code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __UpperCAmelCase = logging.get_logger(__name__) class a__ ( a__ ): '''simple docstring''' lowercase__ : Any = "upernet" def __init__( self , lowerCamelCase_=None , lowerCamelCase_=5_12 , lowerCamelCase_=0.02 , lowerCamelCase_=[1, 2, 3, 6] , lowerCamelCase_=True , lowerCamelCase_=0.4 , lowerCamelCase_=3_84 , lowerCamelCase_=2_56 , lowerCamelCase_=1 , lowerCamelCase_=False , lowerCamelCase_=2_55 , **lowerCamelCase_ , ) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowerCAmelCase__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = backbone_config.get('''model_type''' ) lowerCAmelCase__ = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase__ = config_class.from_dict(lowerCamelCase_ ) lowerCAmelCase__ = backbone_config lowerCAmelCase__ = hidden_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = pool_scales lowerCAmelCase__ = use_auxiliary_head lowerCAmelCase__ = auxiliary_loss_weight lowerCAmelCase__ = auxiliary_in_channels lowerCAmelCase__ = auxiliary_channels lowerCAmelCase__ = auxiliary_num_convs lowerCAmelCase__ = auxiliary_concat_input lowerCAmelCase__ = loss_ignore_index def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ = self.backbone_config.to_dict() lowerCAmelCase__ = self.__class__.model_type return output
90
import random def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = num - 1 __a = 0 while s % 2 == 0: __a = s // 2 t += 1 for _ in range(5 ): __a = random.randrange(2 , num - 1 ) __a = pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if v != 1: __a = 0 while v != (num - 1): if i == t - 1: return False else: __a = i + 1 __a = (v**2) % num return True def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if num < 2: return False __a = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 1024 ): """simple docstring""" while True: __a = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(_SCREAMING_SNAKE_CASE ): return num if __name__ == "__main__": lowerCamelCase__ = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
225
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( lowercase__ ): """simple docstring""" A__ : Union[str, Any] = 'vision-encoder-decoder' A__ : List[str] = True def __init__( self : Union[str, Any] , **_snake_case : Optional[int] ): """simple docstring""" super().__init__(**_snake_case ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'''A configuraton of type {self.model_type} cannot be instantiated because ''' F'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) A__ = kwargs.pop('encoder' ) A__ = encoder_config.pop('model_type' ) A__ = kwargs.pop('decoder' ) A__ = decoder_config.pop('model_type' ) A__ = AutoConfig.for_model(_snake_case , **_snake_case ) A__ = AutoConfig.for_model(_snake_case , **_snake_case ) A__ = True @classmethod def _a ( cls : Union[str, Any] , _snake_case : Dict , _snake_case : str , **_snake_case : int ): """simple docstring""" logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) A__ = True A__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_snake_case ) def _a ( self : Optional[int] ): """simple docstring""" A__ = copy.deepcopy(self.__dict__ ) A__ = self.encoder.to_dict() A__ = self.decoder.to_dict() A__ = self.__class__.model_type return output class __lowerCAmelCase ( lowercase__ ): """simple docstring""" A__ : Any = version.parse("1.11" ) @property def _a ( self : int ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _a ( self : Optional[Any] ): """simple docstring""" return 1E-4 @property def _a ( self : List[str] ): """simple docstring""" return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class __lowerCAmelCase ( lowercase__ ): """simple docstring""" @property def _a ( self : List[str] ): """simple docstring""" A__ = OrderedDict() A__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} A__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} A__ = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _a ( self : List[Any] , _snake_case : Any , _snake_case : Optional[Any] = -1 , _snake_case : Any = -1 , _snake_case : Optional[Any] = False , _snake_case : int = None , ): """simple docstring""" import torch A__ = OrderedDict() A__ = super().generate_dummy_inputs( _snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case ) A__ , A__ = dummy_input['input_ids'].shape A__ = (batch, encoder_sequence, self._config.encoder_hidden_size) A__ = dummy_input.pop('input_ids' ) A__ = dummy_input.pop('attention_mask' ) A__ = torch.zeros(_snake_case ) return common_inputs class __lowerCAmelCase ( lowercase__ ): """simple docstring""" @property def _a ( self : Optional[Any] ): """simple docstring""" pass def _a ( self : Optional[Any] , _snake_case : Tuple ): """simple docstring""" return VisionEncoderDecoderEncoderOnnxConfig(_snake_case ) def _a ( self : int , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any = "default" ): """simple docstring""" A__ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_snake_case , _snake_case )
701
from typing import Dict from .base import GenericTensor, Pipeline class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def _a ( self : Any , _snake_case : str=None , _snake_case : Dict=None , _snake_case : Any=None , **_snake_case : str ): """simple docstring""" if tokenize_kwargs is None: A__ = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) A__ = truncation A__ = tokenize_kwargs A__ = {} if return_tensors is not None: A__ = return_tensors return preprocess_params, {}, postprocess_params def _a ( self : Any , _snake_case : Dict , **_snake_case : Optional[Any] ): """simple docstring""" A__ = self.framework A__ = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) return model_inputs def _a ( self : List[Any] , _snake_case : Dict ): """simple docstring""" A__ = self.model(**_snake_case ) return model_outputs def _a ( self : Optional[Any] , _snake_case : List[Any] , _snake_case : str=False ): """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : Dict , *_snake_case : int , **_snake_case : List[str] ): """simple docstring""" return super().__call__(*_snake_case , **_snake_case )
52
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) @dataclass class _SCREAMING_SNAKE_CASE ( _lowerCamelCase ): __SCREAMING_SNAKE_CASE = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **A_ ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _UpperCAmelCase : Tuple = deprecated_arg[3:] setattr(self , _A , not kwargs.pop(_A ) ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) _UpperCAmelCase : str = kwargs.pop("""torchscript""" , self.torchscript ) _UpperCAmelCase : str = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) _UpperCAmelCase : Any = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**_A ) __SCREAMING_SNAKE_CASE = field(default=_lowerCamelCase , metadata={'''help''': '''Trace the models using torchscript'''} ) __SCREAMING_SNAKE_CASE = field(default=_lowerCamelCase , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''} ) __SCREAMING_SNAKE_CASE = field( default='''O1''' , metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) } , ) @cached_property def __snake_case( self ): requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: _UpperCAmelCase : List[str] = torch.device("""cpu""" ) _UpperCAmelCase : Optional[Any] = 0 elif is_torch_tpu_available(): _UpperCAmelCase : Tuple = xm.xla_device() _UpperCAmelCase : Optional[int] = 0 else: _UpperCAmelCase : Dict = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) _UpperCAmelCase : List[Any] = torch.cuda.device_count() return device, n_gpu @property def __snake_case( self ): return is_torch_tpu_available() and self.tpu @property def __snake_case( self ): requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __snake_case( self ): requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def __snake_case( self ): requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def __snake_case( self ): return self.n_gpu > 0
643
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = '''▁''' UpperCAmelCase_ : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} UpperCAmelCase_ : List[Any] = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } UpperCAmelCase_ : Any = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } UpperCAmelCase_ : Optional[Any] = { '''ernie-m-base''': 5_1_4, '''ernie-m-large''': 5_1_4, } UpperCAmelCase_ : List[Any] = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : List[str] = ["input_ids"] lowercase : Tuple = VOCAB_FILES_NAMES lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] = RESOURCE_FILES_NAMES def __init__( self , _A , _A=None , _A=False , _A="utf8" , _A="[UNK]" , _A="[SEP]" , _A="[PAD]" , _A="[CLS]" , _A="[MASK]" , _A = None , **_A , ): '''simple docstring''' _SCREAMING_SNAKE_CASE ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , vocab_file=_A , encoding=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) _SCREAMING_SNAKE_CASE =do_lower_case _SCREAMING_SNAKE_CASE =sentencepiece_model_ckpt _SCREAMING_SNAKE_CASE =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: _SCREAMING_SNAKE_CASE =self.load_vocab(filepath=_A ) else: _SCREAMING_SNAKE_CASE ={self.sp_model.id_to_piece(_A ): id for id in range(self.sp_model.get_piece_size() )} _SCREAMING_SNAKE_CASE ={v: k for k, v in self.vocab.items()} def UpperCamelCase_ ( self , _A ): '''simple docstring''' if text is None: return None _SCREAMING_SNAKE_CASE =self.tokenize(_A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ='''''', [] for i, ch in enumerate(_A ): if ch in self.SP_CHAR_MAPPING: _SCREAMING_SNAKE_CASE =self.SP_CHAR_MAPPING.get(_A ) else: _SCREAMING_SNAKE_CASE =unicodedata.normalize('''NFKC''' , _A ) if self.is_whitespace(_A ): continue normalized_text += ch char_mapping.extend([i] * len(_A ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =normalized_text, [], 0 if self.do_lower_case: _SCREAMING_SNAKE_CASE =text.lower() for token in split_tokens: if token[:1] == "▁": _SCREAMING_SNAKE_CASE =token[1:] _SCREAMING_SNAKE_CASE =text[offset:].index(_A ) + offset _SCREAMING_SNAKE_CASE =start + len(_A ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) _SCREAMING_SNAKE_CASE =end return token_mapping @property def UpperCamelCase_ ( self ): '''simple docstring''' return len(self.vocab ) def UpperCamelCase_ ( self ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.__dict__.copy() _SCREAMING_SNAKE_CASE =None return state def __setstate__( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCamelCase_ ( self , _A ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(_A , _A ) for c in text) ) def UpperCamelCase_ ( self , _A , _A=False , _A=6_4 , _A=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get('''enable_sampling''' ) is True: _SCREAMING_SNAKE_CASE =True if self.sp_model_kwargs.get('''alpha''' ) is not None: _SCREAMING_SNAKE_CASE =self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: _SCREAMING_SNAKE_CASE =self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: _SCREAMING_SNAKE_CASE =self.sp_model.EncodeAsPieces(_A ) else: _SCREAMING_SNAKE_CASE =self.sp_model.SampleEncodeAsPieces(_A , _A , _A ) _SCREAMING_SNAKE_CASE =[] for pi, piece in enumerate(_A ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_A ) and pi != 0: new_pieces.append(_A ) continue else: continue _SCREAMING_SNAKE_CASE =0 for i, chunk in enumerate(_A ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_A ) or self.is_punct(_A ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_A ) _SCREAMING_SNAKE_CASE =i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _SCREAMING_SNAKE_CASE =i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _SCREAMING_SNAKE_CASE =i if len(_A ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCamelCase_ ( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def UpperCamelCase_ ( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.convert_ids_to_tokens(_A ) _SCREAMING_SNAKE_CASE =''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def UpperCamelCase_ ( self , _A ): '''simple docstring''' return self.vocab.get(_A , self.vocab.get(self.unk_token ) ) def UpperCamelCase_ ( self , _A ): '''simple docstring''' return self.reverse_vocab.get(_A , self.unk_token ) def UpperCamelCase_ ( self , _A , _A=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _SCREAMING_SNAKE_CASE =[self.cls_token_id] _SCREAMING_SNAKE_CASE =[self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCamelCase_ ( self , _A , _A=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCamelCase_ ( self , _A , _A=None , _A=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] def UpperCamelCase_ ( self , _A , _A = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(_A ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_A ) + 1) + [1] * (len(_A ) + 3) def UpperCamelCase_ ( self , _A ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def UpperCamelCase_ ( self , _A ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCamelCase_ ( self , _A ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCamelCase_ ( self , _A ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_A ) == 1: _SCREAMING_SNAKE_CASE =unicodedata.category(_A ) if cat == "Zs": return True return False def UpperCamelCase_ ( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE ={} with io.open(_A , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(_A ): _SCREAMING_SNAKE_CASE =line.rstrip('''\n''' ) _SCREAMING_SNAKE_CASE =int(_A ) return token_to_idx def UpperCamelCase_ ( self , _A , _A = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE =0 if os.path.isdir(_A ): _SCREAMING_SNAKE_CASE =os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: _SCREAMING_SNAKE_CASE =(filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) _SCREAMING_SNAKE_CASE =token_index writer.write(token + '''\n''' ) index += 1 _SCREAMING_SNAKE_CASE =os.path.join(_A , '''sentencepiece.bpe.model''' ) with open(_A , '''wb''' ) as fi: _SCREAMING_SNAKE_CASE =self.sp_model.serialized_model_proto() fi.write(_A ) return (vocab_file,)
255
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : '''simple docstring''' def __init__( self: Any ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: int=13 ,lowerCamelCase_: List[str]=7 ,lowerCamelCase_: List[Any]=True ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: List[Any]=True ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Tuple=99 ,lowerCamelCase_: Dict=16 ,lowerCamelCase_: int=36 ,lowerCamelCase_: str=6 ,lowerCamelCase_: int=6 ,lowerCamelCase_: Any=6 ,lowerCamelCase_: Tuple=37 ,lowerCamelCase_: List[str]="gelu" ,lowerCamelCase_: Dict=0.1 ,lowerCamelCase_: Optional[Any]=0.1 ,lowerCamelCase_: List[str]=512 ,lowerCamelCase_: Optional[Any]=16 ,lowerCamelCase_: List[Any]=2 ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: Union[str, Any]=3 ,lowerCamelCase_: str=4 ,lowerCamelCase_: Tuple=None ,) -> Union[str, Any]: UpperCAmelCase_ : Any = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Dict = seq_length UpperCAmelCase_ : int = is_training UpperCAmelCase_ : Union[str, Any] = use_input_mask UpperCAmelCase_ : str = use_token_type_ids UpperCAmelCase_ : str = use_labels UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Tuple = embedding_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_hidden_groups UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : int = max_position_embeddings UpperCAmelCase_ : Any = type_vocab_size UpperCAmelCase_ : str = type_sequence_label_size UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : List[str] = num_labels UpperCAmelCase_ : Any = num_choices UpperCAmelCase_ : int = scope def A__ ( self: List[Any] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : Tuple = None if self.use_input_mask: UpperCAmelCase_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : List[Any] = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : Any = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self: List[Any] ) -> Optional[Any]: return AlbertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,num_hidden_groups=self.num_hidden_groups ,) def A__ ( self: Any ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Dict ) -> Optional[Any]: UpperCAmelCase_ : List[str] = AlbertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[str] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def A__ ( self: List[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: int ,lowerCamelCase_: int ,lowerCamelCase_: str ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = AlbertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,sentence_order_label=lowerCamelCase_ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape ,(self.batch_size, config.num_labels) ) def A__ ( self: Dict ,lowerCamelCase_: str ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: List[str] ) -> int: UpperCAmelCase_ : Union[str, Any] = AlbertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[str] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self: List[str] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: str ) -> int: UpperCAmelCase_ : Dict = AlbertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,start_positions=lowerCamelCase_ ,end_positions=lowerCamelCase_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def A__ ( self: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ : Optional[int] = self.num_labels UpperCAmelCase_ : str = AlbertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def A__ ( self: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : List[Any] = AlbertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: Any ,lowerCamelCase_: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: int ,lowerCamelCase_: int ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = self.num_choices UpperCAmelCase_ : List[str] = AlbertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : int = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Dict = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : Dict = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[Any] = config_and_inputs UpperCAmelCase_ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : str = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) A__ : List[Any] = True def A__ ( self: Any ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any]=False ) -> Optional[int]: UpperCAmelCase_ : Tuple = super()._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ,return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase_ ) return inputs_dict def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : List[str] = AlbertModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=37 ) def A__ ( self: Optional[Any] ) -> Union[str, Any]: self.config_tester.run_common_tests() def A__ ( self: Optional[int] ) -> str: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def A__ ( self: Any ) -> Any: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ ) def A__ ( self: int ) -> List[Any]: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def A__ ( self: Any ) -> Tuple: UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def A__ ( self: str ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> List[Any]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : str = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) @slow def A__ ( self: Optional[int] ) -> Optional[int]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = AlbertModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[int] = AlbertModel.from_pretrained("""albert-base-v2""" ) UpperCAmelCase_ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) UpperCAmelCase_ : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase_ : Any = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ )[0] UpperCAmelCase_ : Union[str, Any] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowerCamelCase_ ,atol=1e-4 ) )
322
from __future__ import annotations def lowerCamelCase_ ( _a : str , _a : list[str] | None = None , _a : dict[str, float] | None = None , _a : bool = False , ): '''simple docstring''' UpperCAmelCase_ : int = cipher_alphabet or [chr(_a ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCAmelCase_ : int = { """a""": 0.0_8_4_9_7, """b""": 0.0_1_4_9_2, """c""": 0.0_2_2_0_2, """d""": 0.0_4_2_5_3, """e""": 0.1_1_1_6_2, """f""": 0.0_2_2_2_8, """g""": 0.0_2_0_1_5, """h""": 0.0_6_0_9_4, """i""": 0.0_7_5_4_6, """j""": 0.0_0_1_5_3, """k""": 0.0_1_2_9_2, """l""": 0.0_4_0_2_5, """m""": 0.0_2_4_0_6, """n""": 0.0_6_7_4_9, """o""": 0.0_7_5_0_7, """p""": 0.0_1_9_2_9, """q""": 0.0_0_0_9_5, """r""": 0.0_7_5_8_7, """s""": 0.0_6_3_2_7, """t""": 0.0_9_3_5_6, """u""": 0.0_2_7_5_8, """v""": 0.0_0_9_7_8, """w""": 0.0_2_5_6_0, """x""": 0.0_0_1_5_0, """y""": 0.0_1_9_9_4, """z""": 0.0_0_0_7_7, } else: # Custom frequencies dictionary UpperCAmelCase_ : Tuple = frequencies_dict if not case_sensitive: UpperCAmelCase_ : Any = ciphertext.lower() # Chi squared statistic values UpperCAmelCase_ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(_a ) ): UpperCAmelCase_ : Optional[int] = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCAmelCase_ : Any = (alphabet_letters.index(letter.lower() ) - shift) % len( _a ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCAmelCase_ : int = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCAmelCase_ : Tuple = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCAmelCase_ : int = decrypted_with_shift.lower().count(_a ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCAmelCase_ : Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCAmelCase_ : List[Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCAmelCase_ : List[str] = decrypted_with_shift.count(_a ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCAmelCase_ : Dict = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCAmelCase_ : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCAmelCase_ : List[str] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_a : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCAmelCase_ : int = min( _a , key=_a , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Tuple = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
322
1
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int = 50 ): '''simple docstring''' lowerCAmelCase = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
532
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int = 8 ): '''simple docstring''' lowerCAmelCase = ascii_letters + digits + punctuation return "".join(secrets.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' i -= len(SCREAMING_SNAKE_CASE ) lowerCAmelCase = i // 3 lowerCAmelCase = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCAmelCase = ( chars_incl + random(SCREAMING_SNAKE_CASE , quotient + remainder ) + random(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) + random(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = list(SCREAMING_SNAKE_CASE ) shuffle(SCREAMING_SNAKE_CASE ) return "".join(SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "".join(secrets.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' pass # Put your code here... def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' pass # Put your code here... def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' pass # Put your code here... def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int = 8 ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False lowerCAmelCase = any(char in ascii_uppercase for char in password ) lowerCAmelCase = any(char in ascii_lowercase for char in password ) lowerCAmelCase = any(char in digits for char in password ) lowerCAmelCase = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = int(input("""Please indicate the max length of your password: """ ).strip() ) lowerCAmelCase = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(SCREAMING_SNAKE_CASE ) ) print( """Alternative Password generated:""" , alternative_password_generator(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
532
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: # Initialise PyTorch model __lowerCamelCase : int = BigBirdConfig.from_json_file(lowerCamelCase__ ) print(F"Building PyTorch model from configuration: {config}" ) if is_trivia_qa: __lowerCamelCase : Union[str, Any] = BigBirdForQuestionAnswering(lowerCamelCase__ ) else: __lowerCamelCase : Union[str, Any] = BigBirdForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(lowerCamelCase__ , lowerCamelCase__ , is_trivia_qa=lowerCamelCase__ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": a =argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) a =parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
702
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a ={ """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
337
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Optional[Any] = logging.get_logger(__name__) a_ : List[str] = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" _A = 'speech_to_text' _A = ['past_key_values'] _A = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self , __a=1_00_00 , __a=12 , __a=20_48 , __a=4 , __a=6 , __a=20_48 , __a=4 , __a=0.0 , __a=0.0 , __a=True , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=2 , __a=True , __a=1 , __a=0 , __a=2 , __a=60_00 , __a=10_24 , __a=2 , __a=(5, 5) , __a=10_24 , __a=80 , __a=1 , **__a , ): '''simple docstring''' lowerCamelCase = vocab_size lowerCamelCase = d_model lowerCamelCase = encoder_ffn_dim lowerCamelCase = encoder_layers lowerCamelCase = encoder_attention_heads lowerCamelCase = decoder_ffn_dim lowerCamelCase = decoder_layers lowerCamelCase = decoder_attention_heads lowerCamelCase = dropout lowerCamelCase = attention_dropout lowerCamelCase = activation_dropout lowerCamelCase = activation_function lowerCamelCase = init_std lowerCamelCase = encoder_layerdrop lowerCamelCase = decoder_layerdrop lowerCamelCase = use_cache lowerCamelCase = encoder_layers lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase = max_source_positions lowerCamelCase = max_target_positions lowerCamelCase = num_conv_layers lowerCamelCase = list(__a ) lowerCamelCase = conv_channels lowerCamelCase = input_feat_per_channel lowerCamelCase = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` " F"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" ) super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
623
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" with open(UpperCAmelCase__ ) as metadata_file: lowerCamelCase = json.load(UpperCAmelCase__ ) lowerCamelCase = LukeConfig(use_entity_aware_attention=UpperCAmelCase__ , **metadata["model_config"] ) # Load in the weights from the checkpoint_path lowerCamelCase = torch.load(UpperCAmelCase__ , map_location="cpu" ) # Load the entity vocab file lowerCamelCase = load_entity_vocab(UpperCAmelCase__ ) lowerCamelCase = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks lowerCamelCase = AddedToken("<ent>" , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) lowerCamelCase = AddedToken("<ent2>" , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase = LukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens lowerCamelCase = state_dict["embeddings.word_embeddings.weight"] lowerCamelCase = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) lowerCamelCase = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) lowerCamelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowerCamelCase = F"""encoder.layer.{layer_index}.attention.self.""" lowerCamelCase = state_dict[prefix + matrix_name] lowerCamelCase = state_dict[prefix + matrix_name] lowerCamelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCamelCase = state_dict["entity_embeddings.entity_embeddings.weight"] lowerCamelCase = entity_emb[entity_vocab["[MASK]"]] lowerCamelCase = LukeModel(config=UpperCAmelCase__ ).eval() lowerCamelCase , lowerCamelCase = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) if not (len(UpperCAmelCase__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F"""Missing keys {", ".join(UpperCAmelCase__ )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" F""" {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}""" ) # Check outputs lowerCamelCase = LukeTokenizer.from_pretrained(UpperCAmelCase__ , task="entity_classification" ) lowerCamelCase = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) lowerCamelCase = (39, 42) lowerCamelCase = tokenizer(UpperCAmelCase__ , entity_spans=[span] , add_prefix_space=UpperCAmelCase__ , return_tensors="pt" ) lowerCamelCase = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": lowerCamelCase = torch.Size((1, 42, 1024) ) lowerCamelCase = torch.tensor( [[0.0_1_3_3, 0.0_8_6_5, 0.0_0_9_5], [0.3_0_9_3, -0.2_5_7_6, -0.7_4_1_8], [-0.1_7_2_0, -0.2_1_1_7, -0.2_8_6_9]] ) else: # base lowerCamelCase = torch.Size((1, 42, 768) ) lowerCamelCase = torch.tensor([[0.0_0_3_7, 0.1_3_6_8, -0.0_0_9_1], [0.1_0_9_9, 0.3_3_2_9, -0.1_0_9_5], [0.0_7_6_5, 0.5_3_3_5, 0.1_1_7_9]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": lowerCamelCase = torch.Size((1, 1, 1024) ) lowerCamelCase = torch.tensor([[0.0_4_6_6, -0.0_1_0_6, -0.0_1_7_9]] ) else: # base lowerCamelCase = torch.Size((1, 1, 768) ) lowerCamelCase = torch.tensor([[0.1_4_5_7, 0.1_0_4_4, 0.0_1_7_4]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = {} with open(UpperCAmelCase__ , "r" , encoding="utf-8" ) as f: for index, line in enumerate(UpperCAmelCase__ ): lowerCamelCase , lowerCamelCase = line.rstrip().split("\t" ) lowerCamelCase = index return entity_vocab if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) a_ : Dict = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
623
1
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
54
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _A : List[Any] = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[Any]: return ("This is a test", "This is a test") def a__ ( self ) -> int: _A : Dict = """</s>""" _A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> Dict: _A : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_a ) , 1103 ) def a__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def a__ ( self ) -> Tuple: _A : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : int = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _A : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: _A : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _A : Union[str, Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _A : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> List[str]: _A : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _A : Any = """To ensure a smooth flow of bank resolutions.""" _A : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _A : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ ( self ) -> List[str]: _A : Union[str, Any] = ["""This is going to be way too long.""" * 150, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Union[str, Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : Tuple = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def a__ ( self ) -> Optional[Any]: # fmt: off _A : List[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _A : Tuple = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[str]: return ("This is a test", "This is a test") def a__ ( self ) -> List[Any]: _A : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _A : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : int = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def a__ ( self ) -> Optional[int]: _A : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Tuple = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : str = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def a__ ( self ) -> Dict: _A : Optional[int] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _A : Any = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
54
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase_ = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
151
def UpperCAmelCase_ ( ): return [ a * b * (1_000 - a - b) for a in range(1, 999 ) for b in range(__UpperCamelCase, 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
151
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
import cva import numpy as np class snake_case_ : def __init__( self : int , _snake_case : float , _snake_case : int )->int: '''simple docstring''' if k in (0.04, 0.06): __lowerCAmelCase : str = k __lowerCAmelCase : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Union[str, Any] )->str: '''simple docstring''' return str(self.k ) def UpperCAmelCase__ ( self : Union[str, Any] , _snake_case : str )->tuple[cva.Mat, list[list[int]]]: '''simple docstring''' __lowerCAmelCase : Optional[int] = cva.imread(_snake_case , 0 ) __lowerCAmelCase , __lowerCAmelCase : List[Any] = img.shape __lowerCAmelCase : list[list[int]] = [] __lowerCAmelCase : Any = img.copy() __lowerCAmelCase : int = cva.cvtColor(_snake_case , cva.COLOR_GRAY2RGB ) __lowerCAmelCase , __lowerCAmelCase : Tuple = np.gradient(_snake_case ) __lowerCAmelCase : Optional[int] = dx**2 __lowerCAmelCase : Union[str, Any] = dy**2 __lowerCAmelCase : Tuple = dx * dy __lowerCAmelCase : Dict = 0.04 __lowerCAmelCase : Optional[Any] = self.window_size // 2 for y in range(_snake_case , h - offset ): for x in range(_snake_case , w - offset ): __lowerCAmelCase : str = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowerCAmelCase : Any = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowerCAmelCase : Optional[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowerCAmelCase : int = (wxx * wyy) - (wxy**2) __lowerCAmelCase : int = wxx + wyy __lowerCAmelCase : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": _UpperCAmelCase = HarrisCorner(0.04, 3) _UpperCAmelCase , _UpperCAmelCase = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
240
0
"""simple docstring""" def lowercase__ ( snake_case_ :int = 4_000_000 ): __UpperCAmelCase = [0, 1] __UpperCAmelCase = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __UpperCAmelCase = 0 for j in range(len(snake_case_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
49
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase : List[str] = 1_6 _lowerCamelCase : Any = 3_2 def _UpperCAmelCase (UpperCamelCase_ : Accelerator , UpperCamelCase_ : int = 16 ): '''simple docstring''' _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _lowerCAmelCase : Tuple = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase_ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase : Union[str, Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase : Dict = datasets.map( UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase : Union[str, Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase_ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase : Union[str, Any] = 16 elif accelerator.mixed_precision != "no": _lowerCAmelCase : str = 8 else: _lowerCAmelCase : str = None return tokenizer.pad( UpperCamelCase_ , padding="""longest""" , max_length=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _lowerCAmelCase : Dict = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) _lowerCAmelCase : Optional[int] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase : Dict = mocked_dataloaders # noqa: F811 def _UpperCAmelCase (UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase_ ) == "1": _lowerCAmelCase : str = 2 # Initialize accelerator _lowerCAmelCase : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase : List[str] = config["""lr"""] _lowerCAmelCase : Dict = int(config["""num_epochs"""] ) _lowerCAmelCase : Dict = int(config["""seed"""] ) _lowerCAmelCase : Any = int(config["""batch_size"""] ) _lowerCAmelCase : Optional[int] = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=UpperCamelCase_ ) def inner_training_loop(UpperCamelCase_ : List[Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(UpperCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase : Any = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase : int = model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase : List[Any] = AdamW(params=model.parameters() , lr=UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase : str = get_dataloaders(UpperCamelCase_ , UpperCamelCase_ ) # Instantiate scheduler _lowerCAmelCase : Any = get_linear_schedule_with_warmup( optimizer=UpperCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Now we train the model for epoch in range(UpperCamelCase_ ): model.train() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowerCAmelCase : Optional[int] = model(**UpperCamelCase_ ) _lowerCAmelCase : int = outputs.loss accelerator.backward(UpperCamelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase : Any = model(**UpperCamelCase_ ) _lowerCAmelCase : str = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase : List[str] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCamelCase_ , references=UpperCamelCase_ , ) _lowerCAmelCase : List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , UpperCamelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : str = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase_ , default=UpperCamelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _lowerCAmelCase : Any = parser.parse_args() _lowerCAmelCase : Dict = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
429
0
def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' return "\n".join( f"{number} * {i} = {number * i}" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
717
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
561
0
'''simple docstring''' import argparse from collections import defaultdict import yaml a : List[Any] = 'docs/source/en/_toctree.yml' def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' snake_case_ = defaultdict(__UpperCAmelCase ) for doc in model_doc: counts[doc["local"]] += 1 snake_case_ = [key for key, value in counts.items() if value > 1] snake_case_ = [] for duplicate_key in duplicates: snake_case_ = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(__UpperCAmelCase ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(__UpperCAmelCase, key=lambda __UpperCAmelCase : s["title"].lower() ) def __magic_name__ ( __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' with open(__UpperCAmelCase, encoding='''utf-8''' ) as f: snake_case_ = yaml.safe_load(f.read() ) # Get to the API doc snake_case_ = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case_ = content[api_idx]['''sections'''] # Then to the model doc snake_case_ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 snake_case_ = api_doc[model_idx]['''sections'''] snake_case_ = [(idx, section) for idx, section in enumerate(__UpperCAmelCase ) if '''sections''' in section] snake_case_ = False for idx, modality_doc in modalities_docs: snake_case_ = modality_doc['''sections'''] snake_case_ = clean_model_doc_toc(__UpperCAmelCase ) if old_modality_doc != new_modality_doc: snake_case_ = True if overwrite: snake_case_ = new_modality_doc if diff: if overwrite: snake_case_ = model_doc snake_case_ = api_doc with open(__UpperCAmelCase, '''w''', encoding='''utf-8''' ) as f: f.write(yaml.dump(__UpperCAmelCase, allow_unicode=__UpperCAmelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a : Union[str, Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
640
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a : str = 16 a : Union[str, Any] = 32 def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase = 16 ) -> Union[str, Any]: '''simple docstring''' snake_case_ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case_ = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(__UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) snake_case_ = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=__UpperCAmelCase, max_length=__UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case_ = datasets.map( __UpperCAmelCase, batched=__UpperCAmelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(__UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case_ = 16 elif accelerator.mixed_precision != "no": snake_case_ = 8 else: snake_case_ = None return tokenizer.pad( __UpperCAmelCase, padding='''longest''', max_length=__UpperCAmelCase, pad_to_multiple_of=__UpperCAmelCase, return_tensors='''pt''', ) # Instantiate dataloaders. snake_case_ = DataLoader( tokenized_datasets['''train'''], shuffle=__UpperCAmelCase, collate_fn=__UpperCAmelCase, batch_size=__UpperCAmelCase ) snake_case_ = DataLoader( tokenized_datasets['''validation'''], shuffle=__UpperCAmelCase, collate_fn=__UpperCAmelCase, batch_size=__UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a : Optional[Any] = mocked_dataloaders # noqa: F811 def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''', __UpperCAmelCase ) == "1": snake_case_ = 2 # New Code # snake_case_ = int(args.gradient_accumulation_steps ) snake_case_ = int(args.local_sgd_steps ) # Initialize accelerator snake_case_ = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=__UpperCAmelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ = config['''lr'''] snake_case_ = int(config['''num_epochs'''] ) snake_case_ = int(config['''seed'''] ) snake_case_ = int(config['''batch_size'''] ) snake_case_ = evaluate.load('''glue''', '''mrpc''' ) set_seed(__UpperCAmelCase ) snake_case_ ,snake_case_ = get_dataloaders(__UpperCAmelCase, __UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=__UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ = model.to(accelerator.device ) # Instantiate optimizer snake_case_ = AdamW(params=model.parameters(), lr=__UpperCAmelCase ) # Instantiate scheduler snake_case_ = get_linear_schedule_with_warmup( optimizer=__UpperCAmelCase, num_warmup_steps=100, num_training_steps=(len(__UpperCAmelCase ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ = accelerator.prepare( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) # Now we train the model for epoch in range(__UpperCAmelCase ): model.train() with LocalSGD( accelerator=__UpperCAmelCase, model=__UpperCAmelCase, local_sgd_steps=__UpperCAmelCase, enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__UpperCAmelCase ): snake_case_ = model(**__UpperCAmelCase ) snake_case_ = output.loss accelerator.backward(__UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ = model(**__UpperCAmelCase ) snake_case_ = outputs.logits.argmax(dim=-1 ) snake_case_ ,snake_case_ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__UpperCAmelCase, references=__UpperCAmelCase, ) snake_case_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:", __UpperCAmelCase ) def __magic_name__ ( ) -> str: '''simple docstring''' snake_case_ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=__UpperCAmelCase, default=__UpperCAmelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''', type=__UpperCAmelCase, default=1, help='''The number of minibatches to be ran before gradients are accumulated.''', ) parser.add_argument( '''--local_sgd_steps''', type=__UpperCAmelCase, default=8, help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) snake_case_ = parser.parse_args() snake_case_ = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCAmelCase, __UpperCAmelCase ) if __name__ == "__main__": main()
640
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = ['pixel_values'] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BILINEAR , A_ = True , A_ = 1 / 2_55 , A_ = True , A_ = None , A_ = True , **A_ , ) -> None: """simple docstring""" super().__init__(**A_ ) _lowerCamelCase = size if size is not None else {'''shortest_edge''': 2_24} _lowerCamelCase = get_size_dict(A_ , default_to_square=A_ ) _lowerCamelCase = crop_size if crop_size is not None else {'''height''': 2_56, '''width''': 2_56} _lowerCamelCase = get_size_dict(A_ , param_name='''crop_size''' ) _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = resample _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_center_crop _lowerCamelCase = crop_size _lowerCamelCase = do_flip_channel_order def UpperCamelCase_ ( self , A_ , A_ , A_ = PIL.Image.BILINEAR , A_ = None , **A_ , ) -> np.ndarray: """simple docstring""" _lowerCamelCase = get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}' ) _lowerCamelCase = get_resize_output_image_size(A_ , size=size['''shortest_edge'''] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray: """simple docstring""" _lowerCamelCase = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(A_ , size=(size['''height'''], size['''width''']) , data_format=A_ , **A_ ) def UpperCamelCase_ ( self , A_ , A_ , A_ = None , **A_ , ) -> Union[str, Any]: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def UpperCamelCase_ ( self , A_ , A_ = None ) -> np.ndarray: """simple docstring""" return flip_channel_order(A_ , data_format=A_ ) def UpperCamelCase_ ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) -> PIL.Image.Image: """simple docstring""" _lowerCamelCase = do_resize if do_resize is not None else self.do_resize _lowerCamelCase = resample if resample is not None else self.resample _lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _lowerCamelCase = size if size is not None else self.size _lowerCamelCase = get_size_dict(A_ , default_to_square=A_ ) _lowerCamelCase = crop_size if crop_size is not None else self.crop_size _lowerCamelCase = get_size_dict(A_ , param_name='''crop_size''' ) _lowerCamelCase = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. _lowerCamelCase = [to_numpy_array(A_ ) for image in images] if do_resize: _lowerCamelCase = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: _lowerCamelCase = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: _lowerCamelCase = [self.rescale(image=A_ , scale=A_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _lowerCamelCase = [self.flip_channel_order(image=A_ ) for image in images] _lowerCamelCase = [to_channel_dimension_format(A_ , A_ ) for image in images] _lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=A_ , tensor_type=A_ ) def UpperCamelCase_ ( self , A_ , A_ = None ) -> int: """simple docstring""" _lowerCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(A_ ): _lowerCamelCase = target_sizes.numpy() _lowerCamelCase = [] for idx in range(len(A_ ) ): _lowerCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=A_ ) _lowerCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: _lowerCamelCase = logits.argmax(dim=1 ) _lowerCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
638
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCamelCase ( __lowercase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
638
1
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _a = """bart""" _a = True @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Dict: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCamelCase = qar_model.eval() else: _UpperCamelCase , _UpperCamelCase = (None, None) if MODEL_TYPE == "bart": _UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCamelCase = sas_model.eval() else: _UpperCamelCase , _UpperCamelCase = make_qa_sas_model( model_name='''t5-small''', from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''', device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: _UpperCamelCase = faiss.StandardGpuResources() _UpperCamelCase = datasets.load_dataset(path='''wiki_snippets''', name='''wiki40b_en_100_0''' )['''train'''] _UpperCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''', dtype='''float32''', mode='''r''', shape=(wikiaab_passages.num_rows, 1_28), ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) _UpperCamelCase = faiss.index_cpu_to_gpu(__snake_case, 1, __snake_case ) wikiaab_gpu_index_flat.add(__snake_case ) # TODO fix for larger GPU else: _UpperCamelCase , _UpperCamelCase = (None, None) _UpperCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__snake_case ) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = datasets.load_dataset('''eli5''', name='''LFQA_reddit''' ) _UpperCamelCase = elia['''train_eli5'''] _UpperCamelCase = np.memmap( '''eli5_questions_reps.dat''', dtype='''float32''', mode='''r''', shape=(elia_train.num_rows, 1_28) ) _UpperCamelCase = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(__snake_case ) return (elia_train, eli5_train_q_index) _a , _a , _a = load_indexes() _a , _a , _a , _a = load_models() _a , _a = load_train_data() def lowerCamelCase__ ( __snake_case, __snake_case=10 ) -> List[Any]: """simple docstring""" _UpperCamelCase = embed_questions_for_retrieval([question], __snake_case, __snake_case ) _UpperCamelCase , _UpperCamelCase = eli5_train_q_index.search(__snake_case, __snake_case ) _UpperCamelCase = [elia_train[int(__snake_case )] for i in I[0]] return nn_examples def lowerCamelCase__ ( __snake_case, __snake_case="wiki40b", __snake_case="dense", __snake_case=10 ) -> List[str]: """simple docstring""" if source == "none": _UpperCamelCase , _UpperCamelCase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCamelCase , _UpperCamelCase = query_qa_dense_index( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) else: _UpperCamelCase , _UpperCamelCase = query_es_index( __snake_case, __snake_case, index_name='''english_wiki40b_snippets_100w''', n_results=__snake_case, ) _UpperCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCamelCase = '''question: {} context: {}'''.format(__snake_case, __snake_case ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __snake_case : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __snake_case : None), } ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=64, __snake_case=2_56, __snake_case=False, __snake_case=2, __snake_case=0.95, __snake_case=0.8 ) -> Dict: """simple docstring""" with torch.no_grad(): _UpperCamelCase = qa_sas_generate( __snake_case, __snake_case, __snake_case, num_answers=1, num_beams=__snake_case, min_len=__snake_case, max_len=__snake_case, do_sample=__snake_case, temp=__snake_case, top_p=__snake_case, top_k=__snake_case, max_input_length=10_24, device='''cuda:0''', )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _a = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _a = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _a = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _a = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _a = st.sidebar.checkbox("""Demo options""") if demo_options: _a = st.sidebar.selectbox( """""", action_list, index=3, ) _a = action_list.index(action_st) _a = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _a = show_type == """Show full text of passages""" else: _a = 3 _a = True _a = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _a = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _a = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _a = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _a = """wiki40b""" _a = """dense""" _a = """beam""" _a = 2 _a = 64 _a = 256 _a = None _a = None _a = st.sidebar.checkbox("""Generation options""") if generate_options: _a = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _a = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _a = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _a = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _a = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _a = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _a = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _a = None # start main text _a = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _a = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _a = st.text_input("""Enter your question here:""", """""") else: _a = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _a , _a = make_support(question, source=wiki_source, method="""dense""", n_results=10) _a , _a = make_support(question, source=wiki_source, method="""sparse""", n_results=10) _a = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _a = support_list[:10] _a = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _a , _a = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _a , _a = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _a = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _a = res[1].strip() if sec_titles == "": _a = """[{}]({})""".format(res[0], wiki_url) else: _a = sec_titles.split(""" & """) _a = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _a = find_nearest_training(question) _a = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _a = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _a = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
