code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class a__ : def __init__( self : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int]=13 , UpperCamelCase_ : Any=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : int=True , UpperCamelCase_ : List[Any]=99 , UpperCamelCase_ : Dict=32 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : Optional[Any]=4 , UpperCamelCase_ : Union[str, Any]=37 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : str=512 , UpperCamelCase_ : Tuple=16 , UpperCamelCase_ : int=2 , UpperCamelCase_ : List[Any]=0.02 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : str=4 , UpperCamelCase_ : Optional[Any]=None , ): """simple docstring""" __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Optional[Any] = batch_size __UpperCAmelCase : int = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Optional[int] = use_input_mask __UpperCAmelCase : Optional[Any] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : Any = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : str = type_vocab_size __UpperCAmelCase : Optional[Any] = type_sequence_label_size __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : Any = num_labels __UpperCAmelCase : List[str] = num_choices __UpperCAmelCase : Optional[Any] = scope def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: __UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Any = None __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self : str): """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def a_ ( self : Any , UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : Dict): """simple docstring""" __UpperCAmelCase : Optional[Any] = LlamaModel(config=UpperCamelCase_) model.to(UpperCamelCase_) model.eval() __UpperCAmelCase : List[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_) __UpperCAmelCase : Dict = model(UpperCamelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def a_ ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , ): """simple docstring""" __UpperCAmelCase : Dict = True __UpperCAmelCase : List[str] = LlamaModel(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() __UpperCAmelCase : Any = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) __UpperCAmelCase : List[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def a_ ( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , ): """simple docstring""" __UpperCAmelCase : List[Any] = LlamaForCausalLM(config=UpperCamelCase_) model.to(UpperCamelCase_) model.eval() __UpperCAmelCase : str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def a_ ( self : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int , ): """simple docstring""" __UpperCAmelCase : Dict = True __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = LlamaForCausalLM(config=UpperCamelCase_) model.to(UpperCamelCase_) model.eval() # first forward pass __UpperCAmelCase : Union[str, Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ , ) __UpperCAmelCase : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __UpperCAmelCase : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1) __UpperCAmelCase : Tuple = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )["hidden_states"][0] __UpperCAmelCase : int = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )["hidden_states"][0] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3)) def a_ ( self : List[str]): """simple docstring""" __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase_ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase_ = (LlamaForCausalLM,) if is_torch_available() else () lowercase_ = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Optional[int] = LlamaModelTester(self) __UpperCAmelCase : str = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37) def a_ ( self : Union[str, Any]): """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_) def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Optional[Any] = type self.model_tester.create_and_check_model(*UpperCamelCase_) def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : List[Any] = input_dict["input_ids"] __UpperCAmelCase : Tuple = input_ids.ne(1).to(UpperCamelCase_) __UpperCAmelCase : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Optional[Any] = LlamaForSequenceClassification(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() __UpperCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : Optional[Any] = "single_label_classification" __UpperCAmelCase : str = input_dict["input_ids"] __UpperCAmelCase : List[str] = input_ids.ne(1).to(UpperCamelCase_) __UpperCAmelCase : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : str = LlamaForSequenceClassification(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() __UpperCAmelCase : Any = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : Tuple = "multi_label_classification" __UpperCAmelCase : Union[str, Any] = input_dict["input_ids"] __UpperCAmelCase : List[str] = input_ids.ne(1).to(UpperCamelCase_) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : Any = LlamaForSequenceClassification(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test") def a_ ( self : Dict): """simple docstring""" pass @parameterized.expand([("linear",), ("dynamic",)]) def a_ ( self : int , UpperCamelCase_ : Any): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : str = ids_tensor([1, 10] , config.vocab_size) __UpperCAmelCase : int = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Any = LlamaModel(UpperCamelCase_) original_model.to(UpperCamelCase_) original_model.eval() __UpperCAmelCase : Any = original_model(UpperCamelCase_).last_hidden_state __UpperCAmelCase : Tuple = original_model(UpperCamelCase_).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : str = {"type": scaling_type, "factor": 10.0} __UpperCAmelCase : Union[str, Any] = LlamaModel(UpperCamelCase_) scaled_model.to(UpperCamelCase_) scaled_model.eval() __UpperCAmelCase : Optional[Any] = scaled_model(UpperCamelCase_).last_hidden_state __UpperCAmelCase : Tuple = scaled_model(UpperCamelCase_).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-5)) else: self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-5)) @require_torch class a__ ( unittest.TestCase ): @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!") @slow def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : Optional[int] = [1, 306, 4658, 278, 6593, 310, 2834, 338] __UpperCAmelCase : List[str] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto") __UpperCAmelCase : Optional[Any] = model(torch.tensor([input_ids])) # Expected mean on dim = -1 __UpperCAmelCase : Union[str, Any] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]]) torch.testing.assert_close(out.mean(-1) , UpperCamelCase_ , atol=1e-2 , rtol=1e-2) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Dict = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,]) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase_ , atol=1e-5 , rtol=1e-5) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!") @slow def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] __UpperCAmelCase : List[Any] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto") __UpperCAmelCase : Any = model(torch.tensor(UpperCamelCase_)) # Expected mean on dim = -1 __UpperCAmelCase : int = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]]) torch.testing.assert_close(out.mean(-1) , UpperCamelCase_ , atol=1e-2 , rtol=1e-2) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : str = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273]) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase_ , atol=1e-5 , rtol=1e-5) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!") @slow def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : str = [1, 306, 4658, 278, 6593, 310, 2834, 338] __UpperCAmelCase : Any = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto") __UpperCAmelCase : Optional[Any] = model(torch.tensor(UpperCamelCase_)) # Expected mean on dim = -1 __UpperCAmelCase : int = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]]) torch.testing.assert_close(out.mean(-1) , UpperCamelCase_ , atol=1e-2 , rtol=1e-2) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Optional[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513]) # fmt: on torch.testing.assert_close(out.mean(-1) , UpperCamelCase_ , atol=1e-2 , rtol=1e-2) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test") @slow def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Tuple = [1, 306, 4658, 278, 6593, 310, 2834, 338] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto") __UpperCAmelCase : Tuple = model(torch.tensor(UpperCamelCase_)) __UpperCAmelCase : Optional[int] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa) torch.testing.assert_close(out.mean(-1) , UpperCamelCase_ , atol=1e-2 , rtol=1e-2) # fmt: off __UpperCAmelCase : List[Any] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312]) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase_ , atol=1e-5 , rtol=1e-5) @unittest.skip("Model is curently gated") @slow def a_ ( self : List[Any]): """simple docstring""" __UpperCAmelCase : Dict = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" __UpperCAmelCase : int = "Simply put, the theory of relativity states that " __UpperCAmelCase : Union[str, Any] = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf") __UpperCAmelCase : str = tokenizer.encode(UpperCamelCase_ , return_tensors="pt") __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=UpperCamelCase_) # greedy generation outputs __UpperCAmelCase : int = model.generate(UpperCamelCase_ , max_new_tokens=64 , top_p=UpperCamelCase_ , temperature=1 , do_sample=UpperCamelCase_) __UpperCAmelCase : List[Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase_) self.assertEqual(UpperCamelCase_ , UpperCamelCase_)
77
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed A = """true""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase=82 , UpperCamelCase=16 ) -> Tuple: """simple docstring""" set_seed(42 ) __UpperCAmelCase : Dict = RegressionModel() __UpperCAmelCase : Optional[Any] = deepcopy(UpperCamelCase ) __UpperCAmelCase : Any = RegressionDataset(length=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = DataLoader(UpperCamelCase , batch_size=UpperCamelCase ) model.to(accelerator.device ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = accelerator.prepare(UpperCamelCase , UpperCamelCase ) return model, ddp_model, dataloader def _UpperCamelCase ( UpperCamelCase , UpperCamelCase=False ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) __UpperCAmelCase : Dict = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(UpperCamelCase ): __UpperCAmelCase : Dict = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=UpperCamelCase , max_length=UpperCamelCase ) return outputs with accelerator.main_process_first(): __UpperCAmelCase : str = dataset.map( UpperCamelCase , batched=UpperCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) __UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(UpperCamelCase ): if use_longest: return tokenizer.pad(UpperCamelCase , padding="longest" , return_tensors="pt" ) return tokenizer.pad(UpperCamelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(UpperCamelCase , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=16 ) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : List[Any] = Accelerator(dispatch_batches=UpperCamelCase , split_batches=UpperCamelCase ) __UpperCAmelCase : int = get_dataloader(UpperCamelCase , not dispatch_batches ) __UpperCAmelCase : Any = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=UpperCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Dict = accelerator.prepare(UpperCamelCase , UpperCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = [] for batch in dataloader: __UpperCAmelCase , __UpperCAmelCase : int = batch.values() with torch.no_grad(): __UpperCAmelCase : int = model(UpperCamelCase ) __UpperCAmelCase , __UpperCAmelCase : List[str] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = [], [] for logit, targ in logits_and_targets: logits.append(UpperCamelCase ) targs.append(UpperCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = torch.cat(UpperCamelCase ), torch.cat(UpperCamelCase ) return logits, targs def _UpperCamelCase ( UpperCamelCase , UpperCamelCase=82 , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=16 ) -> int: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = get_basic_setup(UpperCamelCase , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = generate_predictions(UpperCamelCase , UpperCamelCase , UpperCamelCase ) assert ( len(UpperCamelCase ) == num_samples ), f"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(UpperCamelCase )}" def _UpperCamelCase ( UpperCamelCase = False , UpperCamelCase = False ) -> List[str]: """simple docstring""" __UpperCAmelCase : List[str] = evaluate.load("glue" , "mrpc" ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = get_mrpc_setup(UpperCamelCase , UpperCamelCase ) # First do baseline __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = setup["no"] model.to(UpperCamelCase ) model.eval() for batch in dataloader: batch.to(UpperCamelCase ) with torch.inference_mode(): __UpperCAmelCase : List[str] = model(**UpperCamelCase ) __UpperCAmelCase : str = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=UpperCamelCase , references=batch["labels"] ) __UpperCAmelCase : str = metric.compute() # Then do distributed __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): __UpperCAmelCase : Any = model(**UpperCamelCase ) __UpperCAmelCase : str = outputs.logits.argmax(dim=-1 ) __UpperCAmelCase : Union[str, Any] = batch["labels"] __UpperCAmelCase , __UpperCAmelCase : Any = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=UpperCamelCase , references=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def _UpperCamelCase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = Accelerator(split_batches=UpperCamelCase , dispatch_batches=UpperCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(UpperCamelCase , UpperCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __UpperCAmelCase : Union[str, Any] = Accelerator(split_batches=UpperCamelCase , dispatch_batches=UpperCamelCase ) if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(UpperCamelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) __UpperCAmelCase : Any = Accelerator() test_torch_metrics(UpperCamelCase , 512 ) accelerator.state._reset_state() def _UpperCamelCase ( UpperCamelCase ) -> Optional[Any]: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
77
1
import numpy as np class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] ): SCREAMING_SNAKE_CASE = (0, 0) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 def __eq__( self : List[str] , __lowerCamelCase : str ): return self.position == cell.position def _snake_case ( self : Optional[int] ): print(self.position ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : Tuple=(5, 5) ): SCREAMING_SNAKE_CASE = np.zeros(__lowerCamelCase ) SCREAMING_SNAKE_CASE = world_size[0] SCREAMING_SNAKE_CASE = world_size[1] def _snake_case ( self : Optional[int] ): print(self.w ) def _snake_case ( self : int , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] SCREAMING_SNAKE_CASE = cell.position[0] SCREAMING_SNAKE_CASE = cell.position[1] SCREAMING_SNAKE_CASE = [] for n in neughbour_cord: SCREAMING_SNAKE_CASE = current_x + n[0] SCREAMING_SNAKE_CASE = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: SCREAMING_SNAKE_CASE = Cell() SCREAMING_SNAKE_CASE = (x, y) SCREAMING_SNAKE_CASE = cell neighbours.append(__lowerCamelCase ) return neighbours def __a ( A__ : Optional[int] , A__ : Union[str, Any] , A__ : int ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] _open.append(A__ ) while _open: SCREAMING_SNAKE_CASE = np.argmin([n.f for n in _open] ) SCREAMING_SNAKE_CASE = _open[min_f] _closed.append(_open.pop(A__ ) ) if current == goal: break for n in world.get_neigbours(A__ ): for c in _closed: if c == n: continue SCREAMING_SNAKE_CASE = current.g + 1 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = n.position SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = goal.position SCREAMING_SNAKE_CASE = (ya - ya) ** 2 + (xa - xa) ** 2 SCREAMING_SNAKE_CASE = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(A__ ) SCREAMING_SNAKE_CASE = [] while current.parent is not None: path.append(current.position ) SCREAMING_SNAKE_CASE = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __A : int = Gridworld() # Start position and goal __A : List[Any] = Cell() __A : Optional[int] = (0, 0) __A : List[Any] = Cell() __A : Optional[Any] = (4, 4) print(f'path from {start.position} to {goal.position}') __A : Optional[int] = astar(world, start, goal) # Just for visual reasons. for i in s: __A : Optional[int] = 1 print(world.w)
698
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): return None class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ): return None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : Optional[int] ): from transformers import BertModel SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__lowerCamelCase ) ) vocab_file.flush() SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) ) model.save_pretrained(__lowerCamelCase ) self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase ) @require_tf @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ): try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) return path except Exception as e: self.fail(__lowerCamelCase ) @require_torch @require_tokenizers @slow def _snake_case ( self : Dict ): from transformers import BertModel SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def _snake_case ( self : int ): from transformers import TFBertModel SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" ) def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase ) # Assert all variables are present self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"] SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
698
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() # fmt: off _UpperCamelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on _UpperCamelCase = dict(zip(A__ , range(len(A__)))) _UpperCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] _UpperCamelCase = {'''unk_token''': '''<unk>'''} _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(A__) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(A__)) _UpperCamelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } _UpperCamelCase = os.path.join(self.tmpdirname , A__) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(A__ , A__) def UpperCAmelCase ( self , **__a) -> Dict: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **A__) def UpperCAmelCase ( self , **__a) -> int: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A__) def UpperCAmelCase ( self , **__a) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **A__) def UpperCAmelCase ( self) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta)] _UpperCamelCase = [Image.fromarray(np.moveaxis(A__ , 0 , -1)) for x in image_inputs] return image_inputs def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = self.get_image_processor() _UpperCamelCase = CLIPSegProcessor(tokenizer=A__ , image_processor=A__) processor_slow.save_pretrained(self.tmpdirname) _UpperCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=A__) _UpperCamelCase = CLIPSegProcessor(tokenizer=A__ , image_processor=A__) processor_fast.save_pretrained(self.tmpdirname) _UpperCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , A__) self.assertIsInstance(processor_fast.tokenizer , A__) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , A__) self.assertIsInstance(processor_fast.image_processor , A__) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _UpperCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') _UpperCamelCase = self.get_image_processor(do_normalize=A__ , padding_value=1.0) _UpperCamelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A__ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , A__) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , A__) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = CLIPSegProcessor(tokenizer=A__ , image_processor=A__) _UpperCamelCase = self.prepare_image_inputs() _UpperCamelCase = image_processor(A__ , return_tensors='''np''') _UpperCamelCase = processor(images=A__ , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = CLIPSegProcessor(tokenizer=A__ , image_processor=A__) _UpperCamelCase = '''lower newer''' _UpperCamelCase = processor(text=A__) _UpperCamelCase = tokenizer(A__) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = CLIPSegProcessor(tokenizer=A__ , image_processor=A__) _UpperCamelCase = '''lower newer''' _UpperCamelCase = self.prepare_image_inputs() _UpperCamelCase = processor(text=A__ , images=A__) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(A__): processor() def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = CLIPSegProcessor(tokenizer=A__ , image_processor=A__) _UpperCamelCase = self.prepare_image_inputs() _UpperCamelCase = self.prepare_image_inputs() _UpperCamelCase = processor(images=A__ , visual_prompt=A__) self.assertListEqual(list(inputs.keys()) , ['''pixel_values''', '''conditional_pixel_values''']) # test if it raises when no input is passed with pytest.raises(A__): processor() def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_image_processor() _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = CLIPSegProcessor(tokenizer=A__ , image_processor=A__) _UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCamelCase = processor.batch_decode(A__) _UpperCamelCase = tokenizer.batch_decode(A__) self.assertListEqual(A__ , A__)
