config def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase__ : Optional[Any] = dict(self.forward_default_kwargs ) UpperCamelCase__ : Dict = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = self.dummy_sample UpperCamelCase__ : Optional[int] = 0.1 * sample UpperCamelCase__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase__ : Union[str, Any] = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals UpperCamelCase__ : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals UpperCamelCase__ : int = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase__ ,UpperCamelCase__ : Any = sample, sample for t in range(__SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): UpperCamelCase__ : Union[str, Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase__ : int = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[Any] = dict(self.forward_default_kwargs ) UpperCamelCase__ : Tuple = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = self.dummy_sample UpperCamelCase__ : List[Any] = 0.1 * sample UpperCamelCase__ : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase__ : Optional[int] = self.get_scheduler_config() UpperCamelCase__ : Union[str, Any] = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase__ : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase__ : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase__ : Optional[Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase__ : Dict = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if scheduler is None: UpperCamelCase__ : List[str] = self.scheduler_classes[0] UpperCamelCase__ : str = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = self.scheduler_classes[0] UpperCamelCase__ : Tuple = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = 1_0 UpperCamelCase__ : Tuple = self.dummy_model() UpperCamelCase__ : Dict = self.dummy_sample_deter scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase__ : List[Any] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample return sample def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" UpperCamelCase__ : Optional[int] = dict(self.forward_default_kwargs ) UpperCamelCase__ : List[Any] = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: UpperCamelCase__ : Optional[int] = self.get_scheduler_config() UpperCamelCase__ : Any = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = self.dummy_sample UpperCamelCase__ : int = 0.1 * sample if num_inference_steps is not None and hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ): scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ): UpperCamelCase__ : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] UpperCamelCase__ : Dict = dummy_past_residuals[: scheduler.config.solver_order] UpperCamelCase__ : int = scheduler.timesteps[5] UpperCamelCase__ : Optional[int] = scheduler.timesteps[6] UpperCamelCase__ : Any = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase__ : Any = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" UpperCamelCase__ : List[str] = DEISMultistepScheduler(**self.get_scheduler_config() ) UpperCamelCase__ : Tuple = self.full_loop(scheduler=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 UpperCamelCase__ : List[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCamelCase__ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCamelCase__ : int = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCamelCase__ : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) UpperCamelCase__ : Dict = self.full_loop(scheduler=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: """simple docstring""" self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , algorithm_type='''deis''' , solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , algorithm_type=__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Any = self.full_loop( solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , algorithm_type=__SCREAMING_SNAKE_CASE , ) assert not torch.isnan(__SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" self.check_over_configs(lower_order_final=__SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=__SCREAMING_SNAKE_CASE , time_step=0 ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ : str = self.full_loop() UpperCamelCase__ : Optional[int] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def __SCREAMING_SNAKE_CASE ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Any = self.full_loop(prediction_type='''v_prediction''' ) UpperCamelCase__ : List[Any] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self.scheduler_classes[0] UpperCamelCase__ : Optional[Any] = self.get_scheduler_config(thresholding=__SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) UpperCamelCase__ : Tuple = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = 1_0 UpperCamelCase__ : Dict = self.dummy_model() UpperCamelCase__ : Tuple = self.dummy_sample_deter.half() scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase__ : Any = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa
285
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : str = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = ['''YolosFeatureExtractor'''] __lowerCamelCase : List[str] = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys __lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
714
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __lowerCamelCase : Optional[int] = '''pt''' elif is_tf_available(): __lowerCamelCase : str = '''tf''' else: __lowerCamelCase : int = '''jax''' class a__ ( A__ , unittest.TestCase ): A = PerceiverTokenizer A = False def __UpperCamelCase ( self : str ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE_ : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCamelCase ( self : Any ): """simple docstring""" return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def __UpperCamelCase ( self : Optional[int],**_A : List[Any] ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname,**_A ) def __UpperCamelCase ( self : List[Any],_A : Optional[Any],_A : str=False,_A : Tuple=20,_A : Tuple=5 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [] for i in range(len(_A ) ): try: SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.decode([i],clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ : int = list(filter(lambda _A : re.match(R"^[ a-zA-Z]+$",t[1] ),_A ) ) SCREAMING_SNAKE_CASE_ : Dict = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1],add_special_tokens=_A ),_A ) ) if max_length is not None and len(_A ) > max_length: SCREAMING_SNAKE_CASE_ : List[str] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: SCREAMING_SNAKE_CASE_ : int = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ : List[Any] = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ : str = tokenizer.decode(_A,clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: SCREAMING_SNAKE_CASE_ : Dict = ( tokenizer.decode([toks_ids[0]],clean_up_tokenization_spaces=_A ) + " " + tokenizer.decode(toks_ids[1:],clean_up_tokenization_spaces=_A ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ : str = " " + output_txt SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(_A,add_special_tokens=_A ) return output_txt, output_ids def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.perceiver_tokenizer SCREAMING_SNAKE_CASE_ : Union[str, Any] = "Unicode €." SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(_A ) SCREAMING_SNAKE_CASE_ : int = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"],_A ) # decoding SCREAMING_SNAKE_CASE_ : str = tokenizer.decode(_A ) self.assertEqual(_A,"[CLS]Unicode €.[SEP]" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer("e è é ê ë" ) SCREAMING_SNAKE_CASE_ : Tuple = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"],_A ) # decoding SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.decode(_A ) self.assertEqual(_A,"[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ),"[CLS]e è é ê ë[SEP]" ) def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.perceiver_tokenizer SCREAMING_SNAKE_CASE_ : List[str] = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off SCREAMING_SNAKE_CASE_ : Optional[Any] = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on SCREAMING_SNAKE_CASE_ : str = tokenizer(_A,padding=_A,return_tensors=_A ) self.assertIsInstance(_A,_A ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A,_A ) self.assertEqual((2, 38),batch.input_ids.shape ) self.assertEqual((2, 38),batch.attention_mask.shape ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.perceiver_tokenizer SCREAMING_SNAKE_CASE_ : Any = ["A long paragraph for summarization.", "Another paragraph for summarization."] SCREAMING_SNAKE_CASE_ : List[str] = tokenizer(_A,padding=_A,return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids",_A ) self.assertIn("attention_mask",_A ) self.assertNotIn("decoder_input_ids",_A ) self.assertNotIn("decoder_attention_mask",_A ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.perceiver_tokenizer SCREAMING_SNAKE_CASE_ : int = [ "Summary of the text.", "Another summary.", ] SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer( text_target=_A,max_length=32,padding="max_length",truncation=_A,return_tensors=_A ) self.assertEqual(32,targets["input_ids"].shape[1] ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length,42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : str = " He is very happy, UNwant\u00E9d,running" SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.encode(_A,add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : int = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = after_tokenizer.encode(_A,add_special_tokens=_A ) self.assertListEqual(_A,_A ) shutil.rmtree(_A ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Tuple = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) SCREAMING_SNAKE_CASE_ : int = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) SCREAMING_SNAKE_CASE_ : str = tokenizer.encode(_A,add_special_tokens=_A ) tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : str = tokenizer.__class__.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ : str = after_tokenizer.encode(_A,add_special_tokens=_A ) self.assertListEqual(_A,_A ) self.assertIn("new_additional_special_token",after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length,42 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.__class__.from_pretrained(_A,model_max_length=43 ) self.assertEqual(tokenizer.model_max_length,43 ) shutil.rmtree(_A ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A,"special_tokens_map.json" ),encoding="utf-8" ) as json_file: SCREAMING_SNAKE_CASE_ : Optional[int] = json.load(_A ) with open(os.path.join(_A,"tokenizer_config.json" ),encoding="utf-8" ) as json_file: SCREAMING_SNAKE_CASE_ : int = json.load(_A ) SCREAMING_SNAKE_CASE_ : Any = [F'<extra_id_{i}>' for i in range(125 )] SCREAMING_SNAKE_CASE_ : List[Any] = added_tokens_extra_ids + [ "an_additional_special_token" ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_A,"special_tokens_map.json" ),"w",encoding="utf-8" ) as outfile: json.dump(_A,_A ) with open(os.path.join(_A,"tokenizer_config.json" ),"w",encoding="utf-8" ) as outfile: json.dump(_A,_A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ : Dict = tokenizer_class.from_pretrained( _A,) self.assertIn( "an_additional_special_token",tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"],tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ),) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ : Union[str, Any] = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token",lstrip=_A )] SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer_class.from_pretrained( _A,additional_special_tokens=_A,) self.assertIn("a_new_additional_special_token",tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"],tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ),) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ),"�" ) def __UpperCamelCase ( self : Dict ): """simple docstring""" pass def __UpperCamelCase ( self : int ): """simple docstring""" pass def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass def __UpperCamelCase ( self : List[str] ): """simple docstring""" pass def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizers(fast=_A,do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): SCREAMING_SNAKE_CASE_ : str = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A,_A )
316
0
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase__ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCAmelCase__ = spec.loader.load_module() lowerCAmelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase__ = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') lowerCAmelCase__ = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Any = [] for config_class in list(CONFIG_MAPPING.values() ): _lowerCamelCase : Tuple = False # source code of `config_class` _lowerCamelCase : int = inspect.getsource(A_ ) _lowerCamelCase : str = _re_checkpoint.findall(A_ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _lowerCamelCase , _lowerCamelCase : Tuple = checkpoint # verify the checkpoint name corresponds to the checkpoint link _lowerCamelCase : Tuple = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: _lowerCamelCase : Union[str, Any] = True break _lowerCamelCase : Tuple = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(A_ ) if len(A_ ) > 0: _lowerCamelCase : Union[str, Any] = '''\n'''.join(sorted(A_ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
83
def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _a : str = str(bin(UpperCamelCase_ ) )[2:] # remove the leading "0b" _a : Dict = str(bin(UpperCamelCase_ ) )[2:] _a : str = max(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(UpperCamelCase_ ) , b_binary.zfill(UpperCamelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
471
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE_ = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } SCREAMING_SNAKE_CASE_ = { '''gpt2''': 1_0_2_4, '''gpt2-medium''': 1_0_2_4, '''gpt2-large''': 1_0_2_4, '''gpt2-xl''': 1_0_2_4, '''distilgpt2''': 1_0_2_4, } class UpperCamelCase__ ( UpperCamelCase__ ): '''simple docstring''' __snake_case : Dict = VOCAB_FILES_NAMES __snake_case : Any = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : Optional[Any] = ["""input_ids""", """attention_mask"""] __snake_case : Union[str, Any] = GPTaTokenizer def __init__( self : Any ,lowerCamelCase__ : List[str]=None ,lowerCamelCase__ : Optional[int]=None ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : Any="<|endoftext|>" ,lowerCamelCase__ : Dict="<|endoftext|>" ,lowerCamelCase__ : str="<|endoftext|>" ,lowerCamelCase__ : Dict=False ,**lowerCamelCase__ : List[str] ,) -> int: '''simple docstring''' super().__init__( lowerCamelCase__ ,lowerCamelCase__ ,tokenizer_file=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,add_prefix_space=lowerCamelCase__ ,**lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = kwargs.pop("""add_bos_token""" ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" ,lowerCamelCase__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(lowerCamelCase__ ,pre_tok_state.pop("""type""" ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = add_prefix_space def SCREAMING_SNAKE_CASE__ ( self : Tuple ,*lowerCamelCase__ : Optional[int] ,**lowerCamelCase__ : Tuple ) -> BatchEncoding: '''simple docstring''' SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" ,lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ ,**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ,*lowerCamelCase__ : Any ,**lowerCamelCase__ : int ) -> BatchEncoding: '''simple docstring''' SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" ,lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ ,**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Any = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self._tokenizer.model.save(lowerCamelCase__ ,name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : List[Any] ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) + [self.eos_token_id] ) if len(lowerCamelCase__ ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
717
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self : str ,lowerCamelCase__ : int ,lowerCamelCase__ : List[str]=3 ,lowerCamelCase__ : Optional[Any]=32 ,lowerCamelCase__ : Any=3 ,lowerCamelCase__ : Any=10 ,lowerCamelCase__ : Any=[10, 20, 30, 40] ,lowerCamelCase__ : Any=[1, 1, 2, 1] ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : List[str]=True ,lowerCamelCase__ : Union[str, Any]="relu" ,lowerCamelCase__ : Dict=3 ,lowerCamelCase__ : Any=None ,) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embeddings_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = len(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = TFResNetModel(config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = TFResNetForImageClassification(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Union[str, Any] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __snake_case : int = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) __snake_case : Optional[int] = False __snake_case : int = False __snake_case : Optional[Any] = False __snake_case : Union[str, Any] = False __snake_case : str = False def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = TFResNetModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: '''simple docstring''' return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : str ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Dict ): SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFResNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __lowercase ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=lowerCamelCase__ ,return_tensors="""tf""" ) # forward pass SCREAMING_SNAKE_CASE = model(**lowerCamelCase__ ) # verify the logits SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,lowerCamelCase__ ,atol=1e-4 ) )
116
0
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowerCAmelCase = False try: _lowerCAmelCase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class _UpperCAmelCase : def __init__( self , a__ = None , a__ = [] ): A_ : Union[str, Any] = 0 A_ : Optional[Any] = choices A_ : Optional[int] = prompt if sys.platform == "win32": A_ : int = """*""" else: A_ : str = """➔ """ def _lowerCamelCase ( self , a__ , a__ = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , a__ ) else: forceWrite(self.choices[index] , a__ ) def _lowerCamelCase ( self , a__ ): if index == self.position: forceWrite(F""" {self.arrow_char} """ ) self.write_choice(a__ ) else: forceWrite(F""" {self.choices[index]}""" ) reset_cursor() def _lowerCamelCase ( self , a__ , a__ = 1 ): A_ : Any = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(a__ ) move_cursor(a__ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def _lowerCamelCase ( self ): self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def _lowerCamelCase ( self ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def _lowerCamelCase ( self ): move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def _lowerCamelCase ( self ): move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(a__ )] for number in range(10 )] ) def _lowerCamelCase ( self ): A_ : Any = int(chr(self.current_selection ) ) A_ : List[Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , a__ ) else: return else: return def _lowerCamelCase ( self , a__ = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) A_ : int = default_choice for i in range(len(self.choices ) ): self.print_choice(a__ ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: A_ : List[Any] = int(builtins.input() ) except ValueError: A_ : Optional[Any] = default_choice else: A_ : str = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(a__ , """\n""" ) return choice
569
import os from math import logaa def _lowerCAmelCase ( _lowerCAmelCase = "base_exp.txt" ): '''simple docstring''' A_ : float = 0 A_ : int = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_lowerCAmelCase ) ,_lowerCAmelCase ) ) ): A_ , A_ : str = list(map(_lowerCAmelCase ,line.split(""",""" ) ) ) if x * logaa(_lowerCAmelCase ) > largest: A_ : Tuple = x * logaa(_lowerCAmelCase ) A_ : List[Any] = i + 1 return result if __name__ == "__main__": print(solution())
569