19
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase : Union[str, Any] = {"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure)
668
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) def _A ( A ) -> List[List[ImageInput]]: if isinstance(A ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(A ,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(A ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' _snake_case = ['''pixel_values'''] def __init__( self , a_ = True , a_ = None , a_ = PILImageResampling.BILINEAR , a_ = True , a_ = None , a_ = True , a_ = 1 / 2_5_5 , a_ = True , a_ = None , a_ = None , **a_ , ) -> None: super().__init__(**a_ ) lowercase : Optional[int] = size if size is not None else {"shortest_edge": 2_2_4} lowercase : Optional[int] = get_size_dict(a_ , default_to_square=a_ ) lowercase : str = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} lowercase : Any = get_size_dict(a_ , param_name="crop_size" ) lowercase : int = do_resize lowercase : List[str] = size lowercase : Dict = do_center_crop lowercase : int = crop_size lowercase : Any = resample lowercase : Tuple = do_rescale lowercase : int = rescale_factor lowercase : Tuple = do_normalize lowercase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ ( self , a_ , a_ , a_ = PILImageResampling.BILINEAR , a_ = None , **a_ , ) -> np.ndarray: lowercase : Tuple = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" in size: lowercase : Tuple = get_resize_output_image_size(a_ , size["shortest_edge"] , default_to_square=a_ ) elif "height" in size and "width" in size: lowercase : Tuple = (size["height"], size["width"]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def a__ ( self , a_ , a_ , a_ = None , **a_ , ) -> np.ndarray: lowercase : str = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(a_ , size=(size["height"], size["width"]) , data_format=a_ , **a_ ) def a__ ( self , a_ , a_ , a_ = None , **a_ , ) -> Optional[Any]: return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def a__ ( self , a_ , a_ , a_ , a_ = None , **a_ , ) -> np.ndarray: return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def a__ ( self , a_ , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowercase : List[Any] = to_numpy_array(a_ ) if do_resize: lowercase : Tuple = self.resize(image=a_ , size=a_ , resample=a_ ) if do_center_crop: lowercase : Tuple = self.center_crop(a_ , size=a_ ) if do_rescale: lowercase : List[Any] = self.rescale(image=a_ , scale=a_ ) if do_normalize: lowercase : Optional[Any] = self.normalize(image=a_ , mean=a_ , std=a_ ) lowercase : Any = to_channel_dimension_format(a_ , a_ ) return image def a__ ( self , a_ , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = ChannelDimension.FIRST , **a_ , ) -> PIL.Image.Image: lowercase : Any = do_resize if do_resize is not None else self.do_resize lowercase : Tuple = resample if resample is not None else self.resample lowercase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : Dict = do_rescale if do_rescale is not None else self.do_rescale lowercase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] = image_mean if image_mean is not None else self.image_mean lowercase : List[Any] = image_std if image_std is not None else self.image_std lowercase : List[Any] = size if size is not None else self.size lowercase : Optional[Any] = get_size_dict(a_ , default_to_square=a_ ) lowercase : str = crop_size if crop_size is not None else self.crop_size lowercase : Dict = get_size_dict(a_ , param_name="crop_size" ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) lowercase : Optional[Any] = make_batched(a_ ) lowercase : Tuple = [ [ self._preprocess_image( image=a_ , do_resize=a_ , size=a_ , resample=a_ , do_center_crop=a_ , crop_size=a_ , do_rescale=a_ , rescale_factor=a_ , do_normalize=a_ , image_mean=a_ , image_std=a_ , data_format=a_ , ) for img in video ] for video in videos ] lowercase : int = {"pixel_values": videos} return BatchFeature(data=a_ , tensor_type=a_ )
425
'''simple docstring''' def _A ( A ) -> bool: return str(A ) == str(A )[::-1] def _A ( A ) -> int: return int(A ) + int(str(A )[::-1] ) def _A ( A = 1_0_0_0_0 ) -> int: lowercase : List[Any] = [] for num in range(1 ,A ): lowercase : str = 0 lowercase : Optional[Any] = num while iterations < 5_0: lowercase : Optional[Any] = sum_reverse(A ) iterations += 1 if is_palindrome(A ): break else: lychrel_nums.append(A ) return len(A ) if __name__ == "__main__": print(F'''{solution() = }''')
425
1
"""simple docstring""" import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = f'''{sampling_rate}''' _UpperCAmelCase = """1""" _UpperCAmelCase = """f32le""" _UpperCAmelCase = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(lowercase ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: _UpperCAmelCase = ffmpeg_process.communicate(lowercase ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error _UpperCAmelCase = output_stream[0] _UpperCAmelCase = np.frombuffer(lowercase ,np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def __UpperCAmelCase ( lowercase ,lowercase ,lowercase = "f32le" ,): """simple docstring""" _UpperCAmelCase = f'''{sampling_rate}''' _UpperCAmelCase = """1""" if format_for_conversion == "s16le": _UpperCAmelCase = 2 elif format_for_conversion == "f32le": _UpperCAmelCase = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) _UpperCAmelCase = platform.system() if system == "Linux": _UpperCAmelCase = """alsa""" _UpperCAmelCase = """default""" elif system == "Darwin": _UpperCAmelCase = """avfoundation""" _UpperCAmelCase = """:0""" elif system == "Windows": _UpperCAmelCase = """dshow""" _UpperCAmelCase = """default""" _UpperCAmelCase = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] _UpperCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _UpperCAmelCase = _ffmpeg_stream(lowercase ,lowercase ) for item in iterator: yield item def __UpperCAmelCase ( lowercase ,lowercase ,lowercase = None ,lowercase = None ,lowercase = "f32le" ,): """simple docstring""" if stream_chunk_s is not None: _UpperCAmelCase = stream_chunk_s else: _UpperCAmelCase = chunk_length_s _UpperCAmelCase = ffmpeg_microphone(lowercase ,lowercase ,format_for_conversion=lowercase ) if format_for_conversion == "s16le": _UpperCAmelCase = np.intaa _UpperCAmelCase = 2 elif format_for_conversion == "f32le": _UpperCAmelCase = np.floataa _UpperCAmelCase = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: _UpperCAmelCase = chunk_length_s / 6 _UpperCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowercase ,(int, float) ): _UpperCAmelCase = [stride_length_s, stride_length_s] _UpperCAmelCase = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _UpperCAmelCase = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _UpperCAmelCase = datetime.datetime.now() _UpperCAmelCase = datetime.timedelta(seconds=lowercase ) for item in chunk_bytes_iter(lowercase ,lowercase ,stride=(stride_left, stride_right) ,stream=lowercase ): # Put everything back in numpy scale _UpperCAmelCase = np.frombuffer(item["""raw"""] ,dtype=lowercase ) _UpperCAmelCase = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) _UpperCAmelCase = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase = False ): """simple docstring""" _UpperCAmelCase = B"""""" _UpperCAmelCase , _UpperCAmelCase = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) _UpperCAmelCase = 0 for raw in iterator: acc += raw if stream and len(lowercase ) < chunk_len: _UpperCAmelCase = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowercase ) >= chunk_len: # We are flushing the accumulator _UpperCAmelCase = (_stride_left, stride_right) _UpperCAmelCase = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: _UpperCAmelCase = False yield item _UpperCAmelCase = stride_left _UpperCAmelCase = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowercase ) > stride_left: _UpperCAmelCase = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: _UpperCAmelCase = False yield item def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = 2**24 # 16Mo try: with subprocess.Popen(lowercase ,stdout=subprocess.PIPE ,bufsize=lowercase ) as ffmpeg_process: while True: _UpperCAmelCase = ffmpeg_process.stdout.read(lowercase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
277
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase__ = {"""UserAgent""": UserAgent().random} def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = script.contents[0] _UpperCAmelCase = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class a : def __init__( self : Any , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = f'''https://www.instagram.com/{username}/''' _UpperCAmelCase = self.get_json() def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = requests.get(self.url , headers=__lowerCAmelCase ).text _UpperCAmelCase = BeautifulSoup(__lowerCAmelCase , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Dict ): return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : int ): return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowerCAmelCase_ ( self : Union[str, Any] ): return self.user_data["username"] @property def lowerCAmelCase_ ( self : List[Any] ): return self.user_data["full_name"] @property def lowerCAmelCase_ ( self : str ): return self.user_data["biography"] @property def lowerCAmelCase_ ( self : str ): return self.user_data["business_email"] @property def lowerCAmelCase_ ( self : List[Any] ): return self.user_data["external_url"] @property def lowerCAmelCase_ ( self : int ): return self.user_data["edge_followed_by"]["count"] @property def lowerCAmelCase_ ( self : Tuple ): return self.user_data["edge_follow"]["count"] @property def lowerCAmelCase_ ( self : List[str] ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowerCAmelCase_ ( self : int ): return self.user_data["profile_pic_url_hd"] @property def lowerCAmelCase_ ( self : str ): return self.user_data["is_verified"] @property def lowerCAmelCase_ ( self : int ): return self.user_data["is_private"] def __UpperCAmelCase ( lowercase = "github" ): """simple docstring""" import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions _UpperCAmelCase = InstagramUser(lowercase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data ,lowercase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
277
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __snake_case = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __snake_case = TaTokenizerFast __snake_case = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __snake_case = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
400
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
400
1
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase_ ( unittest.TestCase ): @property def UpperCamelCase_ ( self : Any ): torch.manual_seed(0 ) _UpperCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = self.dummy_uncond_unet _UpperCamelCase = PNDMScheduler() _UpperCamelCase = PNDMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pndm.to(__SCREAMING_SNAKE_CASE ) pndm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pndm(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=20 , output_type='''numpy''' ).images _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pndm(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=20 , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0] _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''google/ddpm-cifar10-32''' _UpperCamelCase = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) _UpperCamelCase = PNDMScheduler() _UpperCamelCase = PNDMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pndm.to(__SCREAMING_SNAKE_CASE ) pndm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pndm(generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
10
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase__ ( self : int ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.dummy_uncond_unet __SCREAMING_SNAKE_CASE = KarrasVeScheduler() __SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type="""numpy""" ).images __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type="""numpy""" , return_dict=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """google/ncsnpp-celebahq-256""" __SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = KarrasVeScheduler() __SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type="""numpy""" ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __SCREAMING_SNAKE_CASE = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
627
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
706
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _lowerCAmelCase( UpperCAmelCase_ : List[Any] ) -> List[str]: lowerCAmelCase__ = SwinConfig(image_size=192 ) if "base" in model_name: lowerCAmelCase__ = 6 lowerCAmelCase__ = 128 lowerCAmelCase__ = (2, 2, 18, 2) lowerCAmelCase__ = (4, 8, 16, 32) elif "large" in model_name: lowerCAmelCase__ = 12 lowerCAmelCase__ = 192 lowerCAmelCase__ = (2, 2, 18, 2) lowerCAmelCase__ = (6, 12, 24, 48) else: raise ValueError("""Model not supported, only supports base and large variants""" ) lowerCAmelCase__ = window_size lowerCAmelCase__ = embed_dim lowerCAmelCase__ = depths lowerCAmelCase__ = num_heads return config def _lowerCAmelCase( UpperCAmelCase_ : str ) -> List[str]: if "encoder.mask_token" in name: lowerCAmelCase__ = name.replace("""encoder.mask_token""" , """embeddings.mask_token""" ) if "encoder.patch_embed.proj" in name: lowerCAmelCase__ = name.replace("""encoder.patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "encoder.patch_embed.norm" in name: lowerCAmelCase__ = name.replace("""encoder.patch_embed.norm""" , """embeddings.norm""" ) if "attn.proj" in name: lowerCAmelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCAmelCase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCAmelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCAmelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowerCAmelCase__ = """layernorm.weight""" if name == "encoder.norm.bias": lowerCAmelCase__ = """layernorm.bias""" if "decoder" in name: pass else: lowerCAmelCase__ = """swin.""" + name return name def _lowerCAmelCase( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ) -> Union[str, Any]: for key in orig_state_dict.copy().keys(): lowerCAmelCase__ = orig_state_dict.pop(UpperCAmelCase_ ) if "attn_mask" in key: pass elif "qkv" in key: lowerCAmelCase__ = key.split(""".""" ) lowerCAmelCase__ = int(key_split[2] ) lowerCAmelCase__ = int(key_split[4] ) lowerCAmelCase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[ dim : dim * 2, : ] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[ :dim ] lowerCAmelCase__ = val[ dim : dim * 2 ] lowerCAmelCase__ = val[ -dim: ] else: lowerCAmelCase__ = val return orig_state_dict def _lowerCAmelCase( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] ) -> Tuple: lowerCAmelCase__ = torch.load(UpperCAmelCase_ , map_location="""cpu""" )["""model"""] lowerCAmelCase__ = get_swin_config(UpperCAmelCase_ ) lowerCAmelCase__ = SwinForMaskedImageModeling(UpperCAmelCase_ ) model.eval() lowerCAmelCase__ = convert_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) lowerCAmelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase__ = ViTImageProcessor(size={"""height""": 192, """width""": 192} ) lowerCAmelCase__ = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) lowerCAmelCase__ = image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ) with torch.no_grad(): lowerCAmelCase__ = model(**UpperCAmelCase_ ).logits print(outputs.keys() ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _UpperCamelCase = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
211
0
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
278
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging snake_case__ : int = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = CLIPConfig _a = ["CLIPEncoderLayer"] def __init__( self : Tuple , __a : CLIPConfig ) ->Union[str, Any]: super().__init__(__a ) lowerCamelCase_ : List[Any] = CLIPVisionModelWithProjection(config.vision_config ) lowerCamelCase_ : int = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCamelCase_ : int = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def _lowerCAmelCase ( self : Dict , __a : List[Any] , __a : Tuple , __a : int=0.5 , __a : Optional[Any]=0.5 ) ->Union[str, Any]: lowerCamelCase_ : Dict = self.vision_model(__a )[0] lowerCamelCase_ : str = self.p_head(__a ) lowerCamelCase_ : Union[str, Any] = nsfw_detected.flatten() lowerCamelCase_ : Tuple = nsfw_detected > p_threshold lowerCamelCase_ : Dict = nsfw_detected.tolist() if any(__a ): logger.warning( """Potential NSFW content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, nsfw_detected_ in enumerate(__a ): if nsfw_detected_: lowerCamelCase_ : int = np.zeros(images[idx].shape ) lowerCamelCase_ : Union[str, Any] = self.w_head(__a ) lowerCamelCase_ : List[str] = watermark_detected.flatten() lowerCamelCase_ : Dict = watermark_detected > w_threshold lowerCamelCase_ : Optional[int] = watermark_detected.tolist() if any(__a ): logger.warning( """Potential watermarked content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, watermark_detected_ in enumerate(__a ): if watermark_detected_: lowerCamelCase_ : Tuple = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
278
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a= { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a= ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a= [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys a= _LazyModule(__name__, globals()['''__file__'''], _import_structure)
287
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a= {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a= ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a= ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys a= _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
287
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Dict = logging.get_logger(__name__) UpperCamelCase : int = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class A__ ( A__ ): """simple docstring""" _lowercase = 'gptsan-japanese' _lowercase = [ 'past_key_values', ] _lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : str , lowerCamelCase__ : Tuple=36_000 , lowerCamelCase__ : Optional[int]=1_280 , lowerCamelCase__ : Any=1_024 , lowerCamelCase__ : Dict=8_192 , lowerCamelCase__ : Any=4_096 , lowerCamelCase__ : Optional[int]=128 , lowerCamelCase__ : Optional[int]=10 , lowerCamelCase__ : List[str]=0 , lowerCamelCase__ : int=16 , lowerCamelCase__ : Optional[Any]=16 , lowerCamelCase__ : List[Any]=128 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : int=1E-5 , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=0.0 , lowerCamelCase__ : Any="float32" , lowerCamelCase__ : str=False , lowerCamelCase__ : Any=False , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : str=0.002 , lowerCamelCase__ : Dict=False , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Union[str, Any]=35_998 , lowerCamelCase__ : List[str]=35_995 , lowerCamelCase__ : int=35_999 , **lowerCamelCase__ : int , ): a__ : Optional[Any] = vocab_size a__ : Tuple = max_position_embeddings a__ : str = d_model a__ : Tuple = d_ff a__ : Tuple = d_ext a__ : List[Any] = d_spout a__ : str = num_switch_layers a__ : List[Any] = num_ext_layers a__ : List[Any] = num_switch_layers + num_ext_layers a__ : Dict = num_heads a__ : List[str] = num_experts a__ : Optional[Any] = expert_capacity a__ : str = dropout_rate a__ : int = layer_norm_epsilon a__ : Any = router_bias a__ : Dict = router_jitter_noise a__ : Any = router_dtype a__ : Optional[Any] = router_ignore_padding_tokens a__ : Optional[Any] = output_hidden_states a__ : List[Any] = output_attentions a__ : Any = initializer_factor a__ : List[Any] = output_router_logits a__ : Dict = use_cache super().__init__( separator_token_id=lowerCamelCase__ , pad_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
37
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' with open(lowercase__ ) as metadata_file: a_ = json.load(lowercase__ ) a_ = LukeConfig(use_entity_aware_attention=lowercase__ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path a_ = torch.load(lowercase__ ,map_location="cpu" )["module"] # Load the entity vocab file a_ = load_original_entity_vocab(lowercase__ ) # add an entry for [MASK2] a_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 a_ = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks a_ = AddedToken("<ent>" ,lstrip=lowercase__ ,rstrip=lowercase__ ) a_ = AddedToken("<ent2>" ,lstrip=lowercase__ ,rstrip=lowercase__ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase__ ) with open(os.path.join(lowercase__ ,"tokenizer_config.json" ) ,"r" ) as f: a_ = json.load(lowercase__ ) a_ = "MLukeTokenizer" with open(os.path.join(lowercase__ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) with open(os.path.join(lowercase__ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) a_ = MLukeTokenizer.from_pretrained(lowercase__ ) # Initialize the embeddings of the special tokens a_ = tokenizer.convert_tokens_to_ids(["@"] )[0] a_ = tokenizer.convert_tokens_to_ids(["#"] )[0] a_ = state_dict["embeddings.word_embeddings.weight"] a_ = word_emb[ent_init_index].unsqueeze(0 ) a_ = word_emb[enta_init_index].unsqueeze(0 ) a_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: a_ = state_dict[bias_name] a_ = decoder_bias[ent_init_index].unsqueeze(0 ) a_ = decoder_bias[enta_init_index].unsqueeze(0 ) a_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: a_ = F"""encoder.layer.{layer_index}.attention.self.""" a_ = state_dict[prefix + matrix_name] a_ = state_dict[prefix + matrix_name] a_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks a_ = state_dict["entity_embeddings.entity_embeddings.weight"] a_ = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' a_ = state_dict["entity_predictions.bias"] a_ = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) a_ = LukeForMaskedLM(config=lowercase__ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) a_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): a_ = state_dict[key] else: a_ = state_dict[key] a_ , a_ = model.load_state_dict(lowercase__ ,strict=lowercase__ ) if set(lowercase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs a_ = MLukeTokenizer.from_pretrained(lowercase__ ,task="entity_classification" ) a_ = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." a_ = (0, 9) a_ = tokenizer(lowercase__ ,entity_spans=[span] ,return_tensors="pt" ) a_ = model(**lowercase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base a_ = torch.Size((1, 33, 768) ) a_ = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase__ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base a_ = torch.Size((1, 1, 768) ) a_ = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase__ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction a_ = MLukeTokenizer.from_pretrained(lowercase__ ) a_ = "Tokyo is the capital of <mask>." a_ = (24, 30) a_ = tokenizer(lowercase__ ,entity_spans=[span] ,return_tensors="pt" ) a_ = model(**lowercase__ ) a_ = encoding["input_ids"][0].tolist() a_ = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) a_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase__ ) a_ = outputs.entity_logits[0][0].argmax().item() a_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase__ ) ) model.save_pretrained(lowercase__ ) def __UpperCAmelCase (lowercase__ ) -> Any: '''simple docstring''' a_ = ["[MASK]", "[PAD]", "[UNK]"] a_ = [json.loads(lowercase__ ) for line in open(lowercase__ )] a_ = {} for entry in data: a_ = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: a_ = entity_id break a_ = F"""{language}:{entity_name}""" a_ = entity_id return new_mapping if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) a_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
685
0
print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
510
import string from math import logaa def _UpperCAmelCase ( A , A ): '''simple docstring''' UpperCAmelCase__ =document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) UpperCAmelCase__ =document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _UpperCAmelCase ( A , A ): '''simple docstring''' UpperCAmelCase__ =corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCAmelCase__ =corpus_without_punctuation.split("\n" ) UpperCAmelCase__ =term.lower() return (len([doc for doc in docs if term in doc] ), len(A )) def _UpperCAmelCase ( A , A , A=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def _UpperCAmelCase ( A , A ): '''simple docstring''' return round(tf * idf , 3 )
510
1
lowerCamelCase_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def __magic_name__ ( __a : bytes ): '''simple docstring''' if not isinstance(__a , __a ): UpperCamelCase__ = f"a bytes-like object is required, not \'{data.__class__.__name__}\'" raise TypeError(__a ) UpperCamelCase__ = """""".join(bin(__a )[2:].zfill(8 ) for byte in data ) UpperCamelCase__ = len(__a ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCamelCase__ = b"""=""" * ((6 - len(__a ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(__a ) % 6) else: UpperCamelCase__ = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(__a ) , 6 ) ).encode() + padding ) def __magic_name__ ( __a : str ): '''simple docstring''' if not isinstance(__a , __a ) and not isinstance(__a , __a ): UpperCamelCase__ = ( """argument should be a bytes-like object or ASCII string, """ f"not \'{encoded_data.__class__.__name__}\'" ) raise TypeError(__a ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(__a , __a ): try: UpperCamelCase__ = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) UpperCamelCase__ = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(__a ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCamelCase__ = encoded_data[:-padding] UpperCamelCase__ = """""".join( bin(B64_CHARSET.index(__a ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCamelCase__ = """""".join( bin(B64_CHARSET.index(__a ) )[2:].zfill(6 ) for char in encoded_data ) UpperCamelCase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(__a ) , 8 ) ] return bytes(__a ) if __name__ == "__main__": import doctest doctest.testmod()
513
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : int | str ): UpperCAmelCase = str(SCREAMING_SNAKE_CASE ) return n == n[::-1] def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : int = 100_0000 ): UpperCAmelCase = 0 for i in range(1 , SCREAMING_SNAKE_CASE ): if is_palindrome(SCREAMING_SNAKE_CASE ) and is_palindrome(bin(SCREAMING_SNAKE_CASE ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
447
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
717
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowercase : Any = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') lowercase : Tuple = parser.parse_args() lowercase : str = 'cpu' lowercase : List[Any] = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' lowercase : Any = 'path-to-your-trained-model' lowercase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowercase : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowercase : Dict = pipe.to(device) # to channels last lowercase : int = pipe.unet.to(memory_format=torch.channels_last) lowercase : int = pipe.vae.to(memory_format=torch.channels_last) lowercase : Dict = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowercase : List[str] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowercase : Any = torch.randn(2, 4, 64, 64) lowercase : Union[str, Any] = torch.rand(1) * 999 lowercase : List[Any] = torch.randn(2, 77, 768) lowercase : List[Any] = (sample, timestep, encoder_hidden_status) try: lowercase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowercase : str = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowercase : Dict = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowercase : str = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowercase : Dict = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowercase : Any = 666 lowercase : int = torch.Generator(device).manual_seed(seed) lowercase : List[str] = {'generator': generator} if args.steps is not None: lowercase : List[str] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowercase : Dict = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
94
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = ["image_processor", "tokenizer"] UpperCAmelCase = "AutoImageProcessor" UpperCAmelCase = "AutoTokenizer" def __init__( self : Union[str, Any] , _A : Dict , _A : Union[str, Any] ): super().__init__(_A , _A ) _UpperCamelCase = self.image_processor def __call__( self : int , _A : Tuple=None , _A : Tuple=None , _A : List[Any]=None , **_A : Dict ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _UpperCamelCase = self.tokenizer(_A , return_tensors=_A , **_A ) if images is not None: _UpperCamelCase = self.image_processor(_A , return_tensors=_A , **_A ) if text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_A ) , tensor_type=_A ) def UpperCamelCase_ ( self : Any , *_A : List[Any] , **_A : str ): return self.tokenizer.batch_decode(*_A , **_A ) def UpperCamelCase_ ( self : Any , *_A : int , **_A : Dict ): return self.tokenizer.decode(*_A , **_A ) @property def UpperCamelCase_ ( self : Union[str, Any] ): return ["input_ids", "attention_mask", "pixel_values"]
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : Optional[int] = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
0
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCamelCase ={1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class A ( nn.Module ): """simple docstring""" def __init__( self , __lowerCAmelCase ): super().__init__() UpperCamelCase_ : List[str] = torchvision.models.resnetaaa(pretrained=__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = list(model.children() )[:-2] UpperCamelCase_ : Union[str, Any] = nn.Sequential(*__lowerCAmelCase ) UpperCamelCase_ : Optional[Any] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _UpperCAmelCase ( self , __lowerCAmelCase ): # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 UpperCamelCase_ : int = self.pool(self.model(__lowerCAmelCase ) ) UpperCamelCase_ : Optional[int] = torch.flatten(__lowerCAmelCase , start_dim=2 ) UpperCamelCase_ : Optional[Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : Dict = [json.loads(__lowerCAmelCase ) for l in open(__lowerCAmelCase )] UpperCamelCase_ : Union[str, Any] = os.path.dirname(__lowerCAmelCase ) UpperCamelCase_ : Any = tokenizer UpperCamelCase_ : int = labels UpperCamelCase_ : List[str] = len(__lowerCAmelCase ) UpperCamelCase_ : Dict = max_seq_length UpperCamelCase_ : int = transforms def __len__( self ): return len(self.data ) def __getitem__( self , __lowerCAmelCase ): UpperCamelCase_ : Union[str, Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=__lowerCAmelCase ) ) UpperCamelCase_ : Tuple = sentence[0], sentence[1:-1], sentence[-1] UpperCamelCase_ : List[Any] = sentence[: self.max_seq_length] UpperCamelCase_ : int = torch.zeros(self.n_classes ) UpperCamelCase_ : Optional[int] = 1 UpperCamelCase_ : str = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) UpperCamelCase_ : List[str] = self.transforms(__lowerCAmelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _UpperCAmelCase ( self ): UpperCamelCase_ : Tuple = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def snake_case ( a_ : Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ : List[Any] = [len(row["""sentence"""] ) for row in batch] UpperCamelCase_ : Union[str, Any] = len(a_ ), max(a_ ) UpperCamelCase_ : Any = torch.zeros(a_ , a_ , dtype=torch.long ) UpperCamelCase_ : Optional[int] = torch.zeros(a_ , a_ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(a_ , a_ ) ): UpperCamelCase_ : Optional[int] = input_row["""sentence"""] UpperCamelCase_ : str = 1 UpperCamelCase_ : Dict = torch.stack([row["""image"""] for row in batch] ) UpperCamelCase_ : Dict = torch.stack([row["""label"""] for row in batch] ) UpperCamelCase_ : List[Any] = torch.stack([row["""image_start_token"""] for row in batch] ) UpperCamelCase_ : int = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def snake_case ( ) -> Tuple: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def snake_case ( ) -> Any: """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
713
'''simple docstring''' from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand UpperCamelCase =logging.get_logger(__name__) # pylint: disable=invalid-name def snake_case ( a_ : str ) -> int: """simple docstring""" if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(a_ ): return ext raise Exception( f"Unable to determine file format from file extension {path}. " f"Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}" ) def snake_case ( a_ : List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Any = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) UpperCamelCase_ : List[Any] = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format UpperCamelCase_ : Tuple = PipelineDataFormat.from_str( format=a_ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(a_ , a_ ) class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : Union[str, Any] = nlp UpperCamelCase_ : Optional[Any] = reader @staticmethod def _UpperCAmelCase ( __lowerCAmelCase ): UpperCamelCase_ : List[str] = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=__lowerCAmelCase , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=__lowerCAmelCase , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=__lowerCAmelCase , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=__lowerCAmelCase , help="""Name or path to the model's config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=__lowerCAmelCase , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=__lowerCAmelCase , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=__lowerCAmelCase , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=__lowerCAmelCase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=__lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ , UpperCamelCase_ : str = self._nlp, [] for entry in self._reader: UpperCamelCase_ : List[Any] = nlp(**__lowerCAmelCase ) if self._reader.is_multi_columns else nlp(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): outputs.append(__lowerCAmelCase ) else: outputs += output # Saving data if self._nlp.binary_output: UpperCamelCase_ : int = self._reader.save_binary(__lowerCAmelCase ) logger.warning(F"Current pipeline requires output to be in binary format, saving at {binary_path}" ) else: self._reader.save(__lowerCAmelCase )
543
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = '''data2vec-vision''' def __init__( self : List[str] ,__A : Optional[Any]=768 ,__A : List[str]=12 ,__A : Tuple=12 ,__A : List[str]=3072 ,__A : Dict="gelu" ,__A : Any=0.0 ,__A : List[str]=0.0 ,__A : str=0.02 ,__A : Union[str, Any]=1e-12 ,__A : List[Any]=224 ,__A : List[str]=16 ,__A : Any=3 ,__A : Dict=False ,__A : str=False ,__A : Optional[Any]=False ,__A : Any=False ,__A : List[Any]=0.1 ,__A : int=0.1 ,__A : Optional[int]=True ,__A : Optional[Any]=[3, 5, 7, 11] ,__A : List[str]=[1, 2, 3, 6] ,__A : Optional[Any]=True ,__A : Tuple=0.4 ,__A : Tuple=256 ,__A : List[str]=1 ,__A : List[Any]=False ,__A : Tuple=255 ,**__A : Tuple ,) -> Any: super().__init__(**__A ) _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = intermediate_size _lowercase = hidden_act _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = initializer_range _lowercase = layer_norm_eps _lowercase = image_size _lowercase = patch_size _lowercase = num_channels _lowercase = use_mask_token _lowercase = use_absolute_position_embeddings _lowercase = use_relative_position_bias _lowercase = use_shared_relative_position_bias _lowercase = layer_scale_init_value _lowercase = drop_path_rate _lowercase = use_mean_pooling # decode head attributes (semantic segmentation) _lowercase = out_indices _lowercase = pool_scales # auxiliary head attributes (semantic segmentation) _lowercase = use_auxiliary_head _lowercase = auxiliary_loss_weight _lowercase = auxiliary_channels _lowercase = auxiliary_num_convs _lowercase = auxiliary_concat_input _lowercase = semantic_loss_ignore_index class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = version.parse('''1.11''' ) @property def __UpperCAmelCase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCAmelCase ( self : Tuple ) -> float: return 1e-4
67
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class A_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple ,__A : Dict ,__A : List[Any]=7 ,__A : Dict=3 ,__A : Tuple=30 ,__A : Dict=400 ,__A : Any=True ,__A : List[Any]=None ,__A : Any=True ,__A : List[str]=[0.5, 0.5, 0.5] ,__A : Union[str, Any]=[0.5, 0.5, 0.5] ,__A : int=True ,__A : List[str]=1 / 255 ,__A : Union[str, Any]=True ,) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowercase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _lowercase = parent _lowercase = batch_size _lowercase = num_channels _lowercase = min_resolution _lowercase = max_resolution _lowercase = do_resize _lowercase = size _lowercase = do_normalize _lowercase = image_mean _lowercase = image_std _lowercase = do_rescale _lowercase = rescale_factor _lowercase = do_pad def __UpperCAmelCase ( self : str ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __UpperCAmelCase ( self : Tuple ,__A : Union[str, Any] ,__A : List[str]=False ) -> Union[str, Any]: if not batched: _lowercase = image_inputs[0] if isinstance(__A ,Image.Image ): _lowercase , _lowercase = image.size else: _lowercase , _lowercase = image.shape[1], image.shape[2] if w < h: _lowercase = int(self.size['shortest_edge'] * h / w ) _lowercase = self.size['shortest_edge'] elif w > h: _lowercase = self.size['shortest_edge'] _lowercase = int(self.size['shortest_edge'] * w / h ) else: _lowercase = self.size['shortest_edge'] _lowercase = self.size['shortest_edge'] else: _lowercase = [] for image in image_inputs: _lowercase , _lowercase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowercase = max(__A ,key=lambda __A : item[0] )[0] _lowercase = max(__A ,key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A_ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = DetaImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self : List[Any] ) -> Tuple: _lowercase = DetaImageProcessingTester(self ) @property def __UpperCAmelCase ( self : List[Any] ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : Tuple ) -> List[Any]: _lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A ,'image_mean' ) ) self.assertTrue(hasattr(__A ,'image_std' ) ) self.assertTrue(hasattr(__A ,'do_normalize' ) ) self.assertTrue(hasattr(__A ,'do_resize' ) ) self.assertTrue(hasattr(__A ,'do_rescale' ) ) self.assertTrue(hasattr(__A ,'do_pad' ) ) self.assertTrue(hasattr(__A ,'size' ) ) def __UpperCAmelCase ( self : str ) -> List[str]: _lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad ,__A ) def __UpperCAmelCase ( self : List[Any] ) -> Any: pass def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: # Initialize image_processing _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A ,Image.Image ) # Test not batched input _lowercase = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A ,batched=__A ) _lowercase = image_processing(__A ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: # Initialize image_processing _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__A ,numpify=__A ) for image in image_inputs: self.assertIsInstance(__A ,np.ndarray ) # Test not batched input _lowercase = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched _lowercase = image_processing(__A ,return_tensors='pt' ).pixel_values _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A ,batched=__A ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def __UpperCAmelCase ( self : Optional[Any] ) -> Any: # Initialize image_processing _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__A ,torchify=__A ) for image in image_inputs: self.assertIsInstance(__A ,torch.Tensor ) # Test not batched input _lowercase = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched _lowercase = image_processing(__A ,return_tensors='pt' ).pixel_values _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A ,batched=__A ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def __UpperCAmelCase ( self : List[str] ) -> List[str]: # prepare image and target _lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' ,'r' ) as f: _lowercase = json.loads(f.read() ) _lowercase = {'image_id': 3_9769, 'annotations': target} # encode them _lowercase = DetaImageProcessor() _lowercase = image_processing(images=__A ,annotations=__A ,return_tensors='pt' ) # verify pixel values _lowercase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape ,__A ) _lowercase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,__A ,atol=1e-4 ) ) # verify area _lowercase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,__A ) ) # verify boxes _lowercase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,__A ) _lowercase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,__A ,atol=1e-3 ) ) # verify image_id _lowercase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,__A ) ) # verify is_crowd _lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,__A ) ) # verify class_labels _lowercase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,__A ) ) # verify orig_size _lowercase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,__A ) ) # verify size _lowercase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,__A ) ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Dict: # prepare image, target and masks_path _lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' ,'r' ) as f: _lowercase = json.loads(f.read() ) _lowercase = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} _lowercase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _lowercase = DetaImageProcessor(format='coco_panoptic' ) _lowercase = image_processing(images=__A ,annotations=__A ,masks_path=__A ,return_tensors='pt' ) # verify pixel values _lowercase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape ,__A ) _lowercase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,__A ,atol=1e-4 ) ) # verify area _lowercase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,__A ) ) # verify boxes _lowercase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,__A ) _lowercase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,__A ,atol=1e-3 ) ) # verify image_id _lowercase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,__A ) ) # verify is_crowd _lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,__A ) ) # verify class_labels _lowercase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,__A ) ) # verify masks _lowercase = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() ,__A ) # verify orig_size _lowercase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,__A ) ) # verify size _lowercase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,__A ) )
67
1
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib __A : List[str] = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } __A : int = logging.WARNING def __a ( ): SCREAMING_SNAKE_CASE = os.getenv("DATASETS_VERBOSITY" , _SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"Unknown option DATASETS_VERBOSITY={env_level_str}, " F"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def __a ( ): return __name__.split("." )[0] def __a ( ): return logging.getLogger(_get_library_name() ) def __a ( ): # Apply our default configuration to the library root logger. SCREAMING_SNAKE_CASE = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def __a ( ): SCREAMING_SNAKE_CASE = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def __a ( A__ : Optional[int] = None ): if name is None: SCREAMING_SNAKE_CASE = _get_library_name() return logging.getLogger(_SCREAMING_SNAKE_CASE ) def __a ( ): return _get_library_root_logger().getEffectiveLevel() def __a ( A__ : List[Any] ): _get_library_root_logger().setLevel(_SCREAMING_SNAKE_CASE ) def __a ( ): return set_verbosity(_SCREAMING_SNAKE_CASE ) def __a ( ): return set_verbosity(_SCREAMING_SNAKE_CASE ) def __a ( ): return set_verbosity(_SCREAMING_SNAKE_CASE ) def __a ( ): return set_verbosity(_SCREAMING_SNAKE_CASE ) def __a ( ): SCREAMING_SNAKE_CASE = False def __a ( ): SCREAMING_SNAKE_CASE = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , *__lowerCamelCase : int , **__lowerCamelCase : Optional[Any] ): # pylint: disable=unused-argument SCREAMING_SNAKE_CASE = args[0] if args else None def __iter__( self : Dict ): return iter(self._iterator ) def __getattr__( self : Union[str, Any] , __lowerCamelCase : Any ): def empty_fn(*__lowerCamelCase : Optional[int] , **__lowerCamelCase : Dict ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Optional[Any] ): return self def __exit__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Any ): return __A : Union[str, Any] = True class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self : Optional[int] , *__lowerCamelCase : List[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ): if _tqdm_active and not disable: return tqdm_lib.tqdm(*__lowerCamelCase , **__lowerCamelCase ) else: return EmptyTqdm(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Any , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Optional[int] ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() __A : Dict = _tqdm_cls() def __a ( ): global _tqdm_active return bool(_tqdm_active ) def __a ( ): global _tqdm_active SCREAMING_SNAKE_CASE = True def __a ( ): global _tqdm_active SCREAMING_SNAKE_CASE = False
701
from __future__ import annotations from cmath import sqrt def __a ( A__ : int , A__ : int , A__ : int ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) SCREAMING_SNAKE_CASE = b * b - 4 * a * c SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a) SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __a ( ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
698
0
'''simple docstring''' def __lowerCamelCase ( _UpperCamelCase : int = 100_0000 ): '''simple docstring''' UpperCAmelCase_ = limit + 1 UpperCAmelCase_ = [0] * limit for first_term in range(1 , _UpperCamelCase ): for n in range(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCAmelCase_ = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
390
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
227
0
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def UpperCAmelCase_ ( A ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) _a : Any = precision _a : List[str] = ceil(precision / 1_4 ) _a : Optional[int] = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() _a : Optional[Any] = 1 _a : Optional[int] = 1_3_5_9_1_4_0_9 _a : Union[str, Any] = Decimal(_lowerCamelCase ) for k in range(1 , _lowerCamelCase ): _a : Optional[int] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
704
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = {"vocab_file": "sentencepiece.model"} UpperCAmelCase_ : Tuple = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCAmelCase_ : Dict = { "google/rembert": 256, } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Any = VOCAB_FILES_NAMES __lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_="[CLS]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="[UNK]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="[PAD]" , lowerCamelCase_="[CLS]" , lowerCamelCase_="[MASK]" , **lowerCamelCase_ , ) -> Optional[int]: super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , **lowerCamelCase_ , ) _a : int = do_lower_case _a : List[str] = remove_space _a : Optional[int] = keep_accents _a : Optional[int] = vocab_file _a : int = spm.SentencePieceProcessor() self.sp_model.Load(lowerCamelCase_ ) @property def __UpperCamelCase ( self ) -> List[str]: return len(self.sp_model ) def __UpperCamelCase ( self ) -> Optional[Any]: _a : Any = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: _a : Optional[int] = self.__dict__.copy() _a : Any = None return state def __setstate__( self , lowerCamelCase_ ) -> Union[str, Any]: _a : str = d _a : str = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_=False ) -> List[Any]: _a : Dict = self.sp_model.EncodeAsPieces(lowerCamelCase_ ) return pieces def __UpperCamelCase ( self , lowerCamelCase_ ) -> Optional[Any]: return self.sp_model.PieceToId(lowerCamelCase_ ) def __UpperCamelCase ( self , lowerCamelCase_ ) -> Dict: return self.sp_model.IdToPiece(lowerCamelCase_ ) def __UpperCamelCase ( self , lowerCamelCase_ ) -> Dict: _a : int = self.sp_model.decode_pieces(lowerCamelCase_ ) return out_string def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: _a : Dict = [self.sep_token_id] _a : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1] def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: _a : Tuple = [self.sep_token_id] _a : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCamelCase_ ) ) return _a : Dict = os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) return (out_vocab_file,)
424
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp __lowerCAmelCase = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } __lowerCAmelCase = { """RUCAIBox/mvp""": 1_0_2_4, } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[int] = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : str = ['''input_ids''', '''attention_mask'''] __UpperCAmelCase : Optional[Any] = MvpTokenizer def __init__( self : Dict ,_a : Optional[int]=None ,_a : Dict=None ,_a : Optional[int]=None ,_a : Dict="replace" ,_a : Union[str, Any]="<s>" ,_a : int="</s>" ,_a : List[Any]="</s>" ,_a : List[Any]="<s>" ,_a : List[str]="<unk>" ,_a : Tuple="<pad>" ,_a : Tuple="<mask>" ,_a : int=False ,_a : Any=True ,**_a : int ,): '''simple docstring''' super().__init__( _a ,_a ,tokenizer_file=_a ,errors=_a ,bos_token=_a ,eos_token=_a ,sep_token=_a ,cls_token=_a ,unk_token=_a ,pad_token=_a ,mask_token=_a ,add_prefix_space=_a ,trim_offsets=_a ,**_a ,) _a : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,_a ) != add_prefix_space: _a : Optional[Any] = getattr(_a ,pre_tok_state.pop('type' ) ) _a : int = add_prefix_space _a : Union[str, Any] = pre_tok_class(**_a ) _a : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a : List[str] = 'post_processor' _a : str = getattr(self.backend_tokenizer ,_a ,_a ) if tokenizer_component_instance: _a : int = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a : Optional[Any] = tuple(state['sep'] ) if "cls" in state: _a : List[Any] = tuple(state['cls'] ) _a : Union[str, Any] = False if state.get('add_prefix_space' ,_a ) != add_prefix_space: _a : Union[str, Any] = add_prefix_space _a : int = True if state.get('trim_offsets' ,_a ) != trim_offsets: _a : Optional[Any] = trim_offsets _a : List[str] = True if changes_to_apply: _a : List[Any] = getattr(_a ,state.pop('type' ) ) _a : str = component_class(**_a ) setattr(self.backend_tokenizer ,_a ,_a ) @property def __lowercase ( self : Any ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __lowercase ( self : Optional[int] ,_a : Dict ): '''simple docstring''' _a : Optional[int] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else value _a : List[Any] = value def __lowercase ( self : str ,*_a : List[str] ,**_a : Tuple ): '''simple docstring''' _a : Any = kwargs.get('is_split_into_words' ,_a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*_a ,**_a ) def __lowercase ( self : str ,*_a : Any ,**_a : Optional[Any] ): '''simple docstring''' _a : List[Any] = kwargs.get('is_split_into_words' ,_a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*_a ,**_a ) def __lowercase ( self : List[Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' _a : Any = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a ) def __lowercase ( self : List[Any] ,_a : int ,_a : List[str]=None ): '''simple docstring''' _a : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowercase ( self : Optional[Any] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : Union[str, Any] = [self.sep_token_id] _a : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