19
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class UpperCAmelCase__ ( nn.Module ): __snake_case : int __snake_case : int __snake_case : float = 0.0 __snake_case : int = 1 __snake_case : int = 1 __snake_case : bool = True __snake_case : bool = False __snake_case : bool = False __snake_case : bool = False __snake_case : jnp.dtype = jnp.floataa def A__ ( self ): _A : Optional[Any] = [] _A : str = [] for i in range(self.num_layers ): _A : Union[str, Any] = self.in_channels if i == 0 else self.out_channels _A : str = FlaxResnetBlockaD( in_channels=A__ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(A__ ) _A : List[str] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(A__ ) _A : List[str] = resnets _A : Any = attentions if self.add_downsample: _A : Any = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,A__ ,A__ ,A__ ,A__=True ): _A : List[str] = () for resnet, attn in zip(self.resnets ,self.attentions ): _A : Optional[Any] = resnet(A__ ,A__ ,deterministic=A__ ) _A : Tuple = attn(A__ ,A__ ,deterministic=A__ ) output_states += (hidden_states,) if self.add_downsample: _A : Optional[int] = self.downsamplers_a(A__ ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase__ ( nn.Module ): __snake_case : int __snake_case : int __snake_case : float = 0.0 __snake_case : int = 1 __snake_case : bool = True __snake_case : jnp.dtype = jnp.floataa def A__ ( self ): _A : List[Any] = [] for i in range(self.num_layers ): _A : int = self.in_channels if i == 0 else self.out_channels _A : List[Any] = FlaxResnetBlockaD( in_channels=A__ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(A__ ) _A : Tuple = resnets if self.add_downsample: _A : Optional[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,A__ ,A__ ,A__=True ): _A : List[Any] = () for resnet in self.resnets: _A : Optional[int] = resnet(A__ ,A__ ,deterministic=A__ ) output_states += (hidden_states,) if self.add_downsample: _A : List[Any] = self.downsamplers_a(A__ ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase__ ( nn.Module ): __snake_case : int __snake_case : int __snake_case : int __snake_case : float = 0.0 __snake_case : int = 1 __snake_case : int = 1 __snake_case : bool = True __snake_case : bool = False __snake_case : bool = False __snake_case : bool = False __snake_case : jnp.dtype = jnp.floataa def A__ ( self ): _A : List[str] = [] _A : Optional[Any] = [] for i in range(self.num_layers ): _A : Dict = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A : List[str] = self.prev_output_channel if i == 0 else self.out_channels _A : Optional[int] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(A__ ) _A : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(A__ ) _A : Dict = resnets _A : int = attentions if self.add_upsample: _A : str = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,A__ ,A__ ,A__ ,A__ ,A__=True ): for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states _A : List[Any] = res_hidden_states_tuple[-1] _A : int = res_hidden_states_tuple[:-1] _A : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) _A : str = resnet(A__ ,A__ ,deterministic=A__ ) _A : Optional[int] = attn(A__ ,A__ ,deterministic=A__ ) if self.add_upsample: _A : Union[str, Any] = self.upsamplers_a(A__ ) return hidden_states class UpperCAmelCase__ ( nn.Module ): __snake_case : int __snake_case : int __snake_case : int __snake_case : float = 0.0 __snake_case : int = 1 __snake_case : bool = True __snake_case : jnp.dtype = jnp.floataa def A__ ( self ): _A : Optional[Any] = [] for i in range(self.num_layers ): _A : Any = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A : Optional[Any] = self.prev_output_channel if i == 0 else self.out_channels _A : List[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(A__ ) _A : int = resnets if self.add_upsample: _A : List[str] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,A__ ,A__ ,A__ ,A__=True ): for resnet in self.resnets: # pop res hidden states _A : Tuple = res_hidden_states_tuple[-1] _A : Optional[int] = res_hidden_states_tuple[:-1] _A : Any = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) _A : Optional[Any] = resnet(A__ ,A__ ,deterministic=A__ ) if self.add_upsample: _A : Tuple = self.upsamplers_a(A__ ) return hidden_states class UpperCAmelCase__ ( nn.Module ): __snake_case : int __snake_case : float = 0.0 __snake_case : int = 1 __snake_case : int = 1 __snake_case : bool = False __snake_case : bool = False __snake_case : jnp.dtype = jnp.floataa def A__ ( self ): # there is always at least one resnet _A : List[str] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] _A : Union[str, Any] = [] for _ in range(self.num_layers ): _A : Any = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(A__ ) _A : Any = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(A__ ) _A : List[str] = resnets _A : str = attentions def __call__( self ,A__ ,A__ ,A__ ,A__=True ): _A : Optional[int] = self.resnets[0](A__ ,A__ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): _A : Dict = attn(A__ ,A__ ,deterministic=A__ ) _A : Any = resnet(A__ ,A__ ,deterministic=A__ ) return hidden_states
206
0
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def __lowerCAmelCase( __UpperCAmelCase ,__UpperCAmelCase ): """simple docstring""" _lowercase : Tuple = args.log_outputs _lowercase : List[str] = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric _lowercase : List[Any] = load_metric('wer' ) _lowercase : Dict = load_metric('cer' ) # compute metrics _lowercase : str = wer.compute(references=result['target'] ,predictions=result['prediction'] ) _lowercase : List[str] = cer.compute(references=result['target'] ,predictions=result['prediction'] ) # print & log results _lowercase : Optional[Any] = F'''WER: {wer_result}\nCER: {cer_result}''' print(__UpperCAmelCase ) with open(F'''{dataset_id}_eval_results.txt''' ,'w' ) as f: f.write(__UpperCAmelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: _lowercase : Optional[int] = F'''log_{dataset_id}_predictions.txt''' _lowercase : Dict = F'''log_{dataset_id}_targets.txt''' with open(__UpperCAmelCase ,'w' ) as p, open(__UpperCAmelCase ,'w' ) as t: # mapping function to write output def write_to_file(__UpperCAmelCase ,__UpperCAmelCase ): p.write(F'''{i}''' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(F'''{i}''' + '\n' ) t.write(batch['target'] + '\n' ) result.map(__UpperCAmelCase ,with_indices=__UpperCAmelCase ) def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" _lowercase : Optional[int] = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training _lowercase : Optional[Any] = re.sub(__UpperCAmelCase ,'' ,text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! _lowercase : Union[str, Any] = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: _lowercase : Any = ' '.join(text.split(__UpperCAmelCase ) ) return text def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" _lowercase : Any = load_dataset(args.dataset ,args.config ,split=args.split ,use_auth_token=__UpperCAmelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor _lowercase : str = AutoFeatureExtractor.from_pretrained(args.model_id ) _lowercase : str = feature_extractor.sampling_rate # resample audio _lowercase : Optional[int] = dataset.cast_column('audio' ,Audio(sampling_rate=__UpperCAmelCase ) ) # load eval pipeline if args.device is None: _lowercase : Union[str, Any] = 0 if torch.cuda.is_available() else -1 _lowercase : Optional[int] = pipeline('automatic-speech-recognition' ,model=args.model_id ,device=args.device ) # map function to decode audio def map_to_pred(__UpperCAmelCase ): _lowercase : List[str] = asr( batch['audio']['array'] ,chunk_length_s=args.chunk_length_s ,stride_length_s=args.stride_length_s ) _lowercase : str = prediction['text'] _lowercase : List[Any] = normalize_text(batch['sentence'] ) return batch # run inference on all examples _lowercase : List[str] = dataset.map(__UpperCAmelCase ,remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(__UpperCAmelCase ,__UpperCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
283
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class _lowerCamelCase (__lowerCamelCase ): _snake_case = ["input_features", "attention_mask"] def __init__( self : int , lowerCamelCase_ : List[str]=8_0 , lowerCamelCase_ : Tuple=1_6_0_0_0 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : List[Any]=1_0 , lowerCamelCase_ : List[str]=2_5 , lowerCamelCase_ : List[Any]="hamming_window" , lowerCamelCase_ : Tuple=3_2768.0 , lowerCamelCase_ : int=0.97 , lowerCamelCase_ : Optional[int]=1.0 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(feature_size=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , padding_value=lowerCamelCase_ , **lowerCamelCase_ ) _lowercase : Dict = feature_size _lowercase : Dict = sampling_rate _lowercase : Tuple = padding_value _lowercase : int = hop_length _lowercase : Any = win_length _lowercase : Union[str, Any] = frame_signal_scale _lowercase : Tuple = preemphasis_coeff _lowercase : Tuple = mel_floor _lowercase : Tuple = normalize_means _lowercase : List[Any] = normalize_vars _lowercase : List[str] = win_function _lowercase : int = return_attention_mask _lowercase : Optional[Any] = win_length * sampling_rate // 1_0_0_0 _lowercase : Tuple = hop_length * sampling_rate // 1_0_0_0 _lowercase : str = optimal_fft_length(self.sample_size ) _lowercase : Dict = (self.n_fft // 2) + 1 def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : np.array ): """simple docstring""" if self.win_function == "hamming_window": _lowercase : List[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCamelCase_ ) else: _lowercase : Union[str, Any] = window_function(window_length=self.sample_size , name=self.win_function ) _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) _lowercase : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=lowerCamelCase_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=lowerCamelCase_ , preemphasis=self.preemphasis_coeff , mel_filters=lowerCamelCase_ , mel_floor=self.mel_floor , log_mel='log' , ) return msfc_features.T def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple ): """simple docstring""" if self.normalize_means: _lowercase : Optional[int] = x[:input_length].mean(axis=0 ) _lowercase : int = np.subtract(lowerCamelCase_ , lowerCamelCase_ ) if self.normalize_vars: _lowercase : int = x[:input_length].std(axis=0 ) _lowercase : Optional[Any] = np.divide(lowerCamelCase_ , lowerCamelCase_ ) if input_length < x.shape[0]: _lowercase : Dict = padding_value # make sure array is in float32 _lowercase : Tuple = x.astype(np.floataa ) return x def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[np.ndarray] , lowerCamelCase_ : Optional[np.ndarray] = None ): """simple docstring""" _lowercase : Dict = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(lowerCamelCase_ , lowerCamelCase_ , self.padding_value ) for x, n in zip(lowerCamelCase_ , lowerCamelCase_ )] def __call__( self : Dict , lowerCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(lowerCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : Optional[int] = is_batched_numpy or ( isinstance(lowerCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : str = [np.asarray(lowerCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_ , np.ndarray ): _lowercase : Tuple = np.asarray(lowerCamelCase_ , dtype=np.floataa ) elif isinstance(lowerCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : str = [raw_speech] # extract fbank features _lowercase : Optional[Any] = [self._extract_mfsc_features(lowerCamelCase_ ) for one_waveform in raw_speech] # convert into correct format for padding _lowercase : Optional[int] = BatchFeature({'input_features': features} ) _lowercase : Tuple = self.pad( lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) # make sure list is in array format _lowercase : Dict = padded_inputs.get('input_features' ) if isinstance(input_features[0] , lowerCamelCase_ ): _lowercase : List[str] = [np.asarray(lowerCamelCase_ , dtype=np.floataa ) for feature in input_features] _lowercase : List[Any] = padded_inputs.get('attention_mask' ) if attention_mask is not None: _lowercase : Union[str, Any] = [np.asarray(lowerCamelCase_ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _lowercase : int = ( np.array(lowerCamelCase_ , dtype=np.intaa ) if self._get_padding_strategies(lowerCamelCase_ , max_length=lowerCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _lowercase : List[Any] = self.normalize( padded_inputs['input_features'] , attention_mask=lowerCamelCase_ ) if return_tensors is not None: _lowercase : Union[str, Any] = padded_inputs.convert_to_tensors(lowerCamelCase_ ) return padded_inputs
283
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } A_ = { "yjernite/retribert-base-uncased": 512, } A_ = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class __lowerCAmelCase ( UpperCAmelCase ): '''simple docstring''' __lowerCamelCase : List[str] = VOCAB_FILES_NAMES __lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : List[Any] = RetriBertTokenizer __lowerCamelCase : Tuple = ["input_ids", "attention_mask"] def __init__( self: Optional[Any] , UpperCamelCase_: Dict=None , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Union[str, Any]="[UNK]" , UpperCamelCase_: Optional[int]="[SEP]" , UpperCamelCase_: List[str]="[PAD]" , UpperCamelCase_: Dict="[CLS]" , UpperCamelCase_: List[Any]="[MASK]" , UpperCamelCase_: List[str]=True , UpperCamelCase_: Tuple=None , **UpperCamelCase_: List[Any] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase_ =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCamelCase_ ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCamelCase_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCamelCase_ ) != tokenize_chinese_chars ): UpperCamelCase_ =getattr(UpperCamelCase_ , normalizer_state.pop("type" ) ) UpperCamelCase_ =do_lower_case UpperCamelCase_ =strip_accents UpperCamelCase_ =tokenize_chinese_chars UpperCamelCase_ =normalizer_class(**UpperCamelCase_ ) UpperCamelCase_ =do_lower_case def UpperCamelCase__ ( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: Union[str, Any]=None ): UpperCamelCase_ =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self: List[str] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): UpperCamelCase_ =[self.sep_token_id] UpperCamelCase_ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): UpperCamelCase_ =self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
391
"""simple docstring""" from manim import * class __lowerCAmelCase ( UpperCAmelCase ): '''simple docstring''' def UpperCamelCase__ ( self: int ): UpperCamelCase_ =Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_ =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_ =[mem.copy() for i in range(6 )] UpperCamelCase_ =[mem.copy() for i in range(6 )] UpperCamelCase_ =VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) UpperCamelCase_ =VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) UpperCamelCase_ =VGroup(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) UpperCamelCase_ =Text("CPU" , font_size=24 ) UpperCamelCase_ =Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCamelCase_ ) UpperCamelCase_ =[mem.copy() for i in range(1 )] UpperCamelCase_ =VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) UpperCamelCase_ =Text("GPU" , font_size=24 ) UpperCamelCase_ =Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) gpu.align_to(UpperCamelCase_ , UpperCamelCase_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(UpperCamelCase_ ) UpperCamelCase_ =[mem.copy() for i in range(6 )] UpperCamelCase_ =VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) UpperCamelCase_ =Text("Model" , font_size=24 ) UpperCamelCase_ =Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) model.move_to([3, -1.0, 0] ) self.play( Create(UpperCamelCase_ , run_time=1 ) , Create(UpperCamelCase_ , run_time=1 ) , Create(UpperCamelCase_ , run_time=1 ) , ) UpperCamelCase_ =MarkupText( f"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) UpperCamelCase_ =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_ =MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase_ , run_time=2.5 ) , Write(UpperCamelCase_ ) , Write(UpperCamelCase_ ) ) self.add(UpperCamelCase_ ) UpperCamelCase_ =[] UpperCamelCase_ =[] UpperCamelCase_ =[] for i, rect in enumerate(UpperCamelCase_ ): UpperCamelCase_ =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCamelCase_ , opacity=0.7 ) cpu_target.move_to(UpperCamelCase_ ) cpu_target.generate_target() UpperCamelCase_ =0.46 / 4 UpperCamelCase_ =0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCamelCase_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=UpperCamelCase_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=UpperCamelCase_ , buff=0.0 ) cpu_targs.append(UpperCamelCase_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(UpperCamelCase_ ) ) second_animations.append(MoveToTarget(UpperCamelCase_ , run_time=1.5 ) ) self.play(*UpperCamelCase_ ) self.play(*UpperCamelCase_ ) self.wait()
391
1
import math from collections.abc import Callable def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' lowercase : float = xa lowercase : float = xa while True: if x_n == x_na or function(__magic_name__ ) == function(__magic_name__ ): raise ZeroDivisionError('''float division by zero, could not find root''' ) lowercase : float = x_na - ( function(__magic_name__ ) / ((function(__magic_name__ ) - function(__magic_name__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na lowercase : Tuple = x_na lowercase : List[str] = x_na def snake_case( __magic_name__ ) -> float: '''simple docstring''' return math.pow(__magic_name__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
708
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _A : def __init__( self : int ) -> Any: """simple docstring""" lowercase : List[Any] = '''''' lowercase : Optional[int] = '''''' lowercase : str = [] lowercase : List[Any] = 0 lowercase : str = 256 lowercase : Dict = 0 lowercase : Optional[int] = 0 lowercase : List[str] = 0 lowercase : str = 0 def __a ( self : List[str] , _A : int ) -> int: """simple docstring""" lowercase : List[Any] = cva.imread(_A , 0 ) lowercase : List[Any] = copy.deepcopy(self.img ) lowercase , lowercase , lowercase : int = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' ) lowercase : Optional[int] = np.sum(_A ) for i in range(len(_A ) ): lowercase : Optional[int] = x[i] / self.k self.sk += prk lowercase : Tuple = (self.L - 1) * self.sk if self.rem != 0: lowercase : Tuple = int(last % last ) lowercase : Optional[Any] = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_A ) lowercase : Dict = int(np.ma.count(self.img ) / self.img[1].size ) lowercase : Optional[Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowercase : Any = self.img[j][i] if num != self.last_list[num]: lowercase : Dict = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def __a ( self : Dict ) -> Any: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5_000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase_ = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
596