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer a = logging.get_logger(__name__) a = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } a = { 'bert-base-uncased': 5_1_2, 'bert-large-uncased': 5_1_2, 'bert-base-cased': 5_1_2, 'bert-large-cased': 5_1_2, 'bert-base-multilingual-uncased': 5_1_2, 'bert-base-multilingual-cased': 5_1_2, 'bert-base-chinese': 5_1_2, 'bert-base-german-cased': 5_1_2, 'bert-large-uncased-whole-word-masking': 5_1_2, 'bert-large-cased-whole-word-masking': 5_1_2, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_1_2, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_1_2, 'bert-base-cased-finetuned-mrpc': 5_1_2, 'bert-base-german-dbmdz-cased': 5_1_2, 'bert-base-german-dbmdz-uncased': 5_1_2, 'TurkuNLP/bert-base-finnish-cased-v1': 5_1_2, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_1_2, 'wietsedv/bert-base-dutch-cased': 5_1_2, } a = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class SCREAMING_SNAKE_CASE__ ( a__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_INIT_CONFIGURATION _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = BertTokenizer def __init__( self : Dict , lowerCAmelCase : List[Any]=None , lowerCAmelCase : int=None , lowerCAmelCase : Dict=True , lowerCAmelCase : Any="[UNK]" , lowerCAmelCase : Union[str, Any]="[SEP]" , lowerCAmelCase : Union[str, Any]="[PAD]" , lowerCAmelCase : Tuple="[CLS]" , lowerCAmelCase : Optional[Any]="[MASK]" , lowerCAmelCase : Any=True , lowerCAmelCase : str=None , **lowerCAmelCase : Any , ): super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _A ) != do_lower_case or normalizer_state.get("""strip_accents""" , _A ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _A ) != tokenize_chinese_chars ): lowerCAmelCase = getattr(_A , normalizer_state.pop("""type""" ) ) lowerCAmelCase = do_lower_case lowerCAmelCase = strip_accents lowerCAmelCase = tokenize_chinese_chars lowerCAmelCase = normalizer_class(**_A ) lowerCAmelCase = do_lower_case def __lowercase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any]=None ): lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : int = None ): lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : str , lowerCAmelCase : Tuple , lowerCAmelCase : str = None ): lowerCAmelCase = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
716
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a = 1_6 a = 3_2 def lowercase (snake_case__ : Accelerator , snake_case__ : int = 16 ) -> Dict: '''simple docstring''' lowerCAmelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(snake_case__ : List[Any] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(snake_case__ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase = 8 else: lowerCAmelCase = None return tokenizer.pad( snake_case__ , padding="""longest""" , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCAmelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) lowerCAmelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a = mocked_dataloaders # noqa: F811 def lowercase (snake_case__ : int , snake_case__ : Tuple ) -> int: '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , snake_case__ ) == "1": lowerCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase = config["""lr"""] lowerCAmelCase = int(config["""num_epochs"""] ) lowerCAmelCase = int(config["""seed"""] ) lowerCAmelCase = int(config["""batch_size"""] ) set_seed(snake_case__ ) lowerCAmelCase , lowerCAmelCase = get_dataloaders(snake_case__ , snake_case__ ) lowerCAmelCase = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowerCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase = AdamW(params=model.parameters() , lr=snake_case__ ) # Instantiate scheduler lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=100 , num_training_steps=(len(snake_case__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCAmelCase = os.path.split(snake_case__ )[-1].split(""".""" )[0] accelerator.init_trackers(snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCAmelCase = 0 for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase = model(**snake_case__ ) lowerCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase = model(**snake_case__ ) lowerCAmelCase = outputs.logits.argmax(dim=-1 ) lowerCAmelCase , lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , snake_case__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(snake_case__ ), """epoch""": epoch, } , step=snake_case__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowercase () -> str: '''simple docstring''' lowerCAmelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=snake_case__ , default=snake_case__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=snake_case__ , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
529
0
import math import sys def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[str] = '''''' try: with open(_lowercase , '''rb''' ) as binary_file: UpperCAmelCase_ : Dict = binary_file.read() for dat in data: UpperCAmelCase_ : Union[str, Any] = f'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = {'''0''': '''0''', '''1''': '''1'''} UpperCAmelCase_, UpperCAmelCase_ : str = '''''', '''''' UpperCAmelCase_ : Any = len(_lowercase ) for i in range(len(_lowercase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCAmelCase_ : Any = lexicon[curr_string] result += last_match_id UpperCAmelCase_ : Any = last_match_id + '''0''' if math.loga(_lowercase ).is_integer(): UpperCAmelCase_ : int = {} for curr_key in list(_lowercase ): UpperCAmelCase_ : List[Any] = lexicon.pop(_lowercase ) UpperCAmelCase_ : List[Any] = new_lex UpperCAmelCase_ : Any = last_match_id + '''1''' index += 1 UpperCAmelCase_ : List[Any] = '''''' return result def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = 8 try: with open(_lowercase , '''wb''' ) as opened_file: UpperCAmelCase_ : List[str] = [ to_write[i : i + byte_length] for i in range(0 , len(_lowercase ) , _lowercase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_lowercase , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Dict = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCAmelCase_ : Optional[int] = data_bits[counter:] UpperCAmelCase_ : Dict = data_bits[counter + 1 :] return data_bits def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = read_file_binary(_lowercase ) UpperCAmelCase_ : Optional[Any] = remove_prefix(_lowercase ) UpperCAmelCase_ : Tuple = decompress_data(_lowercase ) write_file_binary(_lowercase , _lowercase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
30
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase ( unittest.TestCase ): @property def snake_case ( self : str ): """simple docstring""" torch.manual_seed(0 ) __lowercase =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def snake_case ( self : int ): """simple docstring""" __lowercase =self.dummy_uncond_unet __lowercase =PNDMScheduler() __lowercase =PNDMPipeline(unet=__lowercase , scheduler=__lowercase ) pndm.to(__lowercase ) pndm.set_progress_bar_config(disable=__lowercase ) __lowercase =torch.manual_seed(0 ) __lowercase =pndm(generator=__lowercase , num_inference_steps=20 , output_type='numpy' ).images __lowercase =torch.manual_seed(0 ) __lowercase =pndm(generator=__lowercase , num_inference_steps=20 , output_type='numpy' , return_dict=__lowercase )[0] __lowercase =image[0, -3:, -3:, -1] __lowercase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase =np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Union[str, Any] ): """simple docstring""" __lowercase ='google/ddpm-cifar10-32' __lowercase =UNetaDModel.from_pretrained(__lowercase ) __lowercase =PNDMScheduler() __lowercase =PNDMPipeline(unet=__lowercase , scheduler=__lowercase ) pndm.to(__lowercase ) pndm.set_progress_bar_config(disable=__lowercase ) __lowercase =torch.manual_seed(0 ) __lowercase =pndm(generator=__lowercase , output_type='numpy' ).images __lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase =np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
119
0
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if len(snake_case__ ) != len(snake_case__ ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _SCREAMING_SNAKE_CASE = [p / w for p, w in zip(snake_case__ ,snake_case__ )] # Creating a copy of the list and sorting profit/weight in ascending order _SCREAMING_SNAKE_CASE = sorted(snake_case__ ) # declaring useful variables _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _SCREAMING_SNAKE_CASE = sorted_profit_by_weight[length - i - 1] _SCREAMING_SNAKE_CASE = profit_by_weight.index(snake_case__ ) _SCREAMING_SNAKE_CASE = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) UpperCamelCase = [int(x) for x in input('''Input profits separated by spaces: ''').split()] UpperCamelCase = [int(x) for x in input('''Input weights separated by spaces: ''').split()] UpperCamelCase = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
569
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
569
1
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: UpperCAmelCase_ : Any = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase ( unittest.TestCase): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=18 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , ) -> int: '''simple docstring''' __snake_case = size if size is not None else {'''height''': 20, '''width''': 20} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = size __snake_case = do_normalize __snake_case = do_convert_rgb __snake_case = [512, 1024, 2048, 4096] __snake_case = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowerCAmelCase ( self ) -> str: '''simple docstring''' __snake_case = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' __snake_case = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase): __lowercase : str = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = PixaStructImageProcessingTester(self ) @property def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case = self.image_processor_tester.prepare_dummy_image() __snake_case = self.image_processing_class(**self.image_processor_dict ) __snake_case = 2048 __snake_case = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_606 ) , atol=1E-3 , rtol=1E-3 ) ) def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __snake_case = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __snake_case = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __snake_case = image_processor( __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __snake_case = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 __snake_case = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__SCREAMING_SNAKE_CASE ): __snake_case = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches __snake_case = '''Hello''' __snake_case = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE , header_text=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __snake_case = image_processor( __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE , header_text=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) __snake_case = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __snake_case = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __snake_case = image_processor( __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __snake_case = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __snake_case = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __snake_case = image_processor( __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase): __lowercase : int = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case = PixaStructImageProcessingTester(self , num_channels=4 ) __snake_case = 3 @property def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __snake_case = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input __snake_case = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched __snake_case = image_processor( __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=__SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
24
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowerCAmelCase : def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowercase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase__ = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=_lowercase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) lowercase__ = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowercase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase__ = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=_lowercase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) lowercase__ = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) lowercase__ = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCAmelCase ( self :Any ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase__ = self.get_dummy_inputs(_lowercase ) lowercase__ = inputs["prompt"] lowercase__ = inputs["generator"] lowercase__ = inputs["num_inference_steps"] lowercase__ = inputs["output_type"] if "image" in inputs: lowercase__ = inputs["image"] else: lowercase__ = None if "mask_image" in inputs: lowercase__ = inputs["mask_image"] else: lowercase__ = None if "original_image" in inputs: lowercase__ = inputs["original_image"] else: lowercase__ = None lowercase__ , lowercase__ = pipe.encode_prompt(_lowercase ) # inputs with prompt converted to embeddings lowercase__ = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: lowercase__ = image if mask_image is not None: lowercase__ = mask_image if original_image is not None: lowercase__ = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_lowercase , _lowercase , _lowercase ) lowercase__ = pipe(**_lowercase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowercase ) lowercase__ = self.pipeline_class.from_pretrained(_lowercase ) pipe_loaded.to(_lowercase ) pipe_loaded.set_progress_bar_config(disable=_lowercase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_lowercase , _lowercase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(_lowercase ) lowercase__ = inputs["generator"] lowercase__ = inputs["num_inference_steps"] lowercase__ = inputs["output_type"] # inputs with prompt converted to embeddings lowercase__ = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: lowercase__ = image if mask_image is not None: lowercase__ = mask_image if original_image is not None: lowercase__ = original_image lowercase__ = pipe_loaded(**_lowercase )[0] lowercase__ = np.abs(to_np(_lowercase ) - to_np(_lowercase ) ).max() self.assertLess(_lowercase , 1e-4 ) def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase__ = self.get_dummy_inputs(_lowercase ) lowercase__ = pipe(**_lowercase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowercase ) lowercase__ = self.pipeline_class.from_pretrained(_lowercase ) pipe_loaded.to(_lowercase ) pipe_loaded.set_progress_bar_config(disable=_lowercase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowercase__ = self.get_dummy_inputs(_lowercase ) lowercase__ = pipe_loaded(**_lowercase )[0] lowercase__ = np.abs(to_np(_lowercase ) - to_np(_lowercase ) ).max() self.assertLess(_lowercase , 1e-4 )
655
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) SCREAMING_SNAKE_CASE_ = pytest.mark.integration @pytest.mark.parametrize("path", ["paws", "csv"] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> int: inspect_dataset(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = path + ".py" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path", ["accuracy"] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> str: inspect_metric(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = path + ".py" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( "path, config_name, expected_splits", [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> List[str]: a_ : Any = get_dataset_config_info(SCREAMING_SNAKE_CASE__, config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), ], ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> str: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__, config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( "path, expected", [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ], ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> str: a_ : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config", [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ], ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Any: a_ : int = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs a_ : Optional[int] = expected_configs[0] assert expected_config in infos a_ : Dict = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits", [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Tuple: a_ : str = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos a_ : List[str] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), ], ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> str: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__, config_name=SCREAMING_SNAKE_CASE__ )
709
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class snake_case_ ( a_ ,unittest.TestCase ): __lowerCAmelCase = SpeechTaTokenizer __lowerCAmelCase = False __lowerCAmelCase = True def snake_case_ ( self ): super().setUp() # We have a SentencePiece fixture for testing a_ : Any = SpeechTaTokenizer(a_ ) a_ : Optional[int] = AddedToken("<mask>" , lstrip=a_ , rstrip=a_ ) a_ : Any = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self , a_ ): a_ : Tuple = "this is a test" a_ : Any = "this is a test" return input_text, output_text def snake_case_ ( self , a_ , a_=False , a_=2_0 , a_=5 ): a_ , a_ : Optional[Any] = self.get_input_output_texts(a_ ) a_ : Optional[Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) a_ : Dict = tokenizer.decode(a_ , clean_up_tokenization_spaces=a_ ) return text, ids def snake_case_ ( self ): a_ : List[Any] = "<pad>" a_ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def snake_case_ ( self ): a_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-4] , "œ" ) self.assertEqual(vocab_keys[-2] , "<mask>" ) self.assertEqual(vocab_keys[-1] , "<ctc_blank>" ) self.assertEqual(len(a_ ) , 8_1 ) def snake_case_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 7_9 ) def snake_case_ ( self ): a_ : Any = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): a_ : Dict = tokenizer.vocab_size a_ : List[str] = len(a_ ) self.assertNotEqual(a_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) a_ : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] a_ : int = tokenizer.add_tokens(a_ ) a_ : List[Any] = tokenizer.vocab_size a_ : Tuple = len(a_ ) self.assertNotEqual(a_ , 0 ) self.assertEqual(a_ , a_ ) self.assertEqual(a_ , len(a_ ) ) self.assertEqual(a_ , all_size + len(a_ ) ) a_ : str = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=a_ ) self.assertGreaterEqual(len(a_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) a_ : Tuple = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} a_ : Dict = tokenizer.add_special_tokens(a_ ) a_ : Optional[Any] = tokenizer.vocab_size a_ : Any = len(a_ ) self.assertNotEqual(a_ , 0 ) self.assertEqual(a_ , a_ ) self.assertEqual(a_ , len(a_ ) ) self.assertEqual(a_ , all_size_a + len(a_ ) ) a_ : Any = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=a_ ) self.assertGreaterEqual(len(a_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def snake_case_ ( self ): pass def snake_case_ ( self ): pass def snake_case_ ( self ): a_ : Union[str, Any] = self.get_tokenizer() a_ : Any = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(a_ , [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , ) a_ : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a_ , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) a_ : Tuple = tokenizer.convert_tokens_to_ids(a_ ) # fmt: off self.assertListEqual(a_ , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6] ) # fmt: on a_ : Tuple = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_ , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def snake_case_ ( self ): # Use custom sequence because this tokenizer does not handle numbers. a_ : List[Any] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off a_ : Tuple = { "input_ids": [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ , model_name="microsoft/speecht5_asr" , revision="c5ef64c71905caeccde0e4462ef3f9077224c524" , sequences=a_ , )
370
0
'''simple docstring''' import math def _SCREAMING_SNAKE_CASE ( __snake_case : int ): _A = [] _A = 2 _A = int(math.sqrt(__snake_case ) ) # Size of every segment _A = [True] * (end + 1) _A = [] while start <= end: if temp[start] is True: in_prime.append(__snake_case ) for i in range(start * start , end + 1 , __snake_case ): _A = False start += 1 prime += in_prime _A = end + 1 _A = min(2 * end , __snake_case ) while low <= n: _A = [True] * (high - low + 1) for each in in_prime: _A = math.floor(low / each ) * each if t < low: t += each for j in range(__snake_case , high + 1 , __snake_case ): _A = False for j in range(len(__snake_case ) ): if temp[j] is True: prime.append(j + low ) _A = high + 1 _A = min(high + end , __snake_case ) return prime print(sieve(10**6))