229
'''simple docstring''' import operator as op def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : Dict = [] _a : List[str] = lambda __a , __a : int(x / y ) # noqa: E731 integer division operation _a : List[Any] = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(1_2 ) , 'Stack' , sep=' | ' ) print('-' * (3_0 + len(__a )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__a ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(1_2 ) , ','.join(__a ) , sep=' | ' ) else: _a : str = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(1_2 ) , ','.join(__a ) , sep=' | ' ) _a : str = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(1_2 ) , ','.join(__a ) , sep=' | ' ) stack.append( str(opr[x](int(__a ) , int(__a ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(1_2 ) , ','.join(__a ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": __lowerCAmelCase = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
229
1
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def _snake_case ( lowercase__ ): _lowerCamelCase : List[str] = SwinConfig() _lowerCamelCase : List[Any] = swin_name.split('_' ) _lowerCamelCase : Any = name_split[1] _lowerCamelCase : Tuple = int(name_split[4] ) _lowerCamelCase : int = int(name_split[3][-1] ) if model_size == "tiny": _lowerCamelCase : List[Any] = 96 _lowerCamelCase : Any = (2, 2, 6, 2) _lowerCamelCase : Union[str, Any] = (3, 6, 12, 24) elif model_size == "small": _lowerCamelCase : Union[str, Any] = 96 _lowerCamelCase : List[str] = (2, 2, 18, 2) _lowerCamelCase : int = (3, 6, 12, 24) elif model_size == "base": _lowerCamelCase : List[str] = 128 _lowerCamelCase : Optional[int] = (2, 2, 18, 2) _lowerCamelCase : Optional[int] = (4, 8, 16, 32) else: _lowerCamelCase : Any = 192 _lowerCamelCase : Optional[Any] = (2, 2, 18, 2) _lowerCamelCase : Union[str, Any] = (6, 12, 24, 48) if "in22k" in swin_name: _lowerCamelCase : List[Any] = 21841 else: _lowerCamelCase : Any = 1000 _lowerCamelCase : Dict = 'huggingface/label-files' _lowerCamelCase : Optional[Any] = 'imagenet-1k-id2label.json' _lowerCamelCase : int = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase : Union[str, Any] = {int(lowercase__ ): v for k, v in idalabel.items()} _lowerCamelCase : List[str] = idalabel _lowerCamelCase : Optional[int] = {v: k for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = img_size _lowerCamelCase : List[Any] = num_classes _lowerCamelCase : Optional[Any] = embed_dim _lowerCamelCase : Tuple = depths _lowerCamelCase : Optional[Any] = num_heads _lowerCamelCase : Optional[Any] = window_size return config def _snake_case ( lowercase__ ): if "patch_embed.proj" in name: _lowerCamelCase : Tuple = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowerCamelCase : Union[str, Any] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: _lowerCamelCase : Union[str, Any] = 'encoder.' + name if "attn.proj" in name: _lowerCamelCase : Any = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _lowerCamelCase : Any = name.replace('attn' , 'attention.self' ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowerCamelCase : Optional[int] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _lowerCamelCase : List[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCamelCase : Optional[int] = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": _lowerCamelCase : Any = 'layernorm.weight' if name == "norm.bias": _lowerCamelCase : int = 'layernorm.bias' if "head" in name: _lowerCamelCase : Optional[Any] = name.replace('head' , 'classifier' ) else: _lowerCamelCase : List[Any] = 'swin.' + name return name def _snake_case ( lowercase__ , lowercase__ ): for key in orig_state_dict.copy().keys(): _lowerCamelCase : int = orig_state_dict.pop(lowercase__ ) if "mask" in key: continue elif "qkv" in key: _lowerCamelCase : int = key.split('.' ) _lowerCamelCase : Optional[Any] = int(key_split[1] ) _lowerCamelCase : Dict = int(key_split[3] ) _lowerCamelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase : Dict = val[:dim, :] _lowerCamelCase : List[str] = val[ dim : dim * 2, : ] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : List[Any] = val[ :dim ] _lowerCamelCase : int = val[ dim : dim * 2 ] _lowerCamelCase : List[str] = val[ -dim: ] else: _lowerCamelCase : List[Any] = val return orig_state_dict def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Union[str, Any] = timm.create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() _lowerCamelCase : Optional[Any] = get_swin_config(lowercase__ ) _lowerCamelCase : Any = SwinForImageClassification(lowercase__ ) model.eval() _lowerCamelCase : Tuple = convert_state_dict(timm_model.state_dict() , lowercase__ ) model.load_state_dict(lowercase__ ) _lowerCamelCase : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase : int = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) _lowerCamelCase : Any = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) _lowerCamelCase : Dict = image_processor(images=lowercase__ , return_tensors='pt' ) _lowerCamelCase : List[str] = timm_model(inputs['pixel_values'] ) _lowerCamelCase : int = model(**lowercase__ ).logits assert torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) print(f'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase__ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
492
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """deit""" def __init__( self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1E-12 , lowercase=224 , lowercase=16 , lowercase=3 , lowercase=True , lowercase=16 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : int = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : str = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = image_size _lowerCamelCase : Optional[int] = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Dict = qkv_bias _lowerCamelCase : Dict = encoder_stride class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = version.parse("""1.11""" ) @property def A_ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A_ ( self ): return 1E-4
492
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase : str = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
202
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors UpperCAmelCase__ : int = logging.getLogger(__name__) class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Tuple = '''sequence-classification''' def __init__(self , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" if type(SCREAMING_SNAKE_CASE__ ) == dict: SCREAMING_SNAKE_CASE__ : List[str] = Namespace(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = glue_output_modes[hparams.task] SCREAMING_SNAKE_CASE__ : Optional[Any] = glue_tasks_num_labels[hparams.task] super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.mode ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" return self.model(**SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None SCREAMING_SNAKE_CASE__ : Any = self(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = outputs[0] SCREAMING_SNAKE_CASE__ : List[str] = self.trainer.lr_schedulers[0]["""scheduler"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.hparams SCREAMING_SNAKE_CASE__ : Optional[int] = processors[args.task]() SCREAMING_SNAKE_CASE__ : Optional[int] = processor.get_labels() for mode in ["train", "dev"]: SCREAMING_SNAKE_CASE__ : List[str] = self._feature_file(SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , SCREAMING_SNAKE_CASE__ ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) SCREAMING_SNAKE_CASE__ : str = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = convert_examples_to_features( SCREAMING_SNAKE_CASE__ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , SCREAMING_SNAKE_CASE__ ) torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False ) -> DataLoader: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = """dev""" if mode == """test""" else mode SCREAMING_SNAKE_CASE__ : Optional[int] = self._feature_file(SCREAMING_SNAKE_CASE__ ) logger.info("""Loading features from cached file %s""" , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = torch.load(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": SCREAMING_SNAKE_CASE__ : str = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , batch_size=SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None SCREAMING_SNAKE_CASE__ : List[Any] = self(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = outputs[:2] SCREAMING_SNAKE_CASE__ : int = logits.detach().cpu().numpy() SCREAMING_SNAKE_CASE__ : List[str] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() SCREAMING_SNAKE_CASE__ : Any = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": SCREAMING_SNAKE_CASE__ : int = np.argmax(SCREAMING_SNAKE_CASE__ , axis=1 ) elif self.hparams.glue_output_mode == "regression": SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.squeeze(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) SCREAMING_SNAKE_CASE__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] SCREAMING_SNAKE_CASE__ : List[str] = [[] for _ in range(out_label_ids.shape[0] )] SCREAMING_SNAKE_CASE__ : Tuple = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} SCREAMING_SNAKE_CASE__ : int = dict(results.items() ) SCREAMING_SNAKE_CASE__ : str = results return ret, preds_list, out_label_list def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> dict: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self._eval_end(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> dict: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self._eval_end(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __magic_name__ (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" BaseTransformer.add_model_specific_args(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) parser.add_argument( """--max_seq_length""" , default=1_28 , type=SCREAMING_SNAKE_CASE__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=SCREAMING_SNAKE_CASE__ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Tuple = argparse.ArgumentParser() add_generic_args(_snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE__ : Optional[Any] = GLUETransformer.add_model_specific_args(_snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE__ : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( """./results""" ,f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' ,) os.makedirs(args.output_dir ) SCREAMING_SNAKE_CASE__ : Dict = GLUETransformer(_snake_case ) SCREAMING_SNAKE_CASE__ : int = generic_train(_snake_case ,_snake_case ) # Optionally, predict on dev set and write to output_dir if args.do_predict: SCREAMING_SNAKE_CASE__ : Any = sorted(glob.glob(os.path.join(args.output_dir ,"""checkpoint-epoch=*.ckpt""" ) ,recursive=_snake_case ) ) SCREAMING_SNAKE_CASE__ : Dict = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_snake_case ) if __name__ == "__main__": main()
223
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __snake_case (_a ): lowerCAmelCase__ = (PNDMScheduler,) lowerCAmelCase__ = (("num_inference_steps", 5_0),) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' _lowerCAmelCase : Optional[Any] = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_UpperCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : Union[str, Any]=0 , **_UpperCAmelCase : str ) -> Any: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : str = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : List[str] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config(**_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _lowerCAmelCase : str = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _lowerCAmelCase : Any = dummy_past_residuals[:] _lowerCAmelCase : int = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : List[str] = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowerCAmelCase : Tuple = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : Optional[int] = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : Any=0 , **_UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' _lowerCAmelCase : int = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) _lowerCAmelCase : List[Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Optional[Any] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _lowerCAmelCase : List[Any] = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : Any = dummy_past_residuals[:] _lowerCAmelCase : Tuple = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : str = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowerCAmelCase : Any = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : Any = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Any , **_UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Tuple = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(**_UpperCAmelCase ) _lowerCAmelCase : List[str] = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase : List[Any] = 10 _lowerCAmelCase : Any = self.dummy_model() _lowerCAmelCase : Tuple = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): _lowerCAmelCase : List[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Tuple = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _lowerCAmelCase : List[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Dict = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: '''simple docstring''' _lowerCAmelCase : List[str] = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Tuple = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase : str = self.dummy_sample _lowerCAmelCase : str = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase , """set_timesteps""" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , """set_timesteps""" ): _lowerCAmelCase : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _lowerCAmelCase : List[str] = dummy_past_residuals[:] _lowerCAmelCase : Optional[int] = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _lowerCAmelCase : Tuple = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase : Optional[Any] = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_UpperCAmelCase ) _lowerCAmelCase : Dict = self.scheduler_classes[0] _lowerCAmelCase : Any = self.get_scheduler_config(steps_offset=1 ) _lowerCAmelCase : Any = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 27 for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Any = 0.1 * sample _lowerCAmelCase : List[str] = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _lowerCAmelCase : List[Any] = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase : Tuple = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**_UpperCAmelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : str = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase : List[Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Optional[int] = self.full_loop(prediction_type="""v_prediction""" ) _lowerCAmelCase : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : str = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) _lowerCAmelCase : Any = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase : Optional[Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : int = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) _lowerCAmelCase : List[Any] = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
196
import cva import numpy as np class __snake_case : def __init__( self : List[str] , _UpperCAmelCase : float , _UpperCAmelCase : int ) -> int: '''simple docstring''' if k in (0.04, 0.06): _lowerCAmelCase : str = k _lowerCAmelCase : Optional[Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : int ) -> str: '''simple docstring''' return str(self.k ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCAmelCase : str ) -> tuple[cva.Mat, list[list[int]]]: '''simple docstring''' _lowerCAmelCase : Tuple = cva.imread(_UpperCAmelCase , 0 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = img.shape _lowerCAmelCase : list[list[int]] = [] _lowerCAmelCase : int = img.copy() _lowerCAmelCase : str = cva.cvtColor(_UpperCAmelCase , cva.COLOR_GRAY2RGB ) _lowerCAmelCase , _lowerCAmelCase : int = np.gradient(_UpperCAmelCase ) _lowerCAmelCase : Any = dx**2 _lowerCAmelCase : Optional[int] = dy**2 _lowerCAmelCase : Optional[Any] = dx * dy _lowerCAmelCase : Dict = 0.04 _lowerCAmelCase : Tuple = self.window_size // 2 for y in range(_UpperCAmelCase , h - offset ): for x in range(_UpperCAmelCase , w - offset ): _lowerCAmelCase : Optional[int] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowerCAmelCase : int = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowerCAmelCase : Any = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowerCAmelCase : Dict = (wxx * wyy) - (wxy**2) _lowerCAmelCase : Union[str, Any] = wxx + wyy _lowerCAmelCase : int = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": _lowerCamelCase : int = HarrisCorner(0.0_4, 3) _lowerCamelCase , _lowerCamelCase : Any = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
196
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ = { """configuration_chinese_clip""": [ """CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ChineseCLIPConfig""", """ChineseCLIPOnnxConfig""", """ChineseCLIPTextConfig""", """ChineseCLIPVisionConfig""", ], """processing_chinese_clip""": ["""ChineseCLIPProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""ChineseCLIPFeatureExtractor"""] snake_case_ = ["""ChineseCLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ChineseCLIPModel""", """ChineseCLIPPreTrainedModel""", """ChineseCLIPTextModel""", """ChineseCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
507
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case_ = logging.get_logger(__name__) class a__ ( _lowercase ): __magic_name__ : Tuple = ["pixel_values"] def __init__(self : Tuple, __UpperCAmelCase : bool = True, __UpperCAmelCase : Dict[str, int] = None, __UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC, __UpperCAmelCase : bool = True, __UpperCAmelCase : Dict[str, int] = None, __UpperCAmelCase : bool = True, __UpperCAmelCase : Union[int, float] = 1 / 255, __UpperCAmelCase : bool = True, __UpperCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN, __UpperCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD, **__UpperCAmelCase : Dict, ) -> None: """simple docstring""" super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE : str = size if size is not None else {'''shortest_edge''': 224} SCREAMING_SNAKE_CASE : List[str] = get_size_dict(__UpperCAmelCase, default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} SCREAMING_SNAKE_CASE : Dict = get_size_dict(__UpperCAmelCase, param_name='''crop_size''' ) SCREAMING_SNAKE_CASE : Optional[int] = do_resize SCREAMING_SNAKE_CASE : Optional[Any] = size SCREAMING_SNAKE_CASE : Any = resample SCREAMING_SNAKE_CASE : int = do_center_crop SCREAMING_SNAKE_CASE : str = crop_size SCREAMING_SNAKE_CASE : int = do_rescale SCREAMING_SNAKE_CASE : int = rescale_factor SCREAMING_SNAKE_CASE : str = do_normalize SCREAMING_SNAKE_CASE : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN SCREAMING_SNAKE_CASE : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase__ (self : List[str], __UpperCAmelCase : np.ndarray, __UpperCAmelCase : Dict[str, int], __UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC, __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None, **__UpperCAmelCase : List[str], ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(__UpperCAmelCase, default_to_square=__UpperCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: SCREAMING_SNAKE_CASE : Any = int((256 / 224) * size['''shortest_edge'''] ) SCREAMING_SNAKE_CASE : List[Any] = get_resize_output_image_size(__UpperCAmelCase, size=__UpperCAmelCase, default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : int = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( __UpperCAmelCase, size=(size_dict['''height'''], size_dict['''width''']), resample=__UpperCAmelCase, data_format=__UpperCAmelCase, **__UpperCAmelCase ) def lowercase__ (self : Union[str, Any], __UpperCAmelCase : np.ndarray, __UpperCAmelCase : Dict[str, int], __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None, **__UpperCAmelCase : List[str], ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(__UpperCAmelCase, size=(size['''height'''], size['''width''']), data_format=__UpperCAmelCase, **__UpperCAmelCase ) def lowercase__ (self : Any, __UpperCAmelCase : np.ndarray, __UpperCAmelCase : Union[int, float], __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None, **__UpperCAmelCase : List[str], ) -> np.ndarray: """simple docstring""" return rescale(__UpperCAmelCase, scale=__UpperCAmelCase, data_format=__UpperCAmelCase, **__UpperCAmelCase ) def lowercase__ (self : Optional[int], __UpperCAmelCase : np.ndarray, __UpperCAmelCase : Union[float, List[float]], __UpperCAmelCase : Union[float, List[float]], __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None, **__UpperCAmelCase : Tuple, ) -> np.ndarray: """simple docstring""" return normalize(__UpperCAmelCase, mean=__UpperCAmelCase, std=__UpperCAmelCase, data_format=__UpperCAmelCase, **__UpperCAmelCase ) def lowercase__ (self : List[Any], __UpperCAmelCase : ImageInput, __UpperCAmelCase : Optional[bool] = None, __UpperCAmelCase : Optional[Dict[str, int]] = None, __UpperCAmelCase : PILImageResampling = None, __UpperCAmelCase : Optional[bool] = None, __UpperCAmelCase : Optional[Dict[str, int]] = None, __UpperCAmelCase : Optional[bool] = None, __UpperCAmelCase : Optional[float] = None, __UpperCAmelCase : Optional[bool] = None, __UpperCAmelCase : Optional[Union[float, Iterable[float]]] = None, __UpperCAmelCase : Optional[Union[float, Iterable[float]]] = None, __UpperCAmelCase : Optional[TensorType] = None, __UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST, **__UpperCAmelCase : Any, ) -> BatchFeature: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Optional[Any] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : str = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : List[str] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : Any = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : Optional[int] = size if size is not None else self.size SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(__UpperCAmelCase, default_to_square=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : Any = get_size_dict(__UpperCAmelCase, param_name='''crop_size''' ) SCREAMING_SNAKE_CASE : Optional[int] = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Dict = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : int = [self.resize(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE : Dict = [self.center_crop(__UpperCAmelCase, __UpperCAmelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : str = [self.rescale(__UpperCAmelCase, __UpperCAmelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : str = [self.normalize(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE : Dict = [to_channel_dimension_format(__UpperCAmelCase, __UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE : Dict = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase, tensor_type=__UpperCAmelCase )
507
1
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer A_ : Dict =logging.get_logger(__name__) A_ : int ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A_ : Any ={ '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } A_ : List[Any] ={ '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } A_ : str ={ '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } A_ : Optional[Any] ={ '''facebook/dpr-ctx_encoder-single-nq-base''': 5_12, '''facebook/dpr-ctx_encoder-multiset-base''': 5_12, } A_ : str ={ '''facebook/dpr-question_encoder-single-nq-base''': 5_12, '''facebook/dpr-question_encoder-multiset-base''': 5_12, } A_ : str ={ '''facebook/dpr-reader-single-nq-base''': 5_12, '''facebook/dpr-reader-multiset-base''': 5_12, } A_ : Dict ={ '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } A_ : Optional[Any] ={ '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } A_ : Optional[Any] ={ '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class __UpperCAmelCase ( __a ): __A : Dict = VOCAB_FILES_NAMES __A : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __A : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCAmelCase ( __a ): __A : Optional[int] = VOCAB_FILES_NAMES __A : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __A : List[str] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A_ : List[Any] =collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) A_ : Optional[Any] =collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) A_ : str =R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(__a ) class __UpperCAmelCase : def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): if titles is None and texts is None: return super().__call__( __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) elif titles is None or texts is None: lowerCAmelCase_ = titles if texts is None else texts return super().__call__( __UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) lowerCAmelCase_ = titles if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [titles] lowerCAmelCase_ = texts if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [texts] lowerCAmelCase_ = len(__UpperCamelCase ) lowerCAmelCase_ = questions if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [questions] * n_passages if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError( F'''There should be as many titles than texts but got {len(__UpperCamelCase )} titles and {len(__UpperCamelCase )} texts.''' ) lowerCAmelCase_ = super().__call__(__UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )['''input_ids'''] lowerCAmelCase_ = super().__call__(__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )['''input_ids'''] lowerCAmelCase_ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCamelCase , __UpperCamelCase ) ] } if return_attention_mask is not False: lowerCAmelCase_ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCAmelCase_ = attention_mask return self.pad(__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 16 , _lowerCamelCase = 64 , _lowerCamelCase = 4 , ): lowerCAmelCase_ = reader_input['''input_ids'''] lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = reader_output[:3] lowerCAmelCase_ = len(__UpperCamelCase ) lowerCAmelCase_ = sorted(range(__UpperCamelCase ) , reverse=__UpperCamelCase , key=relevance_logits.__getitem__ ) lowerCAmelCase_ = [] for doc_id in sorted_docs: lowerCAmelCase_ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCAmelCase_ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCAmelCase_ = sequence_ids.index(self.pad_token_id ) else: lowerCAmelCase_ = len(__UpperCamelCase ) lowerCAmelCase_ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCamelCase , top_spans=__UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCamelCase , start_index=__UpperCamelCase , end_index=__UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowerCAmelCase_ = [] for start_index, start_score in enumerate(__UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCAmelCase_ = sorted(__UpperCamelCase , key=lambda _lowerCamelCase : x[1] , reverse=__UpperCamelCase ) lowerCAmelCase_ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) lowerCAmelCase_ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__a ) class __UpperCAmelCase ( __a , __a ): __A : Tuple = VOCAB_FILES_NAMES __A : int = READER_PRETRAINED_VOCAB_FILES_MAP __A : int = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Dict = READER_PRETRAINED_INIT_CONFIGURATION __A : List[Any] = ['input_ids', 'attention_mask']
715
'''simple docstring''' def snake_case_ ( __snake_case : int = 1000) -> int: lowerCAmelCase_ = 3 lowerCAmelCase_ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
606
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Any ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=lowerCamelCase , ) assert hasattr(self , "env" ) def _snake_case ( self : List[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = { "enabled": True, "processes_per_host": 8, } __lowercase = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } __lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} __lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=lowerCamelCase , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=lowerCamelCase , py_version="py36" , ) def _snake_case ( self : Tuple , lowerCamelCase : Dict ): '''simple docstring''' TrainingJobAnalytics(lowerCamelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _snake_case ( self : List[Any] , lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = self.create_estimator(lowerCamelCase ) # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , lowerCamelCase )
402
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Any ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=lowerCamelCase , ) assert hasattr(self , "env" ) def _snake_case ( self : List[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = { "enabled": True, "processes_per_host": 8, } __lowercase = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } __lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} __lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=lowerCamelCase , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=lowerCamelCase , py_version="py36" , ) def _snake_case ( self : Tuple , lowerCamelCase : Dict ): '''simple docstring''' TrainingJobAnalytics(lowerCamelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _snake_case ( self : List[Any] , lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = self.create_estimator(lowerCamelCase ) # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , lowerCamelCase )
402
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : List[str] = logging.get_logger(__name__) __A : int = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = "deit" def __init__( self : Any , A : Any=7_68 , A : Any=12 , A : Optional[Any]=12 , A : Dict=30_72 , A : List[str]="gelu" , A : List[Any]=0.0 , A : int=0.0 , A : Any=0.02 , A : str=1e-12 , A : str=2_24 , A : Union[str, Any]=16 , A : Optional[int]=3 , A : Dict=True , A : List[Any]=16 , **A : int , ) -> str: super().__init__(**A ) lowercase_ : Optional[int] = hidden_size lowercase_ : Tuple = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : int = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : Optional[int] = attention_probs_dropout_prob lowercase_ : Optional[int] = initializer_range lowercase_ : Optional[Any] = layer_norm_eps lowercase_ : str = image_size lowercase_ : List[Any] = patch_size lowercase_ : str = num_channels lowercase_ : List[str] = qkv_bias lowercase_ : Optional[int] = encoder_stride class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Tuple = version.parse("1.11" ) @property def A ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def A ( self : Union[str, Any] ) -> float: return 1e-4
141
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _UpperCAmelCase ( _A ): def __init__( self : Optional[int] , A : Optional[Any]=0.01 , A : int=10_00 ) -> Optional[int]: lowercase_ : Dict = p_stop lowercase_ : Optional[Any] = max_length def __iter__( self : Dict ) -> Dict: lowercase_ : str = 0 lowercase_ : Optional[int] = False while not stop and count < self.max_length: yield count count += 1 lowercase_ : List[str] = random.random() < self.p_stop class _UpperCAmelCase ( unittest.TestCase ): def A ( self : List[Any] , A : Any , A : Union[str, Any] , A : Optional[Any]=False , A : Dict=True ) -> str: lowercase_ : Tuple = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] lowercase_ : Optional[Any] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def A ( self : Dict ) -> Tuple: # Check the shards when the dataset is a round multiple of total batch size. lowercase_ : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) lowercase_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) lowercase_ : Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowercase_ : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) lowercase_ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) lowercase_ : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) lowercase_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowercase_ : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) lowercase_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) lowercase_ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) lowercase_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowercase_ : Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) lowercase_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) lowercase_ : Any = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) lowercase_ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. lowercase_ : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowercase_ : Optional[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) lowercase_ : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowercase_ : List[str] = [[], []] self.check_batch_sampler_shards(A , A ) def A ( self : str ) -> str: # Check the shards when the dataset is a round multiple of batch size. lowercase_ : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) lowercase_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) lowercase_ : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. lowercase_ : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) lowercase_ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) lowercase_ : Any = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) lowercase_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowercase_ : Tuple = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) lowercase_ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) lowercase_ : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) lowercase_ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. lowercase_ : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowercase_ : Dict = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) lowercase_ : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowercase_ : str = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def A ( self : str ) -> int: # Check the shards when the dataset is a round multiple of total batch size. lowercase_ : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) lowercase_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : Dict = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowercase_ : List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) lowercase_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) lowercase_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowercase_ : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) lowercase_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) lowercase_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowercase_ : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) lowercase_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : str = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) lowercase_ : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. lowercase_ : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowercase_ : Tuple = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : List[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowercase_ : Optional[Any] = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def A ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. lowercase_ : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) lowercase_ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowercase_ : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. lowercase_ : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) lowercase_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowercase_ : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) lowercase_ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowercase_ : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) lowercase_ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowercase_ : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) lowercase_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. lowercase_ : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowercase_ : Union[str, Any] = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowercase_ : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowercase_ : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def A ( self : str ) -> str: lowercase_ : str = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] lowercase_ : Tuple = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def A ( self : Union[str, Any] , A : Union[str, Any] , A : Tuple , A : Dict , A : str=False , A : Any=2 , A : Optional[int]=False ) -> Optional[Any]: random.seed(A ) lowercase_ : Any = list(A ) lowercase_ : Optional[int] = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] lowercase_ : Any = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) lowercase_ : List[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size lowercase_ : Dict = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) lowercase_ : Optional[int] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def A ( self : Optional[Any] ) -> List[str]: lowercase_ : int = 42 lowercase_ : Tuple = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset lowercase_ : List[str] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def A ( self : Optional[Any] ) -> Tuple: lowercase_ : List[str] = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) lowercase_ : int = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : List[str] ) -> Union[str, Any]: lowercase_ : int = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : Dict ) -> int: lowercase_ : Optional[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) lowercase_ : Union[str, Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : List[str] ) -> str: lowercase_ : Any = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def A ( self : Optional[Any] ) -> Optional[int]: Accelerator() lowercase_ : Tuple = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
141
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCAmelCase : '''simple docstring''' def __init__( self : int ,A : List[str] ,A : List[Any]=13 ,A : str=2 ,A : int=24 ,A : Any=16 ,A : Tuple=True ,A : Optional[int]=True ,A : int=32 ,A : int=5 ,A : Optional[Any]=4 ,A : str=37 ,A : Union[str, Any]="gelu" ,A : Union[str, Any]=0.1 ,A : List[str]=0.1 ,A : Tuple=10 ,A : str=0.02 ,A : Tuple=None ,A : List[str]=2 ,A : str=2 ,): __A = parent __A = batch_size __A = patch_size __A = max_length __A = num_mel_bins __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = frequency_stride __A = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __A = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __A = (self.max_length - self.patch_size) // self.time_stride + 1 __A = frequency_out_dimension * time_out_dimension __A = num_patches + 2 def UpperCamelCase_ ( self : Optional[Any] ): __A = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, input_values, labels def UpperCamelCase_ ( self : str ): return ASTConfig( patch_size=self.patch_size ,max_length=self.max_length ,num_mel_bins=self.num_mel_bins ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,frequency_stride=self.frequency_stride ,time_stride=self.time_stride ,) def UpperCamelCase_ ( self : Tuple ,A : Dict ,A : str ,A : List[str] ): __A = ASTModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : int ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = {"input_values": input_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) snake_case_ = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ,A : Union[str, Any] ,A : Optional[Any] ,A : List[str] ,A : List[str] ,A : List[Any] ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCamelCase_ ( self : Optional[int] ): __A = ASTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def UpperCamelCase_ ( self : int ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,nn.Linear ) ) def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["input_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @slow def UpperCamelCase_ ( self : str ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = ASTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> int: """simple docstring""" __A = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) __A , __A = torchaudio.load(a_ ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = self.default_feature_extractor __A = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(A ) __A = self.default_feature_extractor __A , __A = prepare_audio() __A = audio.squeeze().numpy() __A = feature_extractor(A ,sampling_rate=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class A_(SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ : Dict = TextToVideoSDPipeline a_ : Dict = TEXT_TO_IMAGE_PARAMS a_ : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a_ : str = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def _lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCamelCase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) _lowerCamelCase : Optional[int] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) _lowerCamelCase : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) _lowerCamelCase : str = CLIPTextModel(A ) _lowerCamelCase : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCamelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _lowerCAmelCase ( self , A , A=0 ): if str(A ).startswith('mps' ): _lowerCamelCase : Tuple = torch.manual_seed(A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=A ).manual_seed(A ) _lowerCamelCase : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def _lowerCAmelCase ( self ): _lowerCamelCase : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : Tuple = self.get_dummy_components() _lowerCamelCase : Dict = TextToVideoSDPipeline(**A ) _lowerCamelCase : Optional[int] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) _lowerCamelCase : Union[str, Any] = self.get_dummy_inputs(A ) _lowerCamelCase : Union[str, Any] = 'np' _lowerCamelCase : Optional[int] = sd_pipe(**A ).frames _lowerCamelCase : Dict = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _lowerCamelCase : Tuple = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=A , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A , expected_max_diff=1E-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _lowerCAmelCase ( self ): pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _lowerCAmelCase ( self ): pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def _lowerCAmelCase ( self ): pass def _lowerCAmelCase ( self ): return super().test_progress_bar() @slow @skip_mps class A_(unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) _lowerCamelCase : Dict = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) _lowerCamelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _lowerCamelCase : Tuple = pipe.to('cuda' ) _lowerCamelCase : str = 'Spiderman is surfing' _lowerCamelCase : Any = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCamelCase : Union[str, Any] = pipe(A , generator=A , num_inference_steps=25 , output_type='pt' ).frames _lowerCamelCase : Any = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) _lowerCamelCase : int = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) _lowerCamelCase : Optional[Any] = pipe.to('cuda' ) _lowerCamelCase : Tuple = 'Spiderman is surfing' _lowerCamelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCamelCase : Tuple = pipe(A , generator=A , num_inference_steps=2 , output_type='pt' ).frames _lowerCamelCase : Optional[int] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
437
0
'''simple docstring''' import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def _a( UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' if "model" in orig_key: SCREAMING_SNAKE_CASE__ : List[Any] =orig_key.replace('''model.''', '''''' ) if "norm1" in orig_key: SCREAMING_SNAKE_CASE__ : Tuple =orig_key.replace('''norm1''', '''attention.output.LayerNorm''' ) if "norm2" in orig_key: SCREAMING_SNAKE_CASE__ : Optional[Any] =orig_key.replace('''norm2''', '''output.LayerNorm''' ) if "norm" in orig_key: SCREAMING_SNAKE_CASE__ : Dict =orig_key.replace('''norm''', '''LayerNorm''' ) if "transformer" in orig_key: SCREAMING_SNAKE_CASE__ : Union[str, Any] =orig_key.split('''.''' )[0].split('''_''' )[-1] SCREAMING_SNAKE_CASE__ : Dict =orig_key.replace(f"transformer_{layer_num}", f"encoder.layer.{layer_num}" ) if "mha.attn" in orig_key: SCREAMING_SNAKE_CASE__ : Optional[int] =orig_key.replace('''mha.attn''', '''attention.self''' ) if "mha" in orig_key: SCREAMING_SNAKE_CASE__ : List[Any] =orig_key.replace('''mha''', '''attention''' ) if "W_q" in orig_key: SCREAMING_SNAKE_CASE__ : Any =orig_key.replace('''W_q''', '''self.query''' ) if "W_k" in orig_key: SCREAMING_SNAKE_CASE__ : Tuple =orig_key.replace('''W_k''', '''self.key''' ) if "W_v" in orig_key: SCREAMING_SNAKE_CASE__ : Any =orig_key.replace('''W_v''', '''self.value''' ) if "ff1" in orig_key: SCREAMING_SNAKE_CASE__ : Any =orig_key.replace('''ff1''', '''intermediate.dense''' ) if "ff2" in orig_key: SCREAMING_SNAKE_CASE__ : List[Any] =orig_key.replace('''ff2''', '''output.dense''' ) if "ff" in orig_key: SCREAMING_SNAKE_CASE__ : Union[str, Any] =orig_key.replace('''ff''', '''output.dense''' ) if "mlm_class" in orig_key: SCREAMING_SNAKE_CASE__ : Optional[int] =orig_key.replace('''mlm.mlm_class''', '''cls.predictions.decoder''' ) if "mlm" in orig_key: SCREAMING_SNAKE_CASE__ : int =orig_key.replace('''mlm''', '''cls.predictions.transform''' ) if "cls" not in orig_key: SCREAMING_SNAKE_CASE__ : Optional[int] ='''yoso.''' + orig_key return orig_key def _a( UpperCamelCase__ : List[Any], UpperCamelCase__ : str ): '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE__ : List[str] =orig_state_dict.pop(UpperCamelCase__ ) if ("pooler" in key) or ("sen_class" in key): continue else: SCREAMING_SNAKE_CASE__ : Optional[int] =val SCREAMING_SNAKE_CASE__ : Dict =orig_state_dict['''cls.predictions.decoder.bias'''] SCREAMING_SNAKE_CASE__ : Optional[int] =torch.arange(UpperCamelCase__ ).expand((1, -1) ) + 2 return orig_state_dict def _a( UpperCamelCase__ : List[Any], UpperCamelCase__ : Tuple, UpperCamelCase__ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.load(UpperCamelCase__, map_location='''cpu''' )['''model_state_dict'''] SCREAMING_SNAKE_CASE__ : Optional[int] =YosoConfig.from_json_file(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] =YosoForMaskedLM(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =convert_checkpoint_helper(config.max_position_embeddings, UpperCamelCase__ ) print(model.load_state_dict(UpperCamelCase__ ) ) model.eval() model.save_pretrained(UpperCamelCase__ ) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
665
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case_ = JukeboxTokenizer snake_case_ = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def __magic_name__ ( self : Optional[int] ) -> str: import torch SCREAMING_SNAKE_CASE__ : List[str] =JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) SCREAMING_SNAKE_CASE__ : str =tokenizer(**self.metas )['''input_ids'''] # fmt: off SCREAMING_SNAKE_CASE__ : str =[ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def __magic_name__ ( self : Any ) -> List[str]: import torch SCREAMING_SNAKE_CASE__ : int =JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer(**self.metas )['''input_ids'''] # fmt: off SCREAMING_SNAKE_CASE__ : Optional[int] =[ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
665
1
'''simple docstring''' def lowerCamelCase__ ( _A = 10**9 ): a : Dict = 1 a : Union[str, Any] = 2 a : Optional[int] = 0 a : Tuple = 0 a : List[str] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value a : Union[str, Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"{solution() = }")
526
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase: List[str] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: str = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase: Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
526
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __magic_name__ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __magic_name__ = parser.parse_args() __magic_name__ = '''cpu''' __magic_name__ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __magic_name__ = '''path-to-your-trained-model''' __magic_name__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __magic_name__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __magic_name__ = pipe.to(device) # to channels last __magic_name__ = pipe.unet.to(memory_format=torch.channels_last) __magic_name__ = pipe.vae.to(memory_format=torch.channels_last) __magic_name__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __magic_name__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __magic_name__ = torch.randn(2, 4, 64, 64) __magic_name__ = torch.rand(1) * 999 __magic_name__ = torch.randn(2, 77, 768) __magic_name__ = (sample, timestep, encoder_hidden_status) try: __magic_name__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __magic_name__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __magic_name__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __magic_name__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __magic_name__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __magic_name__ = 666 __magic_name__ = torch.Generator(device).manual_seed(seed) __magic_name__ = {'''generator''': generator} if args.steps is not None: __magic_name__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __magic_name__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
702
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ): try: __snake_case : int = float(__UpperCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) __snake_case : Any = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] ) __snake_case : Tuple = int(decimal * (10**number_of_frac_digits) ) __snake_case : List[Any] = 10**number_of_frac_digits __snake_case , __snake_case : List[Any] = denominator, numerator while True: __snake_case : Any = dividend % divisor if remainder == 0: break __snake_case , __snake_case : Optional[int] = divisor, remainder __snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
679
0