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" super().__init__() self.register_modules(unet=snake_case__ , scheduler=snake_case__ ) @torch.no_grad() def __call__( self , __UpperCamelCase = 1 , __UpperCamelCase = 1_00 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = True , ): """simple docstring""" if audio_length_in_s is None: snake_case_ = self.unet.config.sample_size / self.unet.config.sample_rate snake_case_ = audio_length_in_s * self.unet.config.sample_rate snake_case_ = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) snake_case_ = int(snake_case__ ) if sample_size % down_scale_factor != 0: snake_case_ = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ' process.' ) snake_case_ = int(snake_case__ ) snake_case_ = next(iter(self.unet.parameters() ) ).dtype snake_case_ = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) snake_case_ = randn_tensor(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) # set step values self.scheduler.set_timesteps(snake_case__ , device=audio.device ) snake_case_ = self.scheduler.timesteps.to(snake_case__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case_ = self.unet(snake_case__ , snake_case__ ).sample # 2. compute previous image: x_t -> t_t-1 snake_case_ = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample snake_case_ = audio.clamp(-1 , 1 ).float().cpu().numpy() snake_case_ = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=snake_case__ )
187
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int ="imagegpt" a : Union[str, Any] =["past_key_values"] a : Optional[Any] ={ "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=512 + 1 , snake_case__=32 * 32 , snake_case__=512 , snake_case__=24 , snake_case__=8 , snake_case__=None , snake_case__="quick_gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1e-5 , snake_case__=0.02 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=False , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : List[Any] = n_positions lowerCAmelCase : Union[str, Any] = n_embd lowerCAmelCase : str = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Optional[Any] = n_inner lowerCAmelCase : Dict = activation_function lowerCAmelCase : str = resid_pdrop lowerCAmelCase : Optional[int] = embd_pdrop lowerCAmelCase : Optional[int] = attn_pdrop lowerCAmelCase : Union[str, Any] = layer_norm_epsilon lowerCAmelCase : Any = initializer_range lowerCAmelCase : Union[str, Any] = scale_attn_weights lowerCAmelCase : int = use_cache lowerCAmelCase : List[Any] = scale_attn_by_inverse_layer_idx lowerCAmelCase : Optional[int] = reorder_and_upcast_attn lowerCAmelCase : int = tie_word_embeddings super().__init__(tie_word_embeddings=snake_case__ , **snake_case__ ) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def lowercase__ ( self , snake_case__ , snake_case__ = 1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , snake_case__ = 3 , snake_case__ = 32 , snake_case__ = 32 , ): """simple docstring""" lowerCAmelCase : Tuple = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Union[str, Any] = dict(preprocessor(images=snake_case__ , return_tensors=snake_case__ ) ) return inputs
645
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) UpperCAmelCase_ = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): """simple docstring""" _snake_case : Optional[Any] = None _snake_case : List[str] = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) _snake_case : str = os.path.abspath("""examples""" ) for item in os.listdir(SCREAMING_SNAKE_CASE__ ): if item not in EXCLUDE_EXAMPLES: _snake_case : str = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ) and ".py" in item_path: with self.subTest( tested_script=SCREAMING_SNAKE_CASE__ , feature_script=SCREAMING_SNAKE_CASE__ , tested_section="""main()""" if parser_only else """training_function()""" , ): _snake_case : Union[str, Any] = compare_against_test( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = """\n""".join(SCREAMING_SNAKE_CASE__ ) if special_strings is not None: for string in special_strings: _snake_case : int = diff.replace(SCREAMING_SNAKE_CASE__ , """""" ) self.assertEqual(SCREAMING_SNAKE_CASE__ , """""" ) def __lowerCamelCase( self ): """simple docstring""" self.one_complete_example("""complete_nlp_example.py""" , SCREAMING_SNAKE_CASE__ ) self.one_complete_example("""complete_nlp_example.py""" , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Union[str, Any] = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) _snake_case : int = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.one_complete_example("""complete_cv_example.py""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = False @classmethod def __lowerCamelCase( cls ): """simple docstring""" super().setUpClass() _snake_case : Dict = tempfile.mkdtemp() _snake_case : str = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) _snake_case : Optional[int] = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def __lowerCamelCase( cls ): """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : List[str] = f''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Dict = f''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() _snake_case : Dict = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : int = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} '''.split() _snake_case : Optional[int] = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE__ ) self.assertNotIn("""epoch 0:""" , SCREAMING_SNAKE_CASE__ ) self.assertIn("""epoch 1:""" , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : int = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} '''.split() _snake_case : Any = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE__ ) if torch.cuda.is_available(): _snake_case : str = torch.cuda.device_count() else: _snake_case : List[str] = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , SCREAMING_SNAKE_CASE__ ) self.assertIn("""epoch 1:""" , SCREAMING_SNAKE_CASE__ ) else: self.assertIn("""epoch 0:""" , SCREAMING_SNAKE_CASE__ ) self.assertIn("""epoch 1:""" , SCREAMING_SNAKE_CASE__ ) @slow def __lowerCamelCase( self ): """simple docstring""" _snake_case : Tuple = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): _snake_case : Optional[int] = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = re.findall("""({.+})""" , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = [r for r in results if """accuracy""" in r][-1] _snake_case : Optional[int] = ast.literal_eval(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(results["""accuracy"""] , 0.75 ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Optional[int] = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __lowerCamelCase( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: _snake_case : Optional[int] = f''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """tracking""" ) ) ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Union[str, Any] = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : List[str] = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
720
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer UpperCAmelCase_ = ['''bert-base-uncased''', '''bert-base-cased'''] UpperCAmelCase_ = '''hf-internal-testing/tiny-bert-tf-only''' if is_tf_available(): class __SCREAMING_SNAKE_CASE ( tf.keras.Model ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" super().__init__() _snake_case : int = tokenizer _snake_case : List[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = TFAutoModel.from_config(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _snake_case : str = self.tokenizer(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = self.bert(**SCREAMING_SNAKE_CASE__ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase( self ): """simple docstring""" super().setUp() _snake_case : Tuple = [ BertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _snake_case : List[str] = [TFBertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , use_fast_bert_tokenizer=SCREAMING_SNAKE_CASE__ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Tuple = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] _snake_case : Dict = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __lowerCamelCase( self ): """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): _snake_case : Optional[int] = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors="""tf""" , padding="""longest""" ) _snake_case : Optional[int] = tf_tokenizer(SCREAMING_SNAKE_CASE__ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def __lowerCamelCase( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _snake_case : Dict = tf_tokenizer(self.paired_sentences ) _snake_case : Any = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def __lowerCamelCase( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _snake_case : Tuple = tf.function(SCREAMING_SNAKE_CASE__ ) for test_inputs in (self.test_sentences, self.paired_sentences): _snake_case : int = tf.constant(SCREAMING_SNAKE_CASE__ ) _snake_case : str = compiled_tokenizer(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = tf_tokenizer(SCREAMING_SNAKE_CASE__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __lowerCamelCase( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _snake_case : List[str] = ModelToSave(tokenizer=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = tf.convert_to_tensor(self.test_sentences ) _snake_case : int = model(SCREAMING_SNAKE_CASE__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : Union[str, Any] = Path(SCREAMING_SNAKE_CASE__ ) / """saved.model""" model.save(SCREAMING_SNAKE_CASE__ ) _snake_case : str = tf.keras.models.load_model(SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = loaded_model(SCREAMING_SNAKE_CASE__ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
519
0
from sklearn.metrics import fa_score import datasets snake_case : Optional[int] = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' snake_case : Dict = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' snake_case : List[Any] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): """simple docstring""" def __magic_name__ ( self )-> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def __magic_name__ ( self , A_ , A_ , A_=None , A_=1 , A_="binary" , A_=None )-> str: _SCREAMING_SNAKE_CASE = fa_score( A_ , A_ , labels=A_ , pos_label=A_ , average=A_ , sample_weight=A_ ) return {"f1": float(A_ ) if score.size == 1 else score}
605
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin snake_case : List[str] = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class __lowercase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechTaTokenizer SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Union[str, Any] = True def __magic_name__ ( self )-> List[str]: super().setUp() # We have a SentencePiece fixture for testing _SCREAMING_SNAKE_CASE = SpeechTaTokenizer(A_ ) _SCREAMING_SNAKE_CASE = AddedToken('<mask>' , lstrip=A_ , rstrip=A_ ) _SCREAMING_SNAKE_CASE = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self , A_ )-> List[str]: _SCREAMING_SNAKE_CASE = 'this is a test' _SCREAMING_SNAKE_CASE = 'this is a test' return input_text, output_text def __magic_name__ ( self , A_ , A_=False , A_=20 , A_=5 )-> Optional[int]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_input_output_texts(A_ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A_ , add_special_tokens=A_ ) _SCREAMING_SNAKE_CASE = tokenizer.decode(A_ , clean_up_tokenization_spaces=A_ ) return text, ids def __magic_name__ ( self )-> Dict: _SCREAMING_SNAKE_CASE = '<pad>' _SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def __magic_name__ ( self )-> Dict: _SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(A_ ) , 81 ) def __magic_name__ ( self )-> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def __magic_name__ ( self )-> Dict: _SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _SCREAMING_SNAKE_CASE = tokenizer.vocab_size _SCREAMING_SNAKE_CASE = len(A_ ) self.assertNotEqual(A_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _SCREAMING_SNAKE_CASE = ['aaaaa bbbbbb', 'cccccccccdddddddd'] _SCREAMING_SNAKE_CASE = tokenizer.add_tokens(A_ ) _SCREAMING_SNAKE_CASE = tokenizer.vocab_size _SCREAMING_SNAKE_CASE = len(A_ ) self.assertNotEqual(A_ , 0 ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , len(A_ ) ) self.assertEqual(A_ , all_size + len(A_ ) ) _SCREAMING_SNAKE_CASE = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=A_ ) self.assertGreaterEqual(len(A_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _SCREAMING_SNAKE_CASE = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} _SCREAMING_SNAKE_CASE = tokenizer.add_special_tokens(A_ ) _SCREAMING_SNAKE_CASE = tokenizer.vocab_size _SCREAMING_SNAKE_CASE = len(A_ ) self.assertNotEqual(A_ , 0 ) self.assertEqual(A_ , A_ ) self.assertEqual(A_ , len(A_ ) ) self.assertEqual(A_ , all_size_a + len(A_ ) ) _SCREAMING_SNAKE_CASE = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=A_ ) self.assertGreaterEqual(len(A_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def __magic_name__ ( self )-> List[str]: pass def __magic_name__ ( self )-> Dict: pass def __magic_name__ ( self )-> str: _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(A_ , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( A_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) _SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(A_ ) # fmt: off self.assertListEqual(A_ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def __magic_name__ ( self )-> Tuple: # Use custom sequence because this tokenizer does not handle numbers. _SCREAMING_SNAKE_CASE = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off _SCREAMING_SNAKE_CASE = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=A_ , )
605
1
"""simple docstring""" import re import string import numpy as np import datasets lowerCamelCase_ : Any = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' lowerCamelCase_ : Tuple = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' lowerCamelCase_ : Dict = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCamelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=False , snake_case_=False , snake_case_=False , ): """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: A_ : List[str] = np.array([re.sub(snake_case_ , '' , snake_case_ ) for x in predictions] ) A_ : int = np.array([re.sub(snake_case_ , '' , snake_case_ ) for x in references] ) else: A_ : List[Any] = np.asarray(snake_case_ ) A_ : int = np.asarray(snake_case_ ) if ignore_case: A_ : Union[str, Any] = np.char.lower(snake_case_ ) A_ : Union[str, Any] = np.char.lower(snake_case_ ) if ignore_punctuation: A_ : Optional[Any] = string.punctuation.maketrans('' , '' , string.punctuation ) A_ : Tuple = np.char.translate(snake_case_ , table=snake_case_ ) A_ : Tuple = np.char.translate(snake_case_ , table=snake_case_ ) if ignore_numbers: A_ : List[Any] = string.digits.maketrans('' , '' , string.digits ) A_ : List[Any] = np.char.translate(snake_case_ , table=snake_case_ ) A_ : Union[str, Any] = np.char.translate(snake_case_ , table=snake_case_ ) A_ : Dict = predictions == references return {"exact_match": np.mean(snake_case_ ) * 1_0_0}
302
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCamelCase_ : Tuple = logging.get_logger(__name__) lowerCamelCase_ : Union[str, Any] = OrderedDict( [ ('audio-spectrogram-transformer', 'ASTFeatureExtractor'), ('beit', 'BeitFeatureExtractor'), ('chinese_clip', 'ChineseCLIPFeatureExtractor'), ('clap', 'ClapFeatureExtractor'), ('clip', 'CLIPFeatureExtractor'), ('clipseg', 'ViTFeatureExtractor'), ('conditional_detr', 'ConditionalDetrFeatureExtractor'), ('convnext', 'ConvNextFeatureExtractor'), ('cvt', 'ConvNextFeatureExtractor'), ('data2vec-audio', 'Wav2Vec2FeatureExtractor'), ('data2vec-vision', 'BeitFeatureExtractor'), ('deformable_detr', 'DeformableDetrFeatureExtractor'), ('deit', 'DeiTFeatureExtractor'), ('detr', 'DetrFeatureExtractor'), ('dinat', 'ViTFeatureExtractor'), ('donut-swin', 'DonutFeatureExtractor'), ('dpt', 'DPTFeatureExtractor'), ('encodec', 'EncodecFeatureExtractor'), ('flava', 'FlavaFeatureExtractor'), ('glpn', 'GLPNFeatureExtractor'), ('groupvit', 'CLIPFeatureExtractor'), ('hubert', 'Wav2Vec2FeatureExtractor'), ('imagegpt', 'ImageGPTFeatureExtractor'), ('layoutlmv2', 'LayoutLMv2FeatureExtractor'), ('layoutlmv3', 'LayoutLMv3FeatureExtractor'), ('levit', 'LevitFeatureExtractor'), ('maskformer', 'MaskFormerFeatureExtractor'), ('mctct', 'MCTCTFeatureExtractor'), ('mobilenet_v1', 'MobileNetV1FeatureExtractor'), ('mobilenet_v2', 'MobileNetV2FeatureExtractor'), ('mobilevit', 'MobileViTFeatureExtractor'), ('nat', 'ViTFeatureExtractor'), ('owlvit', 'OwlViTFeatureExtractor'), ('perceiver', 'PerceiverFeatureExtractor'), ('poolformer', 'PoolFormerFeatureExtractor'), ('regnet', 'ConvNextFeatureExtractor'), ('resnet', 'ConvNextFeatureExtractor'), ('segformer', 'SegformerFeatureExtractor'), ('sew', 'Wav2Vec2FeatureExtractor'), ('sew-d', 'Wav2Vec2FeatureExtractor'), ('speech_to_text', 'Speech2TextFeatureExtractor'), ('speecht5', 'SpeechT5FeatureExtractor'), ('swiftformer', 'ViTFeatureExtractor'), ('swin', 'ViTFeatureExtractor'), ('swinv2', 'ViTFeatureExtractor'), ('table-transformer', 'DetrFeatureExtractor'), ('timesformer', 'VideoMAEFeatureExtractor'), ('tvlt', 'TvltFeatureExtractor'), ('unispeech', 'Wav2Vec2FeatureExtractor'), ('unispeech-sat', 'Wav2Vec2FeatureExtractor'), ('van', 'ConvNextFeatureExtractor'), ('videomae', 'VideoMAEFeatureExtractor'), ('vilt', 'ViltFeatureExtractor'), ('vit', 'ViTFeatureExtractor'), ('vit_mae', 'ViTFeatureExtractor'), ('vit_msn', 'ViTFeatureExtractor'), ('wav2vec2', 'Wav2Vec2FeatureExtractor'), ('wav2vec2-conformer', 'Wav2Vec2FeatureExtractor'), ('wavlm', 'Wav2Vec2FeatureExtractor'), ('whisper', 'WhisperFeatureExtractor'), ('xclip', 'CLIPFeatureExtractor'), ('yolos', 'YolosFeatureExtractor'), ] ) lowerCamelCase_ : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: A_ : Optional[Any] = model_type_to_module_name(_UpperCAmelCase ) A_ : Optional[int] = importlib.import_module(f""".{module_name}""" , 'transformers.models' ) try: return getattr(_UpperCAmelCase , _UpperCAmelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_UpperCAmelCase , '__name__' , _UpperCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. A_ : Optional[Any] = importlib.import_module('transformers' ) if hasattr(_UpperCAmelCase , _UpperCAmelCase ): return getattr(_UpperCAmelCase , _UpperCAmelCase ) return None def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , **_UpperCAmelCase , ): """simple docstring""" A_ : List[Any] = get_file_from_repo( _UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(_UpperCAmelCase , encoding='utf-8' ) as reader: return json.load(_UpperCAmelCase ) class _UpperCAmelCase : '''simple docstring''' def __init__( self ): """simple docstring""" raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(snake_case_ ) def lowerCamelCase_ ( cls , snake_case_ , **snake_case_ ): """simple docstring""" A_ : str = kwargs.pop('config' , snake_case_ ) A_ : Optional[Any] = kwargs.pop('trust_remote_code' , snake_case_ ) A_ : Any = True A_ , A_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(snake_case_ , **snake_case_ ) A_ : List[Any] = config_dict.get('feature_extractor_type' , snake_case_ ) A_ : Optional[int] = None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): A_ : Optional[Any] = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(snake_case_ , snake_case_ ): A_ : Any = AutoConfig.from_pretrained(snake_case_ , **snake_case_ ) # It could be in `config.feature_extractor_type`` A_ : str = getattr(snake_case_ , 'feature_extractor_type' , snake_case_ ) if hasattr(snake_case_ , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: A_ : List[str] = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: A_ : Union[str, Any] = feature_extractor_class_from_name(snake_case_ ) A_ : Dict = feature_extractor_auto_map is not None A_ : Tuple = feature_extractor_class is not None or type(snake_case_ ) in FEATURE_EXTRACTOR_MAPPING A_ : Optional[int] = resolve_trust_remote_code( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if has_remote_code and trust_remote_code: A_ : Optional[int] = get_class_from_dynamic_module( snake_case_ , snake_case_ , **snake_case_ ) A_ : str = kwargs.pop('code_revision' , snake_case_ ) if os.path.isdir(snake_case_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(snake_case_ , **snake_case_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(snake_case_ , **snake_case_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(snake_case_ ) in FEATURE_EXTRACTOR_MAPPING: A_ : List[str] = FEATURE_EXTRACTOR_MAPPING[type(snake_case_ )] return feature_extractor_class.from_dict(snake_case_ , **snake_case_ ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def lowerCamelCase_ ( snake_case_ , snake_case_ ): """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(snake_case_ , snake_case_ )