107
'''simple docstring''' def a_ ( lowerCamelCase : Optional[Any] ): stooge(lowerCamelCase , 0 , len(lowerCamelCase ) - 1 ) return arr def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple ): if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCAmelCase , lowerCAmelCase = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCAmelCase = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowerCamelCase , lowerCamelCase , (h - t) ) # Recursively sort last 2/3 elements stooge(lowerCamelCase , i + t , (lowerCamelCase) ) # Recursively sort first 2/3 elements stooge(lowerCamelCase , lowerCamelCase , (h - t) ) if __name__ == "__main__": __snake_case =input("""Enter numbers separated by a comma:\n""").strip() __snake_case =[int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
133
0
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =tmp_path / 'cache' _UpperCAmelCase : Dict ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase : Tuple =JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase : List[Any] =tmp_path / 'cache' _UpperCAmelCase : List[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _UpperCAmelCase : List[str] =features.copy() if features else default_expected_features _UpperCAmelCase : Optional[int] =( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : List[Any] =JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =tmp_path / 'cache' _UpperCAmelCase : Any ={'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} _UpperCAmelCase : Any =features.copy() if features else default_expected_features _UpperCAmelCase : List[str] =( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : List[Any] =JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Dict ): '''simple docstring''' _UpperCAmelCase : int ={'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} _UpperCAmelCase : Any =features.copy() _UpperCAmelCase : List[str] =( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Dict =tmp_path / 'cache' _UpperCAmelCase : int =JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ): '''simple docstring''' _UpperCAmelCase : List[Any] =tmp_path / 'cache' _UpperCAmelCase : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _UpperCAmelCase : int =JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , split=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] ): '''simple docstring''' if issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Tuple =jsonl_path elif issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] =[jsonl_path] _UpperCAmelCase : Optional[int] =tmp_path / 'cache' _UpperCAmelCase : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _UpperCAmelCase : Union[str, Any] =JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : int=("train",) ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for split in splits: _UpperCAmelCase : int =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): '''simple docstring''' _UpperCAmelCase : Optional[int] =tmp_path / 'cache' _UpperCAmelCase : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase : Optional[Any] =JsonDatasetReader({'train': jsonl_path} , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : List[str] ): '''simple docstring''' _UpperCAmelCase : Optional[int] =tmp_path / 'cache' _UpperCAmelCase : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _UpperCAmelCase : List[str] =features.copy() if features else default_expected_features _UpperCAmelCase : Dict =( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Dict =JsonDatasetReader({'train': jsonl_path} , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Dict ): '''simple docstring''' if split: _UpperCAmelCase : Optional[int] ={split: jsonl_path} else: _UpperCAmelCase : int ='train' _UpperCAmelCase : List[Any] ={'train': jsonl_path, 'test': jsonl_path} _UpperCAmelCase : Any =tmp_path / 'cache' _UpperCAmelCase : Optional[int] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _UpperCAmelCase : Dict =JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): '''simple docstring''' return json.load(lowerCAmelCase__ ) def lowerCamelCase__ ( __lowerCamelCase : Dict ): '''simple docstring''' return [json.loads(lowerCAmelCase__ ) for line in buffer] class __magic_name__ : @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)]) def lowerCAmelCase ( self , snake_case , snake_case , snake_case) -> Union[str, Any]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , lines=snake_case__).write() buffer.seek(0) _UpperCAmelCase : Any =load_json_function(snake_case__) assert isinstance(snake_case__ , snake_case__) assert isinstance(exported_content[0] , snake_case__) assert len(snake_case__) == 1_0 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789'), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case) -> int: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , lines=snake_case__ , orient=snake_case__).write() buffer.seek(0) _UpperCAmelCase : str =load_json(snake_case__) assert isinstance(snake_case__ , snake_case__) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(snake_case__ , 'keys') and not hasattr(exported_content[0] , 'keys') if len_at: assert len(exported_content[len_at]) == 1_0 else: assert len(snake_case__) == 1_0 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)]) def lowerCAmelCase ( self , snake_case , snake_case , snake_case) -> Union[str, Any]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , lines=snake_case__ , num_proc=2).write() buffer.seek(0) _UpperCAmelCase : List[Any] =load_json_function(snake_case__) assert isinstance(snake_case__ , snake_case__) assert isinstance(exported_content[0] , snake_case__) assert len(snake_case__) == 1_0 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789'), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case) -> Dict: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , lines=snake_case__ , orient=snake_case__ , num_proc=2).write() buffer.seek(0) _UpperCAmelCase : Union[str, Any] =load_json(snake_case__) assert isinstance(snake_case__ , snake_case__) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(snake_case__ , 'keys') and not hasattr(exported_content[0] , 'keys') if len_at: assert len(exported_content[len_at]) == 1_0 else: assert len(snake_case__) == 1_0 def lowerCAmelCase ( self , snake_case) -> str: '''simple docstring''' with pytest.raises(snake_case__): with io.BytesIO() as buffer: JsonDatasetWriter(snake_case__ , snake_case__ , num_proc=0) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')]) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case) -> Dict: '''simple docstring''' _UpperCAmelCase : int =tmp_path_factory.mktemp('data') / f"test.json.{extension}" _UpperCAmelCase : Union[str, Any] =str(shared_datadir / f"test_file.json.{extension}") JsonDatasetWriter(snake_case__ , snake_case__ , compression=snake_case__).write() with fsspec.open(snake_case__ , 'rb' , compression='infer') as f: _UpperCAmelCase : Optional[Any] =f.read() with fsspec.open(snake_case__ , 'rb' , compression='infer') as f: _UpperCAmelCase : Tuple =f.read() assert exported_content == original_content
706
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowercase =logging.get_logger(__name__) lowercase ={ 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } lowercase =[ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): '''simple docstring''' for attribute in key.split('.' ): _UpperCAmelCase : Optional[Any] =getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: _UpperCAmelCase : List[Any] =getattr(__lowerCamelCase , __lowerCamelCase ).shape else: _UpperCAmelCase : Dict =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _UpperCAmelCase : Tuple =value elif weight_type == "weight_g": _UpperCAmelCase : List[str] =value elif weight_type == "weight_v": _UpperCAmelCase : Any =value elif weight_type == "bias": _UpperCAmelCase : Dict =value else: _UpperCAmelCase : Optional[Any] =value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): '''simple docstring''' _UpperCAmelCase : Tuple =[] _UpperCAmelCase : List[Any] =fairseq_model.state_dict() _UpperCAmelCase : Union[str, Any] =hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase : Optional[int] =False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == 'group' , ) _UpperCAmelCase : Dict =True else: for key, mapped_key in MAPPING.items(): _UpperCAmelCase : str ='unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue _UpperCAmelCase : Optional[Any] =True if "*" in mapped_key: _UpperCAmelCase : List[str] =name.split(__lowerCamelCase )[0].split('.' )[-2] _UpperCAmelCase : Any =mapped_key.replace('*' , __lowerCamelCase ) if "weight_g" in name: _UpperCAmelCase : int ='weight_g' elif "weight_v" in name: _UpperCAmelCase : List[str] ='weight_v' elif "bias" in name: _UpperCAmelCase : Optional[int] ='bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCAmelCase : str ='weight' else: _UpperCAmelCase : str =None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ): '''simple docstring''' _UpperCAmelCase : Dict =full_name.split('conv_layers.' )[-1] _UpperCAmelCase : List[str] =name.split('.' ) _UpperCAmelCase : List[str] =int(items[0] ) _UpperCAmelCase : Optional[int] =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _UpperCAmelCase : List[str] =value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _UpperCAmelCase : Union[str, Any] =value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) _UpperCAmelCase : Tuple =value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _UpperCAmelCase : Tuple =value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Any=True ): '''simple docstring''' if config_path is not None: _UpperCAmelCase : Dict =UniSpeechSatConfig.from_pretrained(__lowerCamelCase ) else: _UpperCAmelCase : Union[str, Any] =UniSpeechSatConfig() _UpperCAmelCase : List[Any] ='' if is_finetuned: _UpperCAmelCase : Union[str, Any] =UniSpeechSatForCTC(__lowerCamelCase ) else: _UpperCAmelCase : Tuple =UniSpeechSatForPreTraining(__lowerCamelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) _UpperCAmelCase : Tuple =model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowercase =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowercase =parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
331
0
"""simple docstring""" def _A (__a , __a , __a = 0 , __a = 0 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = right or len(__a ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__a , __a , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
512
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") UpperCAmelCase_ : str = logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : '''simple docstring''' __UpperCamelCase = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class lowerCAmelCase__ : '''simple docstring''' __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "Train language if it is different from the evaluation language."} ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCamelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) __UpperCamelCase = field( default=UpperCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def _A () -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , __a ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ : int = training_args.get_process_log_level() logger.setLevel(__a ) datasets.utils.logging.set_verbosity(__a ) transformers.utils.logging.set_verbosity(__a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE_ : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: SCREAMING_SNAKE_CASE_ : int = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: SCREAMING_SNAKE_CASE_ : Any = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = train_dataset.features['''label'''].names if training_args.do_eval: SCREAMING_SNAKE_CASE_ : Dict = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE_ : Tuple = eval_dataset.features['''label'''].names if training_args.do_predict: SCREAMING_SNAKE_CASE_ : Optional[int] = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE_ : str = predict_dataset.features['''label'''].names # Labels SCREAMING_SNAKE_CASE_ : List[Any] = len(__a ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__a , idalabel={str(__a ): label for i, label in enumerate(__a )} , labelaid={label: i for i, label in enumerate(__a )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE_ : Any = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch SCREAMING_SNAKE_CASE_ : Union[str, Any] = False def preprocess_function(__a ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=__a , max_length=data_args.max_seq_length , truncation=__a , ) if training_args.do_train: if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = min(len(__a ) , data_args.max_train_samples ) SCREAMING_SNAKE_CASE_ : Optional[int] = train_dataset.select(range(__a ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = train_dataset.map( __a , batched=__a , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(__a ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE_ : Dict = min(len(__a ) , data_args.max_eval_samples ) SCREAMING_SNAKE_CASE_ : str = eval_dataset.select(range(__a ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = eval_dataset.map( __a , batched=__a , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: SCREAMING_SNAKE_CASE_ : Dict = min(len(__a ) , data_args.max_predict_samples ) SCREAMING_SNAKE_CASE_ : List[str] = predict_dataset.select(range(__a ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): SCREAMING_SNAKE_CASE_ : int = predict_dataset.map( __a , batched=__a , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function SCREAMING_SNAKE_CASE_ : List[str] = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__a ): SCREAMING_SNAKE_CASE_ : Any = p.predictions[0] if isinstance(p.predictions , __a ) else p.predictions SCREAMING_SNAKE_CASE_ : Tuple = np.argmax(__a , axis=1 ) return metric.compute(predictions=__a , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE_ : str = default_data_collator elif training_args.fpaa: SCREAMING_SNAKE_CASE_ : List[Any] = DataCollatorWithPadding(__a , pad_to_multiple_of=8 ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = None # Initialize our Trainer SCREAMING_SNAKE_CASE_ : List[str] = Trainer( model=__a , args=__a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__a , tokenizer=__a , data_collator=__a , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE_ : List[str] = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE_ : List[str] = last_checkpoint SCREAMING_SNAKE_CASE_ : Any = trainer.train(resume_from_checkpoint=__a ) SCREAMING_SNAKE_CASE_ : List[Any] = train_result.metrics SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__a ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = min(__a , len(__a ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , __a ) trainer.save_metrics('''train''' , __a ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) SCREAMING_SNAKE_CASE_ : List[str] = trainer.evaluate(eval_dataset=__a ) SCREAMING_SNAKE_CASE_ : List[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__a ) SCREAMING_SNAKE_CASE_ : str = min(__a , len(__a ) ) trainer.log_metrics('''eval''' , __a ) trainer.save_metrics('''eval''' , __a ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = trainer.predict(__a , metric_key_prefix='''predict''' ) SCREAMING_SNAKE_CASE_ : List[Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__a ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(__a , len(__a ) ) trainer.log_metrics('''predict''' , __a ) trainer.save_metrics('''predict''' , __a ) SCREAMING_SNAKE_CASE_ : Any = np.argmax(__a , axis=1 ) SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(__a , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(__a ): SCREAMING_SNAKE_CASE_ : str = label_list[item] writer.write(f'{index}\t{item}\n' ) if __name__ == "__main__": main()
512
1
"""simple docstring""" import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __a ( unittest.TestCase ): def __init__( self , a__ ): _lowerCamelCase = parent def snake_case_ ( self ): return {} def SCREAMING_SNAKE_CASE_ ( ): _lowerCamelCase = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' _lowerCamelCase = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class __a ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : Tuple = MarkupLMFeatureExtractor if is_bsa_available() else None def snake_case_ ( self ): _lowerCamelCase = MarkupLMFeatureExtractionTester(self ) @property def snake_case_ ( self ): return self.feature_extract_tester.prepare_feat_extract_dict() def snake_case_ ( self ): # Initialize feature_extractor _lowerCamelCase = self.feature_extraction_class() # Test not batched input _lowerCamelCase = get_html_strings()[0] _lowerCamelCase = feature_extractor(a__ ) # fmt: off _lowerCamelCase = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] _lowerCamelCase = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , a__ ) self.assertEqual(encoding.xpaths , a__ ) # Test batched _lowerCamelCase = get_html_strings() _lowerCamelCase = feature_extractor(a__ ) # fmt: off _lowerCamelCase = expected_nodes + [['My First Heading', 'My first paragraph.']] _lowerCamelCase = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , a__ ) self.assertEqual(encoding.xpaths , a__ )
713
"""simple docstring""" from manim import * class __a ( lowerCAmelCase__ ): def snake_case_ ( self ): _lowerCamelCase = Rectangle(height=0.5 , width=0.5 ) _lowerCamelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCamelCase = [mem.copy() for i in range(6 )] _lowerCamelCase = [mem.copy() for i in range(6 )] _lowerCamelCase = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCamelCase = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCamelCase = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) _lowerCamelCase = Text('CPU' , font_size=24 ) _lowerCamelCase = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a__ ) _lowerCamelCase = [mem.copy() for i in range(4 )] _lowerCamelCase = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCamelCase = Text('GPU' , font_size=24 ) _lowerCamelCase = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) gpu.move_to([-1, -1, 0] ) self.add(a__ ) _lowerCamelCase = [mem.copy() for i in range(6 )] _lowerCamelCase = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCamelCase = Text('Model' , font_size=24 ) _lowerCamelCase = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) model.move_to([3, -1.0, 0] ) self.add(a__ ) _lowerCamelCase = [] for i, rect in enumerate(a__ ): rect.set_stroke(a__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowerCamelCase = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=a__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=a__ , buff=0.0 ) self.add(a__ ) cpu_targs.append(a__ ) _lowerCamelCase = [mem.copy() for i in range(6 )] _lowerCamelCase = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCamelCase = Text('Loaded Checkpoint' , font_size=24 ) _lowerCamelCase = Group(a__ , a__ ).arrange(a__ , aligned_edge=a__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _lowerCamelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCamelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a__ , a__ ) _lowerCamelCase = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _lowerCamelCase = MarkupText( F'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ ) , Write(a__ ) ) self.play(Write(a__ , run_time=1 ) , Create(a__ , run_time=1 ) ) _lowerCamelCase = [] _lowerCamelCase = [] for i, rect in enumerate(a__ ): _lowerCamelCase = fill.copy().set_fill(a__ , opacity=0.7 ) target.move_to(a__ ) first_animations.append(GrowFromCenter(a__ , run_time=1 ) ) _lowerCamelCase = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(a__ , run_time=1.5 ) ) self.play(*a__ ) self.play(*a__ ) self.wait()
222
0
from collections import defaultdict from math import gcd def A_ ( _UpperCAmelCase = 1_50_00_00 ): SCREAMING_SNAKE_CASE_: defaultdict = defaultdict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , _UpperCAmelCase , 2 ): if gcd(_UpperCAmelCase , _UpperCAmelCase ) > 1: continue SCREAMING_SNAKE_CASE_: str = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_UpperCAmelCase , limit + 1 , _UpperCAmelCase ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
671