from ...configuration_utils import PretrainedConfig a_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='tapas' def __init__( self : int , a : Optional[Any]=3_0522 , a : Optional[Any]=768 , a : Dict=12 , a : str=12 , a : str=3072 , a : Optional[int]="gelu" , a : Optional[Any]=0.1 , a : Any=0.1 , a : List[str]=1024 , a : str=[3, 256, 256, 2, 256, 256, 10] , a : Tuple=0.02 , a : List[Any]=1e-12 , a : Tuple=0 , a : int=10.0 , a : Optional[Any]=0 , a : Optional[int]=1.0 , a : Optional[int]=None , a : List[Any]=1.0 , a : Optional[int]=False , a : int=None , a : Optional[int]=1.0 , a : List[Any]=1.0 , a : List[str]=False , a : int=False , a : Any="ratio" , a : Tuple=None , a : Optional[int]=None , a : List[str]=64 , a : str=32 , a : Union[str, Any]=False , a : Optional[Any]=True , a : Union[str, Any]=False , a : List[Any]=False , a : Optional[int]=True , a : int=False , a : List[Any]=None , a : Optional[int]=None , **a : int , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=a , **a ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_sizes SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Any = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE : Union[str, Any] = positive_label_weight SCREAMING_SNAKE_CASE : Union[str, Any] = num_aggregation_labels SCREAMING_SNAKE_CASE : int = aggregation_loss_weight SCREAMING_SNAKE_CASE : List[Any] = use_answer_as_supervision SCREAMING_SNAKE_CASE : List[str] = answer_loss_importance SCREAMING_SNAKE_CASE : Optional[int] = use_normalized_answer_loss SCREAMING_SNAKE_CASE : Dict = huber_loss_delta SCREAMING_SNAKE_CASE : List[str] = temperature SCREAMING_SNAKE_CASE : int = aggregation_temperature SCREAMING_SNAKE_CASE : Optional[int] = use_gumbel_for_cells SCREAMING_SNAKE_CASE : Optional[int] = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE : Tuple = average_approximation_function SCREAMING_SNAKE_CASE : Optional[int] = cell_selection_preference SCREAMING_SNAKE_CASE : Optional[Any] = answer_loss_cutoff SCREAMING_SNAKE_CASE : int = max_num_rows SCREAMING_SNAKE_CASE : Tuple = max_num_columns SCREAMING_SNAKE_CASE : Optional[Any] = average_logits_per_cell SCREAMING_SNAKE_CASE : str = select_one_column SCREAMING_SNAKE_CASE : Any = allow_empty_column_selection SCREAMING_SNAKE_CASE : Tuple = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE : Tuple = reset_position_index_per_cell SCREAMING_SNAKE_CASE : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE : str = aggregation_labels SCREAMING_SNAKE_CASE : Any = no_aggregation_label_index if isinstance(self.aggregation_labels , a ): SCREAMING_SNAKE_CASE : str = {int(a ): v for k, v in aggregation_labels.items()}
25
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _lowerCAmelCase : Tuple = 1.0_5457_1817e-34 # unit of ℏ : J * s _lowerCAmelCase : int = 3e8 # unit of c : m * s^-1 def a_ ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ) -> dict[str, float]: """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: lowerCamelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_4_0 * (distance) ** 4 ) return {"force": force} elif area == 0: lowerCamelCase = (2_4_0 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowerCamelCase = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
246
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __A( unittest.TestCase ): def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = """ylacombe/bark-small""" lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = """en_speaker_1""" lowerCamelCase_ = """This is a test string""" lowerCamelCase_ = """speaker_embeddings_path.json""" lowerCamelCase_ = """speaker_embeddings""" def lowercase__ ( self : Dict , **__UpperCamelCase : List[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Optional[Any] ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=__UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowercase__ ( self : Optional[Any] ): lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCamelCase_ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCamelCase_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowercase__ ( self : Optional[Any] ): lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCamelCase_ = 3_5 lowerCamelCase_ = 2 lowerCamelCase_ = 8 lowerCamelCase_ = { """semantic_prompt""": np.ones(__UpperCamelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowerCamelCase_ = processor(text=self.input_string , voice_preset=__UpperCamelCase ) lowerCamelCase_ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__UpperCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowerCamelCase_ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(__UpperCamelCase , **__UpperCamelCase ) lowerCamelCase_ = processor(text=self.input_string , voice_preset=__UpperCamelCase ) lowerCamelCase_ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__UpperCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowerCamelCase_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowercase__ ( self : Tuple ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=__UpperCamelCase ) lowerCamelCase_ = processor(text=self.input_string ) lowerCamelCase_ = tokenizer( self.input_string , padding="""max_length""" , max_length=2_5_6 , add_special_tokens=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
702
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __A: @staticmethod def lowercase__ ( *__UpperCamelCase : str , **__UpperCamelCase : Dict ): pass def __lowerCAmelCase ( UpperCAmelCase__ : Image ) -> str: lowerCamelCase_ = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __A( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : int ): lowerCamelCase_ = DepthEstimationPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , __UpperCamelCase ) import datasets lowerCamelCase_ = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) lowerCamelCase_ = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] , __UpperCamelCase , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def lowercase__ ( self : Optional[int] ): pass @slow @require_torch def lowercase__ ( self : List[Any] ): lowerCamelCase_ = """Intel/dpt-large""" lowerCamelCase_ = pipeline("""depth-estimation""" , model=__UpperCamelCase ) lowerCamelCase_ = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) lowerCamelCase_ = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 ) @require_torch def lowercase__ ( self : Dict ): # This is highly irregular to have no small tests. self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
103
0
from typing import Any class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[str] = data _SCREAMING_SNAKE_CASE : List[Any] = None class lowerCAmelCase__: '''simple docstring''' def __init__( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Tuple = None def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Dict = self.head while temp is not None: print(temp.data , end=" " ) _SCREAMING_SNAKE_CASE : Optional[int] = temp.next print() def UpperCamelCase_ ( self , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : List[Any] = Node(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = self.head _SCREAMING_SNAKE_CASE : Optional[Any] = new_node def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Any: if node_data_a == node_data_a: return else: _SCREAMING_SNAKE_CASE : List[Any] = self.head while node_a is not None and node_a.data != node_data_a: _SCREAMING_SNAKE_CASE : int = node_a.next _SCREAMING_SNAKE_CASE : Tuple = self.head while node_a is not None and node_a.data != node_data_a: _SCREAMING_SNAKE_CASE : Dict = node_a.next if node_a is None or node_a is None: return _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = node_a.data, node_a.data if __name__ == "__main__": UpperCamelCase__ =LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
249
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowercase__ =3_00 # TEMPERATURE (unit = K) def UpperCamelCase_ ( A__ , A__ , A__ , ): if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
263
0
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase__ ='src/diffusers' lowercase__ ='.' # This is to make sure the diffusers module imported is the one in the repo. lowercase__ =importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) lowercase__ =spec.loader.load_module() def UpperCamelCase_ ( A__ , A__ ): return line.startswith(A__ ) or len(A__ ) <= 1 or re.search(r"""^\s*\)(\s*->.*:|:)\s*$""" , A__ ) is not None def UpperCamelCase_ ( A__ ): a_ = object_name.split(""".""" ) a_ = 0 # First let's find the module where our object lives. a_ = parts[i] while i < len(A__ ) and not os.path.isfile(os.path.join(A__ , F'''{module}.py''' ) ): i += 1 if i < len(A__ ): a_ = os.path.join(A__ , parts[i] ) if i >= len(A__ ): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(A__ , F'''{module}.py''' ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: a_ = f.readlines() # Now let's find the class / func in the code! a_ = """""" a_ = 0 for name in parts[i + 1 :]: while ( line_index < len(A__ ) and re.search(rF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(A__ ): raise ValueError(F''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). a_ = line_index while line_index < len(A__ ) and _should_continue(lines[line_index] , A__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a_ = lines[start_index:line_index] return "".join(A__ ) lowercase__ =re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') lowercase__ =re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)') lowercase__ =re.compile(r'<FILL\s+[^>]*>') def UpperCamelCase_ ( A__ ): a_ = code.split("""\n""" ) a_ = 0 while idx < len(A__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(A__ ): return re.search(r"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def UpperCamelCase_ ( A__ ): a_ = len(get_indent(A__ ) ) > 0 if has_indent: a_ = F'''class Bla:\n{code}''' a_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=A__ ) a_ = black.format_str(A__ , mode=A__ ) a_ , a_ = style_docstrings_in_code(A__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def UpperCamelCase_ ( A__ , A__=False ): with open(A__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: a_ = f.readlines() a_ = [] a_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(A__ ): a_ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. a_ , a_ , a_ = search.groups() a_ = find_code_in_diffusers(A__ ) a_ = get_indent(A__ ) a_ = line_index + 1 if indent == theoretical_indent else line_index + 2 a_ = theoretical_indent a_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. a_ = True while line_index < len(A__ ) and should_continue: line_index += 1 if line_index >= len(A__ ): break a_ = lines[line_index] a_ = _should_continue(A__ , A__ ) and re.search(F'''^{indent}# End copy''' , A__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a_ = lines[start_index:line_index] a_ = """""".join(A__ ) # Remove any nested `Copied from` comments to avoid circular copies a_ = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(A__ ) is None] a_ = """\n""".join(A__ ) # Before comparing, use the `replace_pattern` on the original code. if len(A__ ) > 0: a_ = replace_pattern.replace("""with""" , """""" ).split(""",""" ) a_ = [_re_replace_pattern.search(A__ ) for p in patterns] for pattern in patterns: if pattern is None: continue a_ , a_ , a_ = pattern.groups() a_ = re.sub(A__ , A__ , A__ ) if option.strip() == "all-casing": a_ = re.sub(obja.lower() , obja.lower() , A__ ) a_ = re.sub(obja.upper() , obja.upper() , A__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line a_ = blackify(lines[start_index - 1] + theoretical_code ) a_ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: a_ = lines[:start_index] + [theoretical_code] + lines[line_index:] a_ = start_index + 1 if overwrite and len(A__ ) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''' ) with open(A__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(A__ ) return diffs def UpperCamelCase_ ( A__ = False ): a_ = glob.glob(os.path.join(A__ , """**/*.py""" ) , recursive=A__ ) a_ = [] for filename in all_files: a_ = is_copy_consistent(A__ , A__ ) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(A__ ) > 0: a_ = """\n""".join(A__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowercase__ =parser.parse_args() check_copies(args.fix_and_overwrite)
700
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowercase__ =None lowercase__ =logging.get_logger(__name__) lowercase__ ={'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowercase__ ={ 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowercase__ ={ 'google/fnet-base': 5_12, 'google/fnet-large': 5_12, } lowercase__ ='▁' class a_ ( UpperCamelCase__ ): lowerCamelCase__ : Dict = VOCAB_FILES_NAMES lowerCamelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Tuple = ['input_ids', 'token_type_ids'] lowerCamelCase__ : Any = FNetTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="<unk>" , UpperCAmelCase="[SEP]" , UpperCAmelCase="<pad>" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , **UpperCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. a_ = ( AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase , normalized=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token ) super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , remove_space=UpperCAmelCase , keep_accents=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , **UpperCAmelCase , ) a_ = do_lower_case a_ = remove_space a_ = keep_accents a_ = vocab_file a_ = False if not self.vocab_file else True def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): if not os.path.isdir(UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return a_ = os.path.join( UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
511
0
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# __magic_name__ : Dict = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] __magic_name__ : int = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] __magic_name__ : List[Any] = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks __magic_name__ : str = F'down_blocks.{i}.resnets.{j}.' __magic_name__ : Any = F'input_blocks.{3*i + j + 1}.0.' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 __magic_name__ : Tuple = F'down_blocks.{i}.attentions.{j}.' __magic_name__ : Tuple = F'input_blocks.{3*i + j + 1}.1.' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks __magic_name__ : Union[str, Any] = F'up_blocks.{i}.resnets.{j}.' __magic_name__ : str = F'output_blocks.{3*i + j}.0.' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 __magic_name__ : Tuple = F'up_blocks.{i}.attentions.{j}.' __magic_name__ : Union[str, Any] = F'output_blocks.{3*i + j}.1.' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 __magic_name__ : Tuple = F'down_blocks.{i}.downsamplers.0.conv.' __magic_name__ : Dict = F'input_blocks.{3*(i+1)}.0.op.' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 __magic_name__ : Dict = F'up_blocks.{i}.upsamplers.0.' __magic_name__ : int = F'output_blocks.{3*i + 2}.{1 if i == 0 else 2}.' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) __magic_name__ : Any = """mid_block.attentions.0.""" __magic_name__ : Union[str, Any] = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): __magic_name__ : Dict = F'mid_block.resnets.{j}.' __magic_name__ : str = F'middle_block.{2*j}.' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: _snake_case = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: _snake_case = v.replace(snake_case__ , snake_case__ ) _snake_case = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: _snake_case = v.replace(snake_case__ , snake_case__ ) _snake_case = v _snake_case = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# __magic_name__ : List[Any] = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): __magic_name__ : str = F'encoder.down_blocks.{i}.resnets.{j}.' __magic_name__ : int = F'encoder.down.{i}.block.{j}.' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: __magic_name__ : List[Any] = F'down_blocks.{i}.downsamplers.0.' __magic_name__ : Tuple = F'down.{i}.downsample.' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) __magic_name__ : List[str] = F'up_blocks.{i}.upsamplers.0.' __magic_name__ : Union[str, Any] = F'up.{3-i}.upsample.' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): __magic_name__ : Dict = F'decoder.up_blocks.{i}.resnets.{j}.' __magic_name__ : Optional[Any] = F'decoder.up.{3-i}.block.{j}.' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): __magic_name__ : Optional[int] = F'mid_block.resnets.{i}.' __magic_name__ : Dict = F'mid.block_{i+1}.' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) __magic_name__ : Dict = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return w.reshape(*w.shape , 1 , 1 ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: _snake_case = v.replace(snake_case__ , snake_case__ ) _snake_case = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: _snake_case = v.replace(snake_case__ , snake_case__ ) _snake_case = v _snake_case = {v: vae_state_dict[k] for k, v in mapping.items()} _snake_case = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f'''mid.attn_1.{weight_name}.weight''' in k: print(f'''Reshaping {k} for SD format''' ) _snake_case = reshape_weight_for_sd(snake_case__ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# __magic_name__ : int = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] __magic_name__ : Tuple = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} __magic_name__ : Union[str, Any] = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp __magic_name__ : int = {"""q""": 0, """k""": 1, """v""": 2} def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = {} _snake_case = {} _snake_case = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight" ) or k.endswith(".self_attn.k_proj.weight" ) or k.endswith(".self_attn.v_proj.weight" ) ): _snake_case = k[: -len(".q_proj.weight" )] _snake_case = k[-len("q_proj.weight" )] if k_pre not in capture_qkv_weight: _snake_case = [None, None, None] _snake_case = v continue if ( k.endswith(".self_attn.q_proj.bias" ) or k.endswith(".self_attn.k_proj.bias" ) or k.endswith(".self_attn.v_proj.bias" ) ): _snake_case = k[: -len(".q_proj.bias" )] _snake_case = k[-len("q_proj.bias" )] if k_pre not in capture_qkv_bias: _snake_case = [None, None, None] _snake_case = v continue _snake_case = textenc_pattern.sub(lambda SCREAMING_SNAKE_CASE__ : protected[re.escape(m.group(0 ) )] , snake_case__ ) _snake_case = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) _snake_case = textenc_pattern.sub(lambda SCREAMING_SNAKE_CASE__ : protected[re.escape(m.group(0 ) )] , snake_case__ ) _snake_case = torch.cat(snake_case__ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) _snake_case = textenc_pattern.sub(lambda SCREAMING_SNAKE_CASE__ : protected[re.escape(m.group(0 ) )] , snake_case__ ) _snake_case = torch.cat(snake_case__ ) return new_state_dict def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return text_enc_dict if __name__ == "__main__": __magic_name__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) __magic_name__ : int = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors __magic_name__ : Dict = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") __magic_name__ : str = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") __magic_name__ : Optional[int] = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): __magic_name__ : Tuple = load_file(unet_path, device="""cpu""") else: __magic_name__ : Optional[Any] = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") __magic_name__ : Optional[Any] = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): __magic_name__ : int = load_file(vae_path, device="""cpu""") else: __magic_name__ : int = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") __magic_name__ : str = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): __magic_name__ : Dict = load_file(text_enc_path, device="""cpu""") else: __magic_name__ : int = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") __magic_name__ : Union[str, Any] = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model __magic_name__ : str = convert_unet_state_dict(unet_state_dict) __magic_name__ : int = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model __magic_name__ : Optional[Any] = convert_vae_state_dict(vae_state_dict) __magic_name__ : Any = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper __magic_name__ : Tuple = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm __magic_name__ : Tuple = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} __magic_name__ : Optional[Any] = convert_text_enc_state_dict_vaa(text_enc_dict) __magic_name__ : Any = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: __magic_name__ : List[Any] = convert_text_enc_state_dict(text_enc_dict) __magic_name__ : List[str] = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint __magic_name__ : Union[str, Any] = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: __magic_name__ : str = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: __magic_name__ : int = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
672
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """perceiver""" def __init__(self , __a=256 , __a=1280 , __a=768 , __a=1 , __a=26 , __a=8 , __a=8 , __a=None , __a=None , __a="kv" , __a=1 , __a=1 , __a="gelu" , __a=0.1 , __a=0.02 , __a=1E-1_2 , __a=True , __a=262 , __a=2048 , __a=56 , __a=[368, 496] , __a=16 , __a=1920 , __a=16 , __a=[1, 16, 224, 224] , **__a , ) -> Union[str, Any]: """simple docstring""" super().__init__(**__a ) UpperCAmelCase__ = num_latents UpperCAmelCase__ = d_latents UpperCAmelCase__ = d_model UpperCAmelCase__ = num_blocks UpperCAmelCase__ = num_self_attends_per_block UpperCAmelCase__ = num_self_attention_heads UpperCAmelCase__ = num_cross_attention_heads UpperCAmelCase__ = qk_channels UpperCAmelCase__ = v_channels UpperCAmelCase__ = cross_attention_shape_for_attention UpperCAmelCase__ = self_attention_widening_factor UpperCAmelCase__ = cross_attention_widening_factor UpperCAmelCase__ = hidden_act UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = use_query_residual # masked language modeling attributes UpperCAmelCase__ = vocab_size UpperCAmelCase__ = max_position_embeddings # image classification attributes UpperCAmelCase__ = image_size # flow attributes UpperCAmelCase__ = train_size # multimodal autoencoding attributes UpperCAmelCase__ = num_frames UpperCAmelCase__ = audio_samples_per_frame UpperCAmelCase__ = samples_per_patch UpperCAmelCase__ = output_shape class lowercase ( _UpperCamelCase ): '''simple docstring''' @property def UpperCamelCase__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCamelCase__ (self ) -> float: """simple docstring""" return 1E-4 def UpperCamelCase__ (self , __a , __a = -1 , __a = -1 , __a = -1 , __a = False , __a = None , __a = 3 , __a = 40 , __a = 40 , ) -> Mapping[str, Any]: """simple docstring""" if isinstance(__a , __a ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase__ = preprocessor.num_special_tokens_to_add(__a ) UpperCAmelCase__ = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase__ = [' '.join(['a'] ) * seq_length] * batch_size UpperCAmelCase__ = dict(preprocessor(__a , return_tensors=__a ) ) UpperCAmelCase__ = inputs.pop('input_ids' ) return inputs elif isinstance(__a , __a ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ = compute_effective_axis_dimension(__a , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCAmelCase__ = self._generate_dummy_images(__a , __a , __a , __a ) UpperCAmelCase__ = dict(preprocessor(images=__a , return_tensors=__a ) ) UpperCAmelCase__ = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
146
0
def _lowercase ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) UpperCamelCase = """""" while len(SCREAMING_SNAKE_CASE_ ) % 3 != 0: UpperCamelCase = """0""" + bin_string UpperCamelCase = [ bin_string[index : index + 3] for index in range(len(SCREAMING_SNAKE_CASE_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: UpperCamelCase = 0 for index, val in enumerate(SCREAMING_SNAKE_CASE_ ): oct_val += int(2 ** (2 - index) * int(SCREAMING_SNAKE_CASE_ ) ) oct_string += str(SCREAMING_SNAKE_CASE_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
181
def _lowercase ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" assert ( isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and number_of_steps > 0 ), f'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 UpperCamelCase , UpperCamelCase = 1, 1 for _ in range(number_of_steps - 1 ): UpperCamelCase , UpperCamelCase = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
181
1
def _A( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
332
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
332
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __snake_case ( _lowercase): snake_case__ : Optional[int] = ["image_processor", "tokenizer"] snake_case__ : Any = "ChineseCLIPImageProcessor" snake_case__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Union[str, Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Union[str, Any]=None , **__lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowerCAmelCase , ) _lowerCamelCase : Dict = kwargs.pop('''feature_extractor''' ) _lowerCamelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.image_processor def __call__( self : Optional[Any] , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Tuple=None , **__lowerCAmelCase : Union[str, Any] ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _lowerCamelCase : Optional[int] = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if images is not None: _lowerCamelCase : Optional[Any] = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None and images is not None: _lowerCamelCase : int = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : str ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *__lowerCAmelCase : str , **__lowerCAmelCase : Union[str, Any] ): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Dict = self.tokenizer.model_input_names _lowerCamelCase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCAmelCase , ) return self.image_processor_class
598
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Tuple = GPTaTokenizer snake_case__ : str = GPTaTokenizerFast snake_case__ : Union[str, Any] = True snake_case__ : Dict = {"add_prefix_space": True} snake_case__ : Any = False def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] _lowerCamelCase : Union[str, Any] = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _lowerCamelCase : List[Any] = {'''unk_token''': '''<unk>'''} _lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Any , **__lowerCAmelCase : List[str] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , **__lowerCAmelCase : Tuple ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = '''lower newer''' _lowerCamelCase : Any = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Any = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : Any = '''lower newer''' _lowerCamelCase : Dict = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _lowerCamelCase : Optional[int] = tokenizer.tokenize(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Dict = tokens + [tokenizer.unk_token] _lowerCamelCase : List[str] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" if not self.test_rust_tokenizer: return _lowerCamelCase : Any = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_rust_tokenizer(add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : int = '''lower newer''' # Testing tokenization _lowerCamelCase : Optional[int] = tokenizer.tokenize(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens _lowerCamelCase : str = self.get_rust_tokenizer(add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCamelCase : Dict = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing the unknown token _lowerCamelCase : int = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : List[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , *__lowerCAmelCase : Optional[int] , **__lowerCAmelCase : str ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : List[Any]=1_5 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) # Simple input _lowerCamelCase : Tuple = '''This is a simple input''' _lowerCamelCase : List[Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] _lowerCamelCase : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') _lowerCamelCase : Tuple = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Any = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input _lowerCamelCase : List[str] = '''This is a simple input''' _lowerCamelCase : int = ['''This is a simple input looooooooong''', '''This is a simple input'''] _lowerCamelCase : int = ('''This is a simple input''', '''This is a pair''') _lowerCamelCase : int = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] _lowerCamelCase : Tuple = tokenizer.pad_token_id _lowerCamelCase : Dict = tokenizer(__lowerCAmelCase , padding='''max_length''' , max_length=3_0 , return_tensors='''np''' ) _lowerCamelCase : Any = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncate=__lowerCAmelCase , return_tensors='''np''' ) _lowerCamelCase : List[Any] = tokenizer(*__lowerCAmelCase , padding='''max_length''' , max_length=6_0 , return_tensors='''np''' ) _lowerCamelCase : Optional[Any] = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncate=__lowerCAmelCase , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = '''$$$''' _lowerCamelCase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__lowerCAmelCase , add_bos_token=__lowerCAmelCase ) _lowerCamelCase : Any = '''This is a simple input''' _lowerCamelCase : Tuple = ['''This is a simple input 1''', '''This is a simple input 2'''] _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = tokenizer(__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer(__lowerCAmelCase ) self.assertEqual(out_s.input_ids[0] , __lowerCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : Any = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : Any = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __lowerCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : List[str] = [self.get_tokenizer(do_lower_case=__lowerCAmelCase , add_bos_token=__lowerCAmelCase )] for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _lowerCamelCase : str = '''Encode this.''' _lowerCamelCase : Optional[Any] = '''This one too please.''' _lowerCamelCase : List[str] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) encoded_sequence += tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode_plus( __lowerCAmelCase , __lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , ) _lowerCamelCase : str = encoded_sequence_dict['''input_ids'''] _lowerCamelCase : List[Any] = encoded_sequence_dict['''special_tokens_mask'''] self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) _lowerCamelCase : Any = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__lowerCAmelCase ) ] _lowerCamelCase : List[Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @require_tokenizers class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Dict = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=__lowerCAmelCase ) _lowerCamelCase : Tuple = '''A photo of a cat''' _lowerCamelCase : Tuple = tokenizer.encode( __lowerCAmelCase , ) self.assertEqual(__lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('''test_opt''' ) _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained('''./test_opt''' ) _lowerCamelCase : Optional[int] = tokenizer.encode( __lowerCAmelCase , ) self.assertEqual(__lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , use_slow=__lowerCAmelCase ) _lowerCamelCase : Tuple = '''A photo of a cat''' _lowerCamelCase : List[str] = tokenizer.encode( __lowerCAmelCase , ) # Same as above self.assertEqual(__lowerCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip('''This test is failing because of a bug in the fast tokenizer''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = '''bos''' _lowerCamelCase : Optional[Any] = tokenizer.get_vocab()['''bos'''] _lowerCamelCase : Any = '''A photo of a cat''' _lowerCamelCase : int = tokenizer.encode( __lowerCAmelCase , ) # We changed the bos token self.assertEqual(__lowerCAmelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('''./tok''' ) _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained('''./tok''' ) self.assertTrue(tokenizer.is_fast ) _lowerCamelCase : Tuple = tokenizer.encode( __lowerCAmelCase , ) self.assertEqual(__lowerCAmelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
598
1
"""simple docstring""" from __future__ import annotations def a ( __UpperCAmelCase : list[float] ) -> bool: if len(__UpperCAmelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __magic_name__: List[Any] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
96
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return 1 / (1 + np.exp(-z )) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int ): '''simple docstring''' return (-y * np.log(__UpperCamelCase ) - (1 - y) * np.log(1 - h )).mean() def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Optional[int] = np.dot(__UpperCamelCase , __UpperCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__UpperCamelCase ) ) ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int=7_0_0_0_0 ): '''simple docstring''' snake_case_ : Dict = np.zeros(x.shape[1] ) for iterations in range(__UpperCamelCase ): snake_case_ : Any = np.dot(__UpperCamelCase , __UpperCamelCase ) snake_case_ : List[str] = sigmoid_function(__UpperCamelCase ) snake_case_ : Optional[Any] = np.dot(x.T , h - y ) / y.size snake_case_ : str = theta - alpha * gradient # updating the weights snake_case_ : int = np.dot(__UpperCamelCase , __UpperCamelCase ) snake_case_ : List[str] = sigmoid_function(__UpperCamelCase ) snake_case_ : Dict = cost_function(__UpperCamelCase , __UpperCamelCase ) if iterations % 1_0_0 == 0: print(F'loss: {j} \t' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __lowerCAmelCase : Any = datasets.load_iris() __lowerCAmelCase : List[Any] = iris.data[:, :2] __lowerCAmelCase : Tuple = (iris.target != 0) * 1 __lowerCAmelCase : Any = 0.1 __lowerCAmelCase : List[Any] = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' return sigmoid_function( np.dot(__UpperCamelCase , __UpperCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((__lowerCAmelCase) , (__lowerCAmelCase)) : Union[str, Any] = (x[:, 0].min(), x[:, 0].max()) ((__lowerCAmelCase) , (__lowerCAmelCase)) : Tuple = (x[:, 1].min(), x[:, 1].max()) ((__lowerCAmelCase) , (__lowerCAmelCase)) : Optional[Any] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __lowerCAmelCase : Any = np.c_[xxa.ravel(), xxa.ravel()] __lowerCAmelCase : Optional[int] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
58
0
import requests from bsa import BeautifulSoup def lowerCamelCase ( UpperCamelCase : str = "AAPL" ) -> str: _lowerCamelCase = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" _lowerCamelCase = BeautifulSoup(requests.get(UpperCamelCase ).text , 'html.parser' ) _lowerCamelCase = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
709
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def lowerCamelCase ( UpperCamelCase : str , UpperCamelCase : Any=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : List[Any]=False ) -> List[str]: _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def lowerCamelCase ( UpperCamelCase : str , UpperCamelCase : str ) -> Tuple: for i in range(config.num_hidden_layers ): _lowerCamelCase = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def lowerCamelCase ( UpperCamelCase : Tuple ) -> List[Any]: _lowerCamelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) def lowerCamelCase ( UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : str ) -> Any: _lowerCamelCase = dct.pop(UpperCamelCase ) _lowerCamelCase = val @torch.no_grad() def lowerCamelCase ( UpperCamelCase : int , UpperCamelCase : int ) -> Optional[int]: _lowerCamelCase = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=UpperCamelCase ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False if "vqa" in checkpoint_url: _lowerCamelCase = True _lowerCamelCase = 31_29 _lowerCamelCase = 'huggingface/label-files' _lowerCamelCase = 'vqa2-id2label.json' _lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase = {int(UpperCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = ViltForQuestionAnswering(UpperCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase = True _lowerCamelCase = 2 _lowerCamelCase = {0: 'False', 1: 'True'} _lowerCamelCase = {v: k for k, v in config.idalabel.items()} _lowerCamelCase = 3 _lowerCamelCase = ViltForImagesAndTextClassification(UpperCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase = True _lowerCamelCase = ViltForImageAndTextRetrieval(UpperCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase = True _lowerCamelCase = ViltForMaskedLM(UpperCamelCase ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys _lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location='cpu' )['state_dict'] _lowerCamelCase = create_rename_keys(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for src, dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) read_in_q_k_v(UpperCamelCase , UpperCamelCase ) if mlm_model or irtr_model: _lowerCamelCase = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase , _lowerCamelCase = model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(UpperCamelCase ) # Define processor _lowerCamelCase = ViltImageProcessor(size=3_84 ) _lowerCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) _lowerCamelCase = ViltProcessor(UpperCamelCase , UpperCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=UpperCamelCase ).raw ) _lowerCamelCase = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=UpperCamelCase ).raw ) _lowerCamelCase = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) _lowerCamelCase = processor(UpperCamelCase , UpperCamelCase , return_tensors='pt' ) _lowerCamelCase = processor(UpperCamelCase , UpperCamelCase , return_tensors='pt' ) _lowerCamelCase = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=UpperCamelCase ).raw ) if mlm_model: _lowerCamelCase = 'a bunch of [MASK] laying on a [MASK].' else: _lowerCamelCase = 'How many cats are there?' _lowerCamelCase = processor(UpperCamelCase , UpperCamelCase , return_tensors='pt' ) _lowerCamelCase = model(**UpperCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase = torch.Size([1, 11, 3_05_22] ) _lowerCamelCase = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , UpperCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase = torch.Size([1, 31_29] ) _lowerCamelCase = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , UpperCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase = torch.Size([1, 2] ) _lowerCamelCase = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) A = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
234
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase_ ( __a , __a , __a ) -> int: return params[f'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def UpperCamelCase_ ( __a , __a , __a , __a="attention" ) -> List[str]: a__ : Union[str, Any] = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) a__ : List[str] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) a__ : int = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) a__ : List[str] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) a__ : int = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) a__ : List[str] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) a__ : Tuple = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) a__ : int = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def UpperCamelCase_ ( __a , __a , __a , __a=False ) -> Any: if split_mlp_wi: a__ : Optional[int] = params[f'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] a__ : str = params[f'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] a__ : Tuple = (wi_a, wi_a) else: a__ : Tuple = params[f'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] a__ : int = params[f'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def UpperCamelCase_ ( __a , __a , __a , __a ) -> Tuple: return params[f'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def UpperCamelCase_ ( __a , *, __a , __a , __a = False ) -> List[str]: a__ : str = traverse_util.flatten_dict(variables["target"] ) a__ : Dict = {'''/'''.join(SCREAMING_SNAKE_CASE__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi a__ : List[Any] = '''encoder/encoder/mlp/wi_0/kernel''' in old print("Split MLP:" , SCREAMING_SNAKE_CASE__ ) a__ : Optional[int] = collections.OrderedDict() # Shared embeddings. a__ : Dict = old['''token_embedder/embedding'''] # Encoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). a__ : List[str] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "encoder" , "pre_attention_layer_norm" ) a__ : List[str] = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "encoder" , "attention" ) a__ : Dict = layer_norm a__ : Union[str, Any] = k.T a__ : Optional[Any] = o.T a__ : str = q.T a__ : List[Any] = v.T # Block i, layer 1 (MLP). a__ : Dict = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "encoder" , "pre_mlp_layer_norm" ) a__ : Optional[Any] = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "encoder" , SCREAMING_SNAKE_CASE__ ) a__ : Union[str, Any] = layer_norm if split_mlp_wi: a__ : Any = wi[0].T a__ : List[Any] = wi[1].T else: a__ : Any = wi.T a__ : Tuple = wo.T if scalable_attention: # convert the rel_embedding of each layer a__ : Dict = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "encoder" ).T a__ : int = old['''encoder/encoder_norm/scale'''] if not scalable_attention: a__ : Union[str, Any] = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE__ , 0 , "encoder" ).T a__ : int = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE__ , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). a__ : Optional[Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "decoder" , "pre_self_attention_layer_norm" ) a__ : Optional[Any] = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "decoder" , "self_attention" ) a__ : str = layer_norm a__ : Any = k.T a__ : Dict = o.T a__ : int = q.T a__ : Dict = v.T # Block i, layer 1 (Cross Attention). a__ : Tuple = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "decoder" , "pre_cross_attention_layer_norm" ) a__ : str = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "decoder" , "encoder_decoder_attention" ) a__ : Dict = layer_norm a__ : List[str] = k.T a__ : Optional[Any] = o.T a__ : str = q.T a__ : int = v.T # Block i, layer 2 (MLP). a__ : Dict = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "decoder" , "pre_mlp_layer_norm" ) a__ : Dict = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "decoder" , SCREAMING_SNAKE_CASE__ ) a__ : Tuple = layer_norm if split_mlp_wi: a__ : Any = wi[0].T a__ : int = wi[1].T else: a__ : Union[str, Any] = wi.T a__ : Tuple = wo.T if scalable_attention: # convert the rel_embedding of each layer a__ : List[Any] = tax_relpos_bias_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "decoder" ).T a__ : Union[str, Any] = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: a__ : Optional[int] = old['''decoder/logits_dense/kernel'''].T return new def UpperCamelCase_ ( __a , __a ) -> Dict: a__ : List[str] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: a__ : Tuple = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: a__ : Optional[Any] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) a__ : Optional[int] = state_dict['''shared.weight'''] return state_dict def UpperCamelCase_ ( __a , __a , __a , __a , __a ) -> str: a__ : Optional[Any] = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) a__ : Union[str, Any] = convert_tax_to_pytorch( SCREAMING_SNAKE_CASE__ , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE__ , scalable_attention=SCREAMING_SNAKE_CASE__ ) a__ : Optional[int] = make_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) def UpperCamelCase_ ( __a , __a , __a , __a = False , __a = False , ) -> Any: a__ : int = MTaConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(f'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: a__ : Dict = UMTaEncoderModel(SCREAMING_SNAKE_CASE__ ) else: a__ : str = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE__ ) print("Done" ) if __name__ == "__main__": UpperCamelCase : str = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) UpperCamelCase : Any = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
37
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
658
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=None , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = decoder_seq_length # For common tests UpperCamelCase__ = self.decoder_seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_attention_mask UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = d_model UpperCamelCase__ = d_model UpperCamelCase__ = decoder_layers UpperCamelCase__ = decoder_layers UpperCamelCase__ = decoder_ffn_dim UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = eos_token_id UpperCamelCase__ = bos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = decoder_start_token_id UpperCamelCase__ = use_cache UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = None UpperCamelCase__ = decoder_seq_length UpperCamelCase__ = 2 UpperCamelCase__ = 1 def UpperCAmelCase_ (self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_attention_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCamelCase__ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = True UpperCamelCase__ = TrOCRDecoder(config=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ).eval() UpperCamelCase__ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass UpperCamelCase__ = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = model(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) + 1 ) UpperCamelCase__ = outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and UpperCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ = model(_SCREAMING_SNAKE_CASE )["""last_hidden_state"""] UpperCamelCase__ = model(_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )["""last_hidden_state"""] # select random slice UpperCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() UpperCamelCase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class __A( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = (TrOCRForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False def UpperCAmelCase_ (self ): UpperCamelCase__ = TrOCRStandaloneDecoderModelTester(self , is_training=_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): self.config_tester.run_common_tests() def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ (self ): return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def UpperCAmelCase_ (self ): pass
713
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = RobertaTokenizer SCREAMING_SNAKE_CASE__ = RobertaTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = {"""cls_token""": """<s>"""} def UpperCAmelCase_ (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCamelCase__ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) UpperCamelCase__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCamelCase__ = {"""unk_token""": """<unk>"""} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = """lower newer""" UpperCamelCase__ = """lower newer""" return input_text, output_text def UpperCAmelCase_ (self ): UpperCamelCase__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase__ = """lower newer""" UpperCamelCase__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] UpperCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) # , add_prefix_space=True) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=SCREAMING_SNAKE_CASE_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=SCREAMING_SNAKE_CASE_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = self.tokenizer_class.from_pretrained("""roberta-base""" ) UpperCamelCase__ = tokenizer.encode("""sequence builders""" , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode( """sequence builders""" , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = """Encode this sequence.""" UpperCamelCase__ = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing spaces after special tokens UpperCamelCase__ = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ )} ) # mask token has a left space UpperCamelCase__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """Encode <mask> sequence""" UpperCamelCase__ = """Encode <mask>sequence""" UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = encoded.index(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = encoded.index(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """A, <mask> AllenNLP sentence.""" UpperCamelCase__ = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def UpperCAmelCase_ (self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(post_processor_state["""add_prefix_space"""] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(post_processor_state["""trim_offsets"""] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCamelCase__ = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = F"{text_of_1_token} {text_of_1_token}" UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ) + 1, len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ) + 1, len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) UpperCamelCase__ = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE_ ) + 1, 1 + len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE_ ), 1 + len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE_ ), 1 + len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , )
86
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
567
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> bool: '''simple docstring''' lowercase_ = len(__lowerCAmelCase ) lowercase_ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowercase_ = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowercase_ = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowercase_ = subset[i - 1][j] if arr[i - 1] <= j: lowercase_ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
567
1
_UpperCamelCase = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on _UpperCamelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def _lowercase ( lowercase__ ): return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def _lowercase ( lowercase__ ): return "".join(REVERSE_DICT[char] for char in message.split() ) def _lowercase ( ): __lowerCAmelCase : str = '''Morse code here!''' print(__snake_case ) __lowerCAmelCase : int = encrypt(__snake_case ) print(__snake_case ) __lowerCAmelCase : Optional[Any] = decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
712
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _UpperCamelCase = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
583
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __magic_name__ : Dict = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : int = ["""ViTFeatureExtractor"""] __magic_name__ : List[str] = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Union[str, Any] = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Union[str, Any] = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Tuple = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __magic_name__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
615