302
1
'''simple docstring''' def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: int, SCREAMING_SNAKE_CASE__: int ) -> list: """simple docstring""" __a = word.split() def justify(SCREAMING_SNAKE_CASE__: Optional[int], SCREAMING_SNAKE_CASE__: Tuple, SCREAMING_SNAKE_CASE__: Optional[int] ) -> str: __a = max_width - width __a = len(__snake_case ) if len(__snake_case ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __a = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __a = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __a = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__snake_case ): num_spaces_between_words_list[i] += 1 __a = [] for i in range(__snake_case ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__snake_case ) __a = [] __a = [] __a = 0 for word in words: if width + len(__snake_case ) + len(__snake_case ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__snake_case ) width += len(__snake_case ) else: # justify the line and add it to result answer.append(justify(__snake_case, __snake_case, __snake_case ) ) # reset new line and new width __a , __a = [word], len(__snake_case ) __a = max_width - width - len(__snake_case ) answer.append(' '.join(__snake_case ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
448
from __future__ import annotations def UpperCAmelCase__ ( __snake_case , __snake_case ) -> bool: _A = get_failure_array(__snake_case ) # 2) Step through text searching for pattern _A , _A = 0, 0 # index into text, pattern while i < len(__snake_case ): if pattern[j] == text[i]: if j == (len(__snake_case ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _A = failure[j - 1] continue i += 1 return False def UpperCAmelCase__ ( __snake_case ) -> list[int]: _A = [0] _A = 0 _A = 1 while j < len(__snake_case ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _A = failure[i - 1] continue j += 1 failure.append(__snake_case ) return failure if __name__ == "__main__": # Test 1) __lowerCamelCase = """abc1abc12""" __lowerCamelCase = """alskfjaldsabc1abc1abc12k23adsfabcabc""" __lowerCamelCase = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __lowerCamelCase = """ABABX""" __lowerCamelCase = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) __lowerCamelCase = """AAAB""" __lowerCamelCase = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) __lowerCamelCase = """abcdabcy""" __lowerCamelCase = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) __lowerCamelCase = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
317
0
from ....utils import logging __a : int = logging.get_logger(__name__) class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=20_48 ) -> Optional[Any]: '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
522
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __a : str = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __a : Union[str, Any] = 2_5_0_0_0_4 __a : Optional[int] = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class _UpperCamelCase ( _UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : str = MBartTokenizer __a : int = MBartTokenizerFast __a : List[Any] = True __a : int = True def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowercase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) __lowercase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowercase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowercase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __lowercase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __lowercase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __lowercase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __lowercase = tempfile.mkdtemp() __lowercase = tokenizer_r.save_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __lowercase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way __lowercase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=True __lowercase = tempfile.mkdtemp() __lowercase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) __lowercase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way __lowercase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=False __lowercase = tempfile.mkdtemp() __lowercase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) __lowercase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowercase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" __a : Optional[int] = '''facebook/mbart-large-en-ro''' __a : Any = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] __a : Optional[Any] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] __a : List[Any] = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, EN_CODE] @classmethod def _SCREAMING_SNAKE_CASE ( cls ) -> Any: '''simple docstring''' __lowercase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __lowercase = 1 return cls def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) __lowercase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __lowercase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) __lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCAmelCase__ ) __lowercase = 10 __lowercase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_26, 25_00_01] ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = tempfile.mkdtemp() __lowercase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__ ) __lowercase = MBartTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ ) @require_torch def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' ) __lowercase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __lowercase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __lowercase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' ) __lowercase = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' ) __lowercase = targets['''input_ids'''] __lowercase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 30_34, 2, 25_00_04]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
522
1
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def _lowercase ( __snake_case ,__snake_case=False ) -> Tuple: try: __lowerCAmelCase : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCAmelCase : Tuple = default else: # KEY is set, convert it to True or False. try: __lowerCAmelCase : Tuple = strtobool(__snake_case ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __snake_case : Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False) __snake_case : Optional[int] = parse_flag_from_env('RUN_REMOTE', default=False) __snake_case : Any = parse_flag_from_env('RUN_LOCAL', default=True) __snake_case : List[str] = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression __snake_case : Tuple = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') __snake_case : int = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') __snake_case : List[str] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio __snake_case : Optional[int] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam __snake_case : Any = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility __snake_case : Dict = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows __snake_case : Dict = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def _lowercase ( __snake_case ) -> int: try: import faiss # noqa except ImportError: __lowerCAmelCase : Optional[int] = unittest.skip("test requires faiss" )(__snake_case ) return test_case def _lowercase ( __snake_case ) -> str: try: import regex # noqa except ImportError: __lowerCAmelCase : str = unittest.skip("test requires regex" )(__snake_case ) return test_case def _lowercase ( __snake_case ) -> int: try: import elasticsearch # noqa except ImportError: __lowerCAmelCase : int = unittest.skip("test requires elasticsearch" )(__snake_case ) return test_case def _lowercase ( __snake_case ) -> Tuple: try: import sqlalchemy # noqa except ImportError: __lowerCAmelCase : List[str] = unittest.skip("test requires sqlalchemy" )(__snake_case ) return test_case def _lowercase ( __snake_case ) -> Union[str, Any]: if not config.TORCH_AVAILABLE: __lowerCAmelCase : Optional[Any] = unittest.skip("test requires PyTorch" )(__snake_case ) return test_case def _lowercase ( __snake_case ) -> List[Any]: if not config.TF_AVAILABLE: __lowerCAmelCase : Dict = unittest.skip("test requires TensorFlow" )(__snake_case ) return test_case def _lowercase ( __snake_case ) -> List[str]: if not config.JAX_AVAILABLE: __lowerCAmelCase : Optional[Any] = unittest.skip("test requires JAX" )(__snake_case ) return test_case def _lowercase ( __snake_case ) -> Tuple: if not config.PIL_AVAILABLE: __lowerCAmelCase : Optional[int] = unittest.skip("test requires Pillow" )(__snake_case ) return test_case def _lowercase ( __snake_case ) -> Tuple: try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(__snake_case ) else: return test_case def _lowercase ( __snake_case ) -> Union[str, Any]: try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(__snake_case ) else: return test_case def _lowercase ( __snake_case ) -> str: try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(__snake_case ) else: return test_case def _lowercase ( __snake_case ) -> Union[str, Any]: def _require_spacy_model(__snake_case ): try: import spacy # noqa F401 spacy.load(__snake_case ) except ImportError: return unittest.skip("test requires spacy" )(__snake_case ) except OSError: return unittest.skip("test requires spacy model \'{}\'".format(__snake_case ) )(__snake_case ) else: return test_case return _require_spacy_model def _lowercase ( __snake_case ) -> Optional[Any]: try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(__snake_case ) else: return test_case def _lowercase ( __snake_case ) -> Union[str, Any]: try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(__snake_case ) else: return test_case def _lowercase ( __snake_case ) -> Optional[int]: if not _run_slow_tests or _run_slow_tests == 0: __lowerCAmelCase : List[Any] = unittest.skip("test is slow" )(__snake_case ) return test_case def _lowercase ( __snake_case ) -> List[str]: if not _run_local_tests or _run_local_tests == 0: __lowerCAmelCase : Optional[int] = unittest.skip("test is local" )(__snake_case ) return test_case def _lowercase ( __snake_case ) -> Any: if not _run_packaged_tests or _run_packaged_tests == 0: __lowerCAmelCase : List[str] = unittest.skip("test is packaged" )(__snake_case ) return test_case def _lowercase ( __snake_case ) -> Optional[int]: if not _run_remote_tests or _run_remote_tests == 0: __lowerCAmelCase : List[str] = unittest.skip("test requires remote" )(__snake_case ) return test_case def _lowercase ( *__snake_case ) -> Optional[int]: def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__snake_case ) and name.startswith("test" ): for decorator in decorators: __lowerCAmelCase : str = decorator(__snake_case ) setattr(cls ,__snake_case ,__snake_case ) return cls return decorate class A__ ( __a ): '''simple docstring''' pass class A__ ( __a ): '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 @contextmanager def _lowercase ( __snake_case=OfflineSimulationMode.CONNECTION_FAILS ,__snake_case=1e-1_6 ) -> str: __lowerCAmelCase : Optional[int] = requests.Session().request def timeout_request(__snake_case ,__snake_case ,__snake_case ,**__snake_case ): # Change the url to an invalid url so that the connection hangs __lowerCAmelCase : Optional[int] = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __lowerCAmelCase : str = timeout try: return online_request(__snake_case ,__snake_case ,**__snake_case ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __lowerCAmelCase : Union[str, Any] = url __lowerCAmelCase : int = e.args[0] __lowerCAmelCase : List[str] = (max_retry_error.args[0].replace("10.255.255.1" ,F"""OfflineMock[{url}]""" ),) __lowerCAmelCase : str = (max_retry_error,) raise def raise_connection_error(__snake_case ,__snake_case ,**__snake_case ): raise requests.ConnectionError("Offline mode is enabled." ,request=__snake_case ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" ,__snake_case ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" ,__snake_case ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" ,__snake_case ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def _lowercase ( *__snake_case ,**__snake_case ) -> int: __lowerCAmelCase : List[str] = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__snake_case ,**__snake_case ) as tmp_dir: try: os.chdir(__snake_case ) yield finally: os.chdir(__snake_case ) @contextmanager def _lowercase ( ) -> Tuple: import gc gc.collect() __lowerCAmelCase : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _lowercase ( ) -> Dict: import gc gc.collect() __lowerCAmelCase : Optional[int] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _lowercase ( __snake_case ,__snake_case ) -> Any: return deepcopy(__snake_case ).integers(0 ,100 ,10 ).tolist() == deepcopy(__snake_case ).integers(0 ,100 ,10 ).tolist() def _lowercase ( __snake_case ) -> Dict: import decorator from requests.exceptions import HTTPError def _wrapper(__snake_case ,*__snake_case ,**__snake_case ): try: return func(*__snake_case ,**__snake_case ) except HTTPError as err: if str(__snake_case ).startswith("500" ) or str(__snake_case ).startswith("502" ): pytest.xfail(str(__snake_case ) ) raise err return decorator.decorator(_wrapper ,__snake_case ) class A__ : '''simple docstring''' def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> List[str]: """simple docstring""" __lowerCAmelCase : Any = returncode __lowerCAmelCase : Tuple = stdout __lowerCAmelCase : Union[str, Any] = stderr async def _lowercase ( __snake_case ,__snake_case ) -> List[Any]: while True: __lowerCAmelCase : int = await stream.readline() if line: callback(__snake_case ) else: break async def _lowercase ( __snake_case ,__snake_case=None ,__snake_case=None ,__snake_case=None ,__snake_case=False ,__snake_case=False ) -> _RunOutput: if echo: print("\nRunning: " ," ".join(__snake_case ) ) __lowerCAmelCase : Any = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=__snake_case ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=__snake_case ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCAmelCase : Optional[Any] = [] __lowerCAmelCase : int = [] def tee(__snake_case ,__snake_case ,__snake_case ,__snake_case="" ): __lowerCAmelCase : str = line.decode("utf-8" ).rstrip() sink.append(__snake_case ) if not quiet: print(__snake_case ,__snake_case ,file=__snake_case ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda __snake_case : tee(__snake_case ,__snake_case ,sys.stdout ,label="stdout:" ) ), _read_stream(p.stderr ,lambda __snake_case : tee(__snake_case ,__snake_case ,sys.stderr ,label="stderr:" ) ), ] ,timeout=__snake_case ,) return _RunOutput(await p.wait() ,__snake_case ,__snake_case ) def _lowercase ( __snake_case ,__snake_case=None ,__snake_case=None ,__snake_case=180 ,__snake_case=False ,__snake_case=True ) -> _RunOutput: __lowerCAmelCase : Dict = asyncio.get_event_loop() __lowerCAmelCase : Optional[Any] = loop.run_until_complete( _stream_subprocess(__snake_case ,env=__snake_case ,stdin=__snake_case ,timeout=__snake_case ,quiet=__snake_case ,echo=__snake_case ) ) __lowerCAmelCase : Dict = " ".join(__snake_case ) if result.returncode > 0: __lowerCAmelCase : Tuple = "\n".join(result.stderr ) raise RuntimeError( F"""\'{cmd_str}\' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""\'{cmd_str}\' produced no output.""" ) return result def _lowercase ( ) -> Dict: __lowerCAmelCase : List[str] = os.environ.get("PYTEST_XDIST_WORKER" ,"gw0" ) __lowerCAmelCase : Optional[int] = re.sub(r"^gw" ,"" ,__snake_case ,0 ,re.M ) return int(__snake_case ) def _lowercase ( ) -> Dict: __lowerCAmelCase : List[str] = 29_500 __lowerCAmelCase : List[Any] = pytest_xdist_worker_id() return port + uniq_delta
293
'''simple docstring''' from __future__ import annotations from typing import Any def snake_case_ ( __snake_case : list[Any]) -> None: create_state_space_tree(__snake_case , [] , 0) def snake_case_ ( __snake_case : list[Any] , __snake_case : list[Any] , __snake_case : int) -> None: if index == len(__snake_case): print(__snake_case) return create_state_space_tree(__snake_case , __snake_case , index + 1) current_subsequence.append(sequence[index]) create_state_space_tree(__snake_case , __snake_case , index + 1) current_subsequence.pop() if __name__ == "__main__": A_ : list[Any] =[3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
274
0
"""simple docstring""" def __lowerCamelCase ( lowerCAmelCase__ ): if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1 ,len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] A__ = grid[0] for row_n in range(1 ,len(lowerCAmelCase__ ) ): A__ = grid[row_n] A__ = fill_row(lowerCAmelCase__ ,lowerCAmelCase__ ) A__ = grid[row_n] return grid[-1][-1] def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): current_row[0] += row_above[0] for cell_n in range(1 ,len(lowerCAmelCase__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] ,row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
554
"""simple docstring""" print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
554
1
from collections import defaultdict def lowercase ( __A : int ) -> int: '''simple docstring''' snake_case : Union[str, Any] = 1 snake_case : str = True for v in tree[start]: if v not in visited: ret += dfs(__A ) if ret % 2 == 0: cuts.append(__A ) return ret def lowercase ( ) -> Union[str, Any]: '''simple docstring''' dfs(1 ) if __name__ == "__main__": __lowercase , __lowercase : Union[str, Any] = 10, 9 __lowercase : Dict = defaultdict(list) __lowercase : dict[int, bool] = {} __lowercase : list[int] = [] __lowercase : Optional[Any] = 0 __lowercase : Optional[Any] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
36