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Dict = logging.get_logger(__name__) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = b.T SCREAMING_SNAKE_CASE_: Dict = np.sum(np.square(_UpperCAmelCase ) , axis=1 ) SCREAMING_SNAKE_CASE_: Tuple = np.sum(np.square(_UpperCAmelCase ) , axis=0 ) SCREAMING_SNAKE_CASE_: List[Any] = np.matmul(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = aa[:, None] - 2 * ab + ba[None, :] return d def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = x.reshape(-1 , 3 ) SCREAMING_SNAKE_CASE_: Tuple = squared_euclidean_distance(_UpperCAmelCase , _UpperCAmelCase ) return np.argmin(_UpperCAmelCase , axis=1 ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : int = ['''pixel_values'''] def __init__( self : Tuple , lowerCAmelCase__ : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[str] , ): super().__init__(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = size if size is not None else {"height": 256, "width": 256} SCREAMING_SNAKE_CASE_: Tuple = get_size_dict(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = np.array(lowerCAmelCase__) if clusters is not None else None SCREAMING_SNAKE_CASE_: Dict = do_resize SCREAMING_SNAKE_CASE_: str = size SCREAMING_SNAKE_CASE_: List[Any] = resample SCREAMING_SNAKE_CASE_: Optional[int] = do_normalize SCREAMING_SNAKE_CASE_: Dict = do_color_quantize def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ): SCREAMING_SNAKE_CASE_: List[str] = get_size_dict(lowerCAmelCase__) if "height" not in size or "width" not in size: raise ValueError(F"Size dictionary must contain both height and width keys. Got {size.keys()}") return resize( lowerCAmelCase__ , size=(size["height"], size["width"]) , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , ): SCREAMING_SNAKE_CASE_: str = rescale(image=lowerCAmelCase__ , scale=1 / 127.5 , data_format=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = image - 1 return image def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **lowerCAmelCase__ : Union[str, Any] , ): SCREAMING_SNAKE_CASE_: Tuple = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_: Optional[int] = size if size is not None else self.size SCREAMING_SNAKE_CASE_: Dict = get_size_dict(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_: int = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_: List[str] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize SCREAMING_SNAKE_CASE_: Tuple = clusters if clusters is not None else self.clusters SCREAMING_SNAKE_CASE_: Optional[int] = np.array(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True.") # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_: Union[str, Any] = [to_numpy_array(lowerCAmelCase__) for image in images] if do_resize: SCREAMING_SNAKE_CASE_: Optional[Any] = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_: str = [self.normalize(image=lowerCAmelCase__) for image in images] if do_color_quantize: SCREAMING_SNAKE_CASE_: Any = [to_channel_dimension_format(lowerCAmelCase__ , ChannelDimension.LAST) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) SCREAMING_SNAKE_CASE_: List[Any] = np.array(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = color_quantize(lowerCAmelCase__ , lowerCAmelCase__).reshape(images.shape[:-1]) # flatten to (batch_size, height*width) SCREAMING_SNAKE_CASE_: str = images.shape[0] SCREAMING_SNAKE_CASE_: Tuple = images.reshape(lowerCAmelCase__ , -1) # We need to convert back to a list of images to keep consistent behaviour across processors. SCREAMING_SNAKE_CASE_: str = list(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Dict = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__) for image in images] SCREAMING_SNAKE_CASE_: Optional[Any] = {"input_ids": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__)
671
1
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _snake_case = logging.get_logger(__name__) # General docstring _snake_case = '''PoolFormerConfig''' # Base docstring _snake_case = '''sail/poolformer_s12''' _snake_case = [1, 5_12, 7, 7] # Image classification docstring _snake_case = '''sail/poolformer_s12''' _snake_case = '''tabby, tabby cat''' _snake_case = [ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCamelCase_ ( A : Optional[Any] , A : float = 0.0 , A : bool = False ): """simple docstring""" if drop_prob == 0.0 or not training: return input lowerCAmelCase_ = 1 - drop_prob lowerCAmelCase_ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets lowerCAmelCase_ = keep_prob + torch.rand(UpperCAmelCase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize lowerCAmelCase_ = input.div(UpperCAmelCase__ ) * random_tensor return output class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase = None): super().__init__() lowerCAmelCase_ = drop_prob def lowercase__ ( self , _UpperCAmelCase): return drop_path(__lowerCAmelCase , self.drop_prob , self.training) def lowercase__ ( self): return "p={}".format(self.drop_prob) class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None): super().__init__() lowerCAmelCase_ = patch_size if isinstance(__lowerCAmelCase , collections.abc.Iterable) else (patch_size, patch_size) lowerCAmelCase_ = stride if isinstance(__lowerCAmelCase , collections.abc.Iterable) else (stride, stride) lowerCAmelCase_ = padding if isinstance(__lowerCAmelCase , collections.abc.Iterable) else (padding, padding) lowerCAmelCase_ = nn.Convad(__lowerCAmelCase , __lowerCAmelCase , kernel_size=__lowerCAmelCase , stride=__lowerCAmelCase , padding=__lowerCAmelCase) lowerCAmelCase_ = norm_layer(__lowerCAmelCase) if norm_layer else nn.Identity() def lowercase__ ( self , _UpperCAmelCase): lowerCAmelCase_ = self.projection(__lowerCAmelCase) lowerCAmelCase_ = self.norm(__lowerCAmelCase) return embeddings class UpperCamelCase_ ( nn.GroupNorm ): '''simple docstring''' def __init__( self , _UpperCAmelCase , **_UpperCAmelCase): super().__init__(1 , __lowerCAmelCase , **__lowerCAmelCase) class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase): super().__init__() lowerCAmelCase_ = nn.AvgPoolad(__lowerCAmelCase , stride=1 , padding=pool_size // 2 , count_include_pad=__lowerCAmelCase) def lowercase__ ( self , _UpperCAmelCase): return self.pool(__lowerCAmelCase) - hidden_states class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): super().__init__() lowerCAmelCase_ = nn.Convad(__lowerCAmelCase , __lowerCAmelCase , 1) lowerCAmelCase_ = nn.Convad(__lowerCAmelCase , __lowerCAmelCase , 1) lowerCAmelCase_ = PoolFormerDropPath(__lowerCAmelCase) if isinstance(config.hidden_act , __lowerCAmelCase): lowerCAmelCase_ = ACTaFN[config.hidden_act] else: lowerCAmelCase_ = config.hidden_act def lowercase__ ( self , _UpperCAmelCase): lowerCAmelCase_ = self.conva(__lowerCAmelCase) lowerCAmelCase_ = self.act_fn(__lowerCAmelCase) lowerCAmelCase_ = self.drop(__lowerCAmelCase) lowerCAmelCase_ = self.conva(__lowerCAmelCase) lowerCAmelCase_ = self.drop(__lowerCAmelCase) return hidden_states class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): super().__init__() lowerCAmelCase_ = PoolFormerPooling(__lowerCAmelCase) lowerCAmelCase_ = PoolFormerOutput(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase_ = PoolFormerGroupNorm(__lowerCAmelCase) lowerCAmelCase_ = PoolFormerGroupNorm(__lowerCAmelCase) # Useful for training neural nets lowerCAmelCase_ = PoolFormerDropPath(__lowerCAmelCase) if drop_path > 0.0 else nn.Identity() lowerCAmelCase_ = config.use_layer_scale if config.use_layer_scale: lowerCAmelCase_ = nn.Parameter( config.layer_scale_init_value * torch.ones((__lowerCAmelCase)) , requires_grad=__lowerCAmelCase) lowerCAmelCase_ = nn.Parameter( config.layer_scale_init_value * torch.ones((__lowerCAmelCase)) , requires_grad=__lowerCAmelCase) def lowercase__ ( self , _UpperCAmelCase): if self.use_layer_scale: lowerCAmelCase_ = self.pooling(self.before_norm(__lowerCAmelCase)) lowerCAmelCase_ = self.layer_scale_a.unsqueeze(-1).unsqueeze(-1) * pooling_output # First residual connection lowerCAmelCase_ = hidden_states + self.drop_path(__lowerCAmelCase) lowerCAmelCase_ = () lowerCAmelCase_ = self.output(self.after_norm(__lowerCAmelCase)) lowerCAmelCase_ = self.layer_scale_a.unsqueeze(-1).unsqueeze(-1) * layer_output # Second residual connection lowerCAmelCase_ = hidden_states + self.drop_path(__lowerCAmelCase) lowerCAmelCase_ = (output,) + outputs return outputs else: lowerCAmelCase_ = self.drop_path(self.pooling(self.before_norm(__lowerCAmelCase))) # First residual connection lowerCAmelCase_ = pooling_output + hidden_states lowerCAmelCase_ = () # Second residual connection inside the PoolFormerOutput block lowerCAmelCase_ = self.drop_path(self.output(self.after_norm(__lowerCAmelCase))) lowerCAmelCase_ = hidden_states + layer_output lowerCAmelCase_ = (output,) + outputs return outputs class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase): super().__init__() lowerCAmelCase_ = config # stochastic depth decay rule lowerCAmelCase_ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths))] # patch embeddings lowerCAmelCase_ = [] for i in range(config.num_encoder_blocks): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , )) lowerCAmelCase_ = nn.ModuleList(__lowerCAmelCase) # Transformer blocks lowerCAmelCase_ = [] lowerCAmelCase_ = 0 for i in range(config.num_encoder_blocks): # each block consists of layers lowerCAmelCase_ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( PoolFormerLayer( __lowerCAmelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio) , drop_path=dpr[cur + j] , )) blocks.append(nn.ModuleList(__lowerCAmelCase)) lowerCAmelCase_ = nn.ModuleList(__lowerCAmelCase) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=True): lowerCAmelCase_ = () if output_hidden_states else None lowerCAmelCase_ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block)): lowerCAmelCase_ , lowerCAmelCase_ = layers # Get patch embeddings from hidden_states lowerCAmelCase_ = embedding_layer(__lowerCAmelCase) # Send the embeddings through the blocks for _, blk in enumerate(__lowerCAmelCase): lowerCAmelCase_ = blk(__lowerCAmelCase) lowerCAmelCase_ = layer_outputs[0] if output_hidden_states: lowerCAmelCase_ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=__lowerCAmelCase , hidden_states=__lowerCAmelCase) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' a :str = PoolFormerConfig a :List[str] = 'poolformer' a :Union[str, Any] = 'pixel_values' a :Tuple = True def lowercase__ ( self , _UpperCAmelCase): if isinstance(__lowerCAmelCase , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowerCAmelCase , nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase=False): if isinstance(__lowerCAmelCase , __lowerCAmelCase): lowerCAmelCase_ = value _snake_case = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _snake_case = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. ''' @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , UpperCAmelCase__ , ) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , _UpperCAmelCase): super().__init__(__lowerCAmelCase) lowerCAmelCase_ = config lowerCAmelCase_ = PoolFormerEncoder(__lowerCAmelCase) # Initialize weights and apply final processing self.post_init() def lowercase__ ( self): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase__ ( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): lowerCAmelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''') lowerCAmelCase_ = self.encoder( __lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase , ) lowerCAmelCase_ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase): super().__init__() lowerCAmelCase_ = nn.Linear(config.hidden_size , config.hidden_size) def lowercase__ ( self , _UpperCAmelCase): lowerCAmelCase_ = self.dense(__lowerCAmelCase) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , UpperCAmelCase__ , ) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , _UpperCAmelCase): super().__init__(__lowerCAmelCase) lowerCAmelCase_ = config.num_labels lowerCAmelCase_ = PoolFormerModel(__lowerCAmelCase) # Final norm lowerCAmelCase_ = PoolFormerGroupNorm(config.hidden_sizes[-1]) # Classifier head lowerCAmelCase_ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase__ ( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): lowerCAmelCase_ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ = self.poolformer( __lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase , ) lowerCAmelCase_ = outputs[0] lowerCAmelCase_ = self.classifier(self.norm(__lowerCAmelCase).mean([-2, -1])) lowerCAmelCase_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase_ = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase_ = '''single_label_classification''' else: lowerCAmelCase_ = '''multi_label_classification''' if self.config.problem_type == "regression": lowerCAmelCase_ = MSELoss() if self.num_labels == 1: lowerCAmelCase_ = loss_fct(logits.squeeze() , labels.squeeze()) else: lowerCAmelCase_ = loss_fct(__lowerCAmelCase , __lowerCAmelCase) elif self.config.problem_type == "single_label_classification": lowerCAmelCase_ = CrossEntropyLoss() lowerCAmelCase_ = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase_ = BCEWithLogitsLoss() lowerCAmelCase_ = loss_fct(__lowerCAmelCase , __lowerCAmelCase) if not return_dict: lowerCAmelCase_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__lowerCAmelCase , logits=__lowerCAmelCase , hidden_states=outputs.hidden_states)
710
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
413
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( _snake_case ): __UpperCamelCase : Dict = ['image_processor', 'tokenizer'] __UpperCamelCase : Any = 'ViltImageProcessor' __UpperCamelCase : List[str] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Dict ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : List[Any]=None ,**lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,lowerCamelCase ,) __SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) __SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.image_processor def __call__( self : int ,lowerCamelCase : Dict ,lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,lowerCamelCase : bool = True ,lowerCamelCase : Union[bool, str, PaddingStrategy] = False ,lowerCamelCase : Union[bool, str, TruncationStrategy] = None ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : int = 0 ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : Optional[bool] = None ,lowerCamelCase : Optional[bool] = None ,lowerCamelCase : bool = False ,lowerCamelCase : bool = False ,lowerCamelCase : bool = False ,lowerCamelCase : bool = False ,lowerCamelCase : bool = True ,lowerCamelCase : Optional[Union[str, TensorType]] = None ,**lowerCamelCase : str ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer( text=lowerCamelCase ,add_special_tokens=lowerCamelCase ,padding=lowerCamelCase ,truncation=lowerCamelCase ,max_length=lowerCamelCase ,stride=lowerCamelCase ,pad_to_multiple_of=lowerCamelCase ,return_token_type_ids=lowerCamelCase ,return_attention_mask=lowerCamelCase ,return_overflowing_tokens=lowerCamelCase ,return_special_tokens_mask=lowerCamelCase ,return_offsets_mapping=lowerCamelCase ,return_length=lowerCamelCase ,verbose=lowerCamelCase ,return_tensors=lowerCamelCase ,**lowerCamelCase ,) # add pixel_values + pixel_mask __SCREAMING_SNAKE_CASE = self.image_processor(lowerCamelCase ,return_tensors=lowerCamelCase ) encoding.update(lowerCamelCase ) return encoding def UpperCAmelCase__ ( self : Optional[int] ,*lowerCamelCase : Any ,**lowerCamelCase : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ,*lowerCamelCase : Union[str, Any] ,**lowerCamelCase : List[Any] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase ,**lowerCamelCase ) @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names __SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,lowerCamelCase ,) return self.image_processor_class @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,lowerCamelCase ,) return self.image_processor
109
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 20 lowerCamelCase_ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase_ = jax.nn.softmax(UpperCAmelCase , axis=-1 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) lowerCamelCase_ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase , scores.copy() , cur_len=UpperCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create ramp distribution lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase_ = 5 lowerCamelCase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, length) ).copy() lowerCamelCase_ = top_k_warp_safety_check(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = None lowerCamelCase_ = 10 lowerCamelCase_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase_ = np.exp(top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase_ = np.broadcast_to(np.arange(UpperCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase_ = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept lowerCamelCase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) # check that min length is applied at length 5 lowerCamelCase_ = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase_ = 5 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = 15 lowerCamelCase_ = min_dist_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase_ = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase_ = 1 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 20 lowerCamelCase_ = 4 lowerCamelCase_ = 0 lowerCamelCase_ = 5 lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase_ = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase_ = 4 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase_ = 3 lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = logits_processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) self.assertFalse(jnp.isinf(UpperCAmelCase ).any() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # with processor list lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = 4 lowerCamelCase_ = 10 lowerCamelCase_ = 15 lowerCamelCase_ = 2 lowerCamelCase_ = 1 lowerCamelCase_ = 15 # dummy input_ids and scores lowerCamelCase_ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase ) lowerCamelCase_ = input_ids.copy() lowerCamelCase_ = self._get_uniform_logits(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = scores.copy() # instantiate all dist processors lowerCamelCase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ = FlaxTopKLogitsWarper(3 ) lowerCamelCase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase ) lowerCamelCase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase , eos_token_id=UpperCAmelCase ) lowerCamelCase_ = 10 # no processor list def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = temp_dist_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_k_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = top_p_warp(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = min_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = bos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) lowerCamelCase_ = eos_dist_proc(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores # with processor list def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ = processor(UpperCAmelCase , UpperCAmelCase , cur_len=UpperCAmelCase ) return scores lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jax.jit(UpperCAmelCase ) lowerCamelCase_ = jitted_run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = jitted_run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
29
0
import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : np.ndarray , __UpperCamelCase : int , __UpperCamelCase : int ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE__ = np.array(__UpperCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix SCREAMING_SNAKE_CASE__ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : np.ndarray , __UpperCamelCase : int , __UpperCamelCase : int ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE__ = np.array(__UpperCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix SCREAMING_SNAKE_CASE__ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image __lowerCamelCase : List[str] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
379
import os __lowerCamelCase : Union[str, Any] = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 while index < len(__UpperCamelCase ) - 1: SCREAMING_SNAKE_CASE__ = SYMBOLS[numerals[index]] SCREAMING_SNAKE_CASE__ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = """""" SCREAMING_SNAKE_CASE__ = num // 10_00 numerals += m_count * "M" num %= 10_00 SCREAMING_SNAKE_CASE__ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 SCREAMING_SNAKE_CASE__ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "/p089_roman.txt" ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = 0 with open(os.path.dirname(__UpperCamelCase ) + roman_numerals_filename ) as filea: SCREAMING_SNAKE_CASE__ = filea.readlines() for line in lines: SCREAMING_SNAKE_CASE__ = line.strip() SCREAMING_SNAKE_CASE__ = parse_roman_numerals(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = generate_roman_numerals(__UpperCamelCase ) savings += len(__UpperCamelCase ) - len(__UpperCamelCase ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