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowerCAmelCase__ = 5_0_0_0_0 lowerCAmelCase__ = 5_0_0_0 lowerCAmelCase__ , lowerCAmelCase__ = os.path.split(__file__) lowerCAmelCase__ = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: datasets.Dataset , SCREAMING_SNAKE_CASE_: List[Any] ) -> str: '''simple docstring''' for i in range(SCREAMING_SNAKE_CASE_ ): A__ = dataset[i] @get_duration def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: datasets.Dataset , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: List[str] ) -> str: '''simple docstring''' for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): A__ = dataset[i : i + batch_size] @get_duration def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: datasets.Dataset , SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: List[str] ) -> Optional[int]: '''simple docstring''' with dataset.formatted_as(type=SCREAMING_SNAKE_CASE_ ): for i in range(SCREAMING_SNAKE_CASE_ ): A__ = dataset[i] @get_duration def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: datasets.Dataset , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: List[Any] ) -> Any: '''simple docstring''' with dataset.formatted_as(type=SCREAMING_SNAKE_CASE_ ): for i in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A__ = dataset[i : i + batch_size] def lowerCAmelCase__ ( ) -> Any: '''simple docstring''' A__ = {"num examples": SPEED_TEST_N_EXAMPLES} A__ = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_0}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_0_0}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_0_0_0}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_0}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_0_0_0}), ] A__ = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_0}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_0_0}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_0_0_0}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_0}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1_0_0_0}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) A__ = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) A__ = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE_ , "dataset.arrow" ) , SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ , seq_shapes={"list": (1_0_0,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(SCREAMING_SNAKE_CASE_ ) ) A__ = func(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) print("shuffling dataset" ) A__ = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(SCREAMING_SNAKE_CASE_ ) ) A__ = func( SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , "wb" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
514
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = torch.device('''cpu''') def snake_case__ ( ) -> Tuple: '''simple docstring''' snake_case__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ = Image.open(requests.get(a , stream=a ).raw ) return im def snake_case__ ( a ) -> Any: '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] ) def snake_case__ ( a , a , a ) -> List[Any]: '''simple docstring''' snake_case__ = dct.pop(a ) snake_case__ = val def snake_case__ ( a ) -> int: '''simple docstring''' snake_case__ = [] for k in state_dict.keys(): snake_case__ = k if ".pwconv" in k: snake_case__ = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: snake_case__ = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: snake_case__ = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: snake_case__ = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: snake_case__ = k_new.split(""".""" ) if ls[2].isdigit(): snake_case__ = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: snake_case__ = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def snake_case__ ( a , a , a ) -> Any: '''simple docstring''' snake_case__ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ = 1000 snake_case__ = """huggingface/label-files""" snake_case__ = """imagenet-1k-id2label.json""" snake_case__ = json.load(open(hf_hub_download(a , a , repo_type="""dataset""" ) , """r""" ) ) snake_case__ = {int(a ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": snake_case__ = [3, 3, 6, 4] snake_case__ = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": snake_case__ = [3, 3, 9, 6] snake_case__ = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": snake_case__ = [4, 3, 10, 5] snake_case__ = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": snake_case__ = [4, 4, 12, 6] snake_case__ = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): snake_case__ = torch.hub.load_state_dict_from_url(a , map_location="""cpu""" , check_hash=a ) else: snake_case__ = torch.load(a , map_location="""cpu""" ) snake_case__ = checkpoint snake_case__ = create_rename_keys(a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(a , a , a ) # load HuggingFace model snake_case__ = SwiftFormerForImageClassification(a ).eval() hf_model.load_state_dict(a ) # prepare test inputs snake_case__ = prepare_img() snake_case__ = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) snake_case__ = processor(images=a , return_tensors="""pt""" ) # compare outputs from both models snake_case__ = get_expected_output(a ) snake_case__ = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , a , atol=1e-3 ) Path(a ).mkdir(exist_ok=a ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') a__ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
711
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset a__ = pd.read_csv( '''https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/''' '''position_salaries.csv''' ) a__ = dataset.iloc[:, 1:2].values a__ = dataset.iloc[:, 2].values a__ , a__ , a__ , a__ = train_test_split(X, y, test_size=0.2, random_state=0) a__ = PolynomialFeatures(degree=4) a__ = poly_reg.fit_transform(X) a__ = LinearRegression() pol_reg.fit(X_poly, y) def snake_case__ ( ) -> int: '''simple docstring''' plt.scatter(a , a , color="""red""" ) plt.plot(a , pol_reg.predict(poly_reg.fit_transform(a ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
566
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : Optional[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Optional[int] = 'data2vec-vision' def __init__( self : Optional[Any] , __magic_name__ : Optional[int]=768 , __magic_name__ : Any=12 , __magic_name__ : int=12 , __magic_name__ : str=3072 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : List[Any]=0.02 , __magic_name__ : Any=1E-12 , __magic_name__ : Dict=224 , __magic_name__ : Dict=16 , __magic_name__ : List[Any]=3 , __magic_name__ : Tuple=False , __magic_name__ : Optional[int]=False , __magic_name__ : Any=False , __magic_name__ : Optional[Any]=False , __magic_name__ : List[Any]=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Tuple=True , __magic_name__ : Dict=[3, 5, 7, 11] , __magic_name__ : int=[1, 2, 3, 6] , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=0.4 , __magic_name__ : int=256 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : Union[str, Any]=False , __magic_name__ : Optional[int]=255 , **__magic_name__ : int , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = use_mask_token lowerCAmelCase__ = use_absolute_position_embeddings lowerCAmelCase__ = use_relative_position_bias lowerCAmelCase__ = use_shared_relative_position_bias lowerCAmelCase__ = layer_scale_init_value lowerCAmelCase__ = drop_path_rate lowerCAmelCase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase__ = out_indices lowerCAmelCase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase__ = use_auxiliary_head lowerCAmelCase__ = auxiliary_loss_weight lowerCAmelCase__ = auxiliary_channels lowerCAmelCase__ = auxiliary_num_convs lowerCAmelCase__ = auxiliary_concat_input lowerCAmelCase__ = semantic_loss_ignore_index class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = version.parse('1.11' ) @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return 1E-4
48
from PIL import Image def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Image: def brightness(__lowerCAmelCase ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError("level must be between -255.0 (black) and 255.0 (white)" ) return img.point(__lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowerCamelCase : Optional[int] =change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
228
0
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
708
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> Optional[Any]: a : Optional[int] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ ) ) def __a ( self ) -> Optional[Any]: a : str = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ ) ) def __a ( self ) -> Dict: a : List[str] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ ) ) def __a ( self ) -> List[Any]: a : Optional[Any] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ ) ) def __a ( self ) -> Tuple: a : Tuple = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ ) ) def __a ( self ) -> Dict: a : Dict = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] a : Dict = "fp16" self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def __a ( self ) -> List[str]: a : List[Any] = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] a : Any = "fp16" self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def __a ( self ) -> int: # pass variant but use the non-variant filenames a : int = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] a : Tuple = "fp16" self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def __a ( self ) -> str: a : str = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] a : Any = "fp16" self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def __a ( self ) -> str: a : Union[str, Any] = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] a : str = "fp16" self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def __a ( self ) -> List[str]: # pass variant but use the non-variant filenames a : Optional[int] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] a : str = "fp16" self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def __a ( self ) -> Optional[Any]: a : Any = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] a : Optional[int] = "fp16" self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) )
31
0
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def a_ ( lowerCamelCase : str=None , lowerCamelCase : Union[str, Any]=None ): return field(default_factory=lambda: default , metadata=lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase : str = field( metadata={'''help''': '''The csv file to plot.'''} , ) lowerCamelCase : bool = field( default=__lowercase , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) lowerCamelCase : bool = field( default=__lowercase , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) lowerCamelCase : bool = field( default=__lowercase , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) lowerCamelCase : bool = field( default=__lowercase , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) lowerCamelCase : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) lowerCamelCase : Optional[List[str]] = list_field( default=__lowercase , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def a_ ( lowerCamelCase : Tuple ): try: int(lowerCamelCase ) return True except ValueError: return False def a_ ( lowerCamelCase : List[Any] ): try: float(lowerCamelCase ) return True except ValueError: return False class UpperCAmelCase_ : def __init__( self : int , UpperCAmelCase__ : Dict ) -> Optional[Any]: lowerCAmelCase = args lowerCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: lowerCAmelCase = csv.DictReader(UpperCAmelCase__ ) for row in reader: lowerCAmelCase = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None lowerCAmelCase = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None lowerCAmelCase = float(row['result'] ) def __UpperCAmelCase ( self : Union[str, Any] ) -> int: lowerCAmelCase , lowerCAmelCase = plt.subplots() lowerCAmelCase = 'Time usage' if self.args.is_time else 'Memory usage' lowerCAmelCase = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): lowerCAmelCase = sorted(set(self.result_dict[model_name]['bsz'] ) ) lowerCAmelCase = sorted(set(self.result_dict[model_name]['seq_len'] ) ) lowerCAmelCase = self.result_dict[model_name]['result'] ((lowerCAmelCase) , (lowerCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) lowerCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: lowerCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=UpperCAmelCase__ , ) else: lowerCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((lowerCAmelCase) , (lowerCAmelCase)) = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) lowerCAmelCase = np.asarray(UpperCAmelCase__ , UpperCAmelCase__ )[: len(UpperCAmelCase__ )] plt.scatter( UpperCAmelCase__ , UpperCAmelCase__ , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(UpperCAmelCase__ , UpperCAmelCase__ , '--' ) title_str += F''' {label_model_name} vs.''' lowerCAmelCase = title_str[:-4] lowerCAmelCase = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(UpperCAmelCase__ ) plt.xlabel(UpperCAmelCase__ ) plt.ylabel(UpperCAmelCase__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def a_ ( ): lowerCAmelCase = HfArgumentParser(lowerCamelCase ) lowerCAmelCase = parser.parse_args_into_dataclasses()[0] lowerCAmelCase = Plot(args=lowerCamelCase ) plot.plot() if __name__ == "__main__": main()
133
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] ): # Initialise PyTorch model lowerCAmelCase = RemBertConfig.from_json_file(lowerCamelCase ) print('Building PyTorch model from configuration: {}'.format(str(lowerCamelCase ) ) ) lowerCAmelCase = RemBertModel(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCamelCase ) ) torch.save(model.state_dict() , lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __snake_case =parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
133
1
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = {"vocab_file": "vocab.txt"} a = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } a = { "openbmb/cpm-ant-10b": 1024, } def _SCREAMING_SNAKE_CASE ( snake_case ) -> Dict: _UpperCAmelCase = collections.OrderedDict() with open(__SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as reader: _UpperCAmelCase = reader.readlines() for index, token in enumerate(__SCREAMING_SNAKE_CASE ): _UpperCAmelCase = token.rstrip("""\n""" ) _UpperCAmelCase = index return vocab class lowerCamelCase ( lowercase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE=200 ): _UpperCAmelCase = vocab _UpperCAmelCase = unk_token _UpperCAmelCase = max_input_chars_per_word def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = list(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > self.max_input_chars_per_word: return [self.unk_token] _UpperCAmelCase = 0 _UpperCAmelCase = [] while start < len(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = None while start < end: _UpperCAmelCase = """""".join(chars[start:end] ) if substr in self.vocab: _UpperCAmelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = end return sub_tokens class lowerCamelCase ( lowercase__ ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ['input_ids', 'attention_mask'] __a = False def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<d>" , _SCREAMING_SNAKE_CASE="</d>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="</n>" , _SCREAMING_SNAKE_CASE="</_>" , _SCREAMING_SNAKE_CASE="left" , **_SCREAMING_SNAKE_CASE , ): requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=_SCREAMING_SNAKE_CASE , eod_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , line_token=_SCREAMING_SNAKE_CASE , space_token=_SCREAMING_SNAKE_CASE , padding_side=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = bod_token _UpperCAmelCase = eod_token _UpperCAmelCase = load_vocab(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.encoder[space_token] _UpperCAmelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _UpperCAmelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _SCREAMING_SNAKE_CASE : x[1] ) ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} _UpperCAmelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def UpperCAmelCase ( self ): return self.encoder[self.bod_token] @property def UpperCAmelCase ( self ): return self.encoder[self.eod_token] @property def UpperCAmelCase ( self ): return self.encoder["\n"] @property def UpperCAmelCase ( self ): return len(self.encoder ) def UpperCAmelCase ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = [] for x in jieba.cut(_SCREAMING_SNAKE_CASE , cut_all=_SCREAMING_SNAKE_CASE ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) ) return output_tokens def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = [i for i in token_ids if i >= 0] _UpperCAmelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): return token in self.encoder def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): return "".join(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): return self.decoder.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): if os.path.isdir(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: _UpperCAmelCase = (filename_prefix + """-""" if filename_prefix else """""") + save_directory _UpperCAmelCase = 0 if " " in self.encoder: _UpperCAmelCase = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: _UpperCAmelCase = self.encoder["""\n"""] del self.encoder["\n"] _UpperCAmelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _SCREAMING_SNAKE_CASE : x[1] ) ) with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." """ Please check that the vocabulary is not corrupted!""" ) _UpperCAmelCase = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) return [1] + ([0] * len(_SCREAMING_SNAKE_CASE ))
701
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> int: assert isinstance(snake_case , snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader(snake_case , cache_dir=snake_case , keep_in_memory=snake_case ).read() _check_json_dataset(snake_case , snake_case ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(snake_case , features=snake_case , cache_dir=snake_case ).read() _check_json_dataset(snake_case , snake_case ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> int: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(snake_case , features=snake_case , cache_dir=snake_case ).read() assert isinstance(snake_case , snake_case ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Optional[int]: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} _UpperCAmelCase = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} _UpperCAmelCase = features.copy() _UpperCAmelCase = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = JsonDatasetReader(snake_case , features=snake_case , cache_dir=snake_case ).read() assert isinstance(snake_case , snake_case ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> List[Any]: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = JsonDatasetReader(snake_case , cache_dir=snake_case , split=snake_case ).read() _check_json_dataset(snake_case , snake_case ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Any: if issubclass(snake_case , snake_case ): _UpperCAmelCase = jsonl_path elif issubclass(snake_case , snake_case ): _UpperCAmelCase = [jsonl_path] _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = JsonDatasetReader(snake_case , cache_dir=snake_case ).read() _check_json_dataset(snake_case , snake_case ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case=("train",) ) -> str: assert isinstance(snake_case , snake_case ) for split in splits: _UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> str: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=snake_case , keep_in_memory=snake_case ).read() _check_json_datasetdict(snake_case , snake_case ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Tuple: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader({"""train""": jsonl_path} , features=snake_case , cache_dir=snake_case ).read() _check_json_datasetdict(snake_case , snake_case ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Optional[Any]: if split: _UpperCAmelCase = {split: jsonl_path} else: _UpperCAmelCase = """train""" _UpperCAmelCase = {"""train""": jsonl_path, """test""": jsonl_path} _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = JsonDatasetReader(snake_case , cache_dir=snake_case ).read() _check_json_datasetdict(snake_case , snake_case , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _SCREAMING_SNAKE_CASE ( snake_case ) -> List[Any]: return json.load(snake_case ) def _SCREAMING_SNAKE_CASE ( snake_case ) -> List[Any]: return [json.loads(snake_case ) for line in buffer] class _A : @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE ).write() buffer.seek(0 ) _UpperCAmelCase = load_json_function(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert isinstance(exported_content[0] , _SCREAMING_SNAKE_CASE ) assert len(_SCREAMING_SNAKE_CASE ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE , orient=_SCREAMING_SNAKE_CASE ).write() buffer.seek(0 ) _UpperCAmelCase = load_json(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_SCREAMING_SNAKE_CASE , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_SCREAMING_SNAKE_CASE ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase = load_json_function(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert isinstance(exported_content[0] , _SCREAMING_SNAKE_CASE ) assert len(_SCREAMING_SNAKE_CASE ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE , orient=_SCREAMING_SNAKE_CASE , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase = load_json(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_SCREAMING_SNAKE_CASE , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_SCREAMING_SNAKE_CASE ) == 10 def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): with pytest.raises(_SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / F"test.json.{extension}" _UpperCAmelCase = str(shared_datadir / F"test_file.json.{extension}" ) JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compression=_SCREAMING_SNAKE_CASE ).write() with fsspec.open(_SCREAMING_SNAKE_CASE , """rb""" , compression="""infer""" ) as f: _UpperCAmelCase = f.read() with fsspec.open(_SCREAMING_SNAKE_CASE , """rb""" , compression="""infer""" ) as f: _UpperCAmelCase = f.read() assert exported_content == original_content
175
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class lowercase_ (a__ ): snake_case =None snake_case =None snake_case =None snake_case =None class lowercase_ (a__ ): def __init__( self , lowercase_=1 , lowercase_=0 , lowercase_=2 , lowercase_=512 , lowercase_="cls" , lowercase_=False , lowercase_=True , **lowercase_ , ) -> Any: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__) a__ =project_dim a__ =pooler_fn a__ =learn_encoder a__ =use_attention_mask class lowercase_ (a__ ): snake_case =[r'''pooler''', r'''logit_scale'''] snake_case =[r'''position_ids''', r'''predictions.decoder.bias'''] snake_case ='''roberta''' snake_case =RobertaSeriesConfig def __init__( self , lowercase_) -> Any: super().__init__(SCREAMING_SNAKE_CASE__) a__ =XLMRobertaModel(SCREAMING_SNAKE_CASE__) a__ =nn.Linear(config.hidden_size , config.project_dim) a__ =getattr(SCREAMING_SNAKE_CASE__ , 'has_pre_transformation' , SCREAMING_SNAKE_CASE__) if self.has_pre_transformation: a__ =nn.Linear(config.hidden_size , config.project_dim) a__ =nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps) self.post_init() def __UpperCamelCase ( self , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , ) -> Optional[int]: a__ =return_dict if return_dict is not None else self.config.use_return_dict a__ =self.base_model( input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , position_ids=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ , inputs_embeds=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , encoder_attention_mask=SCREAMING_SNAKE_CASE__ , output_attentions=SCREAMING_SNAKE_CASE__ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=SCREAMING_SNAKE_CASE__ , ) if self.has_pre_transformation: a__ =outputs["""hidden_states"""][-2] a__ =self.pre_LN(SCREAMING_SNAKE_CASE__) a__ =self.transformation_pre(SCREAMING_SNAKE_CASE__) return TransformationModelOutput( projection_state=SCREAMING_SNAKE_CASE__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: a__ =self.transformation(outputs.last_hidden_state) return TransformationModelOutput( projection_state=SCREAMING_SNAKE_CASE__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
20
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCAmelCase__ : Tuple = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ : Optional[Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCAmelCase__ : Dict = transformers.models.auto.configuration_auto.CONFIG_MAPPING UpperCAmelCase__ : Dict = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): SCREAMING_SNAKE_CASE__ : Tuple = True # Deal with multi-line cases elif ( re.search( Rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' ,_snake_case ,) is not None ): SCREAMING_SNAKE_CASE__ : Dict = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: SCREAMING_SNAKE_CASE__ : List[str] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files SCREAMING_SNAKE_CASE__ : List[Any] = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed SCREAMING_SNAKE_CASE__ : List[str] = True if not attribute_used: SCREAMING_SNAKE_CASE__ : List[Any] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: SCREAMING_SNAKE_CASE__ : Tuple = True elif attribute in ["tie_word_embeddings"] and default_value is False: SCREAMING_SNAKE_CASE__ : int = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: SCREAMING_SNAKE_CASE__ : Optional[Any] = True elif attribute.endswith("""_token_id""" ): SCREAMING_SNAKE_CASE__ : List[Any] = True # configuration class specific cases if not case_allowed: SCREAMING_SNAKE_CASE__ : Tuple = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ ,[] ) SCREAMING_SNAKE_CASE__ : int = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Any = dict(inspect.signature(config_class.__init__ ).parameters ) SCREAMING_SNAKE_CASE__ : Optional[int] = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] SCREAMING_SNAKE_CASE__ : List[Any] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass SCREAMING_SNAKE_CASE__ : List[Any] = {} if len(config_class.attribute_map ) > 0: SCREAMING_SNAKE_CASE__ : Dict = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files SCREAMING_SNAKE_CASE__ : int = inspect.getsourcefile(_snake_case ) SCREAMING_SNAKE_CASE__ : Any = os.path.dirname(_snake_case ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. SCREAMING_SNAKE_CASE__ : Optional[Any] = [os.path.join(_snake_case ,_snake_case ) for fn in os.listdir(_snake_case ) if fn.startswith("""modeling_""" )] # Get the source code strings SCREAMING_SNAKE_CASE__ : Any = [] for path in modeling_paths: if os.path.isfile(_snake_case ): with open(_snake_case ) as fp: modeling_sources.append(fp.read() ) SCREAMING_SNAKE_CASE__ : List[str] = [] for config_param, default_value in zip(_snake_case ,_snake_case ): # `attributes` here is all the variant names for `config_param` SCREAMING_SNAKE_CASE__ : List[Any] = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_snake_case ,_snake_case ,_snake_case ,_snake_case ): unused_attributes.append(attributes[0] ) return sorted(_snake_case ) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Tuple = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) SCREAMING_SNAKE_CASE__ : Optional[Any] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) ,lambda _snake_case : inspect.isclass(_snake_case ) and issubclass(_snake_case ,_snake_case ) and inspect.getmodule(_snake_case ) == inspect.getmodule(_config_class ) ,) ] for config_class in config_classes_in_module: SCREAMING_SNAKE_CASE__ : Union[str, Any] = check_config_attributes_being_used(_snake_case ) if len(_snake_case ) > 0: SCREAMING_SNAKE_CASE__ : str = unused_attributes if len(_snake_case ) > 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(_snake_case ) if __name__ == "__main__": check_config_attributes()
223
0
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Dict = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class __lowerCamelCase ( lowerCamelCase_ ): """simple docstring""" a_: str = """efficientnet""" def __init__( self : Optional[Any] , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 600 , lowerCamelCase_ : float = 2.0 , lowerCamelCase_ : float = 3.1 , lowerCamelCase_ : int = 8 , lowerCamelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase_ : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCamelCase_ : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCamelCase_ : List[int] = [] , lowerCamelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase_ : float = 0.25 , lowerCamelCase_ : str = "swish" , lowerCamelCase_ : int = 2560 , lowerCamelCase_ : str = "mean" , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : float = 0.001 , lowerCamelCase_ : float = 0.99 , lowerCamelCase_ : float = 0.5 , lowerCamelCase_ : float = 0.2 , **lowerCamelCase_ : Tuple , ): super().__init__(**lowerCamelCase_ ) _lowerCAmelCase =num_channels _lowerCAmelCase =image_size _lowerCAmelCase =width_coefficient _lowerCAmelCase =depth_coefficient _lowerCAmelCase =depth_divisor _lowerCAmelCase =kernel_sizes _lowerCAmelCase =in_channels _lowerCAmelCase =out_channels _lowerCAmelCase =depthwise_padding _lowerCAmelCase =strides _lowerCAmelCase =num_block_repeats _lowerCAmelCase =expand_ratios _lowerCAmelCase =squeeze_expansion_ratio _lowerCAmelCase =hidden_act _lowerCAmelCase =hidden_dim _lowerCAmelCase =pooling_type _lowerCAmelCase =initializer_range _lowerCAmelCase =batch_norm_eps _lowerCAmelCase =batch_norm_momentum _lowerCAmelCase =dropout_rate _lowerCAmelCase =drop_connect_rate _lowerCAmelCase =sum(lowerCamelCase_ ) * 4 class __lowerCamelCase ( lowerCamelCase_ ): """simple docstring""" a_: Optional[int] = version.parse("""1.11""" ) @property def lowerCAmelCase__ ( self : List[str] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self : List[str] ): return 1e-5
149
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowercase__ : Any , lowercase__ : List[str] , lowercase__ : List[str] ): '''simple docstring''' _lowerCAmelCase =BertConfig.from_json_file(lowercase__ ) print(f"Building PyTorch model from configuration: {config}" ) _lowerCAmelCase =BertForPreTraining(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
149
1
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } _lowerCamelCase : int = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" for attribute in key.split('''.''' ): A__ = getattr(lowercase_ , lowercase_ ) if weight_type is not None: A__ = getattr(lowercase_ , lowercase_ ).shape else: A__ = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": A__ = value elif weight_type == "weight_g": A__ = value elif weight_type == "weight_v": A__ = value elif weight_type == "bias": A__ = value else: A__ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: """simple docstring""" A__ = [] A__ = fairseq_model.state_dict() A__ = hf_model.feature_extractor for name, value in fairseq_dict.items(): A__ = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == '''group''' , ) A__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: A__ = True if "*" in mapped_key: A__ = name.split(lowercase_ )[0].split('''.''' )[-2] A__ = mapped_key.replace('''*''' , lowercase_ ) if "weight_g" in name: A__ = '''weight_g''' elif "weight_v" in name: A__ = '''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: A__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj A__ = '''weight''' else: A__ = None set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = full_name.split('''conv_layers.''' )[-1] A__ = name.split('''.''' ) A__ = int(items[0] ) A__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) A__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) A__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) A__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) A__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None ) -> List[Any]: """simple docstring""" A__ = torch.load(lowercase_ ) A__ = WavLMConfigOrig(checkpoint['''cfg'''] ) A__ = WavLMOrig(lowercase_ ) model.load_state_dict(checkpoint['''model'''] ) model.eval() if config_path is not None: A__ = WavLMConfig.from_pretrained(lowercase_ ) else: A__ = WavLMConfig() A__ = WavLMModel(lowercase_ ) recursively_load_weights(lowercase_ , lowercase_ ) hf_wavlm.save_pretrained(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") _lowerCamelCase : Optional[Any] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
87
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE="divided_space_time" , _SCREAMING_SNAKE_CASE=None , ) -> List[str]: '''simple docstring''' UpperCAmelCase : str = parent UpperCAmelCase : str = batch_size UpperCAmelCase : str = image_size UpperCAmelCase : str = num_channels UpperCAmelCase : int = patch_size UpperCAmelCase : Union[str, Any] = num_frames UpperCAmelCase : Dict = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : int = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : List[Any] = hidden_dropout_prob UpperCAmelCase : Tuple = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = attention_type UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Tuple = scope UpperCAmelCase : Optional[Any] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token UpperCAmelCase : Dict = (image_size // patch_size) ** 2 UpperCAmelCase : int = (num_frames) * self.num_patches_per_frame + 1 def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[Any] = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) UpperCAmelCase : Union[str, Any] = self.num_labels return config def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple = TimesformerModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = TimesformerForVideoClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Any = model(_SCREAMING_SNAKE_CASE ) # verify the logits shape UpperCAmelCase : Optional[int] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = config_and_inputs UpperCAmelCase : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : int = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __lowerCAmelCase : List[str] = ( {'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification} if is_torch_available() else {} ) __lowerCAmelCase : int = False __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : List[Any] = False def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Any = TimesformerModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester( self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] = copy.deepcopy(_SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] UpperCAmelCase : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*_SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : int = TimesformerModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' if not self.has_attentions: pass else: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[int] = True for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = self.model_tester.seq_length UpperCAmelCase : Dict = self.model_tester.num_frames UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Tuple = False UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCAmelCase : Tuple = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : Optional[Any] = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase : int = True UpperCAmelCase : int = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCAmelCase : int = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) UpperCAmelCase : int = len(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine UpperCAmelCase : str = True UpperCAmelCase : int = True UpperCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + 1 , len(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : Optional[int] = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : List[str] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCAmelCase : str = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : int = outputs.hidden_states UpperCAmelCase : Optional[int] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( ): UpperCAmelCase : int = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) UpperCAmelCase : int = np.load(UpperCamelCase ) return list(UpperCamelCase ) @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : List[str] = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( _SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = self.default_image_processor UpperCAmelCase : Optional[int] = prepare_video() UpperCAmelCase : List[Any] = image_processor(video[:8] , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCAmelCase : Tuple = model(**_SCREAMING_SNAKE_CASE ) # verify the logits UpperCAmelCase : Union[str, Any] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
160
0
def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : str = len(SCREAMING_SNAKE_CASE_ ) + 1 UpperCamelCase : Tuple = len(SCREAMING_SNAKE_CASE_ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCamelCase : str = [[0 for i in range(SCREAMING_SNAKE_CASE_ )] for j in range(SCREAMING_SNAKE_CASE_ )] # since string of zero length match pattern of zero length UpperCamelCase : Optional[Any] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Any = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , SCREAMING_SNAKE_CASE_ ): for j in range(1 , SCREAMING_SNAKE_CASE_ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCamelCase : int = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCamelCase : Union[str, Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCamelCase : Tuple = dp[i - 1][j] else: UpperCamelCase : Any = 0 else: UpperCamelCase : Optional[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __UpperCAmelCase : Tuple = "aab" __UpperCAmelCase : Any = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
643
import requests from bsa import BeautifulSoup def a ( SCREAMING_SNAKE_CASE_ : str = "AAPL" ): """simple docstring""" UpperCamelCase : Dict = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" UpperCamelCase : Any = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , '''html.parser''' ) UpperCamelCase : Dict = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
643
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Tuple = KandinskyVaaImgaImgPipeline __lowercase : Tuple = ['''image_embeds''', '''negative_image_embeds''', '''image'''] __lowercase : Union[str, Any] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] __lowercase : Tuple = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __lowercase : List[str] = False @property def snake_case_ ( self): return 3_2 @property def snake_case_ ( self): return 3_2 @property def snake_case_ ( self): return self.time_input_dim @property def snake_case_ ( self): return self.time_input_dim * 4 @property def snake_case_ ( self): return 1_0_0 @property def snake_case_ ( self): torch.manual_seed(0) __SCREAMING_SNAKE_CASE = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __SCREAMING_SNAKE_CASE = UNetaDConditionModel(**lowerCAmelCase__) return model @property def snake_case_ ( self): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self): torch.manual_seed(0) __SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs) return model def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.dummy_unet __SCREAMING_SNAKE_CASE = self.dummy_movq __SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 1_0_0_0, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __SCREAMING_SNAKE_CASE = DDIMScheduler(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=0): __SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( lowerCAmelCase__) # create init_image __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1)[0] __SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(lowerCAmelCase__)).convert("""RGB""").resize((2_5_6, 2_5_6)) if str(lowerCAmelCase__).startswith("""mps"""): __SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 1_0, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """cpu""" __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(lowerCAmelCase__) , return_dict=lowerCAmelCase__ , )[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __SCREAMING_SNAKE_CASE = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""") __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""") __SCREAMING_SNAKE_CASE = """A red cartoon frog, 4k""" __SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa) pipe_prior.to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa) __SCREAMING_SNAKE_CASE = pipeline.to(lowerCAmelCase__) pipeline.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""").manual_seed(0) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __SCREAMING_SNAKE_CASE = pipeline( image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="""np""" , ) __SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
155
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
155
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A ( unittest.TestCase ): """simple docstring""" @property def _UpperCAmelCase ( self ): torch.manual_seed(0 ) UpperCamelCase_ : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def _UpperCAmelCase ( self ): torch.manual_seed(0 ) UpperCamelCase_ : Optional[int] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def _UpperCAmelCase ( self ): torch.manual_seed(0 ) UpperCamelCase_ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[Any] = self.dummy_uncond_unet UpperCamelCase_ : Union[str, Any] = DDIMScheduler() UpperCamelCase_ : List[str] = self.dummy_vq_model UpperCamelCase_ : Union[str, Any] = LDMPipeline(unet=__lowerCAmelCase , vqvae=__lowerCAmelCase , scheduler=__lowerCAmelCase ) ldm.to(__lowerCAmelCase ) ldm.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCamelCase_ : str = torch.manual_seed(0 ) UpperCamelCase_ : Tuple = ldm(generator=__lowerCAmelCase , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_ : Dict = torch.manual_seed(0 ) UpperCamelCase_ : Optional[int] = ldm(generator=__lowerCAmelCase , num_inference_steps=2 , output_type="""numpy""" , return_dict=__lowerCAmelCase )[0] UpperCamelCase_ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase_ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ : List[Any] = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) UpperCamelCase_ : Optional[int] = 1E-2 if torch_device != """mps""" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): UpperCamelCase_ : Tuple = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(__lowerCAmelCase ) ldm.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCamelCase_ : List[str] = torch.manual_seed(0 ) UpperCamelCase_ : Union[str, Any] = ldm(generator=__lowerCAmelCase , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) UpperCamelCase_ : Tuple = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) UpperCamelCase_ : Optional[int] = 1E-2 if torch_device != """mps""" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
708
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class A : """simple docstring""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase=2 , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=10 , __lowerCAmelCase=3 , __lowerCAmelCase=32 * 4 , __lowerCAmelCase=32 * 6 , __lowerCAmelCase=4 , __lowerCAmelCase=32 , ): UpperCamelCase_ : List[str] = parent UpperCamelCase_ : List[Any] = batch_size UpperCamelCase_ : int = is_training UpperCamelCase_ : Union[str, Any] = use_auxiliary_loss UpperCamelCase_ : Optional[Any] = num_queries UpperCamelCase_ : List[str] = num_channels UpperCamelCase_ : Optional[int] = min_size UpperCamelCase_ : Union[str, Any] = max_size UpperCamelCase_ : Optional[int] = num_labels UpperCamelCase_ : List[Any] = mask_feature_size def _UpperCAmelCase ( self ): UpperCamelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__lowerCAmelCase ) UpperCamelCase_ : Dict = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__lowerCAmelCase ) > 0.5 ).float() UpperCamelCase_ : List[Any] = (torch.rand((self.batch_size, self.num_labels) , device=__lowerCAmelCase ) > 0.5).long() UpperCamelCase_ : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _UpperCAmelCase ( self ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def _UpperCAmelCase ( self ): UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase_ : int = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : List[str] = output.encoder_hidden_states UpperCamelCase_ : Any = output.pixel_decoder_hidden_states UpperCamelCase_ : Union[str, Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowerCAmelCase ) , config.decoder_config.decoder_layers ) def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): with torch.no_grad(): UpperCamelCase_ : Tuple = MaskFormerModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCamelCase_ : str = model(pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = model(__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__lowerCAmelCase , __lowerCAmelCase ) def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : Optional[int] = MaskFormerForInstanceSegmentation(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() def comm_check_on_output(__lowerCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase_ : List[Any] = model(pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase ) UpperCamelCase_ : List[str] = model(__lowerCAmelCase ) comm_check_on_output(__lowerCAmelCase ) UpperCamelCase_ : Dict = model( pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ) comm_check_on_output(__lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class A ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, unittest.TestCase ): """simple docstring""" __a : Tuple = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __a : List[str] = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __a : List[Any] = False __a : int = False __a : List[str] = False __a : Any = False def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[int] = MaskFormerModelTester(self ) UpperCamelCase_ : Optional[int] = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def _UpperCAmelCase ( self ): self.config_tester.run_common_tests() def _UpperCAmelCase ( self ): UpperCamelCase_ , UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__lowerCAmelCase , **__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__lowerCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def _UpperCAmelCase ( self ): pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def _UpperCAmelCase ( self ): pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def _UpperCAmelCase ( self ): pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def _UpperCAmelCase ( self ): pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _UpperCAmelCase ( self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _UpperCAmelCase ( self ): pass def _UpperCAmelCase ( self ): UpperCamelCase_ , UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : List[Any] = model_class(__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ : Optional[Any] = [*signature.parameters.keys()] UpperCamelCase_ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) @slow def _UpperCAmelCase ( self ): for model_name in ["facebook/maskformer-swin-small-coco"]: UpperCamelCase_ : List[str] = MaskFormerModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Tuple = (self.model_tester.min_size,) * 2 UpperCamelCase_ : Optional[int] = { """pixel_values""": torch.randn((2, 3, *size) , device=__lowerCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) , device=__lowerCAmelCase ), """class_labels""": torch.zeros(2 , 10 , device=__lowerCAmelCase ).long(), } UpperCamelCase_ : Union[str, Any] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__lowerCAmelCase ) UpperCamelCase_ : List[str] = model(**__lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def _UpperCAmelCase ( self ): UpperCamelCase_ , UpperCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__lowerCAmelCase , **__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ , UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Optional[int] = model_class(__lowerCAmelCase ).to(__lowerCAmelCase ) UpperCamelCase_ : Optional[int] = model(**__lowerCAmelCase , output_attentions=__lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def _UpperCAmelCase ( self ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss UpperCamelCase_ : int = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ : Dict = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() UpperCamelCase_ : Union[str, Any] = model(__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ).loss loss.backward() def _UpperCAmelCase ( self ): # only MaskFormerForInstanceSegmentation has the loss UpperCamelCase_ : List[Any] = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : List[str] = True UpperCamelCase_ : Any = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() UpperCamelCase_ : Dict = model(__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ) UpperCamelCase_ : Optional[int] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase_ : Optional[int] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't UpperCamelCase_ : List[str] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase_ : List[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCamelCase =1E-4 def snake_case ( ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class A ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCAmelCase ( self ): return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def _UpperCAmelCase ( self ): UpperCamelCase_ : List[Any] = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(__lowerCAmelCase ) UpperCamelCase_ : Optional[Any] = self.default_image_processor UpperCamelCase_ : Optional[int] = prepare_img() UpperCamelCase_ : Optional[int] = image_processor(__lowerCAmelCase , return_tensors="""pt""" ).to(__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): UpperCamelCase_ : Tuple = model(**__lowerCAmelCase ) UpperCamelCase_ : str = torch.tensor( [[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) UpperCamelCase_ : Any = torch.tensor( [[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) UpperCamelCase_ : List[Any] = torch.tensor( [[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(__lowerCAmelCase ) .eval() ) UpperCamelCase_ : int = self.default_image_processor UpperCamelCase_ : Tuple = prepare_img() UpperCamelCase_ : Optional[Any] = image_processor(__lowerCAmelCase , return_tensors="""pt""" ).to(__lowerCAmelCase ) UpperCamelCase_ : List[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): UpperCamelCase_ : List[str] = model(**__lowerCAmelCase ) # masks_queries_logits UpperCamelCase_ : Any = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCamelCase_ : Union[str, Any] = [ [-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33], [-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95], [-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42], ] UpperCamelCase_ : Optional[Any] = torch.tensor(__lowerCAmelCase ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) # class_queries_logits UpperCamelCase_ : List[str] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCamelCase_ : Optional[Any] = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(__lowerCAmelCase ) .eval() ) UpperCamelCase_ : Optional[int] = self.default_image_processor UpperCamelCase_ : Optional[Any] = prepare_img() UpperCamelCase_ : str = image_processor(__lowerCAmelCase , return_tensors="""pt""" ).to(__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): UpperCamelCase_ : List[Any] = model(**__lowerCAmelCase ) # masks_queries_logits UpperCamelCase_ : Union[str, Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCamelCase_ : List[str] = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]] UpperCamelCase_ : Any = torch.tensor(__lowerCAmelCase ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) # class_queries_logits UpperCamelCase_ : List[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCamelCase_ : Any = torch.tensor( [[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def _UpperCAmelCase ( self ): UpperCamelCase_ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(__lowerCAmelCase ) .eval() ) UpperCamelCase_ : Optional[int] = self.default_image_processor UpperCamelCase_ : Tuple = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) UpperCamelCase_ : List[Any] = inputs["""pixel_values"""].to(__lowerCAmelCase ) UpperCamelCase_ : List[Any] = [el.to(__lowerCAmelCase ) for el in inputs["""mask_labels"""]] UpperCamelCase_ : Tuple = [el.to(__lowerCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): UpperCamelCase_ : Union[str, Any] = model(**__lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
543
0
def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" lowerCamelCase__: Tuple =[int(__a ) for i in ip_va_address.split("." ) if i.isdigit()] return len(__a ) == 4 and all(0 <= int(__a ) <= 254 for octet in octets ) if __name__ == "__main__": __A = input().strip() __A = "valid" if is_ip_va_address_valid(ip) else "invalid" print(f'{ip} is a {valid_or_invalid} IP v4 address.')