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __magic_name__ : def __init__( self : str ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : str=1_3 ,__SCREAMING_SNAKE_CASE : Optional[Any]=7 ,__SCREAMING_SNAKE_CASE : Optional[Any]=True ,__SCREAMING_SNAKE_CASE : List[str]=True ,__SCREAMING_SNAKE_CASE : int=True ,__SCREAMING_SNAKE_CASE : int=True ,__SCREAMING_SNAKE_CASE : Tuple=9_9 ,__SCREAMING_SNAKE_CASE : str=3_2 ,__SCREAMING_SNAKE_CASE : Any=2 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=4 ,__SCREAMING_SNAKE_CASE : Tuple=3_7 ,__SCREAMING_SNAKE_CASE : List[str]="gelu" ,__SCREAMING_SNAKE_CASE : List[Any]=0.1 ,__SCREAMING_SNAKE_CASE : Optional[int]=0.1 ,__SCREAMING_SNAKE_CASE : Tuple=5_1_2 ,__SCREAMING_SNAKE_CASE : Dict=1_6 ,__SCREAMING_SNAKE_CASE : Tuple=2 ,__SCREAMING_SNAKE_CASE : List[str]=0.02 ,__SCREAMING_SNAKE_CASE : Optional[Any]=3 ,__SCREAMING_SNAKE_CASE : Dict=4 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=None ,__SCREAMING_SNAKE_CASE : Dict=1_0_0_0 ,): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = range_bbox def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) # convert bbox to numpy since TF does not support item assignment UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] ,self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase = bbox[i, j, 3] UpperCAmelCase = bbox[i, j, 1] UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase = bbox[i, j, 2] UpperCAmelCase = bbox[i, j, 0] UpperCAmelCase = t UpperCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : Dict ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : str ): UpperCAmelCase = TFLayoutLMModel(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self : Dict ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Any ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : List[Any] ): UpperCAmelCase = TFLayoutLMForMaskedLM(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self : Union[str, Any] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Optional[int] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ): UpperCAmelCase = self.num_labels UpperCAmelCase = TFLayoutLMForSequenceClassification(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self : List[str] ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Union[str, Any] ): UpperCAmelCase = self.num_labels UpperCAmelCase = TFLayoutLMForTokenClassification(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self : Optional[int] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Optional[int] ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : str ): UpperCAmelCase = TFLayoutLMForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self : List[Any] ): UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class __magic_name__ ( _a , _a , unittest.TestCase): _UpperCAmelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCAmelCase : str = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase : Tuple = False _UpperCAmelCase : int = True _UpperCAmelCase : Union[str, Any] = 10 def _UpperCAmelCase ( self : Tuple ): UpperCAmelCase = TFLayoutLMModelTester(self ) UpperCAmelCase = ConfigTester(self ,config_class=__SCREAMING_SNAKE_CASE ,hidden_size=3_7 ) def _UpperCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Any ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self : List[str] ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFLayoutLMModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def _UpperCAmelCase ( self : List[str] ): pass def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 UpperCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 UpperCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 UpperCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) UpperCAmelCase = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __magic_name__ ( unittest.TestCase): @slow def _UpperCAmelCase ( self : Any ): UpperCAmelCase = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase = model(input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) # test the sequence output on [0, :3, :3] UpperCAmelCase = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] ,) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] ,__SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) # test the pooled output on [1, :3] UpperCAmelCase = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] ,__SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) @slow def _UpperCAmelCase ( self : Union[str, Any] ): # initialize model with randomly initialized sequence classification head UpperCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" ,num_labels=2 ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase = model( input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=tf.convert_to_tensor([1, 1] ) ,) # test whether we get a loss as a scalar UpperCAmelCase = outputs.loss UpperCAmelCase = (2,) self.assertEqual(loss.shape ,__SCREAMING_SNAKE_CASE ) # test the shape of the logits UpperCAmelCase = outputs.logits UpperCAmelCase = (2, 2) self.assertEqual(logits.shape ,__SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self : Tuple ): # initialize model with randomly initialized token classification head UpperCAmelCase = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" ,num_labels=1_3 ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase = model( input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE ) # test the shape of the logits UpperCAmelCase = outputs.logits UpperCAmelCase = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape ,__SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self : List[Any] ): # initialize model with randomly initialized token classification head UpperCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase = model(input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ) # test the shape of the logits UpperCAmelCase = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape ,__SCREAMING_SNAKE_CASE ) self.assertEqual(outputs.end_logits.shape ,__SCREAMING_SNAKE_CASE )
333
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
12
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Any: # Format the message. if name is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = None else: SCREAMING_SNAKE_CASE__ : str = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" SCREAMING_SNAKE_CASE__ : Dict = fmt.format(__lowerCAmelCase ) # Print and recurse (if needed). if isinstance(__lowerCAmelCase , __lowerCAmelCase ): if msg is not None: print(__lowerCAmelCase ) for k in val.keys(): recursive_print(__lowerCAmelCase , val[k] , spaces + 2 ) elif isinstance(__lowerCAmelCase , torch.Tensor ): print(__lowerCAmelCase , """:""" , val.size() ) else: print(__lowerCAmelCase , """:""" , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. SCREAMING_SNAKE_CASE__ : Tuple = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] SCREAMING_SNAKE_CASE__ : int = (num_heads, hidden_size, num_splits) + input_shape[1:] SCREAMING_SNAKE_CASE__ : List[str] = param.view(*__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = param.transpose(0 , 2 ) SCREAMING_SNAKE_CASE__ : List[Any] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] SCREAMING_SNAKE_CASE__ : List[str] = (num_heads, num_splits, hidden_size) + input_shape[1:] SCREAMING_SNAKE_CASE__ : Dict = param.view(*__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = param.transpose(0 , 1 ).contiguous() SCREAMING_SNAKE_CASE__ : Any = param.view(*__lowerCAmelCase ) return param def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: # The converted output model. SCREAMING_SNAKE_CASE__ : List[str] = {} # old versions did not store training args SCREAMING_SNAKE_CASE__ : List[str] = input_state_dict.get("""args""" , __lowerCAmelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) SCREAMING_SNAKE_CASE__ : List[Any] = ds_args.padded_vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = ds_args.max_position_embeddings SCREAMING_SNAKE_CASE__ : List[Any] = ds_args.hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = ds_args.num_layers SCREAMING_SNAKE_CASE__ : Dict = ds_args.num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. SCREAMING_SNAKE_CASE__ : List[str] = config.n_head # The hidden_size per head. SCREAMING_SNAKE_CASE__ : str = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_state_dict["""checkpoint_version"""] else: SCREAMING_SNAKE_CASE__ : Tuple = 0.0 # The model. SCREAMING_SNAKE_CASE__ : Any = input_state_dict["""model"""] # The language model. SCREAMING_SNAKE_CASE__ : Any = model["""language_model"""] # The embeddings. SCREAMING_SNAKE_CASE__ : str = lm["""embedding"""] # The word embeddings. SCREAMING_SNAKE_CASE__ : int = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. SCREAMING_SNAKE_CASE__ : Any = word_embeddings[: config.vocab_size, :] SCREAMING_SNAKE_CASE__ : Optional[int] = word_embeddings # The position embeddings. SCREAMING_SNAKE_CASE__ : Any = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] SCREAMING_SNAKE_CASE__ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. SCREAMING_SNAKE_CASE__ : List[Any] = pos_embeddings # The transformer. SCREAMING_SNAKE_CASE__ : Union[str, Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. SCREAMING_SNAKE_CASE__ : str = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. SCREAMING_SNAKE_CASE__ : Optional[int] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. SCREAMING_SNAKE_CASE__ : str = layer_re.match(__lowerCAmelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. SCREAMING_SNAKE_CASE__ : Dict = int(m.group(1 ) ) # The name of the operation. SCREAMING_SNAKE_CASE__ : Optional[Any] = m.group(2 ) # Is it a weight or a bias? SCREAMING_SNAKE_CASE__ : str = m.group(3 ) # The name of the layer. SCREAMING_SNAKE_CASE__ : List[Any] = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): SCREAMING_SNAKE_CASE__ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" SCREAMING_SNAKE_CASE__ : List[Any] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. SCREAMING_SNAKE_CASE__ : Any = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = causal_mask # Insert a "dummy" tensor for masked_bias. SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor(-1E4 , dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : List[str] = masked_bias SCREAMING_SNAKE_CASE__ : List[str] = fix_query_key_value_ordering(__lowerCAmelCase , __lowerCAmelCase , 3 , __lowerCAmelCase , __lowerCAmelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. SCREAMING_SNAKE_CASE__ : str = out_val.transpose(0 , 1 ).contiguous() # Store. SCREAMING_SNAKE_CASE__ : Dict = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": SCREAMING_SNAKE_CASE__ : Any = fix_query_key_value_ordering(__lowerCAmelCase , __lowerCAmelCase , 3 , __lowerCAmelCase , __lowerCAmelCase ) # Store. No change of shape. SCREAMING_SNAKE_CASE__ : str = out_val # Transpose the weights. elif weight_or_bias == "weight": SCREAMING_SNAKE_CASE__ : str = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE__ : int = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": SCREAMING_SNAKE_CASE__ : int = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE__ : Dict = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. SCREAMING_SNAKE_CASE__ : Union[str, Any] = transformer["""final_layernorm.weight"""] SCREAMING_SNAKE_CASE__ : str = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. SCREAMING_SNAKE_CASE__ : Tuple = word_embeddings # It should be done! return output_state_dict def _lowercase ( ) -> List[Any]: # Create the argument parser. SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__lowerCAmelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__lowerCAmelCase , help="""An optional config json file describing the pre-trained model.""" , ) SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args() # Extract the basename. SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: SCREAMING_SNAKE_CASE__ : List[Any] = torch.load(__lowerCAmelCase , map_location="""cpu""" ) else: SCREAMING_SNAKE_CASE__ : str = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) SCREAMING_SNAKE_CASE__ : int = input_state_dict.get("""args""" , __lowerCAmelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: SCREAMING_SNAKE_CASE__ : Dict = """gelu_fast""" elif ds_args.openai_gelu: SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu_new""" else: SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" SCREAMING_SNAKE_CASE__ : Any = """gelu_new""" # Spell out all parameters in case the defaults change. SCREAMING_SNAKE_CASE__ : Union[str, Any] = GPTaConfig( vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=__lowerCAmelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__lowerCAmelCase , summary_activation=__lowerCAmelCase , summary_proj_to_labels=__lowerCAmelCase , summary_first_dropout=0.1 , scale_attn_weights=__lowerCAmelCase , use_cache=__lowerCAmelCase , bos_token_id=5_0256 , eos_token_id=5_0256 , ) else: SCREAMING_SNAKE_CASE__ : List[Any] = GPTaConfig.from_json_file(args.config_file ) SCREAMING_SNAKE_CASE__ : Tuple = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = convert_megatron_checkpoint(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__lowerCAmelCase , __lowerCAmelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: SCREAMING_SNAKE_CASE__ : Tuple = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": SCREAMING_SNAKE_CASE__ : Any = """gpt2""" elif tokenizer_type == "PretrainedFromHF": SCREAMING_SNAKE_CASE__ : Any = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = """gpt2""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = type(__lowerCAmelCase ).__name__ SCREAMING_SNAKE_CASE__ : Dict = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__lowerCAmelCase ) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(__lowerCAmelCase ) # Store the state_dict to file. SCREAMING_SNAKE_CASE__ : Any = os.path.join(__lowerCAmelCase , """pytorch_model.bin""" ) print(F'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
12
1
import torch from diffusers import DiffusionPipeline class __A ( snake_case__ ): '''simple docstring''' def __init__( self , _snake_case , _snake_case ): super().__init__() self.register_modules(unet=_snake_case , scheduler=_snake_case ) def __call__( self ): _lowerCAmelCase : Optional[Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : Any = self.unet(_snake_case , _snake_case ).sample _lowerCAmelCase : Optional[int] = self.scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample _lowerCAmelCase : List[Any] = scheduler_output - scheduler_output + torch.ones_like(_snake_case ) return result
424
snake_case = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
424
1
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase ) -> list[int]: # This function is recursive '''simple docstring''' lowerCamelCase_ : int = len(__snake_case ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCamelCase_ : Union[str, Any] = array[0] lowerCamelCase_ : Dict = False lowerCamelCase_ : Dict = 1 lowerCamelCase_ : Dict = [] while not is_found and i < array_length: if array[i] < pivot: lowerCamelCase_ : int = True lowerCamelCase_ : Any = [element for element in array[i:] if element >= array[i]] lowerCamelCase_ : Dict = longest_subsequence(__snake_case ) if len(__snake_case ) > len(__snake_case ): lowerCamelCase_ : Optional[Any] = temp_array else: i += 1 lowerCamelCase_ : int = [element for element in array[1:] if element >= pivot] lowerCamelCase_ : Union[str, Any] = [pivot, *longest_subsequence(__snake_case )] if len(__snake_case ) > len(__snake_case ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __lowercase : Union[str, Any] = logging.get_logger(__name__) def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : Optional[Any] = os.getenv('''SM_HP_MP_PARAMETERS''' , '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowerCamelCase_ : Optional[Any] = json.loads(_lowercase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowerCamelCase_ : List[str] = os.getenv('''SM_FRAMEWORK_PARAMS''' , '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowerCamelCase_ : List[str] = json.loads(_lowercase ) if not mpi_options.get('''sagemaker_mpi_enabled''' , _lowercase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class __lowercase ( _lowercase ): lowerCamelCase : str = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def UpperCAmelCase__ (self ): super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , A , ) @cached_property def UpperCAmelCase__ (self ): logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: lowerCamelCase_ : Optional[int] = torch.device('''cpu''' ) lowerCamelCase_ : Dict = 0 elif is_sagemaker_model_parallel_available(): lowerCamelCase_ : int = smp.local_rank() lowerCamelCase_ : str = torch.device('''cuda''' , A ) lowerCamelCase_ : Tuple = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta ) lowerCamelCase_ : List[Any] = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) lowerCamelCase_ : Union[str, Any] = torch.device('''cuda''' , self.local_rank ) lowerCamelCase_ : List[str] = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowerCamelCase_ : List[str] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowerCamelCase_ : Any = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta ) lowerCamelCase_ : Any = torch.device('''cuda''' , self.local_rank ) lowerCamelCase_ : List[str] = 1 if device.type == "cuda": torch.cuda.set_device(A ) return device @property def UpperCAmelCase__ (self ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def UpperCAmelCase__ (self ): return not is_sagemaker_model_parallel_available() @property def UpperCAmelCase__ (self ): return False
357
0
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __UpperCAmelCase = logging.getLogger(__name__) @dataclass class __lowercase ( __lowerCamelCase ): snake_case_ = field( default=0.0 , metadata={"""help""": """The label smoothing epsilon to apply (if not zero)."""} ) snake_case_ = field(default=__lowerCamelCase , metadata={"""help""": """Whether to SortishSamler or not."""} ) snake_case_ = field( default=__lowerCamelCase , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) snake_case_ = field(default=__lowerCamelCase , metadata={"""help""": """whether to use adafactor"""} ) snake_case_ = field( default=__lowerCamelCase , metadata={"""help""": """Encoder layer dropout probability. Goes into model.config."""} ) snake_case_ = field( default=__lowerCamelCase , metadata={"""help""": """Decoder layer dropout probability. Goes into model.config."""} ) snake_case_ = field(default=__lowerCamelCase , metadata={"""help""": """Dropout probability. Goes into model.config."""} ) snake_case_ = field( default=__lowerCamelCase , metadata={"""help""": """Attention dropout probability. Goes into model.config."""} ) snake_case_ = field( default="""linear""" , metadata={"""help""": F"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
65
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __UpperCAmelCase = logging.get_logger(__name__) class __lowercase ( __lowerCamelCase ): snake_case_ = ["""input_features""", """attention_mask"""] def __init__( self : Any ,A : str=80 ,A : Optional[int]=16_000 ,A : int=0.0 ,A : str=10 ,A : Any=25 ,A : str="hamming_window" ,A : int=3_2_7_6_8.0 ,A : List[str]=0.9_7 ,A : Optional[int]=1.0 ,A : Optional[Any]=True ,A : Tuple=True ,A : Any=False ,**A : int ,): '''simple docstring''' super().__init__(feature_size=A ,sampling_rate=A ,padding_value=A ,**A ) UpperCAmelCase__ : str = feature_size UpperCAmelCase__ : int = sampling_rate UpperCAmelCase__ : int = padding_value UpperCAmelCase__ : Dict = hop_length UpperCAmelCase__ : int = win_length UpperCAmelCase__ : Dict = frame_signal_scale UpperCAmelCase__ : Dict = preemphasis_coeff UpperCAmelCase__ : str = mel_floor UpperCAmelCase__ : Any = normalize_means UpperCAmelCase__ : str = normalize_vars UpperCAmelCase__ : int = win_function UpperCAmelCase__ : List[Any] = return_attention_mask UpperCAmelCase__ : str = win_length * sampling_rate // 1_000 UpperCAmelCase__ : List[Any] = hop_length * sampling_rate // 1_000 UpperCAmelCase__ : int = optimal_fft_length(self.sample_size ) UpperCAmelCase__ : List[Any] = (self.n_fft // 2) + 1 def __lowercase ( self : Union[str, Any] ,A : np.array ): '''simple docstring''' if self.win_function == "hamming_window": UpperCAmelCase__ : Any = window_function(window_length=self.sample_size ,name=self.win_function ,periodic=A ) else: UpperCAmelCase__ : Any = window_function(window_length=self.sample_size ,name=self.win_function ) UpperCAmelCase__ : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.n_freqs ,num_mel_filters=self.feature_size ,min_frequency=0.0 ,max_frequency=self.sampling_rate / 2.0 ,sampling_rate=self.sampling_rate ,) UpperCAmelCase__ : Optional[Any] = spectrogram( one_waveform * self.frame_signal_scale ,window=A ,frame_length=self.sample_size ,hop_length=self.sample_stride ,fft_length=self.n_fft ,center=A ,preemphasis=self.preemphasis_coeff ,mel_filters=A ,mel_floor=self.mel_floor ,log_mel="""log""" ,) return msfc_features.T def __lowercase ( self : str ,A : Any ,A : Optional[int] ,A : str ): '''simple docstring''' # make sure we normalize float32 arrays if self.normalize_means: UpperCAmelCase__ : Optional[Any] = x[:input_length].mean(axis=0 ) UpperCAmelCase__ : Any = np.subtract(A ,A ) if self.normalize_vars: UpperCAmelCase__ : str = x[:input_length].std(axis=0 ) UpperCAmelCase__ : Optional[int] = np.divide(A ,A ) if input_length < x.shape[0]: UpperCAmelCase__ : int = padding_value # make sure array is in float32 UpperCAmelCase__ : str = x.astype(np.floataa ) return x def __lowercase ( self : Union[str, Any] ,A : List[np.ndarray] ,A : Optional[np.ndarray] = None ): '''simple docstring''' UpperCAmelCase__ : Any = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(A ,A ,self.padding_value ) for x, n in zip(A ,A )] def __call__( self : Union[str, Any] ,A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,A : Union[bool, str, PaddingStrategy] = False ,A : Optional[int] = None ,A : bool = False ,A : Optional[int] = None ,A : Optional[bool] = None ,A : Optional[Union[str, TensorType]] = None ,A : Optional[int] = None ,**A : Tuple ,): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) UpperCAmelCase__ : Optional[Any] = isinstance(A ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) UpperCAmelCase__ : Any = is_batched_numpy or ( isinstance(A ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase__ : List[str] = [np.asarray(A ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A ,np.ndarray ): UpperCAmelCase__ : Union[str, Any] = np.asarray(A ,dtype=np.floataa ) elif isinstance(A ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase__ : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase__ : Optional[Any] = [raw_speech] # extract fbank features UpperCAmelCase__ : Tuple = [self._extract_mfsc_features(A ) for one_waveform in raw_speech] # convert into correct format for padding UpperCAmelCase__ : str = BatchFeature({"""input_features""": features} ) UpperCAmelCase__ : Optional[Any] = self.pad( A ,padding=A ,max_length=A ,truncation=A ,pad_to_multiple_of=A ,return_attention_mask=A ,**A ,) # make sure list is in array format UpperCAmelCase__ : Tuple = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] ,A ): UpperCAmelCase__ : Union[str, Any] = [np.asarray(A ,dtype=np.floataa ) for feature in input_features] UpperCAmelCase__ : Dict = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: UpperCAmelCase__ : str = [np.asarray(A ,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: UpperCAmelCase__ : Union[str, Any] = ( np.array(A ,dtype=np.intaa ) if self._get_padding_strategies(A ,max_length=A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) UpperCAmelCase__ : Any = self.normalize( padded_inputs["""input_features"""] ,attention_mask=A ) if return_tensors is not None: UpperCAmelCase__ : Union[str, Any] = padded_inputs.convert_to_tensors(A ) return padded_inputs