379
1
from math import ceil, sqrt def lowerCamelCase_ ( __UpperCamelCase = 1_00_00_00 ): A_ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: A_ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: A_ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
141
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): def get_masked_lm_array(__UpperCamelCase ): A_ = F"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE" A_ = tf.train.load_variable(__UpperCamelCase , __UpperCamelCase ) if "kernel" in name: A_ = array.transpose() return torch.from_numpy(__UpperCamelCase ) def get_encoder_array(__UpperCamelCase ): A_ = F"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE" A_ = tf.train.load_variable(__UpperCamelCase , __UpperCamelCase ) if "kernel" in name: A_ = array.transpose() return torch.from_numpy(__UpperCamelCase ) def get_encoder_layer_array(__UpperCamelCase , __UpperCamelCase ): A_ = F"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE" A_ = tf.train.load_variable(__UpperCamelCase , __UpperCamelCase ) if "kernel" in name: A_ = array.transpose() return torch.from_numpy(__UpperCamelCase ) def get_encoder_attention_layer_array(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A_ = F"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE" A_ = tf.train.load_variable(__UpperCamelCase , __UpperCamelCase ) A_ = array.reshape(__UpperCamelCase ) if "kernel" in name: A_ = array.transpose() return torch.from_numpy(__UpperCamelCase ) print(F"Loading model based on config from {config_path}..." ) A_ = BertConfig.from_json_file(__UpperCamelCase ) A_ = BertForMaskedLM(__UpperCamelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): A_ = model.bert.encoder.layer[layer_index] # Self-attention A_ = layer.attention.self A_ = get_encoder_attention_layer_array( __UpperCamelCase , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) A_ = get_encoder_attention_layer_array( __UpperCamelCase , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) A_ = get_encoder_attention_layer_array( __UpperCamelCase , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) A_ = get_encoder_attention_layer_array( __UpperCamelCase , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) A_ = get_encoder_attention_layer_array( __UpperCamelCase , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) A_ = get_encoder_attention_layer_array( __UpperCamelCase , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output A_ = layer.attention.output A_ = get_encoder_attention_layer_array( __UpperCamelCase , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) A_ = get_encoder_attention_layer_array( __UpperCamelCase , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) A_ = get_encoder_layer_array(__UpperCamelCase , '''_attention_layer_norm/gamma''' ) A_ = get_encoder_layer_array(__UpperCamelCase , '''_attention_layer_norm/beta''' ) # Intermediate A_ = layer.intermediate A_ = get_encoder_layer_array(__UpperCamelCase , '''_intermediate_dense/kernel''' ) A_ = get_encoder_layer_array(__UpperCamelCase , '''_intermediate_dense/bias''' ) # Output A_ = layer.output A_ = get_encoder_layer_array(__UpperCamelCase , '''_output_dense/kernel''' ) A_ = get_encoder_layer_array(__UpperCamelCase , '''_output_dense/bias''' ) A_ = get_encoder_layer_array(__UpperCamelCase , '''_output_layer_norm/gamma''' ) A_ = get_encoder_layer_array(__UpperCamelCase , '''_output_layer_norm/beta''' ) # Embeddings A_ = get_encoder_array('''_position_embedding_layer/embeddings''' ) A_ = get_encoder_array('''_type_embedding_layer/embeddings''' ) A_ = get_encoder_array('''_embedding_norm_layer/gamma''' ) A_ = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head A_ = model.cls.predictions.transform A_ = get_masked_lm_array('''dense/kernel''' ) A_ = get_masked_lm_array('''dense/bias''' ) A_ = get_masked_lm_array('''layer_norm/gamma''' ) A_ = get_masked_lm_array('''layer_norm/beta''' ) A_ = get_masked_lm_array('''embedding_table''' ) # Pooling A_ = BertPooler(config=__UpperCamelCase ) A_ = get_encoder_array('''_pooler_layer/kernel''' ) A_ = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(__UpperCamelCase ) # Integration test - should load without any errors ;) A_ = BertForMaskedLM.from_pretrained(__UpperCamelCase ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
141
1
"""simple docstring""" from typing import Any class __UpperCAmelCase : '''simple docstring''' def __init__( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =data _SCREAMING_SNAKE_CASE =None class __UpperCAmelCase : '''simple docstring''' def __init__( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =None def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.head while temp is not None: print(temp.data , end=''' ''' ) _SCREAMING_SNAKE_CASE =temp.next print() def UpperCamelCase_ ( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =Node(_A ) _SCREAMING_SNAKE_CASE =self.head _SCREAMING_SNAKE_CASE =new_node def UpperCamelCase_ ( self , _A , _A ): '''simple docstring''' if node_data_a == node_data_a: return else: _SCREAMING_SNAKE_CASE =self.head while node_a is not None and node_a.data != node_data_a: _SCREAMING_SNAKE_CASE =node_a.next _SCREAMING_SNAKE_CASE =self.head while node_a is not None and node_a.data != node_data_a: _SCREAMING_SNAKE_CASE =node_a.next if node_a is None or node_a is None: return _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =node_a.data, node_a.data if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
705
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __UpperCAmelCase : '''simple docstring''' def __init__( self , _A , _A=1_3 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=3 , _A=4 , _A=None , _A=1_0_0_0 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =seq_length _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_input_mask _SCREAMING_SNAKE_CASE =use_token_type_ids _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =type_vocab_size _SCREAMING_SNAKE_CASE =type_sequence_label_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =num_labels _SCREAMING_SNAKE_CASE =num_choices _SCREAMING_SNAKE_CASE =scope _SCREAMING_SNAKE_CASE =range_bbox def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _SCREAMING_SNAKE_CASE =bbox[i, j, 3] _SCREAMING_SNAKE_CASE =bbox[i, j, 1] _SCREAMING_SNAKE_CASE =t if bbox[i, j, 2] < bbox[i, j, 0]: _SCREAMING_SNAKE_CASE =bbox[i, j, 2] _SCREAMING_SNAKE_CASE =bbox[i, j, 0] _SCREAMING_SNAKE_CASE =t _SCREAMING_SNAKE_CASE =tf.convert_to_tensor(_A ) _SCREAMING_SNAKE_CASE =None if self.use_input_mask: _SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE =None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE =LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TFLayoutLMModel(config=_A ) _SCREAMING_SNAKE_CASE =model(_A , _A , attention_mask=_A , token_type_ids=_A ) _SCREAMING_SNAKE_CASE =model(_A , _A , token_type_ids=_A ) _SCREAMING_SNAKE_CASE =model(_A , _A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TFLayoutLMForMaskedLM(config=_A ) _SCREAMING_SNAKE_CASE =model(_A , _A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =TFLayoutLMForSequenceClassification(config=_A ) _SCREAMING_SNAKE_CASE =model(_A , _A , attention_mask=_A , token_type_ids=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =TFLayoutLMForTokenClassification(config=_A ) _SCREAMING_SNAKE_CASE =model(_A , _A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TFLayoutLMForQuestionAnswering(config=_A ) _SCREAMING_SNAKE_CASE =model(_A , _A , attention_mask=_A , token_type_ids=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) =config_and_inputs _SCREAMING_SNAKE_CASE ={ '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class __UpperCAmelCase ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): '''simple docstring''' lowercase : List[Any] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) lowercase : str = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) lowercase : Any = False lowercase : List[str] = True lowercase : Optional[int] = 10 def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TFLayoutLMModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_A , hidden_size=3_7 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE =TFLayoutLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip('''Onnx compliancy broke with TF 2.10''' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def _lowerCAmelCase() -> str: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _SCREAMING_SNAKE_CASE =tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 _SCREAMING_SNAKE_CASE =tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _SCREAMING_SNAKE_CASE =tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 _SCREAMING_SNAKE_CASE =tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _SCREAMING_SNAKE_CASE =tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TFLayoutLMModel.from_pretrained('''microsoft/layoutlm-base-uncased''' ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =prepare_layoutlm_batch_inputs() # forward pass _SCREAMING_SNAKE_CASE =model(input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A ) # test the sequence output on [0, :3, :3] _SCREAMING_SNAKE_CASE =tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _A , atol=1E-3 ) ) # test the pooled output on [1, :3] _SCREAMING_SNAKE_CASE =tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _A , atol=1E-3 ) ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TFLayoutLMForSequenceClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=2 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =prepare_layoutlm_batch_inputs() # forward pass _SCREAMING_SNAKE_CASE =model( input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _SCREAMING_SNAKE_CASE =outputs.loss _SCREAMING_SNAKE_CASE =(2,) self.assertEqual(loss.shape , _A ) # test the shape of the logits _SCREAMING_SNAKE_CASE =outputs.logits _SCREAMING_SNAKE_CASE =(2, 2) self.assertEqual(logits.shape , _A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TFLayoutLMForTokenClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=1_3 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =prepare_layoutlm_batch_inputs() # forward pass _SCREAMING_SNAKE_CASE =model( input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A , labels=_A ) # test the shape of the logits _SCREAMING_SNAKE_CASE =outputs.logits _SCREAMING_SNAKE_CASE =tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TFLayoutLMForQuestionAnswering.from_pretrained('''microsoft/layoutlm-base-uncased''' ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =prepare_layoutlm_batch_inputs() # forward pass _SCREAMING_SNAKE_CASE =model(input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A ) # test the shape of the logits _SCREAMING_SNAKE_CASE =tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _A ) self.assertEqual(outputs.end_logits.shape , _A )
165
0
'''simple docstring''' import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _A: Optional[int] = get_logger(__name__) _A: List[Any] = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class UpperCAmelCase : @add_start_docstrings(__A ) def __call__( self , __A , __A ): raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class UpperCAmelCase : @add_start_docstrings(__A ) def __call__( self , __A , __A ): raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class UpperCAmelCase ( UpperCAmelCase_ ): @add_start_docstrings(__A ) def __call__( self , __A , __A , __A , **__A ): for processor in self: __UpperCAmelCase = inspect.signature(processor.__call__ ).parameters if len(__A ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'Make sure that all the required parameters: {list(function_args.keys() )} for ' f'{processor.__class__} are passed to the logits processor.' ) __UpperCAmelCase = processor(__A , __A , __A , **__A ) else: __UpperCAmelCase = processor(__A , __A , __A ) return scores class UpperCAmelCase ( UpperCAmelCase_ ): def __init__( self , __A ): if not isinstance(__A , __A ) or not (temperature > 0): raise ValueError(f'`temperature` has to be a strictly positive float, but is {temperature}' ) __UpperCAmelCase = temperature def __call__( self , __A , __A , __A ): __UpperCAmelCase = scores / self.temperature return scores class UpperCAmelCase ( UpperCAmelCase_ ): def __init__( self , __A , __A = -float('Inf' ) , __A = 1 ): if not isinstance(__A , __A ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(__A , __A ) or (min_tokens_to_keep < 1): raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) __UpperCAmelCase = top_p __UpperCAmelCase = filter_value __UpperCAmelCase = min_tokens_to_keep def __call__( self , __A , __A , __A ): __UpperCAmelCase , __UpperCAmelCase = lax.top_k(__A , scores.shape[-1] ) __UpperCAmelCase = jnp.full_like(__A , self.filter_value ) __UpperCAmelCase = jax.nn.softmax(__A , axis=-1 ).cumsum(axis=-1 ) __UpperCAmelCase = cumulative_probs < self.top_p # include the token that is higher than top_p as well __UpperCAmelCase = jnp.roll(__A , 1 ) score_mask |= score_mask.at[:, 0].set(__A ) # min tokens to keep __UpperCAmelCase = score_mask.at[:, : self.min_tokens_to_keep].set(__A ) __UpperCAmelCase = jnp.where(__A , __A , __A ) __UpperCAmelCase = jax.lax.sort_key_val(__A , __A )[-1] return next_scores class UpperCAmelCase ( UpperCAmelCase_ ): def __init__( self , __A , __A = -float('Inf' ) , __A = 1 ): if not isinstance(__A , __A ) or top_k <= 0: raise ValueError(f'`top_k` has to be a strictly positive integer, but is {top_k}' ) __UpperCAmelCase = max(__A , __A ) __UpperCAmelCase = filter_value def __call__( self , __A , __A , __A ): __UpperCAmelCase , __UpperCAmelCase = scores.shape __UpperCAmelCase = jnp.full(batch_size * vocab_size , self.filter_value ) __UpperCAmelCase = min(self.top_k , scores.shape[-1] ) # Safety check __UpperCAmelCase , __UpperCAmelCase = lax.top_k(__A , __A ) __UpperCAmelCase = jnp.broadcast_to((jnp.arange(__A ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __UpperCAmelCase = topk_scores.flatten() __UpperCAmelCase = topk_indices.flatten() + shift __UpperCAmelCase = next_scores_flat.at[topk_indices_flat].set(__A ) __UpperCAmelCase = next_scores_flat.reshape(__A , __A ) return next_scores class UpperCAmelCase ( UpperCAmelCase_ ): def __init__( self , __A ): __UpperCAmelCase = bos_token_id def __call__( self , __A , __A , __A ): __UpperCAmelCase = jnp.full(scores.shape , -float('inf' ) ) __UpperCAmelCase = 1 - jnp.bool_(cur_len - 1 ) __UpperCAmelCase = jnp.where(__A , new_scores.at[:, self.bos_token_id].set(0 ) , __A ) return scores class UpperCAmelCase ( UpperCAmelCase_ ): def __init__( self , __A , __A ): __UpperCAmelCase = max_length __UpperCAmelCase = eos_token_id def __call__( self , __A , __A , __A ): __UpperCAmelCase = jnp.full(scores.shape , -float('inf' ) ) __UpperCAmelCase = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __UpperCAmelCase = jnp.where(__A , new_scores.at[:, self.eos_token_id].set(0 ) , __A ) return scores class UpperCAmelCase ( UpperCAmelCase_ ): def __init__( self , __A , __A ): if not isinstance(__A , __A ) or min_length < 0: raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(__A , __A ) or eos_token_id < 0: raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) __UpperCAmelCase = min_length __UpperCAmelCase = eos_token_id def __call__( self , __A , __A , __A ): # create boolean flag to decide if min length penalty should be applied __UpperCAmelCase = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __UpperCAmelCase = jnp.where(__A , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , __A ) return scores class UpperCAmelCase ( UpperCAmelCase_ ): def __init__( self , __A , __A ): __UpperCAmelCase = list(__A ) __UpperCAmelCase = begin_index def __call__( self , __A , __A , __A ): __UpperCAmelCase = 1 - jnp.bool_(cur_len - self.begin_index ) __UpperCAmelCase = jnp.where(__A , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , __A ) return scores class UpperCAmelCase ( UpperCAmelCase_ ): def __init__( self , __A ): __UpperCAmelCase = list(__A ) def __call__( self , __A , __A , __A ): __UpperCAmelCase = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class UpperCAmelCase ( UpperCAmelCase_ ): def __init__( self , __A ): __UpperCAmelCase = dict(__A ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __UpperCAmelCase = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __UpperCAmelCase = force_token_array.at[index].set(__A ) __UpperCAmelCase = jnp.intaa(__A ) def __call__( self , __A , __A , __A ): def _force_token(__A ): __UpperCAmelCase = scores.shape[0] __UpperCAmelCase = self.force_token_array[generation_idx] __UpperCAmelCase = jnp.ones_like(__A , dtype=scores.dtype ) * -float('inf' ) __UpperCAmelCase = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __UpperCAmelCase = lax.dynamic_update_slice(__A , __A , (0, current_token) ) return new_scores __UpperCAmelCase = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(__A ) , lambda: scores , ) , ) return scores class UpperCAmelCase ( UpperCAmelCase_ ): def __init__( self , __A , __A , __A ): __UpperCAmelCase = generate_config.eos_token_id __UpperCAmelCase = generate_config.no_timestamps_token_id __UpperCAmelCase = generate_config.no_timestamps_token_id + 1 __UpperCAmelCase = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__A , 'max_initial_timestamp_index' ): __UpperCAmelCase = generate_config.max_initial_timestamp_index else: __UpperCAmelCase = model_config.vocab_size if self.max_initial_timestamp_index is None: __UpperCAmelCase = model_config.vocab_size def __call__( self , __A , __A , __A ): # suppress <|notimestamps|> which is handled by without_timestamps __UpperCAmelCase = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(__A , __A ): __UpperCAmelCase = jnp.where((cur_len - self.begin_index) >= 1 , __A , __A ) __UpperCAmelCase = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __A , ) __UpperCAmelCase = jnp.where((cur_len - self.begin_index) < 2 , __A , __A ) __UpperCAmelCase = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , __A , __A , ) return jnp.where( __A , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , __A , ) __UpperCAmelCase = jax.vmap(__A )(__A , __A ) __UpperCAmelCase = jnp.where(cur_len == self.begin_index , __A , __A ) __UpperCAmelCase = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __A , ) __UpperCAmelCase = self.timestamp_begin + self.max_initial_timestamp_index __UpperCAmelCase = jnp.where( __A , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , __A , ) # if sum of probability over timestamps is above any other token, sample timestamp __UpperCAmelCase = jax.nn.log_softmax(__A , axis=-1 ) def handle_cumulative_probs(__A , __A ): __UpperCAmelCase = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __UpperCAmelCase = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , __A , ) __UpperCAmelCase = jax.vmap(__A )(__A , __A ) return scores
126
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase ( UpperCAmelCase_ ): _A : str = ["""image_processor""", """tokenizer"""] _A : str = """OwlViTImageProcessor""" _A : List[str] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , __A=None , __A=None , **__A ): __UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __A , ) __UpperCAmelCase = kwargs.pop('feature_extractor' ) __UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , __A="max_length" , __A="np" , **__A ): if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )): __UpperCAmelCase = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )] elif isinstance(__A , __A ) and isinstance(text[0] , __A ): __UpperCAmelCase = [] # Maximum number of queries across batch __UpperCAmelCase = max([len(__A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__A ) != max_num_queries: __UpperCAmelCase = t + [' '] * (max_num_queries - len(__A )) __UpperCAmelCase = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A ) encodings.append(__A ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCAmelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCAmelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCAmelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCAmelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCAmelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCAmelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCAmelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCAmelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCAmelCase = BatchEncoding() __UpperCAmelCase = input_ids __UpperCAmelCase = attention_mask if query_images is not None: __UpperCAmelCase = BatchEncoding() __UpperCAmelCase = self.image_processor( __A , return_tensors=__A , **__A ).pixel_values __UpperCAmelCase = query_pixel_values if images is not None: __UpperCAmelCase = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: __UpperCAmelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCAmelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def __lowerCamelCase ( self , *__A , **__A ): return self.image_processor.post_process(*__A , **__A ) def __lowerCamelCase ( self , *__A , **__A ): return self.image_processor.post_process_object_detection(*__A , **__A ) def __lowerCamelCase ( self , *__A , **__A ): return self.image_processor.post_process_image_guided_detection(*__A , **__A ) def __lowerCamelCase ( self , *__A , **__A ): return self.tokenizer.batch_decode(*__A , **__A ) def __lowerCamelCase ( self , *__A , **__A ): return self.tokenizer.decode(*__A , **__A ) @property def __lowerCamelCase ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __A , ) return self.image_processor_class @property def __lowerCamelCase ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __A , ) return self.image_processor