59
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case__ = 16 snake_case__ = 32 def lowerCamelCase__ ( a : Accelerator , a : int = 16 ) -> int: """simple docstring""" a__ :Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) a__ :int = load_dataset("glue" , "mrpc" ) def tokenize_function(a : List[Any] ): # max_length=None => use the model max length (it's actually the default) a__ :Optional[int] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=a , max_length=a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a__ :Union[str, Any] = datasets.map( a , batched=a , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ :Optional[int] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(a : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. a__ :Dict = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a__ :List[str] = 16 elif accelerator.mixed_precision != "no": a__ :Optional[int] = 8 else: a__ :Tuple = None return tokenizer.pad( a , padding="longest" , max_length=a , pad_to_multiple_of=a , return_tensors="pt" , ) # Instantiate dataloaders. a__ :str = DataLoader( tokenized_datasets["train"] , shuffle=a , collate_fn=a , batch_size=a , drop_last=a ) a__ :str = DataLoader( tokenized_datasets["validation"] , shuffle=a , collate_fn=a , batch_size=a , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def lowerCamelCase__ ( a : List[str] , a : Dict ) -> List[str]: """simple docstring""" # Initialize accelerator a__ :Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ :Optional[int] = config["lr"] a__ :List[str] = int(config["num_epochs"] ) a__ :List[Any] = int(config["seed"] ) a__ :List[Any] = int(config["batch_size"] ) a__ :Any = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation a__ :str = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: a__ :Tuple = batch_size // MAX_GPU_BATCH_SIZE a__ :List[str] = MAX_GPU_BATCH_SIZE set_seed(a ) a__ , a__ :Tuple = get_dataloaders(a , a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ :List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a__ :int = model.to(accelerator.device ) # Instantiate optimizer a__ :Any = AdamW(params=model.parameters() , lr=a ) # Instantiate scheduler a__ :Union[str, Any] = get_linear_schedule_with_warmup( optimizer=a , num_warmup_steps=100 , num_training_steps=(len(a ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ :Any = accelerator.prepare( a , a , a , a , a ) # Now we train the model for epoch in range(a ): model.train() for step, batch in enumerate(a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) a__ :List[str] = model(**a ) a__ :Union[str, Any] = outputs.loss a__ :str = loss / gradient_accumulation_steps accelerator.backward(a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a__ :Optional[int] = model(**a ) a__ :str = outputs.logits.argmax(dim=-1 ) a__ , a__ :List[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=a , references=a , ) a__ :Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , a ) def lowerCamelCase__ ( ) -> Any: """simple docstring""" a__ :List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=a , default=a , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) a__ :Union[str, Any] = parser.parse_args() a__ :Optional[Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(a , a ) if __name__ == "__main__": main()
395
0
"""simple docstring""" def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->bool: if number < 0: raise ValueError('''number must not be negative''' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
719
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : str =logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] ={ 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """sew-d""" def __init__( self , _lowercase=32 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase=2 , _lowercase=512 , _lowercase=256 , _lowercase=True , _lowercase=True , _lowercase=("p2c", "c2p") , _lowercase="layer_norm" , _lowercase="gelu_python" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=1E-7 , _lowercase=1E-5 , _lowercase="group" , _lowercase="gelu" , _lowercase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _lowercase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _lowercase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _lowercase=False , _lowercase=128 , _lowercase=16 , _lowercase=True , _lowercase=0.05 , _lowercase=10 , _lowercase=2 , _lowercase=0.0 , _lowercase=10 , _lowercase=0 , _lowercase="mean" , _lowercase=False , _lowercase=False , _lowercase=256 , _lowercase=0 , _lowercase=1 , _lowercase=2 , **_lowercase , ) -> str: super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase ) _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : str = feat_extract_norm _lowerCamelCase : int = feat_extract_activation _lowerCamelCase : Optional[int] = list(_lowercase ) _lowerCamelCase : Any = list(_lowercase ) _lowerCamelCase : Dict = list(_lowercase ) _lowerCamelCase : List[Any] = conv_bias _lowerCamelCase : Dict = num_conv_pos_embeddings _lowerCamelCase : Optional[int] = num_conv_pos_embedding_groups _lowerCamelCase : Dict = len(self.conv_dim ) _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Optional[int] = squeeze_factor _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : Any = position_buckets _lowerCamelCase : str = share_att_key _lowerCamelCase : Optional[int] = relative_attention _lowerCamelCase : Tuple = norm_rel_ebd _lowerCamelCase : Union[str, Any] = list(_lowercase ) _lowerCamelCase : int = hidden_act _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : str = hidden_dropout _lowerCamelCase : int = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Union[str, Any] = feat_proj_dropout _lowerCamelCase : int = final_dropout _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Dict = feature_layer_norm_eps _lowerCamelCase : Any = initializer_range _lowerCamelCase : str = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Union[str, Any] = apply_spec_augment _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[str] = mask_time_min_masks _lowerCamelCase : Optional[int] = mask_feature_prob _lowerCamelCase : List[str] = mask_feature_length _lowerCamelCase : int = mask_feature_min_masks # ctc loss _lowerCamelCase : int = ctc_loss_reduction _lowerCamelCase : List[Any] = ctc_zero_infinity # sequence classification _lowerCamelCase : Optional[int] = use_weighted_layer_sum _lowerCamelCase : List[Any] = classifier_proj_size @property def a__ ( self ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
558
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCamelCase__ : """simple docstring""" A__ : List[str] = XGLMConfig A__ : List[Any] = {} A__ : Optional[Any] = "gelu" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=14 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=0.0_2 , ) -> int: A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_labels A__ = vocab_size A__ = d_model A__ = num_hidden_layers A__ = num_attention_heads A__ = ffn_dim A__ = activation_function A__ = activation_dropout A__ = attention_dropout A__ = max_position_embeddings A__ = initializer_range A__ = None A__ = 0 A__ = 2 A__ = 1 def snake_case__ ( self ) -> List[Any]: return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def snake_case__ ( self ) -> int: A__ = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = self.get_config() A__ = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case__ ( self ) -> str: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE__ , ) def snake_case__ ( self ) -> List[str]: A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class UpperCamelCase__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" A__ : Dict = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () A__ : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () A__ : Optional[int] = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) A__ : Union[str, Any] = False A__ : int = False A__ : Optional[int] = False def snake_case__ ( self ) -> Optional[int]: A__ = TFXGLMModelTester(self ) A__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , n_embd=37 ) def snake_case__ ( self ) -> Tuple: self.config_tester.run_common_tests() @slow def snake_case__ ( self ) -> Tuple: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def snake_case__ ( self ) -> List[Any]: super().test_resize_token_embeddings() @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self , SCREAMING_SNAKE_CASE__=True ) -> List[str]: A__ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) A__ = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off A__ = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on A__ = model.generate(SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE__ ) @slow def snake_case__ ( self ) -> Union[str, Any]: A__ = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) A__ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) A__ = tokenizer("Today is a nice day and" , return_tensors="tf" ) A__ = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): A__ = model.generate(SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ , seed=[7, 0] ) A__ = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) A__ = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def snake_case__ ( self ) -> int: A__ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) A__ = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) A__ = "left" # use different length sentences to test batching A__ = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] A__ = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors="tf" , padding=SCREAMING_SNAKE_CASE__ ) A__ = inputs["input_ids"] A__ = model.generate(input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=inputs["attention_mask"] , max_new_tokens=12 ) A__ = tokenizer(sentences[0] , return_tensors="tf" ).input_ids A__ = model.generate(input_ids=SCREAMING_SNAKE_CASE__ , max_new_tokens=12 ) A__ = tokenizer(sentences[1] , return_tensors="tf" ).input_ids A__ = model.generate(input_ids=SCREAMING_SNAKE_CASE__ , max_new_tokens=12 ) A__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) A__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) A__ = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) A__ = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , [non_padded_sentence, padded_sentence] )
104
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING A : Dict = logging.get_logger(__name__) @add_end_docstrings(a ) class __A( a ): def __init__( self , *_snake_case , **_snake_case ) -> Optional[int]: '''simple docstring''' super().__init__(*_snake_case , **_snake_case ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case=None , _snake_case=None , _snake_case=None ) -> Tuple: '''simple docstring''' __a = {} __a = {} if prompt is not None: __a = prompt if generate_kwargs is not None: __a = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __a = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) __a = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _snake_case , **_snake_case ) -> List[Any]: '''simple docstring''' return super().__call__(_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=None ) -> Optional[int]: '''simple docstring''' __a = load_image(_snake_case ) if prompt is not None: if not isinstance(_snake_case , _snake_case ): raise ValueError( F"""Received an invalid text input, got - {type(_snake_case )} - but expected a single string. """ '''Note also that one single text can be provided for conditional image to text generation.''' ) __a = self.model.config.model_type if model_type == "git": __a = self.image_processor(images=_snake_case , return_tensors=self.framework ) __a = self.tokenizer(text=_snake_case , add_special_tokens=_snake_case ).input_ids __a = [self.tokenizer.cls_token_id] + input_ids __a = torch.tensor(_snake_case ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": __a = self.image_processor(images=_snake_case , header_text=_snake_case , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __a = self.image_processor(images=_snake_case , return_tensors=self.framework ) __a = self.tokenizer(_snake_case , return_tensors=self.framework ) model_inputs.update(_snake_case ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: __a = self.image_processor(images=_snake_case , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __a = None return model_inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=None ) -> str: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , _snake_case ) and all(x is None for x in model_inputs['''input_ids'''] ) ): __a = None if generate_kwargs is None: __a = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __a = model_inputs.pop(self.model.main_input_name ) __a = self.model.generate(_snake_case , **_snake_case , **_snake_case ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Dict: '''simple docstring''' __a = [] for output_ids in model_outputs: __a = { '''generated_text''': self.tokenizer.decode( _snake_case , skip_special_tokens=_snake_case , ) } records.append(_snake_case ) return records
219
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowerCAmelCase = logging.get_logger(__name__) class lowerCamelCase ( __snake_case ): def __init__( self , *lowercase__ , **lowercase__): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_)
716
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __A : str = pd.read_csv('sample_data.csv', header=None) __A : Union[str, Any] = df.shape[:1][0] # If you're using some other dataset input the target column __A : Union[str, Any] = df.iloc[:, 1:2] __A : Any = actual_data.values.reshape(len_data, 1) __A : List[Any] = MinMaxScaler().fit_transform(actual_data) __A : List[Any] = 1_0 __A : Optional[Any] = 5 __A : Union[str, Any] = 2_0 __A : str = len_data - periods * look_back __A : List[Any] = actual_data[:division] __A : List[Any] = actual_data[division - look_back :] __A , __A : str = [], [] __A , __A : Dict = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __A : Union[str, Any] = np.array(train_x) __A : int = np.array(test_x) __A : Optional[Any] = np.array([list(i.ravel()) for i in train_y]) __A : str = np.array([list(i.ravel()) for i in test_y]) __A : Optional[Any] = Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') __A : List[str] = model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) __A : str = model.predict(x_test)
16
'''simple docstring''' from collections.abc import Generator from math import sin def lowercase__ ( __UpperCamelCase )-> bytes: if len(__UpperCamelCase ) != 32: raise ValueError("""Input must be of length 32""" ) UpperCamelCase = b"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowercase__ ( __UpperCamelCase )-> bytes: if i < 0: raise ValueError("""Input must be non-negative""" ) UpperCamelCase = format(__UpperCamelCase , """08x""" )[-8:] UpperCamelCase = b"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def lowercase__ ( __UpperCamelCase )-> bytes: UpperCamelCase = b"""""" for char in message: bit_string += format(__UpperCamelCase , """08b""" ).encode("""utf-8""" ) UpperCamelCase = format(len(__UpperCamelCase ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__UpperCamelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def lowercase__ ( __UpperCamelCase )-> Generator[list[int], None, None]: if len(__UpperCamelCase ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(__UpperCamelCase ) , 512 ): UpperCamelCase = bit_string[pos : pos + 512] UpperCamelCase = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def lowercase__ ( __UpperCamelCase )-> int: if i < 0: raise ValueError("""Input must be non-negative""" ) UpperCamelCase = format(__UpperCamelCase , """032b""" ) UpperCamelCase = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(__UpperCamelCase , 2 ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> int: return (a + b) % 2**32 def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> int: if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowercase__ ( __UpperCamelCase )-> bytes: UpperCamelCase = preprocess(__UpperCamelCase ) UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states UpperCamelCase = 0X6745_2301 UpperCamelCase = 0XEFCD_AB89 UpperCamelCase = 0X98BA_DCFE UpperCamelCase = 0X1032_5476 UpperCamelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__UpperCamelCase ): UpperCamelCase = aa UpperCamelCase = ba UpperCamelCase = ca UpperCamelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f UpperCamelCase = d ^ (b & (c ^ d)) UpperCamelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f UpperCamelCase = c ^ (d & (b ^ c)) UpperCamelCase = (5 * i + 1) % 16 elif i <= 47: UpperCamelCase = b ^ c ^ d UpperCamelCase = (3 * i + 5) % 16 else: UpperCamelCase = c ^ (b | not_aa(__UpperCamelCase )) UpperCamelCase = (7 * i) % 16 UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 UpperCamelCase = d UpperCamelCase = c UpperCamelCase = b UpperCamelCase = sum_aa(__UpperCamelCase , left_rotate_aa(__UpperCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total UpperCamelCase = sum_aa(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase = sum_aa(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase = sum_aa(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase = sum_aa(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase = reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
301
0
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _lowerCamelCase = '\\n\n' _lowerCamelCase = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' _lowerCamelCase = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def __snake_case ( self): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string'''), }) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def __snake_case ( self , a__ , a__ , a__ = 16 , a__ = True , a__=None): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _lowerCamelCase : List[str] = '''cuda''' else: _lowerCamelCase : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' _lowerCamelCase : Any = AutoModelForCausalLM.from_pretrained(A__) _lowerCamelCase : List[str] = model.to(A__) _lowerCamelCase : str = AutoTokenizer.from_pretrained(A__) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _lowerCamelCase : int = list(tokenizer.special_tokens_map_extended.values()) # check that the model already has at least one special token defined assert ( len(A__) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]}) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _lowerCamelCase : List[str] = model.config.max_length - 1 else: _lowerCamelCase : Tuple = model.config.max_length _lowerCamelCase : Any = tokenizer( A__ , add_special_tokens=A__ , padding=A__ , truncation=A__ , max_length=A__ , return_tensors='''pt''' , return_attention_mask=A__ , ).to(A__) _lowerCamelCase : str = encodings['''input_ids'''] _lowerCamelCase : Dict = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1) , 1)), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1) , 2)), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _lowerCamelCase : List[Any] = [] _lowerCamelCase : List[Any] = CrossEntropyLoss(reduction='''none''') for start_index in logging.tqdm(range(0 , len(A__) , A__)): _lowerCamelCase : Optional[int] = min(start_index + batch_size , len(A__)) _lowerCamelCase : Optional[Any] = encoded_texts[start_index:end_index] _lowerCamelCase : Any = attn_masks[start_index:end_index] if add_start_token: _lowerCamelCase : Tuple = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0)).to(A__) _lowerCamelCase : Optional[Any] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1) _lowerCamelCase : List[str] = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa).to(A__), attn_mask] , dim=1) _lowerCamelCase : Optional[int] = encoded_batch with torch.no_grad(): _lowerCamelCase : int = model(A__ , attention_mask=A__).logits _lowerCamelCase : Union[str, Any] = out_logits[..., :-1, :].contiguous() _lowerCamelCase : str = labels[..., 1:].contiguous() _lowerCamelCase : Optional[Any] = attn_mask[..., 1:].contiguous() _lowerCamelCase : Tuple = torch.expa( (loss_fct(shift_logits.transpose(1 , 2) , A__) * shift_attention_mask_batch).sum(1) / shift_attention_mask_batch.sum(1)) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(A__)}
700
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __A ( lowerCamelCase__ ): """simple docstring""" def __snake_case ( self): """simple docstring""" _lowerCamelCase : Optional[Any] = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(a__ , '''hidden_sizes''')) self.parent.assertTrue(hasattr(a__ , '''num_attention_heads''')) class __A : """simple docstring""" def __init__( self , a__ , a__=13 , a__=64 , a__=3 , a__=3 , a__=2 , a__=1 , a__=16 , a__=[128, 256, 384] , a__=[4, 6, 8] , a__=[2, 3, 4] , a__=[16, 16, 16] , a__=0 , a__=[2, 2, 2] , a__=[2, 2, 2] , a__=0.02 , a__=True , a__=True , a__=2 , ): """simple docstring""" _lowerCamelCase : Optional[Any] = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : Dict = image_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Any = kernel_size _lowerCamelCase : int = stride _lowerCamelCase : Dict = padding _lowerCamelCase : Union[str, Any] = hidden_sizes _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : Any = depths _lowerCamelCase : List[Any] = key_dim _lowerCamelCase : Optional[Any] = drop_path_rate _lowerCamelCase : Union[str, Any] = patch_size _lowerCamelCase : int = attention_ratio _lowerCamelCase : Any = mlp_ratio _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : Dict = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] _lowerCamelCase : str = is_training _lowerCamelCase : Tuple = use_labels _lowerCamelCase : List[Any] = num_labels _lowerCamelCase : Union[str, Any] = initializer_range def __snake_case ( self): """simple docstring""" _lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCamelCase : str = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_labels) _lowerCamelCase : List[Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self): """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __snake_case ( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase : Optional[Any] = LevitModel(config=a__) model.to(a__) model.eval() _lowerCamelCase : List[str] = model(a__) _lowerCamelCase : List[str] = (self.image_size, self.image_size) _lowerCamelCase, _lowerCamelCase : Optional[int] = image_size[0], image_size[1] for _ in range(4): _lowerCamelCase : int = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1) _lowerCamelCase : Dict = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4) * ceil(width / 4), self.hidden_sizes[-1]) , ) def __snake_case ( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase : Optional[int] = self.num_labels _lowerCamelCase : Dict = LevitForImageClassification(a__) model.to(a__) model.eval() _lowerCamelCase : List[Any] = model(a__ , labels=a__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __snake_case ( self): """simple docstring""" _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( lowerCamelCase__ ,lowerCamelCase__ ,unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) UpperCAmelCase__ = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def __snake_case ( self): """simple docstring""" _lowerCamelCase : Union[str, Any] = LevitModelTester(self) _lowerCamelCase : Tuple = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37) def __snake_case ( self): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self): """simple docstring""" return @unittest.skip(reason='''Levit does not use inputs_embeds''') def __snake_case ( self): """simple docstring""" pass @unittest.skip(reason='''Levit does not support input and output embeddings''') def __snake_case ( self): """simple docstring""" pass @unittest.skip(reason='''Levit does not output attentions''') def __snake_case ( self): """simple docstring""" pass def __snake_case ( self): """simple docstring""" _lowerCamelCase, _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(a__) _lowerCamelCase : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Dict = [*signature.parameters.keys()] _lowerCamelCase : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__) def __snake_case ( self): """simple docstring""" def check_hidden_states_output(a__ , a__ , a__): _lowerCamelCase : List[Any] = model_class(a__) model.to(a__) model.eval() with torch.no_grad(): _lowerCamelCase : Any = model(**self._prepare_for_class(a__ , a__)) _lowerCamelCase : int = outputs.hidden_states _lowerCamelCase : List[str] = len(self.model_tester.depths) + 1 self.assertEqual(len(a__) , a__) _lowerCamelCase : Tuple = (self.model_tester.image_size, self.model_tester.image_size) _lowerCamelCase, _lowerCamelCase : Tuple = image_size[0], image_size[1] for _ in range(4): _lowerCamelCase : Optional[Any] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) _lowerCamelCase : List[Any] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) _lowerCamelCase, _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = True check_hidden_states_output(a__ , a__ , a__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[str] = True check_hidden_states_output(a__ , a__ , a__) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def __snake_case ( self): """simple docstring""" pass def __snake_case ( self , a__ , a__ , a__=False): """simple docstring""" _lowerCamelCase : Dict = super()._prepare_for_class(a__ , a__ , return_labels=a__) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __snake_case ( self): """simple docstring""" _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__) def __snake_case ( self): """simple docstring""" _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__) def __snake_case ( self): """simple docstring""" if not self.model_tester.is_training: return _lowerCamelCase, _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[Any] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(a__) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue _lowerCamelCase : Optional[Any] = model_class(a__) model.to(a__) model.train() _lowerCamelCase : Any = self._prepare_for_class(a__ , a__ , return_labels=a__) _lowerCamelCase : Tuple = model(**a__).loss loss.backward() def __snake_case ( self): """simple docstring""" _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : List[str] = True for model_class in self.all_model_classes: if model_class in get_values(a__) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue _lowerCamelCase : List[Any] = model_class(a__) model.gradient_checkpointing_enable() model.to(a__) model.train() _lowerCamelCase : int = self._prepare_for_class(a__ , a__ , return_labels=a__) _lowerCamelCase : Any = model(**a__).loss loss.backward() def __snake_case ( self): """simple docstring""" _lowerCamelCase, _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Dict = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(a__), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}"""): _lowerCamelCase : Tuple = problem_type['''title'''] _lowerCamelCase : Tuple = problem_type['''num_labels'''] _lowerCamelCase : int = model_class(a__) model.to(a__) model.train() _lowerCamelCase : int = self._prepare_for_class(a__ , a__ , return_labels=a__) if problem_type["num_labels"] > 1: _lowerCamelCase : int = inputs['''labels'''].unsqueeze(1).repeat(1 , problem_type['''num_labels''']) _lowerCamelCase : Tuple = inputs['''labels'''].to(problem_type['''dtype''']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=a__) as warning_list: _lowerCamelCase : Any = model(**a__).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""") loss.backward() @slow def __snake_case ( self): """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : int = LevitModel.from_pretrained(a__) self.assertIsNotNone(a__) def __UpperCAmelCase( ): _lowerCamelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self): """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def __snake_case ( self): """simple docstring""" _lowerCamelCase : Any = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( a__) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : str = image_processor(images=a__ , return_tensors='''pt''').to(a__) # forward pass with torch.no_grad(): _lowerCamelCase : int = model(**a__) # verify the logits _lowerCamelCase : List[str] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , a__) _lowerCamelCase : Optional[Any] = torch.tensor([1.0448, -0.3745, -1.8317]).to(a__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4))
613
0
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def A_( A : Union[str, Any]): monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set()) @pytest.fixture def A_( A : Dict): class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = metric_id class SCREAMING_SNAKE_CASE__ : lowerCAmelCase_ = [MetricMock(snake_case_) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def UpperCAmelCase_ ( self )-> int: '''simple docstring''' return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock()) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))]) def A_( A : int , A : List[str] , A : Union[str, Any] , A : List[str] , A : Tuple): if "tmp_path" in args: UpperCamelCase = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args) with pytest.warns(A , match='https://huggingface.co/docs/evaluate'): func(*A)
3
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__: Optional[Any] = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Optional[Any] = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Tuple = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Dict = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A__: Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
380
0
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class A__ : '''simple docstring''' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any]=13 , _SCREAMING_SNAKE_CASE: Any=7 , _SCREAMING_SNAKE_CASE: Dict=False , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: Any=False , _SCREAMING_SNAKE_CASE: List[str]=True , _SCREAMING_SNAKE_CASE: Any=33 , _SCREAMING_SNAKE_CASE: Any=32 , _SCREAMING_SNAKE_CASE: Optional[Any]=5 , _SCREAMING_SNAKE_CASE: str=4 , _SCREAMING_SNAKE_CASE: Any=37 , _SCREAMING_SNAKE_CASE: str="gelu" , _SCREAMING_SNAKE_CASE: Any=0.1 , _SCREAMING_SNAKE_CASE: Any=0.1 , _SCREAMING_SNAKE_CASE: int=512 , _SCREAMING_SNAKE_CASE: int=16 , _SCREAMING_SNAKE_CASE: Tuple=2 , _SCREAMING_SNAKE_CASE: Any=0.02 , _SCREAMING_SNAKE_CASE: str=3 , _SCREAMING_SNAKE_CASE: Dict=4 , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , ) -> Any: """simple docstring""" __lowerCAmelCase : Any = parent __lowerCAmelCase : Optional[int] = batch_size __lowerCAmelCase : Optional[Any] = seq_length __lowerCAmelCase : int = is_training __lowerCAmelCase : List[Any] = use_input_mask __lowerCAmelCase : Tuple = use_token_type_ids __lowerCAmelCase : Optional[Any] = use_labels __lowerCAmelCase : int = vocab_size __lowerCAmelCase : int = hidden_size __lowerCAmelCase : Tuple = num_hidden_layers __lowerCAmelCase : Dict = num_attention_heads __lowerCAmelCase : Optional[Any] = intermediate_size __lowerCAmelCase : Optional[Any] = hidden_act __lowerCAmelCase : Optional[Any] = hidden_dropout_prob __lowerCAmelCase : Dict = attention_probs_dropout_prob __lowerCAmelCase : Union[str, Any] = max_position_embeddings __lowerCAmelCase : Optional[Any] = type_vocab_size __lowerCAmelCase : Tuple = type_sequence_label_size __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : Union[str, Any] = num_labels __lowerCAmelCase : Any = num_choices __lowerCAmelCase : Optional[int] = scope def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __lowerCAmelCase : int = None if self.use_input_mask: __lowerCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length]) __lowerCAmelCase : List[Any] = None __lowerCAmelCase : str = None __lowerCAmelCase : Optional[Any] = None if self.use_labels: __lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices) __lowerCAmelCase : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> List[Any]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: List[str]) -> Any: """simple docstring""" __lowerCAmelCase : Tuple = EsmModel(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: int) -> Tuple: """simple docstring""" __lowerCAmelCase : Union[str, Any] = EsmForMaskedLM(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Any) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = self.num_labels __lowerCAmelCase : Tuple = EsmForTokenClassification(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self: int) -> Dict: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs __lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = () SCREAMING_SNAKE_CASE = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = True def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Optional[int]: """simple docstring""" __lowerCAmelCase : int = EsmModelTester(self) __lowerCAmelCase : int = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self: Any) -> Dict: """simple docstring""" __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Dict) -> str: """simple docstring""" __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase : Optional[Any] = type self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: int) -> Dict: """simple docstring""" __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE) @slow def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Optional[Any]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Union[str, Any] = EsmModel.from_pretrained(_SCREAMING_SNAKE_CASE) self.assertIsNotNone(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: str) -> int: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()[0] __lowerCAmelCase : Optional[int] = EsmEmbeddings(config=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = torch.as_tensor([[12, 31, 13, model.padding_idx]]) __lowerCAmelCase : List[str] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ]) __lowerCAmelCase : Dict = create_position_ids_from_input_ids(_SCREAMING_SNAKE_CASE , model.padding_idx) self.assertEqual(position_ids.shape , expected_positions.shape) self.assertTrue(torch.all(torch.eq(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE))) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Any: """simple docstring""" __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs()[0] __lowerCAmelCase : Dict = EsmEmbeddings(config=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = torch.empty(2 , 4 , 30) __lowerCAmelCase : Optional[Any] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowerCAmelCase : Optional[int] = torch.as_tensor([expected_single_positions, expected_single_positions]) __lowerCAmelCase : Union[str, Any] = embeddings.create_position_ids_from_inputs_embeds(_SCREAMING_SNAKE_CASE) self.assertEqual(position_ids.shape , expected_positions.shape) self.assertTrue(torch.all(torch.eq(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE))) @unittest.skip("Esm does not support embedding resizing") def _SCREAMING_SNAKE_CASE ( self: str) -> Dict: """simple docstring""" pass @unittest.skip("Esm does not support embedding resizing") def _SCREAMING_SNAKE_CASE ( self: Dict) -> List[str]: """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def _SCREAMING_SNAKE_CASE ( self: int) -> Tuple: """simple docstring""" pass @require_torch class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self: Dict) -> Optional[int]: """simple docstring""" with torch.no_grad(): __lowerCAmelCase : str = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D") model.eval() __lowerCAmelCase : Dict = torch.tensor([[0, 1, 2, 3, 4, 5]]) __lowerCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE)[0] __lowerCAmelCase : Any = 33 __lowerCAmelCase : Dict = torch.Size((1, 6, vocab_size)) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4)) @slow def _SCREAMING_SNAKE_CASE ( self: Any) -> str: """simple docstring""" with torch.no_grad(): __lowerCAmelCase : str = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D") model.eval() __lowerCAmelCase : List[Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) __lowerCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE)[0] # compare the actual values for a slice. __lowerCAmelCase : Optional[int] = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4))
615
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __snake_case : Tuple = logging.get_logger(__name__) def _lowercase ( __snake_case ,__snake_case ) -> Dict: __lowerCAmelCase : Optional[Any] = set() __lowerCAmelCase : List[Any] = [] def parse_line(__snake_case ): for line in fp: if isinstance(__snake_case ,__snake_case ): __lowerCAmelCase : Tuple = line.decode("UTF-8" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" " ): # process a single warning and move it to `selected_warnings`. if len(__snake_case ) > 0: __lowerCAmelCase : List[Any] = "\n".join(__snake_case ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(__snake_case ) buffer.clear() continue else: __lowerCAmelCase : List[str] = line.strip() buffer.append(__snake_case ) if from_gh: for filename in os.listdir(__snake_case ): __lowerCAmelCase : List[str] = os.path.join(__snake_case ,__snake_case ) if not os.path.isdir(__snake_case ): # read the file if filename != "warnings.txt": continue with open(__snake_case ) as fp: parse_line(__snake_case ) else: try: with zipfile.ZipFile(__snake_case ) as z: for filename in z.namelist(): if not os.path.isdir(__snake_case ): # read the file if filename != "warnings.txt": continue with z.open(__snake_case ) as fp: parse_line(__snake_case ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def _lowercase ( __snake_case ,__snake_case ) -> Any: __lowerCAmelCase : Any = set() __lowerCAmelCase : str = [os.path.join(__snake_case ,__snake_case ) for p in os.listdir(__snake_case ) if (p.endswith(".zip" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(__snake_case ,__snake_case ) ) return selected_warnings if __name__ == "__main__": def _lowercase ( __snake_case ) -> Optional[Any]: return values.split("," ) __snake_case : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) __snake_case : Tuple = parser.parse_args() __snake_case : Any = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __snake_case : str = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __snake_case : Tuple = extract_warnings(args.output_dir, args.targets) __snake_case : List[str] = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
615
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : int = """▁""" a__ : Tuple = {"""vocab_file""": """sentencepiece.bpe.model"""} a__ : Optional[int] = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } a__ : Tuple = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( UpperCAmelCase_ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] , a_ : Optional[int] , a_ : Optional[int]="<s>" , a_ : List[str]="</s>" , a_ : List[str]="</s>" , a_ : str="<s>" , a_ : int="<unk>" , a_ : Optional[int]="<pad>" , a_ : str="<mask>" , a_ : Optional[Dict[str, Any]] = None , **a_ : Dict , ): """simple docstring""" lowerCamelCase__ = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , cls_token=a_ , pad_token=a_ , mask_token=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a_ ) ) lowerCamelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase__ = 1 lowerCamelCase__ = len(self.sp_model ) + self.fairseq_offset lowerCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : str ): """simple docstring""" lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None lowerCamelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] , a_ : Optional[int] ): """simple docstring""" lowerCamelCase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self : Dict , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] lowerCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self : Any , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1] def _UpperCamelCase ( self : Optional[int] , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCamelCase ( self : List[Any] ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _UpperCamelCase ( self : Tuple ): """simple docstring""" lowerCamelCase__ = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self : int , a_ : str ): """simple docstring""" return self.sp_model.encode(a_ , out_type=a_ ) def _UpperCamelCase ( self : Optional[int] , a_ : Optional[int] ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__ = self.sp_model.PieceToId(a_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCamelCase ( self : List[str] , a_ : Any ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCamelCase ( self : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" lowerCamelCase__ = """""".join(a_ ).replace(a_ , """ """ ).strip() return out_string def _UpperCamelCase ( self : List[Any] , a_ : str , a_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ = os.path.join( a_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , """wb""" ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
165
import qiskit def snake_case (UpperCamelCase : int = 2 ): '''simple docstring''' lowerCamelCase__ = qubits # Using Aer's simulator lowerCamelCase__ = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register lowerCamelCase__ = qiskit.QuantumCircuit(UpperCamelCase , UpperCamelCase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , UpperCamelCase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , UpperCamelCase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(UpperCamelCase ) ) , list(range(UpperCamelCase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator lowerCamelCase__ = qiskit.execute(UpperCamelCase , UpperCamelCase , shots=1000 ) return job.result().get_counts(UpperCamelCase ) if __name__ == "__main__": print(f'''Total count for various states are: {quantum_entanglement(3)}''')
165
1
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets UpperCamelCase = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' UpperCamelCase = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' UpperCamelCase = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple ): """simple docstring""" return float((preds == labels).mean() ) def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : Any ): """simple docstring""" lowerCAmelCase__ = simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = float(fa_score(y_true=lowerCAmelCase_ , y_pred=lowerCAmelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _A ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ): """simple docstring""" lowerCAmelCase__ = np.array(lowerCAmelCase_ ) lowerCAmelCase__ = np.array(lowerCAmelCase_ ) lowerCAmelCase__ = en_sentvecs.shape[0] # mean centering lowerCAmelCase__ = en_sentvecs - np.mean(lowerCAmelCase_ , axis=0 ) lowerCAmelCase__ = in_sentvecs - np.mean(lowerCAmelCase_ , axis=0 ) lowerCAmelCase__ = cdist(lowerCAmelCase_ , lowerCAmelCase_ , "cosine" ) lowerCAmelCase__ = np.array(range(lowerCAmelCase_ ) ) lowerCAmelCase__ = sim.argsort(axis=1 )[:, :10] lowerCAmelCase__ = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def a ( self : List[str] ) -> List[str]: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
125
UpperCamelCase = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
125
1
def _a ( UpperCAmelCase = 1000 ) -> int: """simple docstring""" lowerCamelCase__ : List[str] = 3 lowerCamelCase__ : int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
315