65
1
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : Optional[int] = ["image_processor", "tokenizer"] __SCREAMING_SNAKE_CASE : Optional[Any] = "AutoImageProcessor" __SCREAMING_SNAKE_CASE : Dict = "AutoTokenizer" def __init__( self , lowercase_ , lowercase_ ) -> Tuple: super().__init__(lowercase_ , lowercase_ ) UpperCAmelCase = self.image_processor def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: UpperCAmelCase = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: UpperCAmelCase = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def a_ ( self , *lowercase_ , **lowercase_ ) -> int: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def a_ ( self , *lowercase_ , **lowercase_ ) -> Any: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def a_ ( self ) -> Optional[int]: return ["input_ids", "attention_mask", "pixel_values"]
183
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): @slow @require_torch def a_ ( self ) -> List[Any]: UpperCAmelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) UpperCAmelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) UpperCAmelCase = bertabert.config.encoder.vocab_size UpperCAmelCase = tokenizer.sep_token_id UpperCAmelCase = tokenizer.cls_token_id UpperCAmelCase = 1_2_8 UpperCAmelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) UpperCAmelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) UpperCAmelCase = train_dataset.select(range(3_2 ) ) UpperCAmelCase = val_dataset.select(range(1_6 ) ) UpperCAmelCase = 4 def _map_to_encoder_decoder_inputs(lowercase_ ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase = tokenizer(batch['article'] , padding='max_length' , truncation=lowercase_ , max_length=5_1_2 ) UpperCAmelCase = tokenizer(batch['highlights'] , padding='max_length' , truncation=lowercase_ , max_length=1_2_8 ) UpperCAmelCase = inputs.input_ids UpperCAmelCase = inputs.attention_mask UpperCAmelCase = outputs.input_ids UpperCAmelCase = outputs.input_ids.copy() UpperCAmelCase = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] UpperCAmelCase = outputs.attention_mask assert all(len(lowercase_ ) == 5_1_2 for x in inputs.input_ids ) assert all(len(lowercase_ ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(lowercase_ ): UpperCAmelCase = pred.label_ids UpperCAmelCase = pred.predictions # all unnecessary tokens are removed UpperCAmelCase = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) UpperCAmelCase = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) UpperCAmelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowercase_ ) )] ) / len(lowercase_ ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=lowercase_ , batch_size=lowercase_ , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset UpperCAmelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=lowercase_ , batch_size=lowercase_ , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = SeqaSeqTrainingArguments( output_dir=lowercase_ , per_device_train_batch_size=lowercase_ , per_device_eval_batch_size=lowercase_ , predict_with_generate=lowercase_ , evaluation_strategy='steps' , do_train=lowercase_ , do_eval=lowercase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCAmelCase = SeqaSeqTrainer( model=lowercase_ , args=lowercase_ , compute_metrics=_compute_metrics , train_dataset=lowercase_ , eval_dataset=lowercase_ , tokenizer=lowercase_ , ) # start training trainer.train()
183
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): @slow def _lowercase (self : List[Any] ): UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase_ = tokenizer("Hello there" , return_tensors="tf" ).input_ids UpperCAmelCase_ = tokenizer("Hi I am" , return_tensors="tf" ).input_ids UpperCAmelCase_ = model(__a , labels=__a ).loss UpperCAmelCase_ = -tf.math.reduce_mean(__a ).numpy() UpperCAmelCase_ = -21.22_81_68 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
78
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __a ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase_= { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 20, """a """ * 30, """b """ * 7], } UpperCAmelCase_= Dataset.from_dict(lowerCAmelCase_ ) return dataset class lowercase ( snake_case__): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: UpperCAmelCase_= get_dataset() UpperCAmelCase_= make_duplicate_clusters(__UpperCAmelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: UpperCAmelCase_= get_dataset() UpperCAmelCase_, UpperCAmelCase_= deduplicate_dataset(__UpperCAmelCase ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) print(__UpperCAmelCase ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , __UpperCAmelCase )
593
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCAmelCase_ : @property def __a ( self ): return self.get_dummy_input() @property def __a ( self ): if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def __a ( self , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , ): _lowercase : Optional[Any] = 4 _lowercase : Optional[int] = 3_2 _lowercase : Optional[Any] = (3_2, 3_2) _lowercase : int = torch.manual_seed(0 ) _lowercase : Any = torch.device(_lowerCAmelCase ) _lowercase : Any = (batch_size, num_channels) + sizes _lowercase : Union[str, Any] = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ) _lowercase : Union[str, Any] = {'hidden_states': hidden_states} if include_temb: _lowercase : List[Any] = 1_2_8 _lowercase : str = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) if include_res_hidden_states_tuple: _lowercase : List[str] = torch.manual_seed(1 ) _lowercase : List[str] = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),) if include_encoder_hidden_states: _lowercase : List[Any] = floats_tensor((batch_size, 3_2, 3_2) ).to(_lowerCAmelCase ) if include_skip_sample: _lowercase : Union[str, Any] = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) return dummy_input def __a ( self ): _lowercase : str = { 'in_channels': 3_2, 'out_channels': 3_2, 'temb_channels': 1_2_8, } if self.block_type == "up": _lowercase : Optional[int] = 3_2 if self.block_type == "mid": init_dict.pop('out_channels' ) _lowercase : Optional[int] = self.dummy_input return init_dict, inputs_dict def __a ( self , _lowerCAmelCase ): _lowercase , _lowercase : str = self.prepare_init_args_and_inputs_for_common() _lowercase : Tuple = self.block_class(**_lowerCAmelCase ) unet_block.to(_lowerCAmelCase ) unet_block.eval() with torch.no_grad(): _lowercase : Dict = unet_block(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = output[0] self.assertEqual(output.shape , self.output_shape ) _lowercase : Any = output[0, -1, -3:, -3:] _lowercase : List[str] = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def __a ( self ): _lowercase , _lowercase : Optional[int] = self.prepare_init_args_and_inputs_for_common() _lowercase : List[Any] = self.block_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() _lowercase : Optional[Any] = model(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = output[0] _lowercase : int = torch.device(_lowerCAmelCase ) _lowercase : Any = randn_tensor(output.shape , device=_lowerCAmelCase ) _lowercase : Dict = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) loss.backward()
677
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: _lowercase : Tuple = {} _lowercase : str = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE )['input_ids'] _lowercase : List[str] = len(example['content'] ) / len(output['input_ids'] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
677
1
"""simple docstring""" import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = OpenAIGPTTokenizer UpperCAmelCase__ = OpenAIGPTTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = False def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __magic_name__: str = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] __magic_name__: Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __magic_name__: List[str] = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] __magic_name__: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__snake_case ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__snake_case ) ) def lowerCamelCase__ ( self : List[Any] , __snake_case : Optional[Any] ) -> Optional[int]: return "lower newer", "lower newer" def lowerCamelCase__ ( self : List[Any] ) -> Union[str, Any]: __magic_name__: Optional[Any] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __magic_name__: Union[str, Any] = """lower""" __magic_name__: Optional[int] = ["""low""", """er</w>"""] __magic_name__: List[Any] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __magic_name__: Optional[int] = tokens + ["""<unk>"""] __magic_name__: List[str] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Any=1_5 ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __magic_name__: str = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) # Simple input __magic_name__: Dict = """This is a simple input""" __magic_name__: Any = ["""This is a simple input 1""", """This is a simple input 2"""] __magic_name__: int = ("""This is a simple input""", """This is a pair""") __magic_name__: int = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding="""max_length""" ) # Simple input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding="""max_length""" ) # Simple input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding="""max_length""" , ) # Pair input self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding="""max_length""" ) # Pair input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding="""max_length""" ) # Pair input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding="""max_length""" , ) def lowerCamelCase__ ( self : Dict ) -> Any: pass @require_ftfy @require_spacy @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ ): pass
96
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] ) -> int: __magic_name__: Optional[int] = 0 if start < end: __magic_name__: Union[str, Any] = randint(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: int = a[end] __magic_name__: Optional[int] = a[pivot] __magic_name__: Tuple = temp __magic_name__, __magic_name__: int = _in_place_partition(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) count += _in_place_quick_sort(__UpperCAmelCase , __UpperCAmelCase , p - 1 ) count += _in_place_quick_sort(__UpperCAmelCase , p + 1 , __UpperCAmelCase ) return count def a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] ) -> Union[str, Any]: __magic_name__: Union[str, Any] = 0 __magic_name__: str = randint(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: Optional[int] = a[end] __magic_name__: Optional[int] = a[pivot] __magic_name__: Optional[int] = temp __magic_name__: Dict = start - 1 for index in range(__UpperCAmelCase , __UpperCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __magic_name__: List[Any] = new_pivot_index + 1 __magic_name__: Any = a[new_pivot_index] __magic_name__: int = a[index] __magic_name__: Union[str, Any] = temp __magic_name__: List[Any] = a[new_pivot_index + 1] __magic_name__: Union[str, Any] = a[end] __magic_name__: Dict = temp return new_pivot_index + 1, count __lowerCamelCase = TemporaryFile() __lowerCamelCase = 1_00 # 1000 elements are to be sorted __lowerCamelCase , __lowerCamelCase = 0, 1 # mean and standard deviation __lowerCamelCase = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array __lowerCamelCase = np.load(outfile) __lowerCamelCase = len(M) - 1 __lowerCamelCase = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
96
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
706
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor snake_case = logging.getLogger(__name__) snake_case = 50 # max width of layer names snake_case = 70 # max width of quantizer names def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=lowerCamelCase_ , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=lowerCamelCase_ , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=lowerCamelCase_ , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=lowerCamelCase_ , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=lowerCamelCase_ , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=lowerCamelCase_ , type=lowerCamelCase_ , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=lowerCamelCase_ , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if args.calibrator == "max": lowerCAmelCase__ : int = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) lowerCAmelCase__ : List[str] = "histogram" elif args.calibrator == "mse": lowerCAmelCase__ : Any = "histogram" else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) lowerCAmelCase__ : Union[str, Any] = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCamelCase_ ) lowerCAmelCase__ : Any = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCamelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCamelCase_ ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=False ): """simple docstring""" logger.info("Configuring Model for Quantization" ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCamelCase_ , ["embeddings"] , which="weight" , _disabled=lowerCamelCase_ ) if args.quant_disable: set_quantizer_by_name(lowerCamelCase_ , [""] , _disabled=lowerCamelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCamelCase_ , args.quant_disable_keyword , _disabled=lowerCamelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCamelCase_ , [R"layer.\d+." + args.quant_disable_layer_module] , _disabled=lowerCamelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCamelCase_ , [R"layer.\d+." + args.quant_enable_layer_module] , _disabled=lowerCamelCase_ ) if args.recalibrate_weights: recalibrate_weights(lowerCamelCase_ ) if args.fuse_qkv: fuse_qkv(lowerCamelCase_ , lowerCamelCase_ ) if args.clip_gelu: clip_gelu(lowerCamelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCamelCase_ ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCamelCase_ ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" def fusea(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): for mod in [qq, qk, qv]: if not hasattr(lowerCamelCase_ , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return lowerCAmelCase__ : Optional[int] = qq._amax.detach().item() lowerCAmelCase__ : Optional[int] = qk._amax.detach().item() lowerCAmelCase__ : Any = qv._amax.detach().item() lowerCAmelCase__ : List[str] = max(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) qq._amax.fill_(lowerCamelCase_ ) qk._amax.fill_(lowerCamelCase_ ) qv._amax.fill_(lowerCamelCase_ ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): lowerCAmelCase__ : Any = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCamelCase_ ) lowerCAmelCase__ : Tuple = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCamelCase_ , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: lowerCAmelCase__ : Optional[int] = mod.weight.shape[0] lowerCAmelCase__ : List[str] = mod._weight_quantizer._amax.detach() lowerCAmelCase__ : List[str] = torch.ones(lowerCamelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCamelCase_ , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) lowerCAmelCase__ : List[Any] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) lowerCAmelCase__ : Tuple = set(range(len(mod.weight.size() ) ) ) - axis_set lowerCAmelCase__ : Tuple = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCamelCase_ , keepdims=lowerCamelCase_ ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) lowerCAmelCase__ : str = amax def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_=2_5 , lowerCamelCase_=1_8_0 , lowerCamelCase_=None ): """simple docstring""" if ignore is None: lowerCAmelCase__ : str = [] elif not isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ : List[Any] = [ignore] lowerCAmelCase__ : Optional[int] = 0 for name, mod in model.named_modules(): if not hasattr(lowerCamelCase_ , "weight" ): continue lowerCAmelCase__ : str = max(lowerCamelCase_ , len(lowerCamelCase_ ) ) for name, mod in model.named_modules(): lowerCAmelCase__ : Tuple = getattr(lowerCamelCase_ , "_input_quantizer" , lowerCamelCase_ ) lowerCAmelCase__ : Union[str, Any] = getattr(lowerCamelCase_ , "_weight_quantizer" , lowerCamelCase_ ) if not hasattr(lowerCamelCase_ , "weight" ): continue if type(lowerCamelCase_ ) in ignore: continue if [True for s in ignore if type(lowerCamelCase_ ) is str and s in name]: continue lowerCAmelCase__ : List[Any] = f'''Act:{input_q.extra_repr()}''' lowerCAmelCase__ : Optional[int] = f'''Wgt:{weight_q.extra_repr()}''' lowerCAmelCase__ : int = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCamelCase_ ) <= line_width: logger.info(lowerCamelCase_ ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{' ':{name_width}} {wgt_str}''' ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : List[Any] = 0 for name, mod in model.named_modules(): if isinstance(lowerCamelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Tuple = getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if quantizer_mod is not None: assert hasattr(lowerCamelCase_ , lowerCamelCase_ ) setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: logger.warning(f'''{name} has no {quantizer}''' ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="both" , **lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Tuple = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCamelCase_ , lowerCamelCase_ , "_input_quantizer" , lowerCamelCase_ , lowerCamelCase_ ) if which in ["weight", "both"]: set_quantizer(lowerCamelCase_ , lowerCamelCase_ , "_weight_quantizer" , lowerCamelCase_ , lowerCamelCase_ ) logger.info(lowerCamelCase_ ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCamelCase_ , "_input_quantizer" ) or hasattr(lowerCamelCase_ , "_weight_quantizer" ): for n in names: if re.search(lowerCamelCase_ , lowerCamelCase_ ): set_quantizers(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) elif name.endswith("_quantizer" ): for n in names: if re.search(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ : Optional[Any] = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) logger.info(lowerCamelCase_ )
568
0
"""simple docstring""" import mpmath # for roots of unity import numpy as np class lowercase__ : def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None) -> Tuple: # Input as list _lowerCamelCase : Any = list(poly_a or [0])[:] _lowerCamelCase : Optional[Any] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _lowerCamelCase : int = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() _lowerCamelCase : Union[str, Any] = len(self.polyB) # Add 0 to make lengths equal a power of 2 _lowerCamelCase : List[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform _lowerCamelCase : Optional[Any] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product _lowerCamelCase : int = self.__multiply() def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> List[str]: _lowerCamelCase : Dict = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(SCREAMING_SNAKE_CASE) <= 1: return dft[0] # _lowerCamelCase : str = self.c_max_length // 2 while next_ncol > 0: _lowerCamelCase : Dict = [[] for i in range(SCREAMING_SNAKE_CASE)] _lowerCamelCase : Tuple = self.root**next_ncol # First half of next step _lowerCamelCase : int = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(SCREAMING_SNAKE_CASE): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step _lowerCamelCase : Optional[int] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(SCREAMING_SNAKE_CASE): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update _lowerCamelCase : Union[str, Any] = new_dft _lowerCamelCase : List[str] = next_ncol // 2 return dft[0] def UpperCamelCase_ ( self) -> str: _lowerCamelCase : Optional[Any] = self.__dft("""A""") _lowerCamelCase : List[str] = self.__dft("""B""") _lowerCamelCase : List[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT _lowerCamelCase : List[str] = 2 while next_ncol <= self.c_max_length: _lowerCamelCase : Any = [[] for i in range(SCREAMING_SNAKE_CASE)] _lowerCamelCase : List[Any] = self.root ** (next_ncol // 2) _lowerCamelCase : str = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update _lowerCamelCase : Any = new_inverse_c next_ncol *= 2 # Unpack _lowerCamelCase : Optional[Any] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self) -> Any: _lowerCamelCase : Dict = """A = """ + """ + """.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) _lowerCamelCase : List[Any] = """B = """ + """ + """.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) _lowerCamelCase : int = """A*B = """ + """ + """.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