126
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowercase__ : _UpperCAmelCase :Dict = XGLMConfig _UpperCAmelCase :List[Any] = {} _UpperCAmelCase :str = "gelu" def __init__( self : Tuple , snake_case__ : Any , snake_case__ : int=14 , snake_case__ : Union[str, Any]=7 , snake_case__ : Tuple=True , snake_case__ : List[Any]=True , snake_case__ : Optional[int]=True , snake_case__ : int=99 , snake_case__ : Optional[Any]=32 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=4 , snake_case__ : Any=37 , snake_case__ : Optional[int]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Union[str, Any]=512 , snake_case__ : Tuple=0.02 , ): lowerCamelCase_ : Optional[Any] =parent lowerCamelCase_ : Dict =batch_size lowerCamelCase_ : str =seq_length lowerCamelCase_ : Union[str, Any] =is_training lowerCamelCase_ : int =use_input_mask lowerCamelCase_ : List[Any] =use_labels lowerCamelCase_ : List[Any] =vocab_size lowerCamelCase_ : Tuple =d_model lowerCamelCase_ : List[Any] =num_hidden_layers lowerCamelCase_ : Optional[int] =num_attention_heads lowerCamelCase_ : Any =ffn_dim lowerCamelCase_ : int =activation_function lowerCamelCase_ : List[str] =activation_dropout lowerCamelCase_ : List[Any] =attention_dropout lowerCamelCase_ : Union[str, Any] =max_position_embeddings lowerCamelCase_ : Any =initializer_range lowerCamelCase_ : Optional[Any] =None lowerCamelCase_ : Any =0 lowerCamelCase_ : int =2 lowerCamelCase_ : Optional[Any] =1 def UpperCAmelCase__ ( self : int ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : List[str] =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) lowerCamelCase_ : Any =None if self.use_input_mask: lowerCamelCase_ : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : Any =self.get_config() lowerCamelCase_ : Optional[Any] =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def UpperCAmelCase__ ( self : Union[str, Any] ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=snake_case__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=snake_case__ , ) def UpperCAmelCase__ ( self : int ): lowerCamelCase_ : Tuple =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) : Tuple =config_and_inputs lowerCamelCase_ : Optional[int] ={ "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class lowercase__ ( snake_case__, snake_case__, unittest.TestCase ): _UpperCAmelCase :Any = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _UpperCAmelCase :str = (TFXGLMForCausalLM,) if is_tf_available() else () _UpperCAmelCase :int = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) _UpperCAmelCase :Tuple = False _UpperCAmelCase :Tuple = False _UpperCAmelCase :List[Any] = False def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : Dict =TFXGLMModelTester(self ) lowerCamelCase_ : List[str] =ConfigTester(self , config_class=snake_case__ , n_embd=37 ) def UpperCAmelCase__ ( self : str ): self.config_tester.run_common_tests() @slow def UpperCAmelCase__ ( self : Optional[Any] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : List[Any] =TFXGLMModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def UpperCAmelCase__ ( self : Optional[int] ): super().test_resize_token_embeddings() @require_tf class lowercase__ ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Tuple , snake_case__ : Tuple=True ): lowerCamelCase_ : int =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) lowerCamelCase_ : Optional[int] =tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowerCamelCase_ : List[Any] =[2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on lowerCamelCase_ : Optional[int] =model.generate(snake_case__ , do_sample=snake_case__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , snake_case__ ) @slow def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : int =XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) lowerCamelCase_ : str =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) lowerCamelCase_ : Tuple =tokenizer("Today is a nice day and" , return_tensors="tf" ) lowerCamelCase_ : Dict =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): lowerCamelCase_ : Optional[int] =model.generate(snake_case__ , do_sample=snake_case__ , seed=[7, 0] ) lowerCamelCase_ : Any =tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case__ ) lowerCamelCase_ : int =( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(snake_case__ , snake_case__ ) @slow def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Any =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) lowerCamelCase_ : Union[str, Any] =XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) lowerCamelCase_ : Tuple ="left" # use different length sentences to test batching lowerCamelCase_ : Union[str, Any] =[ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] lowerCamelCase_ : Dict =tokenizer(snake_case__ , return_tensors="tf" , padding=snake_case__ ) lowerCamelCase_ : str =inputs["input_ids"] lowerCamelCase_ : List[Any] =model.generate(input_ids=snake_case__ , attention_mask=inputs["attention_mask"] , max_new_tokens=12 ) lowerCamelCase_ : Any =tokenizer(sentences[0] , return_tensors="tf" ).input_ids lowerCamelCase_ : int =model.generate(input_ids=snake_case__ , max_new_tokens=12 ) lowerCamelCase_ : int =tokenizer(sentences[1] , return_tensors="tf" ).input_ids lowerCamelCase_ : List[str] =model.generate(input_ids=snake_case__ , max_new_tokens=12 ) lowerCamelCase_ : Optional[Any] =tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) lowerCamelCase_ : Optional[Any] =tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case__ ) lowerCamelCase_ : int =tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case__ ) lowerCamelCase_ : Optional[Any] =[ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , [non_padded_sentence, padded_sentence] )
244
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__ : Any = logging.get_logger(__name__) A__ : Union[str, Any] = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowercase__ ( snake_case__ ): _UpperCAmelCase :Union[str, Any] = "deformable_detr" _UpperCAmelCase :int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Any , snake_case__ : Dict=True , snake_case__ : str=None , snake_case__ : List[str]=3 , snake_case__ : Optional[int]=300 , snake_case__ : int=1024 , snake_case__ : List[str]=6 , snake_case__ : Any=1024 , snake_case__ : Optional[int]=8 , snake_case__ : Any=6 , snake_case__ : Any=1024 , snake_case__ : Any=8 , snake_case__ : Optional[int]=0.0 , snake_case__ : str=True , snake_case__ : Optional[int]="relu" , snake_case__ : List[Any]=256 , snake_case__ : Optional[int]=0.1 , snake_case__ : List[Any]=0.0 , snake_case__ : Dict=0.0 , snake_case__ : Tuple=0.02 , snake_case__ : int=1.0 , snake_case__ : Any=True , snake_case__ : int=False , snake_case__ : Optional[int]="sine" , snake_case__ : Tuple="resnet50" , snake_case__ : str=True , snake_case__ : Any=False , snake_case__ : Optional[int]=4 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[Any]=4 , snake_case__ : Optional[Any]=False , snake_case__ : int=300 , snake_case__ : Tuple=False , snake_case__ : List[str]=1 , snake_case__ : str=5 , snake_case__ : Dict=2 , snake_case__ : List[str]=1 , snake_case__ : List[str]=1 , snake_case__ : Union[str, Any]=5 , snake_case__ : Optional[int]=2 , snake_case__ : List[Any]=0.1 , snake_case__ : int=0.25 , snake_case__ : List[str]=False , **snake_case__ : Union[str, Any] , ): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowerCamelCase_ : Dict =CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ : Optional[int] =backbone_config.get("model_type" ) lowerCamelCase_ : Optional[Any] =CONFIG_MAPPING[backbone_model_type] lowerCamelCase_ : List[str] =config_class.from_dict(snake_case__ ) lowerCamelCase_ : Any =use_timm_backbone lowerCamelCase_ : str =backbone_config lowerCamelCase_ : Tuple =num_channels lowerCamelCase_ : List[Any] =num_queries lowerCamelCase_ : str =max_position_embeddings lowerCamelCase_ : Optional[int] =d_model lowerCamelCase_ : Optional[int] =encoder_ffn_dim lowerCamelCase_ : List[str] =encoder_layers lowerCamelCase_ : Optional[Any] =encoder_attention_heads lowerCamelCase_ : Any =decoder_ffn_dim lowerCamelCase_ : List[Any] =decoder_layers lowerCamelCase_ : Any =decoder_attention_heads lowerCamelCase_ : List[Any] =dropout lowerCamelCase_ : Union[str, Any] =attention_dropout lowerCamelCase_ : str =activation_dropout lowerCamelCase_ : List[str] =activation_function lowerCamelCase_ : str =init_std lowerCamelCase_ : Optional[Any] =init_xavier_std lowerCamelCase_ : Optional[int] =encoder_layerdrop lowerCamelCase_ : Optional[int] =auxiliary_loss lowerCamelCase_ : List[Any] =position_embedding_type lowerCamelCase_ : List[str] =backbone lowerCamelCase_ : List[str] =use_pretrained_backbone lowerCamelCase_ : int =dilation # deformable attributes lowerCamelCase_ : Union[str, Any] =num_feature_levels lowerCamelCase_ : List[str] =encoder_n_points lowerCamelCase_ : int =decoder_n_points lowerCamelCase_ : Tuple =two_stage lowerCamelCase_ : Union[str, Any] =two_stage_num_proposals lowerCamelCase_ : Optional[int] =with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher lowerCamelCase_ : Union[str, Any] =class_cost lowerCamelCase_ : Any =bbox_cost lowerCamelCase_ : str =giou_cost # Loss coefficients lowerCamelCase_ : int =mask_loss_coefficient lowerCamelCase_ : Dict =dice_loss_coefficient lowerCamelCase_ : List[str] =bbox_loss_coefficient lowerCamelCase_ : Union[str, Any] =giou_loss_coefficient lowerCamelCase_ : Tuple =eos_coefficient lowerCamelCase_ : List[Any] =focal_alpha lowerCamelCase_ : Union[str, Any] =disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def UpperCAmelCase__ ( self : Dict ): return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : int ): return self.d_model def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : Union[str, Any] =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCamelCase_ : Tuple =self.backbone_config.to_dict() lowerCamelCase_ : int =self.__class__.model_type return output
244
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=7 , __lowerCamelCase : Any=3 , __lowerCamelCase : Any=30 , __lowerCamelCase : Any=400 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[int]=0.9 , __lowerCamelCase : Dict=None , __lowerCamelCase : Dict=True , __lowerCamelCase : List[Any]=[0.5, 0.5, 0.5] , __lowerCamelCase : Dict=[0.5, 0.5, 0.5] , ): SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 30} SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"height": 30, "width": 30} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize_and_center_crop SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = crop_pct SCREAMING_SNAKE_CASE = crop_size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std def _snake_case ( self : Dict ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = PoolFormerImageProcessor if is_vision_available() else None def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = PoolFormerImageProcessingTester(self ) @property def _snake_case ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize_and_center_crop" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) self.assertTrue(hasattr(__lowerCamelCase , "crop_pct" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30} ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _snake_case ( self : List[str] ): pass def _snake_case ( self : List[Any] ): # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _snake_case ( self : Optional[int] ): # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _snake_case ( self : str ): # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
16
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCamelCase__ = logging.getLogger() def __A() -> str: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""-f""" ) _UpperCamelCase = parser.parse_args() return args.f def __A(lowerCAmelCase ) -> Any: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = os.path.join(lowerCAmelCase , """all_results.json""" ) if os.path.exists(lowerCAmelCase ): with open(lowerCAmelCase , """r""" ) as f: _UpperCamelCase = json.load(lowerCAmelCase ) else: raise ValueError(F'can\'t find {path}' ) return results def __A() -> Tuple: """simple docstring""" _UpperCamelCase = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() lowerCamelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase__ ( __lowercase ): @classmethod def A_ ( cls ) -> Tuple: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = os.path.join(cls.tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) _UpperCamelCase = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def A_ ( cls ) -> str: '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> Any: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(a , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a , """glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) self.assertLess(result["""perplexity"""] , 1_00 ) self.assertTrue(os.path.exists(os.path.join(a , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a , """clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) self.assertLess(result["""perplexity"""] , 42 ) self.assertTrue(os.path.exists(os.path.join(a , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a , """mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = 7 if get_gpu_count() > 1 else 2 _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertLess(result["""train_loss"""] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(a , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a , """ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] , 28 ) self.assertGreaterEqual(result["""eval_exact"""] , 28 ) self.assertTrue(os.path.exists(os.path.join(a , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a , """qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(a , """swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) self.assertGreaterEqual(result["""eval_rouge1"""] , 10 ) self.assertGreaterEqual(result["""eval_rouge2"""] , 2 ) self.assertGreaterEqual(result["""eval_rougeL"""] , 7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] , 7 ) self.assertTrue(os.path.exists(os.path.join(a , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a , """summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) self.assertGreaterEqual(result["""eval_bleu"""] , 30 ) self.assertTrue(os.path.exists(os.path.join(a , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a , """translation_no_trainer""" ) ) ) @slow def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(a ) _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] , 0.10 ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(a ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(a , """step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a , """image_classification_no_trainer""" ) ) )
612
0
import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _lowerCamelCase( _a ): lowercase_ : Union[str, Any] = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) lowercase_ : str = """CIDAS/clipseg-rd64-refined""" lowercase_ : Optional[Any] = """image_segmenter""" lowercase_ : str = CLIPSegForImageSegmentation lowercase_ : Union[str, Any] = ["""image""", """text"""] lowercase_ : Union[str, Any] = ["""image"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(self, ['vision']) super().__init__(*_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" return self.pre_processor(text=[label], images=[image], padding=_SCREAMING_SNAKE_CASE, return_tensors='pt') def UpperCamelCase ( self, lowerCamelCase) -> Tuple: """simple docstring""" with torch.no_grad(): _lowercase : Optional[Any] = self.model(**_SCREAMING_SNAKE_CASE).logits return logits def UpperCamelCase ( self, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : int = outputs.cpu().detach().numpy() _lowercase : List[Any] = 0 _lowercase : Union[str, Any] = 1 return Image.fromarray((array * 2_55).astype(np.uinta))
713
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class _lowerCamelCase( _a ): @require_torch def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Optional[Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _lowercase : Union[str, Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _lowercase : List[str] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _lowercase : Union[str, Any] = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCamelCase) BertModel.from_pretrained(lowerCamelCase) BertTokenizer.from_pretrained(lowerCamelCase) pipeline(task='fill-mask', model=lowerCamelCase) # baseline - just load from_pretrained with normal network _lowercase : Any = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed _lowercase : List[str] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowercase : Any = '1' _lowercase : List[Any] = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) @require_torch def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : int = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _lowercase : Union[str, Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _lowercase : List[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _lowercase : Any = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCamelCase) BertModel.from_pretrained(lowerCamelCase) BertTokenizer.from_pretrained(lowerCamelCase) pipeline(task='fill-mask', model=lowerCamelCase) # baseline - just load from_pretrained with normal network _lowercase : List[str] = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed _lowercase : Any = self.get_env() _lowercase : str = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) @require_torch def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' _lowercase : int = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' _lowercase : List[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network _lowercase : int = [sys.executable, '-c', '\n'.join([load, run])] # should succeed _lowercase : List[str] = self.get_env() _lowercase : Dict = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) # next emulate no network _lowercase : Union[str, Any] = [sys.executable, '-c', '\n'.join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowercase : Optional[Any] = '1' _lowercase : Optional[Any] = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) @require_torch def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[Any] = '\nfrom transformers import pipeline\n ' _lowercase : Dict = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' _lowercase : Optional[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' _lowercase : Tuple = self.get_env() _lowercase : Tuple = '1' _lowercase : Union[str, Any] = [sys.executable, '-c', '\n'.join([load, mock, run])] _lowercase : Tuple = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 1, result.stderr) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode', result.stderr.decode().replace('\n', ''), ) @require_torch def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = '\nfrom transformers import AutoModel\n ' _lowercase : int = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network _lowercase : Optional[int] = [sys.executable, '-c', '\n'.join([load, run])] # should succeed _lowercase : int = self.get_env() _lowercase : List[str] = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowercase : Tuple = '1' _lowercase : Dict = subprocess.run(lowerCamelCase, env=lowerCamelCase, check=lowerCamelCase, capture_output=lowerCamelCase) self.assertEqual(result.returncode, 0, result.stderr) self.assertIn('success', result.stdout.decode())
354
0