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Optional[Any] = XLMTokenizer _UpperCAmelCase : List[Any] = False def __lowerCamelCase ( self : Union[str, Any] ) ->int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowerCamelCase__ : List[Any] = dict(zip(A , range(len(A ) ) ) ) lowerCamelCase__ : str = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] lowerCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(A ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(A ) ) def __lowerCamelCase ( self : str , A : Dict ) ->Tuple: lowerCamelCase__ : str = '''lower newer''' lowerCamelCase__ : Optional[int] = '''lower newer''' return input_text, output_text def __lowerCamelCase ( self : Union[str, Any] ) ->Optional[Any]: lowerCamelCase__ : Dict = XLMTokenizer(self.vocab_file , self.merges_file ) lowerCamelCase__ : Optional[Any] = '''lower''' lowerCamelCase__ : Any = ['''low''', '''er</w>'''] lowerCamelCase__ : List[Any] = tokenizer.tokenize(A ) self.assertListEqual(A , A ) lowerCamelCase__ : int = tokens + ['''<unk>'''] lowerCamelCase__ : List[str] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) @slow def __lowerCamelCase ( self : Union[str, Any] ) ->Union[str, Any]: lowerCamelCase__ : Tuple = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) lowerCamelCase__ : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=A ) lowerCamelCase__ : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A ) lowerCamelCase__ : str = tokenizer.build_inputs_with_special_tokens(A ) lowerCamelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
315
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Dict = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class snake_case__ (__lowerCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = """cvt""" def __init__( self : Union[str, Any] , __lowerCamelCase : Any=3 , __lowerCamelCase : List[str]=[7, 3, 3] , __lowerCamelCase : Dict=[4, 2, 2] , __lowerCamelCase : List[Any]=[2, 1, 1] , __lowerCamelCase : Union[str, Any]=[64, 1_92, 3_84] , __lowerCamelCase : Optional[int]=[1, 3, 6] , __lowerCamelCase : Dict=[1, 2, 10] , __lowerCamelCase : List[Any]=[4.0, 4.0, 4.0] , __lowerCamelCase : str=[0.0, 0.0, 0.0] , __lowerCamelCase : Any=[0.0, 0.0, 0.0] , __lowerCamelCase : List[str]=[0.0, 0.0, 0.1] , __lowerCamelCase : int=[True, True, True] , __lowerCamelCase : Tuple=[False, False, True] , __lowerCamelCase : str=["dw_bn", "dw_bn", "dw_bn"] , __lowerCamelCase : List[Any]=[3, 3, 3] , __lowerCamelCase : Tuple=[1, 1, 1] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=[1, 1, 1] , __lowerCamelCase : int=[1, 1, 1] , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : int=1e-12 , **__lowerCamelCase : List[str] , ) -> List[Any]: super().__init__(**_UpperCamelCase ) a = num_channels a = patch_sizes a = patch_stride a = patch_padding a = embed_dim a = num_heads a = depth a = mlp_ratio a = attention_drop_rate a = drop_rate a = drop_path_rate a = qkv_bias a = cls_token a = qkv_projection_method a = kernel_qkv a = padding_kv a = stride_kv a = padding_q a = stride_q a = initializer_range a = layer_norm_eps
715
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase : Any = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
662
0
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def a__ ( *snake_case ): """simple docstring""" with open(snake_case , '''r''' ) as fh: fcntl.flock(snake_case , fcntl.LOCK_EX ) try: print(*snake_case ) finally: fcntl.flock(snake_case , fcntl.LOCK_UN ) lowercase_ = int(os.environ["""LOCAL_RANK"""]) torch.cuda.set_device(local_rank) lowercase_ = torch.device("""cuda""", local_rank) lowercase_ = socket.gethostname() lowercase_ = f'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group("""nccl""") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank lowercase_ = dist.get_rank() lowercase_ = dist.get_world_size() printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(f'''{gpu} is broken''') raise
74
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' __A : int = tempfile.mkdtemp() __A : List[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __A : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4814_5466, 0.457_8275, 0.4082_1073], "image_std": [0.2686_2954, 0.2613_0258, 0.2757_7711], } __A : Union[str, Any] = os.path.join(self.tmpdirname , lowerCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase__ ( self , **lowerCamelCase ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowerCAmelCase__ ( self , **lowerCamelCase ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowerCAmelCase__ ( self , **lowerCamelCase ): '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __A : int = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Union[str, Any] = self.get_tokenizer() __A : int = self.get_rust_tokenizer() __A : List[str] = self.get_image_processor() __A : List[Any] = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) __A : List[Any] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase ) __A : int = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) __A : List[str] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : List[Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A : List[str] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __A : int = self.get_image_processor(do_normalize=lowerCamelCase , padding_value=1.0 ) __A : Optional[int] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : List[str] = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __A : int = self.prepare_image_inputs() __A : Optional[int] = image_processor(lowerCamelCase , return_tensors="np" ) __A : Dict = processor(images=lowerCamelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : str = self.get_image_processor() __A : int = self.get_tokenizer() __A : Optional[int] = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __A : Optional[Any] = "lower newer" __A : Union[str, Any] = processor(text=lowerCamelCase ) __A : int = tokenizer(lowerCamelCase , padding="max_length" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[int] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : int = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __A : Tuple = "lower newer" __A : int = self.prepare_image_inputs() __A : str = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Dict = self.get_image_processor() __A : Tuple = self.get_tokenizer() __A : Dict = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __A : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : Optional[int] = processor.batch_decode(lowerCamelCase ) __A : Optional[int] = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : str = self.get_image_processor() __A : Union[str, Any] = self.get_tokenizer() __A : Union[str, Any] = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __A : int = "lower newer" __A : str = self.prepare_image_inputs() __A : Tuple = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
111
0
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowerCAmelCase : Optional[int] =get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowerCAmelCase : Any =get_tests_dir('fixtures/vocab.json') lowerCAmelCase : Union[str, Any] =get_tests_dir('fixtures') class _a ( unittest.TestCase ): _UpperCamelCase: Optional[Any] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def _snake_case ( self ) -> List[Any]: lowerCAmelCase : Optional[Any] = 0 def _snake_case ( self ) -> Dict: lowerCAmelCase : Optional[Any] = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowercase_ , lowercase_ ) def _snake_case ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : Tuple = WavaVecaConfig() lowerCAmelCase : Dict = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) lowerCAmelCase : List[Any] = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def _snake_case ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) copyfile(lowercase_ , os.path.join(lowercase_ , """vocab.json""" ) ) lowerCAmelCase : Tuple = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def _snake_case ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor() lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowerCAmelCase : Tuple = WavaVecaProcessor(lowercase_ , lowercase_ ) # save in new folder processor.save_pretrained(lowercase_ ) # drop `processor_class` in tokenizer with open(os.path.join(lowercase_ , lowercase_ ) , """r""" ) as f: lowerCAmelCase : Optional[Any] = json.load(lowercase_ ) config_dict.pop("""processor_class""" ) with open(os.path.join(lowercase_ , lowercase_ ) , """w""" ) as f: f.write(json.dumps(lowercase_ ) ) lowerCAmelCase : int = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def _snake_case ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : Tuple = WavaVecaFeatureExtractor() lowerCAmelCase : int = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowerCAmelCase : Dict = WavaVecaProcessor(lowercase_ , lowercase_ ) # save in new folder processor.save_pretrained(lowercase_ ) # drop `processor_class` in feature extractor with open(os.path.join(lowercase_ , lowercase_ ) , """r""" ) as f: lowerCAmelCase : List[str] = json.load(lowercase_ ) config_dict.pop("""processor_class""" ) with open(os.path.join(lowercase_ , lowercase_ ) , """w""" ) as f: f.write(json.dumps(lowercase_ ) ) lowerCAmelCase : List[str] = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def _snake_case ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : List[str] = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(lowercase_ ) # copy relevant files copyfile(lowercase_ , os.path.join(lowercase_ , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(lowercase_ , lowercase_ ) , """w""" ) as f: f.write("""{}""" ) lowerCAmelCase : int = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def _snake_case ( self ) -> Dict: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): lowerCAmelCase : Tuple = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): lowerCAmelCase : Optional[int] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowercase_ ) lowerCAmelCase : Tuple = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowercase_ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) lowerCAmelCase : List[str] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) lowerCAmelCase : Union[str, Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version lowerCAmelCase : List[Any] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowercase_ , use_fast=lowercase_ ) lowerCAmelCase : List[Any] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def _snake_case ( self ) -> str: try: AutoConfig.register("""custom""" , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) AutoProcessor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoProcessor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : List[Any] = os.path.join(lowercase_ , """vocab.txt""" ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowerCAmelCase : Any = CustomTokenizer(lowercase_ ) lowerCAmelCase : Tuple = CustomProcessor(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowercase_ ) lowerCAmelCase : Optional[Any] = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self ) -> Dict: class _a ( snake_case_ ): _UpperCamelCase: Any = False class _a ( snake_case_ ): _UpperCamelCase: Any = False class _a ( snake_case_ ): _UpperCamelCase: Any = "AutoFeatureExtractor" _UpperCamelCase: Optional[Any] = "AutoTokenizer" _UpperCamelCase: List[Any] = False try: AutoConfig.register("""custom""" , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) AutoProcessor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local classes. lowerCAmelCase : List[str] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowerCAmelCase : Optional[int] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowercase_ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowerCAmelCase : List[str] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowercase_ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self ) -> Dict: lowerCAmelCase : int = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase : Tuple = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _a ( unittest.TestCase ): _UpperCamelCase: Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _snake_case ( cls ) -> Tuple: lowerCAmelCase : Optional[int] = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def _snake_case ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def _snake_case ( self ) -> List[str]: lowerCAmelCase : Dict = WavaVecaProcessor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_ , """test-processor""" ) , push_to_hub=lowercase_ , use_auth_token=self._token ) lowerCAmelCase : List[Any] = WavaVecaProcessor.from_pretrained(f"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _snake_case ( self ) -> int: lowerCAmelCase : Optional[int] = WavaVecaProcessor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_ , """test-processor-org""" ) , push_to_hub=lowercase_ , use_auth_token=self._token , organization="""valid_org""" , ) lowerCAmelCase : str = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _snake_case ( self ) -> str: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowerCAmelCase : Union[str, Any] = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Union[str, Any] = os.path.join(lowercase_ , """vocab.txt""" ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowerCAmelCase : Dict = CustomTokenizer(lowercase_ ) lowerCAmelCase : List[Any] = CustomProcessor(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"""{USER}/test-dynamic-processor""" , token=self._token ) lowerCAmelCase : int = Repository(lowercase_ , clone_from=f"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(lowercase_ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowercase_ , """tokenizer_config.json""" ) ) as f: lowerCAmelCase : Optional[int] = json.load(lowercase_ ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowercase_ , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase_ , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase_ , """custom_processing.py""" ) ) ) repo.push_to_hub() lowerCAmelCase : int = AutoProcessor.from_pretrained(f"""{USER}/test-dynamic-processor""" , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
693
# Imports import numpy as np class _a : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) def _snake_case ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Union[str, Any]: if red is not None: lowerCAmelCase : str = red if green is not None: lowerCAmelCase : Optional[int] = green if blue is not None: lowerCAmelCase : Optional[int] = blue if red_edge is not None: lowerCAmelCase : Tuple = red_edge if nir is not None: lowerCAmelCase : Union[str, Any] = nir return True def _snake_case ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[int]: self.set_matricies(red=lowercase_ , green=lowercase_ , blue=lowercase_ , red_edge=lowercase_ , nir=lowercase_ ) lowerCAmelCase : int = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self ) -> Dict: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self ) -> Optional[Any]: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self ) -> List[str]: return self.nir * (self.red / (self.green**2)) def _snake_case ( self ) -> Tuple: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self ) -> Optional[int]: return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self ) -> List[str]: return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self ) -> int: return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self ) -> Tuple: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self , lowercase_=0.0_8 , lowercase_=1.2_2 , lowercase_=0.0_3 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self ) -> Optional[Any]: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self ) -> Any: return (self.nir / self.green) - 1 def _snake_case ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _snake_case ( self ) -> str: return (self.red - self.blue) / self.red def _snake_case ( self ) -> Optional[int]: lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self ) -> Optional[Any]: return self.nir - self.green def _snake_case ( self ) -> int: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self , lowercase_=0.1_6 ) -> Optional[int]: return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self , lowercase_=0.5 ) -> List[str]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self ) -> Any: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self , lowercase_=None , lowercase_=None ) -> List[Any]: return (self.nir - b) / (a * self.red) def _snake_case ( self ) -> Any: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self ) -> str: return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self ) -> Union[str, Any]: return self.nir / self.red def _snake_case ( self ) -> Tuple: return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _snake_case ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _snake_case ( self ) -> Dict: return self.red / (self.nir + self.red + self.green) def _snake_case ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def _snake_case ( self ) -> Optional[int]: return (self.red - self.green) / (self.red + self.green) def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self ) -> List[str]: return self.nir / self.red def _snake_case ( self ) -> int: return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self ) -> str: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
693
1
from string import ascii_lowercase, ascii_uppercase def __lowerCAmelCase ( _A ): """simple docstring""" if not sentence: return "" _lowercase = dict(zip(_A ,_A ) ) return lower_to_upper.get(sentence[0] ,sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
398
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor A_: int = logging.get_logger(__name__) class _lowercase ( _UpperCAmelCase ): """simple docstring""" def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
398
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowerCAmelCase__ : A_ : Dict = PegasusConfig A_ : Union[str, Any] = {} A_ : Optional[Any] = 'gelu' def __init__( self : Any , __UpperCamelCase : int , __UpperCamelCase : Tuple=13 , __UpperCamelCase : Any=7 , __UpperCamelCase : str=True , __UpperCamelCase : List[str]=False , __UpperCamelCase : Union[str, Any]=99 , __UpperCamelCase : Tuple=32 , __UpperCamelCase : Optional[Any]=2 , __UpperCamelCase : Any=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : List[str]=40 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : Tuple=1 , __UpperCamelCase : Union[str, Any]=0 , ) -> Optional[int]: A = parent A = batch_size A = seq_length A = is_training A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = eos_token_id A = pad_token_id A = bos_token_id def __UpperCamelCase ( self : int ) -> List[str]: A = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A = tf.concat([input_ids, eos_tensor] , axis=1 ) A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A = prepare_pegasus_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, inputs_dict def __UpperCamelCase ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> List[Any]: A = TFPegasusModel(config=__UpperCamelCase ).get_decoder() A = inputs_dict['input_ids'] A = input_ids[:1, :] A = inputs_dict['attention_mask'][:1, :] A = inputs_dict['head_mask'] A = 1 # first forward pass A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , head_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) A , A = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A = ids_tensor((self.batch_size, 3) , config.vocab_size ) A = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A = tf.concat([input_ids, next_tokens] , axis=-1 ) A = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] A = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A = output_from_no_past[:, -3:, random_slice_idx] A = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , rtol=1e-3 ) def lowerCamelCase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Tuple=None , ) -> List[str]: '''simple docstring''' if attention_mask is None: A = tf.cast(tf.math.not_equal(lowerCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): A_ : List[str] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () A_ : Tuple = (TFPegasusForConditionalGeneration,) if is_tf_available() else () A_ : List[str] = ( { 'conversational': TFPegasusForConditionalGeneration, 'feature-extraction': TFPegasusModel, 'summarization': TFPegasusForConditionalGeneration, 'text2text-generation': TFPegasusForConditionalGeneration, 'translation': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) A_ : Any = True A_ : str = False A_ : int = False def __UpperCamelCase ( self : int ) -> Any: A = TFPegasusModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase ) def __UpperCamelCase ( self : str ) -> Optional[Any]: self.config_tester.run_common_tests() def __UpperCamelCase ( self : List[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class lowerCAmelCase__ ( unittest.TestCase ): A_ : Dict = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] A_ : Any = [ 'California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to' ' reduce the risk of wildfires.', 'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.', ] # differs slightly from pytorch, likely due to numerical differences in linear layers A_ : Optional[Any] = 'google/pegasus-xsum' @cached_property def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: A = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __UpperCamelCase ( self : List[str] , **__UpperCamelCase : List[Any] ) -> Any: A = self.translate_src_text(**__UpperCamelCase ) assert self.expected_text == generated_words def __UpperCamelCase ( self : str , **__UpperCamelCase : Dict ) -> Union[str, Any]: A = self.tokenizer(self.src_text , **__UpperCamelCase , padding=__UpperCamelCase , return_tensors='tf' ) A = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__UpperCamelCase , ) A = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__UpperCamelCase ) return generated_words @slow def __UpperCamelCase ( self : str ) -> str: self._assert_generated_batch_equal_expected()
224
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCamelCase_ ( lowerCAmelCase__ : int ) -> Optional[Any]: '''simple docstring''' A = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' A , A = emb.weight.shape A = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) A = emb.weight.data return lin_layer def lowerCamelCase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]=None ) -> Optional[int]: '''simple docstring''' A = {} for old_key in state_dict.keys(): A = old_key if "moe_layer.experts." in key: if expert_idx is not None: A = key.replace('moe_layer.experts.0' , F'''ffn.experts.expert_{expert_idx}''' ) else: A = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: A = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: A = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: A = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: A = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: A = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: A = key.replace('final_layer_norm' , 'ff_layer_norm' ) A = state_dict[old_key] return new_dict def lowerCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str = WEIGHTS_NAME ) -> List[str]: '''simple docstring''' A = [] A = 0 os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) for expert in range(lowerCAmelCase__ ): A = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(lowerCAmelCase__ ): A = torch.load(lowerCAmelCase__ )['model'] remove_ignore_keys_(lowerCAmelCase__ ) A = rename_fairseq_keys(lowerCAmelCase__ , lowerCAmelCase__ ) A = os.path.join( lowerCAmelCase__ , weights_name.replace('.bin' , F'''-{len(lowerCAmelCase__ )+1:05d}-of-???.bin''' ) ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(lowerCAmelCase__ )[0]].dtype ) # Add the last block A = os.path.join(lowerCAmelCase__ , weights_name.replace('.bin' , F'''-{len(lowerCAmelCase__ )+1:05d}-of-???.bin''' ) ) A = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(lowerCAmelCase__ ) A = rename_fairseq_keys(lowerCAmelCase__ , lowerCAmelCase__ ) A = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(lowerCAmelCase__ ) == 1: A = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) # Otherwise, let's build the index A = {} for idx, shard in enumerate(lowerCAmelCase__ ): A = weights_name.replace('.bin' , F'''-{idx+1:05d}-of-{len(lowerCAmelCase__ ):05d}.bin''' ) A = os.path.join(lowerCAmelCase__ , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) for key in shard: A = shard_file # Add the metadata A = {'total_size': total_size} A = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , 'w' , encoding='utf-8' ) as f: A = json.dumps(lowerCAmelCase__ , indent=2 , sort_keys=lowerCAmelCase__ ) + '\n' f.write(lowerCAmelCase__ ) return metadata, index if __name__ == "__main__": __snake_case :Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __snake_case :int =parser.parse_args() __snake_case , __snake_case :List[Any] =shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __snake_case :Dict =NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __snake_case :Optional[int] =NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
224
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ ): """simple docstring""" __lowerCAmelCase : Dict ='''distilbert''' __lowerCAmelCase : List[str] ={ '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self :Tuple, snake_case :Dict=3_0522, snake_case :int=512, snake_case :Dict=False, snake_case :List[str]=6, snake_case :Any=12, snake_case :List[str]=768, snake_case :List[str]=4 * 768, snake_case :int=0.1, snake_case :List[Any]=0.1, snake_case :str="gelu", snake_case :Any=0.0_2, snake_case :Optional[Any]=0.1, snake_case :List[Any]=0.2, snake_case :List[str]=0, **snake_case :Optional[int], ): """simple docstring""" _lowercase =vocab_size _lowercase =max_position_embeddings _lowercase =sinusoidal_pos_embds _lowercase =n_layers _lowercase =n_heads _lowercase =dim _lowercase =hidden_dim _lowercase =dropout _lowercase =attention_dropout _lowercase =activation _lowercase =initializer_range _lowercase =qa_dropout _lowercase =seq_classif_dropout super().__init__(**_lowerCamelCase, pad_token_id=_lowerCamelCase) class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ ): """simple docstring""" @property def UpperCamelCase__ ( self :Dict): """simple docstring""" if self.task == "multiple-choice": _lowercase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
181
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder A_ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A_ : Optional[int] = 256 class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Union[str, Any] =['''melgan'''] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): super().__init__() # From MELGAN UpperCamelCase_: Any = math.log(1e-5 ) # Matches MelGAN training. UpperCamelCase_: List[Any] = 4.0 # Largest value for most examples UpperCamelCase_: Tuple = 1_2_8 self.register_modules( notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , ) def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ): UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = output_range if clip: UpperCamelCase_: int = torch.clip(_lowerCamelCase , self.min_value , self.max_value ) # Scale to [0, 1]. UpperCamelCase_: List[Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ): UpperCamelCase_ ,UpperCamelCase_: Dict = input_range UpperCamelCase_: List[str] = torch.clip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if clip else outputs # Scale to [0, 1]. UpperCamelCase_: Optional[Any] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: str = input_tokens > 0 UpperCamelCase_ ,UpperCamelCase_: Tuple = self.notes_encoder( encoder_input_tokens=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_: Any = self.continuous_encoder( encoder_inputs=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = noise_time if not torch.is_tensor(_lowerCamelCase ): UpperCamelCase_: List[str] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_lowerCamelCase ) and len(timesteps.shape ) == 0: UpperCamelCase_: Dict = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase_: Union[str, Any] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) UpperCamelCase_: Any = self.decoder( encodings_and_masks=_lowerCamelCase , decoder_input_tokens=_lowerCamelCase , decoder_noise_time=_lowerCamelCase ) return logits @torch.no_grad() def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 1_0_0 , _lowerCamelCase = True , _lowerCamelCase = "numpy" , _lowerCamelCase = None , _lowerCamelCase = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCamelCase , _lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_lowerCamelCase )}.''' ) UpperCamelCase_: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) UpperCamelCase_: str = np.zeros([1, 0, self.n_dims] , np.floataa ) UpperCamelCase_: Dict = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_lowerCamelCase ): if i == 0: UpperCamelCase_: str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. UpperCamelCase_: Tuple = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. UpperCamelCase_: Any = ones UpperCamelCase_: str = self.scale_features( _lowerCamelCase , output_range=[-1.0, 1.0] , clip=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_lowerCamelCase , continuous_mask=_lowerCamelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop UpperCamelCase_: List[str] = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_lowerCamelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_lowerCamelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCamelCase_: int = self.decode( encodings_and_masks=_lowerCamelCase , input_tokens=_lowerCamelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 UpperCamelCase_: Tuple = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample UpperCamelCase_: List[Any] = self.scale_to_features(_lowerCamelCase , input_range=[-1.0, 1.0] ) UpperCamelCase_: Any = mel[:1] UpperCamelCase_: List[str] = mel.cpu().float().numpy() UpperCamelCase_: Tuple = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCamelCase , _lowerCamelCase ) logger.info('Generated segment' , _lowerCamelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": UpperCamelCase_: int = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: UpperCamelCase_: int = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_lowerCamelCase )
57
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( a : Optional[Any] , a : Dict , a : Union[str, Any]=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' snake_case__ = nn.Parameter(a ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' snake_case__ = nn.Parameter(a ) def _UpperCAmelCase ( a : List[Any] , a : List[str] , a : List[Any] ): # set torch weights for 1-to-1 comparison snake_case__ = np.asarray(weights[0] ) snake_case__ = np.asarray(weights[1] ) snake_case__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(a ).transpose(1 , 2 ).contiguous().view(-1 , a ) , ) set_param( torch_layer.self_attention.value , torch.tensor(a ).transpose(1 , 2 ).contiguous().view(-1 , a ) , ) set_param( torch_layer.output.dense , torch.tensor(a ).view(-1 , a ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( a : Optional[int] , a : Dict , a : Optional[int] ): # set torch weights for 1-to-1 comparison snake_case__ = np.asarray(weights[0] ) snake_case__ = np.asarray(weights[1] ) snake_case__ = np.asarray(weights[2] ) snake_case__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(a ).transpose(1 , 2 ).contiguous().view(-1 , a ) , ) set_param( torch_layer.self_attention.key , torch.tensor(a ).transpose(1 , 2 ).contiguous().view(-1 , a ) , ) set_param( torch_layer.self_attention.value , torch.tensor(a ).transpose(1 , 2 ).contiguous().view(-1 , a ) , ) set_param( torch_layer.output.dense , torch.tensor(a ).view(-1 , a ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( a : List[Any] , a : Tuple , a : List[Any] ): # layernorm 1 snake_case__ = weights[0][0][0] snake_case__ = np.asarray(layer_norm_a[0] ) snake_case__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(a ) , torch.tensor(a ) , ) # lsh weights + output snake_case__ = weights[0][1] if len(a ) < 4: set_layer_weights_in_torch_lsh(a , torch_block.attention , a ) else: set_layer_weights_in_torch_local(a , torch_block.attention , a ) # intermediate weighs snake_case__ = weights[2][0][1][2] # Chunked Feed Forward if len(a ) == 4: snake_case__ = intermediate_weights[2] # layernorm 2 snake_case__ = np.asarray(intermediate_weights[0][0] ) snake_case__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(a ) , torch.tensor(a ) , ) # intermediate dense snake_case__ = np.asarray(intermediate_weights[1][0] ) snake_case__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(a ).transpose(0 , 1 ).contiguous() , torch.tensor(a ) , ) # intermediate out snake_case__ = np.asarray(intermediate_weights[4][0] ) snake_case__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(a ).transpose(0 , 1 ).contiguous() , torch.tensor(a ) , ) def _UpperCAmelCase ( a : List[Any] , a : Dict , a : Union[str, Any] ): # reformer model snake_case__ = torch_model.reformer # word embeds snake_case__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(a ) , ) if isinstance(weights[3] , a ): snake_case__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' snake_case__ = nn.Parameter(torch.tensor(a ) ) snake_case__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( a ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(a , a , a ) # output layer norm snake_case__ = np.asarray(weights[7][0] ) snake_case__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(a ) , torch.tensor(a ) , ) # output embeddings snake_case__ = np.asarray(weights[9][0] ) snake_case__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(a ).transpose(0 , 1 ).contiguous() , torch.tensor(a ) , ) def _UpperCAmelCase ( a : Any , a : str , a : str ): # Initialise PyTorch model snake_case__ = ReformerConfig.from_json_file(a ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case__ = ReformerModelWithLMHead(a ) with open(a , """rb""" ) as f: snake_case__ = pickle.load(a )["""weights"""] set_model_weights_in_torch(a , a , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a__ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
99
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def _UpperCAmelCase ( ): snake_case__ = argparse.ArgumentParser() parser.add_argument("""-f""" ) snake_case__ = parser.parse_args() return args.f class _lowerCAmelCase ( lowercase_ ): """simple docstring""" def __magic_name__ ( self : int): '''simple docstring''' snake_case__ = logging.StreamHandler(sys.stdout) logger.addHandler(UpperCamelCase__) def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : List[str]): '''simple docstring''' snake_case__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""") with patch.object(UpperCamelCase__ , """argv""" , UpperCamelCase__): snake_case__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(UpperCamelCase__ , 0.6_66) @slow @require_torch_non_multi_gpu def __magic_name__ ( self : str): '''simple docstring''' snake_case__ = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(UpperCamelCase__) snake_case__ = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(UpperCamelCase__) snake_case__ = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(UpperCamelCase__)
99
1
'''simple docstring''' def UpperCAmelCase ( A : int , A : int ): return x if y == 0 else greatest_common_divisor(A , x % y ) def UpperCAmelCase ( A : int , A : int ): return (x * y) // greatest_common_divisor(A , A ) def UpperCAmelCase ( A : int = 20 ): SCREAMING_SNAKE_CASE : Tuple = 1 for i in range(1 , n + 1 ): SCREAMING_SNAKE_CASE : Optional[int] = lcm(A , A ) return g if __name__ == "__main__": print(f'{solution() = }')
527
'''simple docstring''' from math import pow def UpperCAmelCase ( A : int , A : int , A : int , A : int , A : int , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count SCREAMING_SNAKE_CASE : Tuple = int(pow(A , A ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = backtrack( A , A , current_number + 1 , A , A ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = backtrack( A , A , current_number + 1 , A , A ) return current_sum, solutions_count def UpperCAmelCase ( A : int , A : int ): if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(A , A , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
527
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[Any] ={ '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any =['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict =[ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] =[ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str =[ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys a__ : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
434
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class snake_case : """simple docstring""" def __init__( self : Union[str, Any] , __A : str , __A : str=9_9 , __A : Optional[Any]=1_3 , __A : Optional[int]=1_6 , __A : Optional[Any]=7 , __A : List[Any]=True , __A : List[str]=True , __A : int=True , __A : str=False , __A : List[str]=True , __A : Optional[int]=2 , __A : Optional[Any]=3_2 , __A : str=4 , __A : int=4 , __A : Union[str, Any]=3_0 , __A : Union[str, Any]=0 , __A : Optional[int]=1 , __A : List[str]=2 , __A : Tuple=None , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = decoder_seq_length # For common tests __UpperCamelCase = self.decoder_seq_length __UpperCamelCase = is_training __UpperCamelCase = use_attention_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = d_model __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = decoder_attention_heads __UpperCamelCase = decoder_attention_heads __UpperCamelCase = eos_token_id __UpperCamelCase = bos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = decoder_start_token_id __UpperCamelCase = use_cache __UpperCamelCase = max_position_embeddings __UpperCamelCase = None __UpperCamelCase = decoder_seq_length __UpperCamelCase = 2 __UpperCamelCase = 1 def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_attention_mask: __UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __UpperCamelCase = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _lowerCamelCase ( self : List[Any] , __A : str , __A : str , __A : Tuple , __A : Optional[int] , ): __UpperCamelCase = True __UpperCamelCase = TrOCRDecoder(config=__A ).to(__A ).eval() __UpperCamelCase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __UpperCamelCase = model(__A , use_cache=__A ) __UpperCamelCase = model(__A ) __UpperCamelCase = model(__A , use_cache=__A ) self.parent.assertTrue(len(__A ) == len(__A ) ) self.parent.assertTrue(len(__A ) == len(__A ) + 1 ) __UpperCamelCase = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids __UpperCamelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase = model(__A )['last_hidden_state'] __UpperCamelCase = model(__A , past_key_values=__A )['last_hidden_state'] # select random slice __UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __UpperCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__A , __A , atol=1e-3 ) def _lowerCamelCase ( self : int ): __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class snake_case ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str =(TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Any =(TrOCRForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : int ={"text-generation": TrOCRForCausalLM} if is_torch_available() else {} SCREAMING_SNAKE_CASE_ : Dict =True SCREAMING_SNAKE_CASE_ : Tuple =False def _lowerCamelCase ( self : Dict ): __UpperCamelCase = TrOCRStandaloneDecoderModelTester(self , is_training=__A ) __UpperCamelCase = ConfigTester(self , config_class=__A ) def _lowerCamelCase ( self : List[str] ): pass def _lowerCamelCase ( self : List[str] ): pass def _lowerCamelCase ( self : List[Any] ): pass def _lowerCamelCase ( self : Dict ): self.config_tester.run_common_tests() def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__A ) def _lowerCamelCase ( self : Union[str, Any] ): return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def _lowerCamelCase ( self : Optional[int] ): pass
434
1
"""simple docstring""" # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
409
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class a ( UpperCAmelCase__ ): UpperCamelCase : str = 'segformer' def __init__( self : Tuple , lowerCAmelCase : str=3 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : List[str]=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[8, 4, 2, 1] , lowerCAmelCase : Optional[int]=[32, 64, 160, 256] , lowerCAmelCase : int=[7, 3, 3, 3] , lowerCAmelCase : str=[4, 2, 2, 2] , lowerCAmelCase : str=[1, 2, 5, 8] , lowerCAmelCase : Union[str, Any]=[4, 4, 4, 4] , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : str=0.0_2 , lowerCAmelCase : int=0.1 , lowerCAmelCase : Union[str, Any]=1E-6 , lowerCAmelCase : List[Any]=256 , lowerCAmelCase : Tuple=255 , **lowerCAmelCase : Tuple , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: int =num_channels SCREAMING_SNAKE_CASE_: int =num_encoder_blocks SCREAMING_SNAKE_CASE_: List[str] =depths SCREAMING_SNAKE_CASE_: Tuple =sr_ratios SCREAMING_SNAKE_CASE_: Any =hidden_sizes SCREAMING_SNAKE_CASE_: List[str] =patch_sizes SCREAMING_SNAKE_CASE_: Dict =strides SCREAMING_SNAKE_CASE_: Optional[int] =mlp_ratios SCREAMING_SNAKE_CASE_: List[str] =num_attention_heads SCREAMING_SNAKE_CASE_: int =hidden_act SCREAMING_SNAKE_CASE_: Union[str, Any] =hidden_dropout_prob SCREAMING_SNAKE_CASE_: str =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int =classifier_dropout_prob SCREAMING_SNAKE_CASE_: Dict =initializer_range SCREAMING_SNAKE_CASE_: Any =drop_path_rate SCREAMING_SNAKE_CASE_: Union[str, Any] =layer_norm_eps SCREAMING_SNAKE_CASE_: Dict =decoder_hidden_size SCREAMING_SNAKE_CASE_: Optional[Any] =kwargs.get("""reshape_last_stage""" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =semantic_loss_ignore_index class a ( UpperCAmelCase__ ): UpperCamelCase : List[str] = version.parse('1.11' ) @property def lowerCamelCase__ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ ( self : List[Any] ) -> float: '''simple docstring''' return 1E-4 @property def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' return 12
409
1
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a__ : List[str] = logging.get_logger(__name__) def A__ ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = torch.load(__lowerCamelCase, map_location='cpu' ) if "model" in sd.keys(): _lowerCAmelCase = torch.load(__lowerCamelCase, map_location='cpu' )['model'] # pop unnecessary weights _lowerCAmelCase = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(__lowerCamelCase ) _lowerCAmelCase = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCAmelCase = sd.pop(__lowerCamelCase ) _lowerCAmelCase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCAmelCase = sd[key] # We split QKV in separate Q,K,V _lowerCAmelCase = key.replace('.qkv_proj.', '.q_proj.' ) _lowerCAmelCase = key.replace('.qkv_proj.', '.k_proj.' ) _lowerCAmelCase = key.replace('.qkv_proj.', '.v_proj.' ) _lowerCAmelCase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = torch.split(__lowerCamelCase, depth // 3, dim=0 ) _lowerCAmelCase = q _lowerCAmelCase = k _lowerCAmelCase = v del sd[key] return sd @torch.no_grad() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None ): """simple docstring""" _lowerCAmelCase = load_checkpoint(__lowerCamelCase ) if config is not None: _lowerCAmelCase = OPTConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = OPTConfig() _lowerCAmelCase = OPTModel(__lowerCamelCase ).half().eval() model.load_state_dict(__lowerCamelCase ) # Check results Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") a__ : Dict = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