88
"""simple docstring""" def UpperCamelCase ( _A , _A ) -> int: lowercase : int = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowercase : List[Any] = n - k # Calculate C(n,k) for i in range(_A ): result *= n - i result //= i + 1 return result def UpperCamelCase ( _A ) -> int: return binomial_coefficient(2 * node_count , _A ) // (node_count + 1) def UpperCamelCase ( _A ) -> int: if n < 0: raise ValueError("""factorial() not defined for negative values""" ) lowercase : Union[str, Any] = 1 for i in range(1 , n + 1 ): result *= i return result def UpperCamelCase ( _A ) -> int: return catalan_number(_A ) * factorial(_A ) if __name__ == "__main__": _lowerCAmelCase = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( F'Given {node_count} nodes, there are {binary_tree_count(node_count)} ' F'binary trees and {catalan_number(node_count)} binary search trees.' )
264
0
class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self :Any , __lowercase :Dict ): __lowerCamelCase : List[Any] =arr.split(''',''' ) def __lowercase ( self :int ): __lowerCamelCase : int =[int(self.array[0] )] * len(self.array ) __lowerCamelCase : Any =[int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __lowerCamelCase : Tuple =max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __lowerCamelCase : List[str] =max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": _UpperCamelCase = input('please input some numbers:') _UpperCamelCase = SubArray(whole_array) _UpperCamelCase = array.solve_sub_array() print(('the results is:', re))
703
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _UpperCamelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' try: with open(SCREAMING_SNAKE_CASE , '''rb''' ) as flax_state_f: __lowerCamelCase : int =from_bytes(SCREAMING_SNAKE_CASE , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights __lowerCamelCase : str =flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE ) ).values() if any(SCREAMING_SNAKE_CASE ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) __lowerCamelCase : List[str] =jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE ) __lowerCamelCase : int ='''''' __lowerCamelCase : List[str] =flatten_dict(SCREAMING_SNAKE_CASE , sep='''.''' ) __lowerCamelCase : List[str] =pt_model.state_dict() # keep track of unexpected & missing keys __lowerCamelCase : Union[str, Any] =[] __lowerCamelCase : int =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __lowerCamelCase : Tuple =flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __lowerCamelCase : Optional[int] =flax_key_tuple_array[:-1] + ['''weight'''] __lowerCamelCase : Union[str, Any] =jnp.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __lowerCamelCase : Optional[Any] =flax_key_tuple_array[:-1] + ['''weight'''] __lowerCamelCase : Dict =flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __lowerCamelCase : str =flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE ): __lowerCamelCase : Union[str, Any] =( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) __lowerCamelCase : Optional[int] ='''.'''.join(SCREAMING_SNAKE_CASE ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict __lowerCamelCase : Tuple =np.asarray(SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) else flax_tensor __lowerCamelCase : Any =torch.from_numpy(SCREAMING_SNAKE_CASE ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE ) # re-transform missing_keys to list __lowerCamelCase : Optional[Any] =list(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) return pt_model
363
0
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , lowerCAmelCase : int = 128 , lowerCAmelCase : int = 256 , lowerCAmelCase : float = 20_00.0 , lowerCAmelCase : int = 768 , lowerCAmelCase : int = 12 , lowerCAmelCase : int = 12 , lowerCAmelCase : int = 64 , lowerCAmelCase : int = 2048 , lowerCAmelCase : float = 0.1 , ) -> int: """simple docstring""" super().__init__() __UpperCamelCase : List[str] = nn.Sequential( nn.Linear(lowerCAmelCase , d_model * 4 , bias=lowerCAmelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowerCAmelCase ) , nn.SiLU() , ) __UpperCamelCase : Any = nn.Embedding(lowerCAmelCase , lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : Tuple = nn.Linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase ) __UpperCamelCase : Any = nn.Dropout(p=lowerCAmelCase ) __UpperCamelCase : int = nn.ModuleList() for lyr_num in range(lowerCAmelCase ): # FiLM conditional T5 decoder __UpperCamelCase : Optional[Any] = DecoderLayer(d_model=lowerCAmelCase , d_kv=lowerCAmelCase , num_heads=lowerCAmelCase , d_ff=lowerCAmelCase , dropout_rate=lowerCAmelCase ) self.decoders.append(lowerCAmelCase ) __UpperCamelCase : Optional[Any] = TaLayerNorm(lowerCAmelCase ) __UpperCamelCase : Any = nn.Dropout(p=lowerCAmelCase ) __UpperCamelCase : Any = nn.Linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : str ) -> Optional[int]: """simple docstring""" __UpperCamelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Any ) -> int: """simple docstring""" __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : int = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __UpperCamelCase : str = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) __UpperCamelCase : Dict = self.conditioning_emb(lowerCAmelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __UpperCamelCase : Union[str, Any] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __UpperCamelCase : Optional[int] = torch.broadcast_to( torch.arange(lowerCAmelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) __UpperCamelCase : Any = self.position_encoding(lowerCAmelCase ) __UpperCamelCase : Any = self.continuous_inputs_projection(lowerCAmelCase ) inputs += position_encodings __UpperCamelCase : List[str] = self.dropout(lowerCAmelCase ) # decoder: No padding present. __UpperCamelCase : str = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. __UpperCamelCase : Tuple = [(x, self.encoder_decoder_mask(lowerCAmelCase , lowerCAmelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings __UpperCamelCase : List[Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) __UpperCamelCase : Optional[Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: __UpperCamelCase : int = lyr( lowerCAmelCase , conditioning_emb=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , )[0] __UpperCamelCase : List[Any] = self.decoder_norm(lowerCAmelCase ) __UpperCamelCase : List[str] = self.post_dropout(lowerCAmelCase ) __UpperCamelCase : List[Any] = self.spec_out(lowerCAmelCase ) return spec_out class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any=1E-6 ) -> Any: """simple docstring""" super().__init__() __UpperCamelCase : Union[str, Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowerCAmelCase , d_kv=lowerCAmelCase , num_heads=lowerCAmelCase , dropout_rate=lowerCAmelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowerCAmelCase , d_kv=lowerCAmelCase , num_heads=lowerCAmelCase , dropout_rate=lowerCAmelCase , layer_norm_epsilon=lowerCAmelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowerCAmelCase , d_ff=lowerCAmelCase , dropout_rate=lowerCAmelCase , layer_norm_epsilon=lowerCAmelCase ) ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : Dict , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Any=None , ) -> Dict: """simple docstring""" __UpperCamelCase : List[str] = self.layer[0]( lowerCAmelCase , conditioning_emb=lowerCAmelCase , attention_mask=lowerCAmelCase , ) if encoder_hidden_states is not None: __UpperCamelCase : int = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) __UpperCamelCase : List[Any] = self.layer[1]( lowerCAmelCase , key_value_states=lowerCAmelCase , attention_mask=lowerCAmelCase , ) # Apply Film Conditional Feed Forward layer __UpperCamelCase : Union[str, Any] = self.layer[-1](lowerCAmelCase , lowerCAmelCase ) return (hidden_states,) class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ) -> int: """simple docstring""" super().__init__() __UpperCamelCase : Dict = TaLayerNorm(lowerCAmelCase ) __UpperCamelCase : List[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase ) __UpperCamelCase : List[str] = Attention(query_dim=lowerCAmelCase , heads=lowerCAmelCase , dim_head=lowerCAmelCase , out_bias=lowerCAmelCase , scale_qk=lowerCAmelCase ) __UpperCamelCase : List[Any] = nn.Dropout(lowerCAmelCase ) def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , ) -> str: """simple docstring""" __UpperCamelCase : List[Any] = self.layer_norm(lowerCAmelCase ) if conditioning_emb is not None: __UpperCamelCase : Any = self.FiLMLayer(lowerCAmelCase , lowerCAmelCase ) # Self-attention block __UpperCamelCase : Optional[int] = self.attention(lowerCAmelCase ) __UpperCamelCase : Any = hidden_states + self.dropout(lowerCAmelCase ) return hidden_states class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" super().__init__() __UpperCamelCase : List[str] = Attention(query_dim=lowerCAmelCase , heads=lowerCAmelCase , dim_head=lowerCAmelCase , out_bias=lowerCAmelCase , scale_qk=lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = TaLayerNorm(lowerCAmelCase , eps=lowerCAmelCase ) __UpperCamelCase : Tuple = nn.Dropout(lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase : List[Any] = self.layer_norm(lowerCAmelCase ) __UpperCamelCase : Optional[Any] = self.attention( lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , attention_mask=attention_mask.squeeze(1 ) , ) __UpperCamelCase : List[str] = hidden_states + self.dropout(lowerCAmelCase ) return layer_output class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" super().__init__() __UpperCamelCase : Union[str, Any] = TaDenseGatedActDense(d_model=lowerCAmelCase , d_ff=lowerCAmelCase , dropout_rate=lowerCAmelCase ) __UpperCamelCase : List[str] = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase ) __UpperCamelCase : str = TaLayerNorm(lowerCAmelCase , eps=lowerCAmelCase ) __UpperCamelCase : List[Any] = nn.Dropout(lowerCAmelCase ) def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any]=None ) -> Dict: """simple docstring""" __UpperCamelCase : Optional[Any] = self.layer_norm(lowerCAmelCase ) if conditioning_emb is not None: __UpperCamelCase : Dict = self.film(lowerCAmelCase , lowerCAmelCase ) __UpperCamelCase : List[Any] = self.DenseReluDense(lowerCAmelCase ) __UpperCamelCase : Tuple = hidden_states + self.dropout(lowerCAmelCase ) return hidden_states class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" super().__init__() __UpperCamelCase : Dict = nn.Linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase ) __UpperCamelCase : int = nn.Linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase ) __UpperCamelCase : int = nn.Linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase ) __UpperCamelCase : Optional[Any] = nn.Dropout(lowerCAmelCase ) __UpperCamelCase : str = NewGELUActivation() def lowerCamelCase__ ( self : int , lowerCAmelCase : Tuple ) -> Tuple: """simple docstring""" __UpperCamelCase : Optional[Any] = self.act(self.wi_a(lowerCAmelCase ) ) __UpperCamelCase : Union[str, Any] = self.wi_a(lowerCAmelCase ) __UpperCamelCase : Tuple = hidden_gelu * hidden_linear __UpperCamelCase : int = self.dropout(lowerCAmelCase ) __UpperCamelCase : List[Any] = self.wo(lowerCAmelCase ) return hidden_states class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple=1E-6 ) -> Dict: """simple docstring""" super().__init__() __UpperCamelCase : Tuple = nn.Parameter(torch.ones(lowerCAmelCase ) ) __UpperCamelCase : Any = eps def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" __UpperCamelCase : List[str] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowerCAmelCase ) __UpperCamelCase : Optional[int] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __UpperCamelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def lowerCamelCase__ ( self : str , lowerCAmelCase : torch.Tensor ) -> torch.Tensor: """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(lowerCAmelCase , 3.0 )) )) class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int ) -> Dict: """simple docstring""" super().__init__() __UpperCamelCase : int = nn.Linear(lowerCAmelCase , out_features * 2 , bias=lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" __UpperCamelCase : Optional[Any] = self.scale_bias(lowerCAmelCase ) __UpperCamelCase , __UpperCamelCase : Union[str, Any] = torch.chunk(lowerCAmelCase , 2 , -1 ) __UpperCamelCase : Tuple = x * (1 + scale) + shift return x
279
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
279
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Dict: _a : List[Any] = inspect.getfile(accelerate.test_utils ) _a : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) _a : Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) _a : str = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def __lowercase ( self ) -> int: print(F"""Found {torch.cuda.device_count()} devices.""" ) _a : Tuple = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __lowercase ( self ) -> List[str]: print(F"""Found {torch.cuda.device_count()} devices.""" ) _a : Optional[int] = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __lowercase ( self ) -> Union[str, Any]: _a : List[str] = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __lowercase ( self ) -> Dict: print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _a : Optional[int] = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": a__ = Accelerator() a__ = (accelerator.state.process_index + 2, 10) a__ = torch.randint(0, 10, shape).to(accelerator.device) a__ = '''''' a__ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." a__ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." a__ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
578
import os def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" with open(os.path.dirname(__a ) + '''/grid.txt''' ) as f: _a : str = [] # noqa: E741 for _ in range(20 ): l.append([int(__a ) for x in f.readline().split()] ) _a : List[str] = 0 # right for i in range(20 ): for j in range(17 ): _a : Union[str, Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: _a : Any = temp # down for i in range(17 ): for j in range(20 ): _a : List[str] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: _a : int = temp # diagonal 1 for i in range(17 ): for j in range(17 ): _a : List[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: _a : List[str] = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): _a : Tuple = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: _a : Optional[int] = temp return maximum if __name__ == "__main__": print(solution())
578
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' lowerCAmelCase_ : Dict = """data2vec-text""" def __init__( self , lowerCAmelCase=3_0522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' @property def A__ ( self ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
579
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class snake_case_ : """simple docstring""" def __init__( self , __a ): """simple docstring""" if isinstance(__a , __a ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden A__ = deepcopy(__a ) elif os.path.exists(__a ): with io.open(__a , 'r' , encoding='utf-8' ) as f: A__ = json.load(__a ) else: try: A__ = baseaa.urlsafe_baadecode(__a ).decode('utf-8' ) A__ = json.loads(__a ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) A__ = config self.set_stage_and_offload() def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.get_value('zero_optimization.stage' , -1 ) # offload A__ = False if self.is_zeroa() or self.is_zeroa(): A__ = set(['cpu', 'nvme'] ) A__ = set( [ self.get_value('zero_optimization.offload_optimizer.device' ), self.get_value('zero_optimization.offload_param.device' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: A__ = True def _UpperCAmelCase ( self , __a ): """simple docstring""" A__ = self.config # find the config node of interest if it exists A__ = ds_key_long.split('.' ) A__ = nodes.pop() for node in nodes: A__ = config.get(__a ) if config is None: return None, ds_key return config, ds_key def _UpperCAmelCase ( self , __a , __a=None ): """simple docstring""" A__ , A__ = self.find_config_node(__a ) if config is None: return default return config.get(__a , __a ) def _UpperCAmelCase ( self , __a , __a=False ): """simple docstring""" A__ = self.config # find the config node of interest if it exists A__ = ds_key_long.split('.' ) for node in nodes: A__ = config A__ = config.get(__a ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(__a ) def _UpperCAmelCase ( self , __a ): """simple docstring""" A__ = self.get_value(__a ) return False if value is None else bool(__a ) def _UpperCAmelCase ( self , __a ): """simple docstring""" A__ = self.get_value(__a ) return False if value is None else not bool(__a ) def _UpperCAmelCase ( self ): """simple docstring""" return self._stage == 2 def _UpperCAmelCase ( self ): """simple docstring""" return self._stage == 3 def _UpperCAmelCase ( self ): """simple docstring""" return self._offload class snake_case_ : """simple docstring""" def __init__( self , __a ): """simple docstring""" A__ = engine def _UpperCAmelCase ( self , __a , **__a ): """simple docstring""" self.engine.backward(__a , **__a ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class snake_case_ ( _lowerCamelCase ): """simple docstring""" def __init__( self , __a ): """simple docstring""" super().__init__(__a , device_placement=__a , scaler=__a ) A__ = hasattr(self.optimizer , 'overflow' ) def _UpperCAmelCase ( self , __a=None ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _UpperCAmelCase ( self ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _UpperCAmelCase ( self ): """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class snake_case_ ( _lowerCamelCase ): """simple docstring""" def __init__( self , __a , __a ): """simple docstring""" super().__init__(__a , __a ) def _UpperCAmelCase ( self ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class snake_case_ : """simple docstring""" def __init__( self , __a , __a=0.001 , __a=0 , **__a ): """simple docstring""" A__ = params A__ = lr A__ = weight_decay A__ = kwargs class snake_case_ : """simple docstring""" def __init__( self , __a , __a=None , __a=0 , **__a ): """simple docstring""" A__ = optimizer A__ = total_num_steps A__ = warmup_num_steps A__ = kwargs
260
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Optional[Any] = '''''' for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return data[1:] + data[0] def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = '''''' for i in range(len(snake_case__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = int('''0b''' + data[0] + data[-1] , 2 ) A : Tuple = int('''0b''' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : Any = message[:4] A : Optional[int] = message[4:] A : Dict = apply_table(snake_case__ , snake_case__ ) A : Union[str, Any] = xor(snake_case__ , snake_case__ ) A : Optional[int] = apply_sbox(snake_case__ , temp[:4] ) # noqa: E741 A : Optional[Any] = apply_sbox(snake_case__ , temp[4:] ) A : Union[str, Any] = '''0''' * (2 - len(snake_case__ )) + l # noqa: E741 A : Optional[int] = '''0''' * (2 - len(snake_case__ )) + r A : Union[str, Any] = apply_table(l + r , snake_case__ ) A : int = xor(snake_case__ , snake_case__ ) return temp + right if __name__ == "__main__": lowercase : Tuple = input('Enter 10 bit key: ') lowercase : str = input('Enter 8 bit message: ') lowercase : Dict = [6, 3, 7, 4, 8, 5, 10, 9] lowercase : Optional[Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase : Any = [2, 4, 3, 1] lowercase : Optional[int] = [2, 6, 3, 1, 4, 8, 5, 7] lowercase : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] lowercase : Dict = [4, 1, 2, 3, 2, 3, 4, 1] lowercase : Optional[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase : Optional[int] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase : Optional[Any] = apply_table(key, paa_table) lowercase : Dict = temp[:5] lowercase : int = temp[5:] lowercase : Tuple = left_shift(left) lowercase : Optional[int] = left_shift(right) lowercase : Optional[int] = apply_table(left + right, pa_table) lowercase : Union[str, Any] = left_shift(left) lowercase : Optional[Any] = left_shift(right) lowercase : List[Any] = left_shift(left) lowercase : Union[str, Any] = left_shift(right) lowercase : Optional[int] = apply_table(left + right, pa_table) # encryption lowercase : Dict = apply_table(message, IP) lowercase : str = function(expansion, sa, sa, keya, temp) lowercase : Tuple = temp[4:] + temp[:4] lowercase : Optional[Any] = function(expansion, sa, sa, keya, temp) lowercase : Any = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption lowercase : Dict = apply_table(CT, IP) lowercase : int = function(expansion, sa, sa, keya, temp) lowercase : str = temp[4:] + temp[:4] lowercase : int = function(expansion, sa, sa, keya, temp) lowercase : Dict = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