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class SCREAMING_SNAKE_CASE_ ( ctypes.Structure ): """simple docstring""" __lowercase : Any = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def _lowerCAmelCase ( ): if os.name == "nt": __SCREAMING_SNAKE_CASE = CursorInfo() __SCREAMING_SNAKE_CASE = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCamelCase_ , ctypes.byref(UpperCamelCase_ ) ) __SCREAMING_SNAKE_CASE = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCamelCase_ , ctypes.byref(UpperCamelCase_ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def _lowerCAmelCase ( ): if os.name == "nt": __SCREAMING_SNAKE_CASE = CursorInfo() __SCREAMING_SNAKE_CASE = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCamelCase_ , ctypes.byref(UpperCamelCase_ ) ) __SCREAMING_SNAKE_CASE = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCamelCase_ , ctypes.byref(UpperCamelCase_ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def _lowerCAmelCase ( ): try: hide_cursor() yield finally: show_cursor()
155
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __magic_name__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __magic_name__ = json.load(f) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self , lowerCAmelCase__): return FSMTTokenizer.from_pretrained(lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = FSMTForConditionalGeneration.from_pretrained(lowerCAmelCase__).to(lowerCAmelCase__) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ]) @slow def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality __SCREAMING_SNAKE_CASE = f"facebook/wmt19-{pair}" __SCREAMING_SNAKE_CASE = self.get_tokenizer(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.get_model(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = bleu_data[pair]["""src"""] __SCREAMING_SNAKE_CASE = bleu_data[pair]["""tgt"""] __SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_tensors="""pt""" , truncation=lowerCAmelCase__ , padding="""longest""").to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model.generate( input_ids=batch.input_ids , num_beams=8 , ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = calculate_bleu(lowerCAmelCase__ , lowerCAmelCase__) print(lowerCAmelCase__) self.assertGreaterEqual(scores["""bleu"""] , lowerCAmelCase__)
155
1
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class A_(unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ): _lowerCamelCase : Dict = size if size is not None else {'height': 18, 'width': 18} _lowerCamelCase : str = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : str = min_resolution _lowerCamelCase : Tuple = max_resolution _lowerCamelCase : Union[str, Any] = do_resize _lowerCamelCase : int = size _lowerCamelCase : Optional[Any] = do_normalize _lowerCamelCase : int = image_mean _lowerCamelCase : Union[str, Any] = image_std def _lowerCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class A_(SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ : Dict = DPTImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = DPTImageProcessingTester(self ) @property def _lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self ): _lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , 'image_mean' ) ) self.assertTrue(hasattr(A , 'image_std' ) ) self.assertTrue(hasattr(A , 'do_normalize' ) ) self.assertTrue(hasattr(A , 'do_resize' ) ) self.assertTrue(hasattr(A , 'size' ) ) def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) _lowerCamelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _lowerCAmelCase ( self ): # Initialize image_processing _lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _lowerCamelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _lowerCamelCase : List[str] = image_processing(A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _lowerCAmelCase ( self ): # Initialize image_processing _lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _lowerCamelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _lowerCamelCase : int = image_processing(A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _lowerCAmelCase ( self ): # Initialize image_processing _lowerCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _lowerCamelCase : Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _lowerCamelCase : List[Any] = image_processing(A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
710
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 a_ = sys.version_info >= (3, 10) def UpperCAmelCase_ ( __a : List[str]=None , __a : List[str]=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=__a ) @dataclass class A_: """simple docstring""" a_ : int a_ : float a_ : str a_ : bool @dataclass class A_: """simple docstring""" a_ : int = 42 a_ : str = field(default="""toto""" , metadata={"""help""": """help message"""} ) @dataclass class A_: """simple docstring""" a_ : bool = False a_ : bool = True a_ : Optional[bool] = None class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ : Tuple = """titi""" a_ : Tuple = """toto""" class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ : str = """titi""" a_ : Union[str, Any] = """toto""" a_ : Union[str, Any] = 42 @dataclass class A_: """simple docstring""" a_ : BasicEnum = "toto" def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = BasicEnum(self.foo ) @dataclass class A_: """simple docstring""" a_ : MixedTypeEnum = "toto" def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = MixedTypeEnum(self.foo ) @dataclass class A_: """simple docstring""" a_ : Optional[int] = None a_ : Optional[float] = field(default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """help message"""} ) a_ : Optional[str] = None a_ : Optional[List[str]] = list_field(default=[] ) a_ : Optional[List[int]] = list_field(default=[] ) @dataclass class A_: """simple docstring""" a_ : List[int] = list_field(default=[] ) a_ : List[int] = list_field(default=[1, 2, 3] ) a_ : List[str] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) a_ : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A_: """simple docstring""" a_ : List[int] = field() a_ : str = field() a_ : BasicEnum = field() def _lowerCAmelCase ( self ): _lowerCamelCase : List[str] = BasicEnum(self.required_enum ) @dataclass class A_: """simple docstring""" a_ : int a_ : "BasicEnum" = field() a_ : "Optional[bool]" = None a_ : "str" = field(default="""toto""" , metadata={"""help""": """help message"""} ) a_ : "List[str]" = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class A_: """simple docstring""" a_ : bool = False a_ : bool = True a_ : bool | None = None @dataclass class A_: """simple docstring""" a_ : int | None = None a_ : float | None = field(default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """help message"""} ) a_ : str | None = None a_ : list[str] | None = list_field(default=[] ) a_ : list[int] | None = list_field(default=[] ) class A_(unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self , A , A ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): _lowerCamelCase : Dict = {k: v for k, v in vars(A ).items() if k != 'container'} _lowerCamelCase : Optional[Any] = {k: v for k, v in vars(A ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , A ) and yy.get('choices' , A ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](A ) , yy['type'](A ) ) del xx["type"], yy["type"] self.assertEqual(A , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[Any] = HfArgumentParser(A ) _lowerCamelCase : Any = argparse.ArgumentParser() expected.add_argument('--foo' , type=A , required=A ) expected.add_argument('--bar' , type=A , required=A ) expected.add_argument('--baz' , type=A , required=A ) expected.add_argument('--flag' , type=A , default=A , const=A , nargs='?' ) self.argparsersEqual(A , A ) _lowerCamelCase : Optional[Any] = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((_lowerCamelCase) , ) : str = parser.parse_args_into_dataclasses(A , look_for_args_file=A ) self.assertFalse(example.flag ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[str] = HfArgumentParser(A ) _lowerCamelCase : int = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=A ) expected.add_argument('--baz' , default='toto' , type=A , help='help message' ) self.argparsersEqual(A , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() expected.add_argument('--foo' , type=A , default=A , const=A , nargs='?' ) expected.add_argument('--baz' , type=A , default=A , const=A , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=A , dest='baz' ) expected.add_argument('--opt' , type=A , default=A ) _lowerCamelCase : Optional[Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(A ) for dataclass_type in dataclass_types: _lowerCamelCase : List[Any] = HfArgumentParser(A ) self.argparsersEqual(A , A ) _lowerCamelCase : Union[str, Any] = parser.parse_args([] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) _lowerCamelCase : List[Any] = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) _lowerCamelCase : Union[str, Any] = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) _lowerCamelCase : Dict = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) _lowerCamelCase : Any = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(A , Namespace(foo=A , baz=A , opt=A ) ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = HfArgumentParser(A ) _lowerCamelCase : Tuple = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(A , A ) _lowerCamelCase : Optional[int] = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) _lowerCamelCase : Optional[int] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) _lowerCamelCase : List[Any] = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) _lowerCamelCase : Optional[int] = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) _lowerCamelCase : Dict = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) _lowerCamelCase : List[Any] = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _lowerCAmelCase ( self ): @dataclass class A_: """simple docstring""" a_ : Literal["titi", "toto", 42] = "toto" _lowerCamelCase : Optional[int] = HfArgumentParser(A ) _lowerCamelCase : str = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(A , A ) _lowerCamelCase : Union[str, Any] = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) _lowerCamelCase : List[Any] = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) _lowerCamelCase : Dict = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = HfArgumentParser(A ) _lowerCamelCase : int = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=A ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=A ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=A ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=A ) self.argparsersEqual(A , A ) _lowerCamelCase : List[str] = parser.parse_args([] ) self.assertEqual( A , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) _lowerCamelCase : Optional[int] = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(A , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = argparse.ArgumentParser() expected.add_argument('--foo' , default=A , type=A ) expected.add_argument('--bar' , default=A , type=A , help='help message' ) expected.add_argument('--baz' , default=A , type=A ) expected.add_argument('--ces' , nargs='+' , default=[] , type=A ) expected.add_argument('--des' , nargs='+' , default=[] , type=A ) _lowerCamelCase : Any = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(A ) for dataclass_type in dataclass_types: _lowerCamelCase : Optional[Any] = HfArgumentParser(A ) self.argparsersEqual(A , A ) _lowerCamelCase : List[Any] = parser.parse_args([] ) self.assertEqual(A , Namespace(foo=A , bar=A , baz=A , ces=[] , des=[] ) ) _lowerCamelCase : Union[str, Any] = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(A , Namespace(foo=12 , bar=3.1_4 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def _lowerCAmelCase ( self ): _lowerCamelCase : Union[str, Any] = HfArgumentParser(A ) _lowerCamelCase : Tuple = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=A , required=A ) expected.add_argument('--required_str' , type=A , required=A ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=A , ) self.argparsersEqual(A , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = HfArgumentParser(A ) _lowerCamelCase : List[str] = argparse.ArgumentParser() expected.add_argument('--foo' , type=A , required=A ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=A , ) expected.add_argument('--opt' , type=A , default=A ) expected.add_argument('--baz' , default='toto' , type=A , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=A ) self.argparsersEqual(A , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[str] = HfArgumentParser(A ) _lowerCamelCase : str = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } _lowerCamelCase : Any = parser.parse_dict(A )[0] _lowerCamelCase : Any = BasicExample(**A ) self.assertEqual(A , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = HfArgumentParser(A ) _lowerCamelCase : Optional[Any] = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(A , parser.parse_dict , A , allow_extra_keys=A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = HfArgumentParser(A ) _lowerCamelCase : Tuple = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Union[str, Any] = os.path.join(A , 'temp_json' ) os.mkdir(A ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(A , A ) _lowerCamelCase : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] _lowerCamelCase : Union[str, Any] = BasicExample(**A ) self.assertEqual(A , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = HfArgumentParser(A ) _lowerCamelCase : Dict = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : int = os.path.join(A , 'temp_yaml' ) os.mkdir(A ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(A , A ) _lowerCamelCase : Optional[int] = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] _lowerCamelCase : Any = BasicExample(**A ) self.assertEqual(A , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = HfArgumentParser(A ) self.assertIsNotNone(A )
349
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
60
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _lowerCAmelCase = (7_2_0, 1_2_8_0) # Height, Width _lowerCAmelCase = (0.4, 0.6) # if height or width lower than this scale, drop it. _lowerCAmelCase = 1 / 1_0_0 _lowerCAmelCase = "" _lowerCAmelCase = "" _lowerCAmelCase = "" _lowerCAmelCase = 2_5_0 def _lowerCAmelCase ( ) ->None: """simple docstring""" lowercase__ , lowercase__ = get_dataset(lowercase , lowercase ) for index in range(lowercase ): lowercase__ = random.sample(range(len(lowercase ) ) , 4 ) lowercase__ , lowercase__ , lowercase__ = update_image_and_anno( lowercase , lowercase , lowercase , lowercase , lowercase , filter_scale=lowercase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase__ = random_chars(3_2 ) lowercase__ = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] lowercase__ = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , lowercase , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) lowercase__ = [] for anno in new_annos: lowercase__ = anno[3] - anno[1] lowercase__ = anno[4] - anno[2] lowercase__ = anno[1] + width / 2 lowercase__ = anno[2] + height / 2 lowercase__ = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(lowercase ) with open(F'''{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def _lowerCAmelCase ( lowercase : str , lowercase : str ) ->tuple[list, list]: """simple docstring""" lowercase__ = [] lowercase__ = [] for label_file in glob.glob(os.path.join(lowercase , '''*.txt''' ) ): lowercase__ = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(lowercase ) as in_file: lowercase__ = in_file.readlines() lowercase__ = os.path.join(lowercase , F'''{label_name}.jpg''' ) lowercase__ = [] for obj_list in obj_lists: lowercase__ = obj_list.rstrip('''\n''' ).split(''' ''' ) lowercase__ = float(obj[1] ) - float(obj[3] ) / 2 lowercase__ = float(obj[2] ) - float(obj[4] ) / 2 lowercase__ = float(obj[1] ) + float(obj[3] ) / 2 lowercase__ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(lowercase ) labels.append(lowercase ) return img_paths, labels def _lowerCAmelCase ( lowercase : list , lowercase : list , lowercase : list[int] , lowercase : tuple[int, int] , lowercase : tuple[float, float] , lowercase : float = 0.0 , ) ->tuple[list, list, str]: """simple docstring""" lowercase__ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowercase__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase__ = int(scale_x * output_size[1] ) lowercase__ = int(scale_y * output_size[0] ) lowercase__ = [] lowercase__ = [] for i, index in enumerate(lowercase ): lowercase__ = all_img_list[index] path_list.append(lowercase ) lowercase__ = all_annos[index] lowercase__ = cva.imread(lowercase ) if i == 0: # top-left lowercase__ = cva.resize(lowercase , (divid_point_x, divid_point_y) ) lowercase__ = img for bbox in img_annos: lowercase__ = bbox[1] * scale_x lowercase__ = bbox[2] * scale_y lowercase__ = bbox[3] * scale_x lowercase__ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowercase__ = cva.resize(lowercase , (output_size[1] - divid_point_x, divid_point_y) ) lowercase__ = img for bbox in img_annos: lowercase__ = scale_x + bbox[1] * (1 - scale_x) lowercase__ = bbox[2] * scale_y lowercase__ = scale_x + bbox[3] * (1 - scale_x) lowercase__ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowercase__ = cva.resize(lowercase , (divid_point_x, output_size[0] - divid_point_y) ) lowercase__ = img for bbox in img_annos: lowercase__ = bbox[1] * scale_x lowercase__ = scale_y + bbox[2] * (1 - scale_y) lowercase__ = bbox[3] * scale_x lowercase__ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowercase__ = cva.resize( lowercase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowercase__ = img for bbox in img_annos: lowercase__ = scale_x + bbox[1] * (1 - scale_x) lowercase__ = scale_y + bbox[2] * (1 - scale_y) lowercase__ = scale_x + bbox[3] * (1 - scale_x) lowercase__ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowercase__ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _lowerCAmelCase ( lowercase : int ) ->str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" lowercase__ = ascii_lowercase + digits return "".join(random.choice(lowercase ) for _ in range(lowercase ) ) if __name__ == "__main__": main() print("DONE ✅")
161
0
def __UpperCamelCase ( _A : str ) ->list: """simple docstring""" if n_term == "": return [] lowerCamelCase_ =[] for temp in range(int(_A ) ): series.append(f'1/{temp + 1}' if series else """1""" ) return series if __name__ == "__main__": __A : List[Any] = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
75
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __A : int = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:Any = "albert" def __init__( self , _SCREAMING_SNAKE_CASE=3_0000 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=1_6384 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE="gelu_new" , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , **_SCREAMING_SNAKE_CASE , )-> Optional[int]: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =vocab_size lowerCamelCase_ =embedding_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_hidden_groups lowerCamelCase_ =num_attention_heads lowerCamelCase_ =inner_group_num lowerCamelCase_ =hidden_act lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =classifier_dropout_prob lowerCamelCase_ =position_embedding_type class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): @property def _snake_case ( self )-> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase_ ={0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCamelCase_ ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
75
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : List[str] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys A : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
128
'''simple docstring''' from math import factorial def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : int ,lowerCamelCase : float ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(lowerCamelCase ,lowerCamelCase ) or not isinstance(lowerCamelCase ,lowerCamelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _A : str = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _A : Any = float(factorial(lowerCamelCase ) ) coefficient /= factorial(lowerCamelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
128
1