309
"""simple docstring""" from __future__ import annotations import numpy as np def A__ ( __lowerCamelCase ): """simple docstring""" return np.maximum(0, __lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
309
1
"""simple docstring""" import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _UpperCamelCase = "sshleifer/bart-tiny-random" _UpperCamelCase = "patrickvonplaten/t5-tiny-random" @require_torch class __UpperCAmelCase (unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase ( self ): '''simple docstring''' return AutoConfig.from_pretrained(snake_case_ ) def lowerCamelCase ( self ): '''simple docstring''' A__ , *A__ : Dict = create_student_by_copying_alternating_layers(snake_case_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def lowerCamelCase ( self ): '''simple docstring''' A__ , *A__ : Any = create_student_by_copying_alternating_layers(snake_case_ , tempfile.mkdtemp() , e=1 , d=snake_case_ ) def lowerCamelCase ( self ): '''simple docstring''' A__ , *A__ : Union[str, Any] = create_student_by_copying_alternating_layers(snake_case_ , tempfile.mkdtemp() , e=1 , d=snake_case_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def lowerCamelCase ( self ): '''simple docstring''' A__ , *A__ : Optional[int] = create_student_by_copying_alternating_layers(snake_case_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(snake_case_ ): create_student_by_copying_alternating_layers(snake_case_ , tempfile.mkdtemp() , e=snake_case_ , d=snake_case_ )
363
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _UpperCamelCase = logging.getLogger(__name__) _UpperCamelCase = "pytorch_model.bin" @dataclasses.dataclass class __UpperCAmelCase : '''simple docstring''' _UpperCamelCase : str = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) _UpperCamelCase : Optional[str] = dataclasses.field( default=__A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __UpperCAmelCase : '''simple docstring''' _UpperCamelCase : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) _UpperCamelCase : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) _UpperCamelCase : Optional[str] = dataclasses.field( default=__A , metadata={'help': 'A csv or a json file containing the validation data.'} ) _UpperCamelCase : Optional[str] = dataclasses.field( default=__A , metadata={'help': 'The name of the task to train on.'} , ) _UpperCamelCase : Optional[List[str]] = dataclasses.field( default=__A , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __UpperCAmelCase : '''simple docstring''' _UpperCamelCase : str = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) _UpperCamelCase : Optional[str] = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) _UpperCamelCase : Optional[str] = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) _UpperCamelCase : Optional[int] = dataclasses.field( default=10 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) _UpperCamelCase : Optional[bool] = dataclasses.field( default=__A , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) _UpperCamelCase : Optional[bool] = dataclasses.field( default=__A , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) _UpperCamelCase : Optional[bool] = dataclasses.field( default=__A , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) _UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) _UpperCamelCase : Optional[int] = dataclasses.field( default=100 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _UpperCamelCase : Optional[int] = dataclasses.field( default=__A , metadata={'help': 'Random seed for initialization.'} , ) def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): A__ : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: A__ : Union[str, Any] = dataset.filter(lambda lowerCAmelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 A__ : Dict = int(eval_result * len(lowerCAmelCase ) ) print(lowerCAmelCase ) A__ : Dict = dataset.sort("""probability""" , reverse=lowerCAmelCase ) A__ : Tuple = dataset.select(range(lowerCAmelCase ) ) A__ : Optional[int] = dataset.remove_columns(["""label""", """probability"""] ) A__ : Dict = dataset.rename_column("""prediction""" , """label""" ) A__ : str = dataset.map(lambda lowerCAmelCase : {"label": idalabel[example["label"]]} ) A__ : Optional[Any] = dataset.shuffle(seed=args.seed ) A__ : Any = os.path.join(lowerCAmelCase , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(lowerCAmelCase , index=lowerCAmelCase ) else: dataset.to_json(lowerCAmelCase ) def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ): A__ : Dict = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() A__ : Union[str, Any] = STModelArguments(model_name_or_path=lowerCAmelCase ) A__ : Tuple = STDataArguments(train_file=lowerCAmelCase , infer_file=lowerCAmelCase ) A__ : List[str] = STTrainingArguments(output_dir=lowerCAmelCase ) A__ : Tuple = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowerCAmelCase ).items(): setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) for key, value in kwargs.items(): if hasattr(lowerCAmelCase , lowerCAmelCase ): setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Sanity checks A__ : Optional[int] = {} A__ : Tuple = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None A__ : Tuple = args.train_file A__ : int = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None A__ : Optional[Any] = args.eval_file for key in data_files: A__ : List[str] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: A__ : int = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) A__ : Union[str, Any] = F'''{args.output_dir}/self-train_iter-{{}}'''.format A__ : Any = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) accelerator.wait_for_everyone() A__ : Union[str, Any] = None A__ : str = None A__ : Union[str, Any] = 0 A__ : List[Any] = False # Show the progress bar A__ : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): A__ : List[str] = data_dir_format(lowerCAmelCase ) assert os.path.exists(lowerCAmelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 A__ : int = os.path.join(lowerCAmelCase , """stage-1""" ) A__ : Any = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowerCAmelCase , lowerCAmelCase ): arguments_dict.update({key: value} ) A__ : Union[str, Any] = os.path.join(lowerCAmelCase , """best-checkpoint""" , lowerCAmelCase ) if os.path.exists(lowerCAmelCase ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , lowerCAmelCase , lowerCAmelCase , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , lowerCAmelCase ) finetune(**lowerCAmelCase ) accelerator.wait_for_everyone() assert os.path.exists(lowerCAmelCase ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , lowerCAmelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data A__ : Union[str, Any] = os.path.join(lowerCAmelCase , """best-checkpoint""" ) A__ : str = os.path.join(lowerCAmelCase , """stage-2""" ) # Update arguments_dict A__ : Dict = model_path A__ : Optional[Any] = data_files["""train"""] A__ : Optional[Any] = current_output_dir A__ : Union[str, Any] = os.path.join(lowerCAmelCase , """best-checkpoint""" , lowerCAmelCase ) if os.path.exists(lowerCAmelCase ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , lowerCAmelCase , lowerCAmelCase , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , lowerCAmelCase ) finetune(**lowerCAmelCase ) accelerator.wait_for_everyone() assert os.path.exists(lowerCAmelCase ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , lowerCAmelCase ) A__ : List[str] = iteration A__ : List[str] = data_dir_format(iteration + 1 ) A__ : List[Any] = AutoConfig.from_pretrained(os.path.join(lowerCAmelCase , """best-checkpoint""" ) ) A__ : int = config.idalabel A__ : Tuple = os.path.join(lowerCAmelCase , """eval_results_best-checkpoint.json""" ) A__ : str = os.path.join(lowerCAmelCase , """test_results_best-checkpoint.json""" ) assert os.path.exists(lowerCAmelCase ) with open(lowerCAmelCase , """r""" ) as f: A__ : List[str] = float(json.load(lowerCAmelCase )[args.eval_metric] ) A__ : List[Any] = os.path.join(lowerCAmelCase , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(lowerCAmelCase ) # Loading the dataset from local csv or json files. A__ : List[str] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] A__ : List[Any] = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) shutil.copy(lowerCAmelCase , os.path.join(lowerCAmelCase , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(lowerCAmelCase ): shutil.copy(lowerCAmelCase , os.path.join(lowerCAmelCase , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) accelerator.wait_for_everyone() A__ : int = os.path.join(lowerCAmelCase , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: A__ : Optional[int] = eval_result if best_iteration is None: A__ : List[str] = new_iteration A__ : List[str] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: A__ : List[Any] = new_iteration A__ : str = new_eval_result A__ : Dict = 0 else: if new_eval_result == best_eval_result: A__ : Optional[int] = new_iteration A__ : Optional[int] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: A__ : Tuple = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , lowerCAmelCase ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCAmelCase , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(lowerCAmelCase , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCAmelCase , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(lowerCAmelCase , """eval_results_best-iteration.json""" ) , )
363
1
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : Any = ["model.decoder.embed_positions.weights"] def lowerCamelCase ( UpperCAmelCase__ : List[Any] ) -> List[str]: if "emb" in name: lowercase_ : Tuple = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: lowercase_ : Optional[int] = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: lowercase_ : int = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: lowercase_ : Tuple = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: lowercase_ : List[Any] = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: lowercase_ : int = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: lowercase_ : Dict = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: lowercase_ : List[Any] = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: lowercase_ : Union[str, Any] = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: lowercase_ : List[Any] = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: lowercase_ : List[str] = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def lowerCamelCase ( UpperCAmelCase__ : OrderedDict , UpperCAmelCase__ : int ) -> Tuple[Dict, Dict]: lowercase_ : Any = list(state_dict.keys() ) lowercase_ : Optional[int] = {} for key in keys: lowercase_ : Optional[int] = state_dict.pop(UpperCAmelCase__ ) lowercase_ : Any = rename_keys(UpperCAmelCase__ ) if "in_proj_weight" in key: # split fused qkv proj lowercase_ : Optional[Any] = val[:hidden_size, :] lowercase_ : List[str] = val[hidden_size : 2 * hidden_size, :] lowercase_ : str = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: lowercase_ : int = val else: lowercase_ : str = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase ( UpperCAmelCase__ : str ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values lowercase_ : int = 1024 lowercase_ : List[str] = 24 lowercase_ : List[Any] = 16 elif checkpoint == "medium": lowercase_ : Dict = 1536 lowercase_ : Union[str, Any] = 48 lowercase_ : List[Any] = 24 elif checkpoint == "large": lowercase_ : Tuple = 2048 lowercase_ : Union[str, Any] = 48 lowercase_ : Tuple = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) lowercase_ : Union[str, Any] = MusicgenDecoderConfig( hidden_size=UpperCAmelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCAmelCase__ , num_attention_heads=UpperCAmelCase__ , ) return config @torch.no_grad() def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Dict="cpu" ) -> List[Any]: lowercase_ : List[str] = MusicGen.get_pretrained(UpperCAmelCase__ , device=UpperCAmelCase__ ) lowercase_ : Optional[Any] = decoder_config_from_checkpoint(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = fairseq_model.lm.state_dict() lowercase_ : Optional[int] = rename_state_dict( UpperCAmelCase__ , hidden_size=decoder_config.hidden_size ) lowercase_ : int = TaEncoderModel.from_pretrained("""t5-base""" ) lowercase_ : Tuple = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) lowercase_ : Optional[Any] = MusicgenForCausalLM(UpperCAmelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection lowercase_ : Union[str, Any] = decoder.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(UpperCAmelCase__ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model lowercase_ : Tuple = MusicgenForConditionalGeneration(text_encoder=UpperCAmelCase__ , audio_encoder=UpperCAmelCase__ , decoder=UpperCAmelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCAmelCase__ ) # check we can do a forward pass lowercase_ : Optional[Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) lowercase_ : List[str] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): lowercase_ : int = model(input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor lowercase_ : List[str] = AutoTokenizer.from_pretrained("""t5-base""" ) lowercase_ : Optional[int] = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) lowercase_ : Optional[int] = MusicgenProcessor(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ ) # set the appropriate bos/pad token ids lowercase_ : int = 2048 lowercase_ : Union[str, Any] = 2048 # set other default generation config params lowercase_ : List[str] = int(30 * audio_encoder.config.frame_rate ) lowercase_ : List[Any] = True lowercase_ : Union[str, Any] = 3.0 if pytorch_dump_folder is not None: Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(UpperCAmelCase__ ) processor.push_to_hub(UpperCAmelCase__ ) if __name__ == "__main__": _lowercase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) _lowercase : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
701
'''simple docstring''' import argparse _lowercase : Optional[int] = "docs/source/_static/js/custom.js" def lowerCamelCase ( UpperCAmelCase__ : Tuple ) -> Dict: with open(UpperCAmelCase__ , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Optional[int] = f.readlines() lowercase_ : Tuple = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 lowercase_ : Optional[Any] = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(UpperCAmelCase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") _lowercase : Dict = parser.parse_args() update_custom_js(args.version)
30
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) _lowercase = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
632
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCAmelCase__ ( UpperCamelCase_ : List[Any] )-> Dict: if isinstance(UpperCamelCase_ , collections.abc.Iterable ): return x return (x, x) @require_tf class _UpperCAmelCase : def snake_case_ ( self , a__ , a__): pass def snake_case_ ( self): pass def snake_case_ ( self): pass def snake_case_ ( self , a__ , a__ , a__ , a__ , a__=None , **a__): A__ = VisionTextDualEncoderConfig.from_vision_text_configs(a__ , a__) A__ = TFVisionTextDualEncoderModel(a__) A__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__=None , **a__): A__ , A__ = self.get_vision_text_model(a__ , a__) A__ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__) A__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__=None , **a__): A__ , A__ = self.get_vision_text_model(a__ , a__) A__ = {'''vision_model''': vision_model, '''text_model''': text_model} A__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a__) A__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__=None , **a__): A__ , A__ = self.get_vision_text_model(a__ , a__) A__ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__) A__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__) A__ = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a__) A__ = TFVisionTextDualEncoderModel.from_pretrained(a__) A__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__) A__ = after_output[0].numpy() A__ = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(a__ , 1e-5) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__=None , **a__): A__ , A__ = self.get_vision_text_model(a__ , a__) A__ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__) A__ = model( input_ids=a__ , pixel_values=a__ , attention_mask=a__ , output_attentions=a__) A__ = output.vision_model_output.attentions self.assertEqual(len(a__) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) A__ = to_atuple(vision_model.config.image_size) A__ = to_atuple(vision_model.config.patch_size) A__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A__ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) A__ = output.text_model_output.attentions self.assertEqual(len(a__) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case_ ( self , a__ , a__ , a__): A__ = np.abs((a - b)).max() self.assertLessEqual(a__ , a__ , F"Difference between torch and flax is {diff} (>= {tol}).") def snake_case_ ( self): A__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a__) def snake_case_ ( self): A__ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a__) def snake_case_ ( self): A__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a__) def snake_case_ ( self): A__ = self.prepare_config_and_inputs() self.check_save_load(**a__) def snake_case_ ( self): A__ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a__) @slow def snake_case_ ( self): A__ , A__ = self.get_pretrained_model_and_inputs() A__ = model_a(**a__) A__ = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a__) A__ = TFVisionTextDualEncoderModel.from_pretrained(a__) A__ = model_a(**a__) A__ = after_outputs[0].numpy() A__ = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(a__ , 1e-5) @require_tf class _UpperCAmelCase ( A__ , unittest.TestCase ): def snake_case_ ( self): A__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''') A__ = 1_3 A__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) A__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) A__ = random_attention_mask([batch_size, 4]) A__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case_ ( self , a__ , a__): A__ = TFViTModel(a__ , name='''vision_model''') A__ = TFBertModel(a__ , name='''text_model''') return vision_model, text_model def snake_case_ ( self): A__ = TFViTModelTester(self) A__ = TFBertModelTester(self) A__ = vit_model_tester.prepare_config_and_inputs() A__ = bert_model_tester.prepare_config_and_inputs() A__ , A__ , A__ = vision_config_and_inputs ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _UpperCAmelCase ( A__ , unittest.TestCase ): def snake_case_ ( self): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. A__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''') A__ = 1_3 A__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) A__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) A__ = random_attention_mask([batch_size, 4]) A__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case_ ( self , a__ , a__ , a__ , a__ , a__=None , **a__): A__ , A__ = self.get_vision_text_model(a__ , a__) A__ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__) A__ = model( input_ids=a__ , pixel_values=a__ , attention_mask=a__ , output_attentions=a__) A__ = output.vision_model_output.attentions self.assertEqual(len(a__) , vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) A__ = to_atuple(vision_model.config.image_size) A__ = to_atuple(vision_model.config.patch_size) A__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A__ = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) A__ = output.text_model_output.attentions self.assertEqual(len(a__) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case_ ( self , a__ , a__): A__ = TFDeiTModel(a__ , name='''vision_model''') A__ = TFRobertaModel(a__ , name='''text_model''') return vision_model, text_model def snake_case_ ( self): A__ = TFDeiTModelTester(self) A__ = TFRobertaModelTester(self) A__ = vit_model_tester.prepare_config_and_inputs() A__ = bert_model_tester.prepare_config_and_inputs() A__ , A__ , A__ = vision_config_and_inputs ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _UpperCAmelCase ( A__ , unittest.TestCase ): def snake_case_ ( self): A__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''') A__ = 1_3 A__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) A__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) A__ = random_attention_mask([batch_size, 4]) A__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case_ ( self , a__ , a__): A__ = TFCLIPVisionModel(a__ , name='''vision_model''') A__ = TFBertModel(a__ , name='''text_model''') return vision_model, text_model def snake_case_ ( self): A__ = TFCLIPVisionModelTester(self) A__ = TFBertModelTester(self) A__ = clip_model_tester.prepare_config_and_inputs() A__ = bert_model_tester.prepare_config_and_inputs() A__ , A__ = vision_config_and_inputs ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _UpperCAmelCase ( unittest.TestCase ): @slow def snake_case_ ( self): A__ = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=a__) A__ = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''') A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') A__ = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=a__ , padding=a__ , return_tensors='''np''') A__ = model(**a__) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) A__ = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a__ , atol=1e-3))
632
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Any = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base" ) _UpperCamelCase : Dict = { "input_ids": tf.convert_to_tensor([[0, 26_46, 1_02_69, 83, 9_99_42, 2]] , dtype=tf.intaa ), # "My dog is cute" "attention_mask": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } _UpperCamelCase : Optional[int] = model(UpperCamelCase__ )["last_hidden_state"] _UpperCamelCase : Optional[Any] = tf.TensorShape((1, 6, 7_68) ) self.assertEqual(output.shape , UpperCamelCase__ ) # compare the actual values for a slice. _UpperCamelCase : Optional[Any] = tf.convert_to_tensor( [ [ [0.068_1762, 0.1089_4451, 0.0677_2504], [-0.0642_3668, 0.0236_6615, 0.0432_9344], [-0.0605_7295, 0.0997_4135, -0.0007_0584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
700
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _SCREAMING_SNAKE_CASE = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def __lowerCAmelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ) -> str: _UpperCamelCase : str = state_dict.pop(__lowerCAmelCase ) _UpperCamelCase : Union[str, Any] = val def __lowerCAmelCase ( __lowerCAmelCase : Optional[int] ) -> Optional[Any]: _UpperCamelCase : str = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _UpperCamelCase : Optional[Any] = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) _UpperCamelCase : str = value else: _UpperCamelCase : str = value return new_state_dict def __lowerCAmelCase ( __lowerCAmelCase : str ) -> List[str]: _UpperCamelCase : Any = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCamelCase : Any = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) _UpperCamelCase : List[str] = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : Tuple = in_proj_weight[:256, :] _UpperCamelCase : Dict = in_proj_bias[:256] _UpperCamelCase : int = in_proj_weight[256:512, :] _UpperCamelCase : Tuple = in_proj_bias[256:512] _UpperCamelCase : str = in_proj_weight[-256:, :] _UpperCamelCase : int = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _UpperCamelCase : int = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) _UpperCamelCase : Optional[int] = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : List[Any] = in_proj_weight[:256, :] _UpperCamelCase : str = in_proj_bias[:256] _UpperCamelCase : Optional[Any] = in_proj_weight[256:512, :] _UpperCamelCase : str = in_proj_bias[256:512] _UpperCamelCase : Tuple = in_proj_weight[-256:, :] _UpperCamelCase : Optional[Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _UpperCamelCase : Any = state_dict.pop( f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) _UpperCamelCase : Tuple = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict _UpperCamelCase : Optional[Any] = in_proj_weight_cross_attn[:256, :] _UpperCamelCase : str = in_proj_bias_cross_attn[:256] _UpperCamelCase : Dict = in_proj_weight_cross_attn[256:512, :] _UpperCamelCase : int = in_proj_bias_cross_attn[256:512] _UpperCamelCase : int = in_proj_weight_cross_attn[-256:, :] _UpperCamelCase : Optional[Any] = in_proj_bias_cross_attn[-256:] def __lowerCAmelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> List[Any]: _UpperCamelCase , _UpperCamelCase : List[str] = image.size _UpperCamelCase : Dict = max(__lowerCAmelCase , __lowerCAmelCase ) _UpperCamelCase : Tuple = 800 if "detection" in checkpoint_url else 1000 _UpperCamelCase : Tuple = target_max_size / current_max_size _UpperCamelCase : str = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __lowerCAmelCase ( __lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: _UpperCamelCase : Optional[int] = F.to_tensor(__lowerCAmelCase ) _UpperCamelCase : Dict = F.normalize(__lowerCAmelCase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __lowerCAmelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] ) -> Tuple: logger.info("Converting model..." ) # load original state dict _UpperCamelCase : Tuple = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCamelCase : List[str] = rename_backbone_keys(__lowerCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__lowerCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCamelCase : List[Any] = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): _UpperCamelCase : Dict = state_dict.pop(__lowerCAmelCase ) _UpperCamelCase : Any = val # create HuggingFace model and load state dict _UpperCamelCase : str = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: _UpperCamelCase : List[str] = 15 _UpperCamelCase : Optional[Any] = 2 _UpperCamelCase : Optional[Any] = {0: "table", 1: "table rotated"} _UpperCamelCase : Any = idalabel _UpperCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} else: _UpperCamelCase : Any = 125 _UpperCamelCase : List[str] = 6 _UpperCamelCase : str = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } _UpperCamelCase : Optional[Any] = idalabel _UpperCamelCase : str = {v: k for k, v in idalabel.items()} _UpperCamelCase : str = DetrImageProcessor( format="coco_detection" , max_size=800 if "detection" in checkpoint_url else 1000 ) _UpperCamelCase : Any = TableTransformerForObjectDetection(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # verify our conversion _UpperCamelCase : str = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" _UpperCamelCase : Dict = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=__lowerCAmelCase ) _UpperCamelCase : Dict = Image.open(__lowerCAmelCase ).convert("RGB" ) _UpperCamelCase : List[Any] = normalize(resize(__lowerCAmelCase , __lowerCAmelCase ) ).unsqueeze(0 ) _UpperCamelCase : str = model(__lowerCAmelCase ) if "detection" in checkpoint_url: _UpperCamelCase : Any = (1, 15, 3) _UpperCamelCase : Optional[Any] = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) _UpperCamelCase : Any = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: _UpperCamelCase : Any = (1, 125, 7) _UpperCamelCase : List[Any] = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) _UpperCamelCase : Optional[Any] = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) _UpperCamelCase : Any = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(__lowerCAmelCase ) image_processor.push_to_hub(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
239
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class A__ ( A__ , A__ , unittest.TestCase ): A__ = StableDiffusionPanoramaPipeline A__ = TEXT_TO_IMAGE_PARAMS A__ = TEXT_TO_IMAGE_BATCH_PARAMS A__ = TEXT_TO_IMAGE_IMAGE_PARAMS A__ = TEXT_TO_IMAGE_IMAGE_PARAMS def A ( self : Any ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _SCREAMING_SNAKE_CASE =DDIMScheduler() torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _SCREAMING_SNAKE_CASE =CLIPTextModel(_a ) _SCREAMING_SNAKE_CASE =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _SCREAMING_SNAKE_CASE ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def A ( self : Tuple , _a : Tuple , _a : Union[str, Any]=0 ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =torch.manual_seed(_a ) _SCREAMING_SNAKE_CASE ={ 'prompt': 'a photo of the dolomites', 'generator': generator, # Setting height and width to None to prevent OOMs on CPU. 'height': None, 'width': None, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A ( self : Dict ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE ='cpu' # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =StableDiffusionPanoramaPipeline(**_a ) _SCREAMING_SNAKE_CASE =sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE =sd_pipe(**_a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE =np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Union[str, Any] ) -> str: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def A ( self : Optional[int] ) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def A ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE ='cpu' # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =StableDiffusionPanoramaPipeline(**_a ) _SCREAMING_SNAKE_CASE =sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE ='french fries' _SCREAMING_SNAKE_CASE =sd_pipe(**_a , negative_prompt=_a ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE =np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Optional[int] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE ='cpu' # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =StableDiffusionPanoramaPipeline(**_a ) _SCREAMING_SNAKE_CASE =sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE =sd_pipe(**_a , view_batch_size=2 ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE =np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE ='cpu' # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' ) _SCREAMING_SNAKE_CASE =StableDiffusionPanoramaPipeline(**_a ) _SCREAMING_SNAKE_CASE =sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE =sd_pipe(**_a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE =np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : str ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE ='cpu' # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =PNDMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , skip_prk_steps=_a ) _SCREAMING_SNAKE_CASE =StableDiffusionPanoramaPipeline(**_a ) _SCREAMING_SNAKE_CASE =sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE =sd_pipe(**_a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE =np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class A__ ( unittest.TestCase ): def A ( self : Dict ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Any , _a : List[Any]=0 ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =torch.manual_seed(_a ) _SCREAMING_SNAKE_CASE ={ 'prompt': 'a photo of the dolomites', 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def A ( self : Tuple ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE ='stabilityai/stable-diffusion-2-base' _SCREAMING_SNAKE_CASE =DDIMScheduler.from_pretrained(_a , subfolder='scheduler' ) _SCREAMING_SNAKE_CASE =StableDiffusionPanoramaPipeline.from_pretrained(_a , scheduler=_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE =self.get_inputs() _SCREAMING_SNAKE_CASE =pipe(**_a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _SCREAMING_SNAKE_CASE =np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def A ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' , safety_checker=_a ) _SCREAMING_SNAKE_CASE =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE =self.get_inputs() _SCREAMING_SNAKE_CASE =pipe(**_a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _SCREAMING_SNAKE_CASE =np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A ( self : int ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =0 def callback_fn(_a : int , _a : int , _a : torch.FloatTensor ) -> None: _SCREAMING_SNAKE_CASE =True nonlocal number_of_steps number_of_steps += 1 if step == 1: _SCREAMING_SNAKE_CASE =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _SCREAMING_SNAKE_CASE =latents[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _SCREAMING_SNAKE_CASE =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _SCREAMING_SNAKE_CASE =latents[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE ='stabilityai/stable-diffusion-2-base' _SCREAMING_SNAKE_CASE =DDIMScheduler.from_pretrained(_a , subfolder='scheduler' ) _SCREAMING_SNAKE_CASE =StableDiffusionPanoramaPipeline.from_pretrained(_a , scheduler=_a , safety_checker=_a ) _SCREAMING_SNAKE_CASE =pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE =self.get_inputs() pipe(**_a , callback=_a , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def A ( self : int ) -> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _SCREAMING_SNAKE_CASE ='stabilityai/stable-diffusion-2-base' _SCREAMING_SNAKE_CASE =DDIMScheduler.from_pretrained(_a , subfolder='scheduler' ) _SCREAMING_SNAKE_CASE =StableDiffusionPanoramaPipeline.from_pretrained(_a , scheduler=_a , safety_checker=_a ) _SCREAMING_SNAKE_CASE =pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _SCREAMING_SNAKE_CASE =self.get_inputs() _SCREAMING_SNAKE_CASE =pipe(**_a ) _SCREAMING_SNAKE_CASE =torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
405
'''simple docstring''' def _lowerCAmelCase ( ) -> int: """simple docstring""" return [ a * b * (10_00 - a - b) for a in range(1 , 9_99 ) for b in range(_UpperCamelCase , 9_99 ) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'''{solution() = }''')
405
1
# Algorithm for the pigeonhole sorting def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = min(UpperCAmelCase__ ) # min() finds the minimum value SCREAMING_SNAKE_CASE = max(UpperCAmelCase__ ) # max() finds the maximum value SCREAMING_SNAKE_CASE = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size SCREAMING_SNAKE_CASE = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. SCREAMING_SNAKE_CASE = 0 for count in range(UpperCAmelCase__ ): while holes[count] > 0: holes[count] -= 1 SCREAMING_SNAKE_CASE = count + min_val i += 1 def __lowerCamelCase (): SCREAMING_SNAKE_CASE = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(UpperCAmelCase__ ) print("Sorted order is:" , " ".join(UpperCAmelCase__ ) ) if __name__ == "__main__": main()
647
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : def __init__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Dict=13 , _UpperCamelCase : List[Any]=64 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : int=3 , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Tuple=32 , _UpperCamelCase : str=5 , _UpperCamelCase : Tuple=4 , _UpperCamelCase : Any=37 , _UpperCamelCase : List[str]="gelu" , _UpperCamelCase : int=0.1 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Optional[int]=10 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : Union[str, Any]=[1, 16, 4, 4] , _UpperCamelCase : Optional[Any]=None , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size SCREAMING_SNAKE_CASE = (self.image_size // 32) ** 2 SCREAMING_SNAKE_CASE = num_patches + 1 def __snake_case( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def __snake_case( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 16, 32], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_UpperCamelCase , ) def __snake_case( self : Dict , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case( self : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.type_sequence_label_size SCREAMING_SNAKE_CASE = ViTHybridForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( a , a , unittest.TestCase ): lowercase__ : Optional[int] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ : List[Any] = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : Any = False lowercase__ : Optional[int] = False def __snake_case( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def __snake_case( self : Optional[Any] ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __snake_case( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def __snake_case( self : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __snake_case( self : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(_UpperCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=_UpperCamelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": SCREAMING_SNAKE_CASE = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def __snake_case( self : Any ) -> List[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = ViTHybridModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __snake_case( self : List[Any] ) -> Any: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __snake_case( self : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow @require_accelerate def __snake_case( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" ) SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits # model predicts one of the 1000 ImageNet classes SCREAMING_SNAKE_CASE = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
647
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy A_ : List[Any] =logging.get_logger(__name__) class lowercase_ ( UpperCamelCase__): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): """simple docstring""" a_ = feature_size a_ = sampling_rate a_ = padding_value a_ = kwargs.pop("""padding_side""" , """right""" ) a_ = kwargs.pop("""return_attention_mask""" , _UpperCAmelCase ) super().__init__(**_UpperCAmelCase ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): """simple docstring""" if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): a_ = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) a_ = processed_features[self.model_input_names[0]] a_ = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_UpperCAmelCase ) == 0: if return_attention_mask: a_ = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch a_ = required_input[0] if isinstance(_UpperCAmelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. a_ = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_UpperCAmelCase ): a_ = required_input[index][0] if return_tensors is None: if is_tf_tensor(_UpperCAmelCase ): a_ = """tf""" elif is_torch_tensor(_UpperCAmelCase ): a_ = """pt""" elif isinstance(_UpperCAmelCase , (int, float, list, tuple, np.ndarray) ): a_ = """np""" else: raise ValueError( f"type of {first_element} unknown: {type(_UpperCAmelCase )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): a_ = to_numpy(_UpperCAmelCase ) else: a_ = [to_numpy(_UpperCAmelCase ) for v in value] # Convert padding_strategy in PaddingStrategy a_ = self._get_padding_strategies(padding=_UpperCAmelCase , max_length=_UpperCAmelCase ) a_ = processed_features[self.model_input_names[0]] a_ = len(_UpperCAmelCase ) if not all(len(_UpperCAmelCase ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) a_ = [] for i in range(_UpperCAmelCase ): a_ = {k: v[i] for k, v in processed_features.items()} # truncation a_ = self._truncate( _UpperCAmelCase , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , truncation=_UpperCAmelCase , ) truncated_inputs.append(_UpperCAmelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length a_ = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) a_ = PaddingStrategy.MAX_LENGTH a_ = {} for i in range(_UpperCAmelCase ): # padding a_ = self._pad( truncated_inputs[i] , max_length=_UpperCAmelCase , padding_strategy=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) for key, value in outputs.items(): if key not in batch_outputs: a_ = [] if value.dtype is np.dtype(np.floataa ): a_ = value.astype(np.floataa ) batch_outputs[key].append(_UpperCAmelCase ) return BatchFeature(_UpperCAmelCase , tensor_type=_UpperCAmelCase ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , _UpperCAmelCase = None , _UpperCAmelCase = None , ): """simple docstring""" a_ = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: a_ = len(_UpperCAmelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a_ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a_ = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_UpperCAmelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: a_ = np.ones(len(_UpperCAmelCase ) , dtype=np.intaa ) if needs_to_be_padded: a_ = max_length - len(_UpperCAmelCase ) if self.padding_side == "right": if return_attention_mask: a_ = np.pad( processed_features["""attention_mask"""] , (0, difference) ) a_ = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) a_ = np.pad( _UpperCAmelCase , _UpperCAmelCase , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: a_ = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) a_ = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) a_ = np.pad( _UpperCAmelCase , _UpperCAmelCase , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) a_ = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a_ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a_ = len(_UpperCAmelCase ) > max_length if needs_to_be_truncated: a_ = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: a_ = processed_features["""attention_mask"""][:max_length] return processed_features def lowercase__ ( self , _UpperCAmelCase=False , _UpperCAmelCase=None ): """simple docstring""" if padding is not False: if padding is True: a_ = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = PaddingStrategy(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = padding else: a_ = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
483
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowercase_ ( unittest.TestCase): """simple docstring""" def lowercase__ ( self ): """simple docstring""" a_ = torch.nn.Linear(10 , 10 ) a_ = torch.optim.SGD(model.parameters() , 0.1 ) a_ = Accelerator() a_ = accelerator.prepare(_UpperCAmelCase ) try: pickle.loads(pickle.dumps(_UpperCAmelCase ) ) except Exception as e: self.fail(f"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
483
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('xlm-roberta-base' ) UpperCAmelCase_ : Tuple = 'The dog is cute and lives in the garden house' UpperCAmelCase_ : Dict = jnp.array([tokenizer.encode(snake_case_ )] ) UpperCAmelCase_ : str = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ : List[str] = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) UpperCAmelCase_ : str = model(snake_case_ )['last_hidden_state'] self.assertEqual(output.shape , snake_case_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , snake_case_ , atol=1E-3 ) )
389
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('xlm-roberta-base' ) UpperCAmelCase_ : Tuple = 'The dog is cute and lives in the garden house' UpperCAmelCase_ : Dict = jnp.array([tokenizer.encode(snake_case_ )] ) UpperCAmelCase_ : str = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ : List[str] = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) UpperCAmelCase_ : str = model(snake_case_ )['last_hidden_state'] self.assertEqual(output.shape , snake_case_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , snake_case_ , atol=1E-3 ) )
389
1