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a__ : Any = logging.get_logger(__name__) class lowercase ( UpperCAmelCase_ ): """simple docstring""" snake_case_ = ['pixel_values'] def __init__( self : str , a_ : bool = True , a_ : Union[int, float] = 1 / 2_55 , a_ : bool = True , a_ : int = 8 , **a_ : Optional[Any] , ): """simple docstring""" super().__init__(**a_ ) lowerCamelCase__ = do_rescale lowerCamelCase__ = rescale_factor lowerCamelCase__ = do_pad lowerCamelCase__ = pad_size def _UpperCamelCase ( self : Dict , a_ : np.ndarray , a_ : float , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : str ): """simple docstring""" return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def _UpperCamelCase ( self : int , a_ : np.ndarray , a_ : int , a_ : Optional[Union[str, ChannelDimension]] = None ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ = get_image_size(a_ ) lowerCamelCase__ = (old_height // size + 1) * size - old_height lowerCamelCase__ = (old_width // size + 1) * size - old_width return pad(a_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=a_ ) def _UpperCamelCase ( self : int , a_ : ImageInput , a_ : Optional[bool] = None , a_ : Optional[float] = None , a_ : Optional[bool] = None , a_ : Optional[int] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **a_ : Tuple , ): """simple docstring""" lowerCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ = do_pad if do_pad is not None else self.do_pad lowerCamelCase__ = pad_size if pad_size is not None else self.pad_size lowerCamelCase__ = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowerCamelCase__ = [to_numpy_array(a_ ) for image in images] if do_rescale: lowerCamelCase__ = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_pad: lowerCamelCase__ = [self.pad(a_ , size=a_ ) for image in images] lowerCamelCase__ = [to_channel_dimension_format(a_ , a_ ) for image in images] lowerCamelCase__ = {"""pixel_values""": images} return BatchFeature(data=a_ , tensor_type=a_ )
710
def snake_case (UpperCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ = 0 lowerCamelCase__ = len(UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def snake_case (UpperCamelCase : Optional[Any] ): '''simple docstring''' if len(UpperCamelCase ) <= 1: return arr, 0 lowerCamelCase__ = len(UpperCamelCase ) // 2 lowerCamelCase__ = arr[0:mid] lowerCamelCase__ = arr[mid:] lowerCamelCase__ , lowerCamelCase__ = count_inversions_recursive(UpperCamelCase ) lowerCamelCase__ , lowerCamelCase__ = count_inversions_recursive(UpperCamelCase ) lowerCamelCase__ , lowerCamelCase__ = _count_cross_inversions(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ = inversion_p + inversions_q + cross_inversions return c, num_inversions def snake_case (UpperCamelCase : str , UpperCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = lowerCamelCase__ = lowerCamelCase__ = 0 while i < len(UpperCamelCase ) and j < len(UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def snake_case (): '''simple docstring''' lowerCamelCase__ = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowerCamelCase__ = count_inversions_bf(UpperCamelCase ) lowerCamelCase__ , lowerCamelCase__ = count_inversions_recursive(UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowerCamelCase__ = count_inversions_bf(UpperCamelCase ) lowerCamelCase__ , lowerCamelCase__ = count_inversions_recursive(UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , UpperCamelCase ) # an empty list should also have zero inversions lowerCamelCase__ = [] lowerCamelCase__ = count_inversions_bf(UpperCamelCase ) lowerCamelCase__ , lowerCamelCase__ = count_inversions_recursive(UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , UpperCamelCase ) if __name__ == "__main__": main()
235
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase_ : int = 250004 UpperCAmelCase_ : List[str] = 250020 @require_sentencepiece @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = MBartTokenizer UpperCamelCase = MBartTokenizerFast UpperCamelCase = True UpperCamelCase = True def A__ ( self :Union[str, Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __magic_name__ : List[str] =MBartTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self :str ): '''simple docstring''' __magic_name__ : Any =MBartTokenizer(__snake_case , keep_accents=__snake_case ) __magic_name__ : int =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__snake_case , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __magic_name__ : Optional[int] =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __magic_name__ : Optional[Any] =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __magic_name__ : Any =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def A__ ( self :Tuple ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __magic_name__ : Tuple =(self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __magic_name__ : List[Any] =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __magic_name__ : List[str] =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __magic_name__ : Optional[Any] =tempfile.mkdtemp() __magic_name__ : Dict =tokenizer_r.save_pretrained(__snake_case ) __magic_name__ : Dict =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) __magic_name__ : int =tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __magic_name__ : Any =tokenizer_r.from_pretrained(__snake_case ) __magic_name__ : List[Any] =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __magic_name__ : List[str] =tempfile.mkdtemp() __magic_name__ : Optional[int] =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __magic_name__ : Dict =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __magic_name__ : Any =tokenizer_r.from_pretrained(__snake_case ) __magic_name__ : int =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __magic_name__ : List[Any] =tempfile.mkdtemp() __magic_name__ : Dict =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __magic_name__ : List[str] =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __magic_name__ : str =tokenizer_r.from_pretrained(__snake_case ) __magic_name__ : Optional[int] =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): UpperCamelCase = """facebook/mbart-large-en-ro""" UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCamelCase = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, EN_CODE] @classmethod def A__ ( cls :str ): '''simple docstring''' __magic_name__ : MBartTokenizer =MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) __magic_name__ : Any =1 return cls def A__ ( self :Any ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 25_00_20 ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Any =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def A__ ( self :List[Any] ): '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) __magic_name__ : Union[str, Any] =[RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __magic_name__ : Optional[int] =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __magic_name__ : List[str] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : str =["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , __snake_case ) __magic_name__ : Dict =10 __magic_name__ : Optional[Any] =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def A__ ( self :Optional[Any] ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_00_26, 25_00_01] ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[int] =tempfile.mkdtemp() __magic_name__ : Dict =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __magic_name__ : Dict =MBartTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__snake_case , return_tensors="""pt""" ) __magic_name__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) __magic_name__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __magic_name__ : int =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Tuple =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors="""pt""" ) __magic_name__ : Tuple =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors="""pt""" ) __magic_name__ : List[Any] =targets["""input_ids"""] __magic_name__ : List[str] =shift_tokens_right(__snake_case , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def A__ ( self :str ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX """input_ids""": [[62, 30_34, 2, 25_00_04]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_00_01, } , )
21
import string def a__ ( A_ ): '''simple docstring''' __magic_name__ = """""" for i in sequence: __magic_name__ = ord(A_ ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def a__ ( A_ ): '''simple docstring''' __magic_name__ = string.ascii_letters __magic_name__ = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(A_ )] if c in letters else c for c in sequence ) def a__ ( ): '''simple docstring''' from timeit import timeit print("""Running performance benchmarks...""" ) __magic_name__ = """from string import printable ; from __main__ import atbash, atbash_slow""" print(f'''> atbash_slow(): {timeit('atbash_slow(printable)', setup=A_ )} seconds''' ) print(f'''> atbash(): {timeit('atbash(printable)', setup=A_ )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
529
0
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" _a = [0] * len(__A) _a = [] _a = [] _a = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A)): if indegree[i] == 0: queue.append(__A) while queue: _a = queue.pop(0) cnt += 1 topo.append(__A) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__A) if cnt != len(__A): print('''Cycle exists''') else: print(__A) # Adjacency List of Graph lowercase_ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
705
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase (__A , __A , __A , __A , __A): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''') if not scores: raise ValueError('''Scores cannot be empty''') if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __A , __A , __A) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __A , __A , __A) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A) , ) ) def lowerCAmelCase (): """simple docstring""" _a = [90, 23, 6, 33, 21, 65, 123, 34_423] _a = math.log(len(__A) , 2) print(F'''Optimal value : {minimax(0 , 0 , __A , __A , __A)}''') if __name__ == "__main__": import doctest doctest.testmod() main()
352
0
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ : int ): '''simple docstring''' __snake_case :Dict = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __snake_case :int = 128 elif "12-12" in model_name: __snake_case :int = 12 __snake_case :Optional[Any] = 12 elif "14-14" in model_name: __snake_case :List[str] = 14 __snake_case :str = 14 elif "16-16" in model_name: __snake_case :List[Any] = 16 __snake_case :Dict = 16 else: raise ValueError("""Model not supported""" ) __snake_case :Optional[int] = '''huggingface/label-files''' if "speech-commands" in model_name: __snake_case :List[str] = 35 __snake_case :int = '''speech-commands-v2-id2label.json''' else: __snake_case :List[Any] = 527 __snake_case :List[Any] = '''audioset-id2label.json''' __snake_case :List[Any] = json.load(open(hf_hub_download(UpperCamelCase__ ,UpperCamelCase__ ,repo_type="""dataset""" ) ,"""r""" ) ) __snake_case :Optional[int] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __snake_case :Union[str, Any] = idalabel __snake_case :str = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( snake_case__ : Dict ): '''simple docstring''' if "module.v" in name: __snake_case :Optional[int] = name.replace("""module.v""" ,"""audio_spectrogram_transformer""" ) if "cls_token" in name: __snake_case :List[Any] = name.replace("""cls_token""" ,"""embeddings.cls_token""" ) if "dist_token" in name: __snake_case :List[str] = name.replace("""dist_token""" ,"""embeddings.distillation_token""" ) if "pos_embed" in name: __snake_case :Optional[int] = name.replace("""pos_embed""" ,"""embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __snake_case :Optional[Any] = name.replace("""patch_embed.proj""" ,"""embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: __snake_case :Optional[Any] = name.replace("""blocks""" ,"""encoder.layer""" ) if "attn.proj" in name: __snake_case :List[Any] = name.replace("""attn.proj""" ,"""attention.output.dense""" ) if "attn" in name: __snake_case :List[Any] = name.replace("""attn""" ,"""attention.self""" ) if "norm1" in name: __snake_case :Tuple = name.replace("""norm1""" ,"""layernorm_before""" ) if "norm2" in name: __snake_case :Any = name.replace("""norm2""" ,"""layernorm_after""" ) if "mlp.fc1" in name: __snake_case :Optional[Any] = name.replace("""mlp.fc1""" ,"""intermediate.dense""" ) if "mlp.fc2" in name: __snake_case :Dict = name.replace("""mlp.fc2""" ,"""output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __snake_case :Optional[Any] = name.replace("""audio_spectrogram_transformer.norm""" ,"""audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: __snake_case :int = name.replace("""module.mlp_head.0""" ,"""classifier.layernorm""" ) if "module.mlp_head.1" in name: __snake_case :List[Any] = name.replace("""module.mlp_head.1""" ,"""classifier.dense""" ) return name def UpperCamelCase ( snake_case__ : Optional[int] ,snake_case__ : Optional[Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): __snake_case :Any = orig_state_dict.pop(UpperCamelCase__ ) if "qkv" in key: __snake_case :Tuple = key.split(""".""" ) __snake_case :str = int(key_split[3] ) __snake_case :Union[str, Any] = config.hidden_size if "weight" in key: __snake_case :Optional[int] = val[:dim, :] __snake_case :List[Any] = val[dim : dim * 2, :] __snake_case :List[str] = val[-dim:, :] else: __snake_case :str = val[:dim] __snake_case :Optional[int] = val[dim : dim * 2] __snake_case :Any = val[-dim:] else: __snake_case :List[str] = val return orig_state_dict def UpperCamelCase ( snake_case__ : Union[str, Any] ): '''simple docstring''' __snake_case :Union[str, Any] = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ ,UpperCamelCase__ ) @torch.no_grad() def UpperCamelCase ( snake_case__ : int ,snake_case__ : Optional[Any] ,snake_case__ : List[str]=False ): '''simple docstring''' __snake_case :List[str] = get_audio_spectrogram_transformer_config(UpperCamelCase__ ) __snake_case :Union[str, Any] = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict __snake_case :Optional[Any] = model_name_to_url[model_name] __snake_case :str = torch.hub.load_state_dict_from_url(UpperCamelCase__ ,map_location="""cpu""" ) # remove some keys remove_keys(UpperCamelCase__ ) # rename some keys __snake_case :List[str] = convert_state_dict(UpperCamelCase__ ,UpperCamelCase__ ) # load 🤗 model __snake_case :Optional[int] = ASTForAudioClassification(UpperCamelCase__ ) model.eval() model.load_state_dict(UpperCamelCase__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __snake_case :Any = -4.2_6_7_7_3_9_3 if '''speech-commands''' not in model_name else -6.8_4_5_9_7_8 __snake_case :List[Any] = 4.5_6_8_9_9_7_4 if '''speech-commands''' not in model_name else 5.5_6_5_4_5_2_6 __snake_case :str = 1024 if '''speech-commands''' not in model_name else 128 __snake_case :int = ASTFeatureExtractor(mean=UpperCamelCase__ ,std=UpperCamelCase__ ,max_length=UpperCamelCase__ ) if "speech-commands" in model_name: __snake_case :Tuple = load_dataset("""speech_commands""" ,"""v0.02""" ,split="""validation""" ) __snake_case :List[str] = dataset[0]['''audio''']['''array'''] else: __snake_case :Dict = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" ,filename="""sample_audio.flac""" ,repo_type="""dataset""" ,) __snake_case :Union[str, Any] = torchaudio.load(UpperCamelCase__ ) __snake_case :str = waveform.squeeze().numpy() __snake_case :Any = feature_extractor(UpperCamelCase__ ,sampling_rate=1_6000 ,return_tensors="""pt""" ) # forward pass __snake_case :Optional[Any] = model(**UpperCamelCase__ ) __snake_case :str = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __snake_case :Any = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __snake_case :Union[str, Any] = torch.tensor([-1.1_9_8_6, -7.0_9_0_3, -8.2_7_1_8] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __snake_case :str = torch.tensor([-2.6_1_2_8, -8.0_0_8_0, -9.4_3_4_4] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __snake_case :List[str] = torch.tensor([-1.5_0_8_0, -7.4_5_3_4, -8.8_9_1_7] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __snake_case :Optional[Any] = torch.tensor([-0.5_0_5_0, -6.5_8_3_3, -8.0_8_4_3] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __snake_case :Tuple = torch.tensor([-0.3_8_2_6, -7.0_3_3_6, -8.2_4_1_3] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __snake_case :str = torch.tensor([-1.2_1_1_3, -6.9_1_0_1, -8.3_4_7_0] ) elif model_name == "ast-finetuned-speech-commands-v2": __snake_case :int = torch.tensor([6.1_5_8_9, -8.0_5_6_6, -8.7_9_8_4] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] ,UpperCamelCase__ ,atol=1e-4 ): raise ValueError("""Logits don\'t match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase__ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
455
def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" return round(float(moles / volume ) * nfactor ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: """simple docstring""" return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
202
0
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _lowercase ( yaml.SafeLoader ): """simple docstring""" def UpperCAmelCase_ ( self : Any , UpperCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =[self.constructed_objects[key_node] for key_node, _ in node.value] __UpperCamelCase =[tuple(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else key for key in keys] __UpperCamelCase =Counter(UpperCamelCase__ ) __UpperCamelCase =[key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"""Got duplicate yaml keys: {duplicate_keys}""" ) def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Tuple=False ) -> Dict: '''simple docstring''' __UpperCamelCase =super().construct_mapping(UpperCamelCase__ , deep=UpperCamelCase__ ) self._check_no_duplicates_on_constructed_node(UpperCamelCase__ ) return mapping def lowerCAmelCase (__UpperCamelCase : str ): """simple docstring""" __UpperCamelCase =list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: __UpperCamelCase =full_content[1:].index('''---''' ) + 1 __UpperCamelCase ='''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__UpperCamelCase ) class _lowercase ( __a ): """simple docstring""" lowercase__ = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def UpperCAmelCase_ ( cls : int , UpperCamelCase__ : Path ) -> "DatasetMetadata": '''simple docstring''' with open(UpperCamelCase__ , encoding='''utf-8''' ) as readme_file: __UpperCamelCase , __UpperCamelCase =_split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(UpperCamelCase__ ) else: return cls() def UpperCAmelCase_ ( self : Union[str, Any] , UpperCamelCase__ : Path ) -> Any: '''simple docstring''' if path.exists(): with open(UpperCamelCase__ , encoding='''utf-8''' ) as readme_file: __UpperCamelCase =readme_file.read() else: __UpperCamelCase =None __UpperCamelCase =self._to_readme(UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(UpperCamelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : Optional[str] = None ) -> str: '''simple docstring''' if readme_content is not None: __UpperCamelCase , __UpperCamelCase =_split_yaml_from_readme(UpperCamelCase__ ) __UpperCamelCase ='''---\n''' + self.to_yaml_string() + '''---\n''' + content else: __UpperCamelCase ='''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def UpperCAmelCase_ ( cls : Dict , UpperCamelCase__ : str ) -> "DatasetMetadata": '''simple docstring''' __UpperCamelCase =yaml.load(UpperCamelCase__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields __UpperCamelCase ={ (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**UpperCamelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=UpperCamelCase__ , allow_unicode=UpperCamelCase__ , encoding='''utf-8''' , ).decode('''utf-8''' ) __lowercase = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser __lowercase = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') __lowercase = ap.parse_args() __lowercase = Path(args.readme_filepath) __lowercase = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
296
"""simple docstring""" class _lowercase : """simple docstring""" def __init__( self : Tuple , UpperCamelCase__ : Any ) -> int: '''simple docstring''' __UpperCamelCase =arr.split(''',''' ) def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' __UpperCamelCase =[int(self.array[0] )] * len(self.array ) __UpperCamelCase =[int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __UpperCamelCase =max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __UpperCamelCase =max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __lowercase = input('''please input some numbers:''') __lowercase = SubArray(whole_array) __lowercase = array.solve_sub_array() print(('''the results is:''', re))
296
1