343
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if len(snake_case__ ) <= 1: return [tuple(snake_case__ )] A : Dict = [] def generate(snake_case__ , snake_case__ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , snake_case__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A, A : Optional[int] = arr[k - 1], arr[i] else: # k is odd A, A : List[Any] = arr[k - 1], arr[0] generate(k - 1 , snake_case__ ) generate(len(snake_case__ ) , snake_case__ ) return res if __name__ == "__main__": lowercase : Tuple = input('Enter numbers separated by a comma:\n').strip() lowercase : Optional[Any] = [int(item) for item in user_input.split(',')] print(heaps(arr))
343
1
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase: List[str] = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def lowerCAmelCase ( self : Any ): """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase: str = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def lowerCAmelCase ( self : Any ): """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase: Tuple = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) _UpperCamelCase: List[str] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def lowerCAmelCase ( self : Tuple ): """simple docstring""" _UpperCamelCase: str = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase: Tuple = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _UpperCamelCase: List[str] = DDPMScheduler() _UpperCamelCase: Optional[int] = AudioDiffusionPipeline(vqvae=_lowerCamelCase , unet=self.dummy_unet , mel=_lowerCamelCase , scheduler=_lowerCamelCase ) _UpperCamelCase: int = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _UpperCamelCase: int = torch.Generator(device=_lowerCamelCase ).manual_seed(42 ) _UpperCamelCase: Optional[int] = pipe(generator=_lowerCamelCase , steps=4 ) _UpperCamelCase: Tuple = output.audios[0] _UpperCamelCase: List[Any] = output.images[0] _UpperCamelCase: Optional[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(42 ) _UpperCamelCase: int = pipe(generator=_lowerCamelCase , steps=4 , return_dict=_lowerCamelCase ) _UpperCamelCase: List[str] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _UpperCamelCase: List[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase: int = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase: str = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _UpperCamelCase: Dict = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _UpperCamelCase: List[Any] = DDIMScheduler() _UpperCamelCase: str = self.dummy_vqvae_and_unet _UpperCamelCase: List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_lowerCamelCase , scheduler=_lowerCamelCase ) _UpperCamelCase: Tuple = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) np.random.seed(0 ) _UpperCamelCase: int = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _UpperCamelCase: Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(42 ) _UpperCamelCase: Tuple = pipe(raw_audio=_lowerCamelCase , generator=_lowerCamelCase , start_step=5 , steps=10 ) _UpperCamelCase: Any = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _UpperCamelCase: Any = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase: Union[str, Any] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _UpperCamelCase: Optional[Any] = self.dummy_unet_condition _UpperCamelCase: Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_lowerCamelCase , mel=_lowerCamelCase , scheduler=_lowerCamelCase ) _UpperCamelCase: List[str] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) np.random.seed(0 ) _UpperCamelCase: Optional[int] = torch.rand((1, 1, 10) ) _UpperCamelCase: Union[str, Any] = pipe(generator=_lowerCamelCase , encoding=_lowerCamelCase ) _UpperCamelCase: Optional[int] = output.images[0] _UpperCamelCase: List[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase: List[str] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[str] ): """simple docstring""" _UpperCamelCase: str = torch_device _UpperCamelCase: Union[str, Any] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) _UpperCamelCase: int = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _UpperCamelCase: Optional[int] = torch.Generator(device=_lowerCamelCase ).manual_seed(42 ) _UpperCamelCase: Optional[int] = pipe(generator=_lowerCamelCase ) _UpperCamelCase: Optional[Any] = output.audios[0] _UpperCamelCase: Union[str, Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _UpperCamelCase: Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase: Any = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
271
"""simple docstring""" import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate _lowerCamelCase = trt.Logger(trt.Logger.WARNING) _lowerCamelCase = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) _lowerCamelCase = logging.getLogger(__name__) _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) _lowerCamelCase = parser.parse_args() if args.tokenizer_name: _lowerCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) _lowerCamelCase = args.per_device_eval_batch_size _lowerCamelCase = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties _lowerCamelCase = True _lowerCamelCase = '''temp_engine/bert-fp32.engine''' if args.fpaa: _lowerCamelCase = '''temp_engine/bert-fp16.engine''' if args.inta: _lowerCamelCase = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') _lowerCamelCase = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network _lowerCamelCase = [network.get_input(i) for i in range(network.num_inputs)] _lowerCamelCase = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: _lowerCamelCase = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) _lowerCamelCase = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) _lowerCamelCase = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def lowerCAmelCase_ ( lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = np.asarray(inputs['''input_ids'''] , dtype=np.intaa ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowercase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowercase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowercase_ ) # start time __SCREAMING_SNAKE_CASE : Tuple = time.time() # Run inference context.execute_async( bindings=[int(lowercase_ ) for d_inp in d_inputs] + [int(lowercase_ ), int(lowercase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowercase_ , lowercase_ , lowercase_ ) cuda.memcpy_dtoh_async(lowercase_ , lowercase_ , lowercase_ ) # Synchronize the stream and take time stream.synchronize() # end time __SCREAMING_SNAKE_CASE : List[str] = time.time() __SCREAMING_SNAKE_CASE : int = end_time - start_time __SCREAMING_SNAKE_CASE : int = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. _lowerCamelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowerCamelCase = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. _lowerCamelCase = raw_datasets['''validation'''].column_names _lowerCamelCase = '''question''' if '''question''' in column_names else column_names[0] _lowerCamelCase = '''context''' if '''context''' in column_names else column_names[1] _lowerCamelCase = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). _lowerCamelCase = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) _lowerCamelCase = min(args.max_seq_length, tokenizer.model_max_length) def lowerCAmelCase_ ( lowercase_ : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=lowercase_ , stride=args.doc_stride , return_overflowing_tokens=lowercase_ , return_offsets_mapping=lowercase_ , padding='''max_length''' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __SCREAMING_SNAKE_CASE : Optional[int] = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __SCREAMING_SNAKE_CASE : Any = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __SCREAMING_SNAKE_CASE : int = tokenized_examples.sequence_ids(lowercase_ ) __SCREAMING_SNAKE_CASE : str = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __SCREAMING_SNAKE_CASE : str = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __SCREAMING_SNAKE_CASE : List[str] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples _lowerCamelCase = raw_datasets['''validation'''] # Validation Feature Creation _lowerCamelCase = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) _lowerCamelCase = default_data_collator _lowerCamelCase = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) _lowerCamelCase = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCAmelCase_ ( lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any]="eval" ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = postprocess_qa_predictions( examples=lowercase_ , features=lowercase_ , predictions=lowercase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowercase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __SCREAMING_SNAKE_CASE : Union[str, Any] = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: __SCREAMING_SNAKE_CASE : int = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] __SCREAMING_SNAKE_CASE : Any = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowercase_ , label_ids=lowercase_ ) _lowerCamelCase = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCAmelCase_ ( lowercase_ : Any ): '''simple docstring''' return trt.volume(engine.get_binding_shape(lowercase_ ) ) * engine.get_binding_dtype(lowercase_ ).itemsize # Allocate device memory for inputs and outputs. _lowerCamelCase = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer _lowerCamelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) _lowerCamelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) _lowerCamelCase = cuda.mem_alloc(h_outputa.nbytes) _lowerCamelCase = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. _lowerCamelCase = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f' Num examples = {len(eval_dataset)}') logger.info(f' Batch size = {args.per_device_eval_batch_size}') _lowerCamelCase = 0.0 _lowerCamelCase = 0 _lowerCamelCase = timeit.default_timer() _lowerCamelCase = None for step, batch in enumerate(eval_dataloader): _lowerCamelCase , _lowerCamelCase = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 _lowerCamelCase , _lowerCamelCase = outputs _lowerCamelCase = torch.tensor(start_logits) _lowerCamelCase = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered _lowerCamelCase = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) _lowerCamelCase = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) _lowerCamelCase = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) _lowerCamelCase = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: _lowerCamelCase = nested_truncate(all_preds, len(eval_dataset)) _lowerCamelCase = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) _lowerCamelCase = post_processing_function(eval_examples, eval_dataset, all_preds) _lowerCamelCase = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'Evaluation metrics: {eval_metric}')
674
0
'''simple docstring''' from __future__ import annotations def a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : list[int] , UpperCamelCase_ : list[int] , UpperCamelCase_ : list[list[str]] , UpperCamelCase_ : int , ) -> None: snake_case__ =len(UpperCamelCase_ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(UpperCamelCase_ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , UpperCamelCase_ , UpperCamelCase_ , ) def a ( UpperCamelCase_ : int ) -> None: snake_case__ =[] depth_first_search([] , [] , [] , UpperCamelCase_ , UpperCamelCase_ ) # Print all the boards for board in boards: for column in board: print(UpperCamelCase_ ) print('' ) print(len(UpperCamelCase_ ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
712
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def a ( UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple ) -> Optional[int]: # Initialise PyTorch model snake_case__ =TaConfig.from_json_file(UpperCamelCase_ ) print(f"""Building PyTorch model from configuration: {config}""" ) snake_case__ =TaForConditionalGeneration(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_ta(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) SCREAMING_SNAKE_CASE__ : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
581
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int = 1_0 ) -> str: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or n < 0: raise ValueError("Invalid input" ) A__ = 1_0**n A__ = 2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , SCREAMING_SNAKE_CASE_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(1_0) = }""")
514
from datetime import datetime import requests def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str ) -> bytes: '''simple docstring''' A__ = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" A__ = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(SCREAMING_SNAKE_CASE_ ).content if __name__ == "__main__": lowerCAmelCase__ = input("""Enter Video/IGTV url: """).strip() lowerCAmelCase__ = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
514
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int = 1_0 , UpperCamelCase__ : int = 2_2 ): """simple docstring""" __UpperCAmelCase = range(1 , UpperCamelCase__ ) __UpperCAmelCase = range(1 , UpperCamelCase__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase__ ) if number < 1: __UpperCAmelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase__ ) __UpperCAmelCase = 1 for i in range(1 , UpperCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
654
1
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
76
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( lowercase_ : int , lowercase_ : Any , lowercase_ : int=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' __SCREAMING_SNAKE_CASE : str = nn.Parameter(lowercase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(lowercase_ ) def lowerCAmelCase_ ( lowercase_ : Tuple , lowercase_ : int , lowercase_ : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[int] = np.asarray(weights[0] ) __SCREAMING_SNAKE_CASE : Optional[int] = np.asarray(weights[1] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowercase_ ).view(-1 , lowercase_ ).contiguous().transpose(0 , 1 ) , ) def lowerCAmelCase_ ( lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = np.asarray(weights[0] ) __SCREAMING_SNAKE_CASE : Any = np.asarray(weights[1] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(weights[2] ) __SCREAMING_SNAKE_CASE : Tuple = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowercase_ ).view(-1 , lowercase_ ).contiguous().transpose(0 , 1 ) , ) def lowerCAmelCase_ ( lowercase_ : int , lowercase_ : List[str] , lowercase_ : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = weights[0][0][0] __SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(layer_norm_a[0] ) __SCREAMING_SNAKE_CASE : List[Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowercase_ ) , torch.tensor(lowercase_ ) , ) # lsh weights + output __SCREAMING_SNAKE_CASE : Tuple = weights[0][1] if len(lowercase_ ) < 4: set_layer_weights_in_torch_lsh(lowercase_ , torch_block.attention , lowercase_ ) else: set_layer_weights_in_torch_local(lowercase_ , torch_block.attention , lowercase_ ) # intermediate weighs __SCREAMING_SNAKE_CASE : Any = weights[2][0][1][2] # Chunked Feed Forward if len(lowercase_ ) == 4: __SCREAMING_SNAKE_CASE : List[str] = intermediate_weights[2] # layernorm 2 __SCREAMING_SNAKE_CASE : List[str] = np.asarray(intermediate_weights[0][0] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowercase_ ) , torch.tensor(lowercase_ ) , ) # intermediate dense __SCREAMING_SNAKE_CASE : int = np.asarray(intermediate_weights[1][0] ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowercase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowercase_ ) , ) # intermediate out __SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(intermediate_weights[4][0] ) __SCREAMING_SNAKE_CASE : Any = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowercase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowercase_ ) , ) def lowerCAmelCase_ ( lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = torch_model.reformer # word embeds __SCREAMING_SNAKE_CASE : int = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowercase_ ) , ) if isinstance(weights[3] , lowercase_ ): __SCREAMING_SNAKE_CASE : int = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __SCREAMING_SNAKE_CASE : Dict = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' __SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.tensor(lowercase_ ) ) __SCREAMING_SNAKE_CASE : List[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowercase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __SCREAMING_SNAKE_CASE : Union[str, Any] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowercase_ , lowercase_ , lowercase_ ) # output layer norm __SCREAMING_SNAKE_CASE : List[str] = np.asarray(weights[7][0] ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowercase_ ) , torch.tensor(lowercase_ ) , ) # output embeddings __SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(weights[9][0] ) __SCREAMING_SNAKE_CASE : List[Any] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowercase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowercase_ ) , ) def lowerCAmelCase_ ( lowercase_ : List[str] , lowercase_ : Any , lowercase_ : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = ReformerConfig.from_json_file(lowercase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) __SCREAMING_SNAKE_CASE : List[str] = ReformerModelWithLMHead(lowercase_ ) with open(lowercase_ , '''rb''' ) as f: __SCREAMING_SNAKE_CASE : int = pickle.load(lowercase_ )['''weights'''] set_model_weights_in_torch(lowercase_ , lowercase_ , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowercase_ ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
674
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = "blip_2_vision_model" def __init__( self : Tuple , __lowerCamelCase : Any=14_08 , __lowerCamelCase : Union[str, Any]=61_44 , __lowerCamelCase : Any=39 , __lowerCamelCase : Union[str, Any]=16 , __lowerCamelCase : Any=2_24 , __lowerCamelCase : Tuple=14 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : str=0.00001 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : Any=1e-10 , __lowerCamelCase : List[Any]=True , **__lowerCamelCase : Union[str, Any] , ) -> List[Any]: super().__init__(**__lowerCamelCase ) A : Dict = hidden_size A : Union[str, Any] = intermediate_size A : Optional[int] = num_hidden_layers A : Tuple = num_attention_heads A : List[str] = patch_size A : Any = image_size A : List[Any] = initializer_range A : Union[str, Any] = attention_dropout A : int = layer_norm_eps A : Dict = hidden_act A : Dict = qkv_bias @classmethod def SCREAMING_SNAKE_CASE__ ( cls : str , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__lowerCamelCase ) A : int = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": A : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = "blip_2_qformer" def __init__( self : Tuple , __lowerCamelCase : Union[str, Any]=3_05_22 , __lowerCamelCase : Union[str, Any]=7_68 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Optional[int]=30_72 , __lowerCamelCase : int="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=5_12 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Any=1e-12 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : List[Any]="absolute" , __lowerCamelCase : Any=2 , __lowerCamelCase : str=14_08 , **__lowerCamelCase : int , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) A : List[Any] = vocab_size A : Optional[int] = hidden_size A : Dict = num_hidden_layers A : int = num_attention_heads A : Optional[Any] = hidden_act A : List[str] = intermediate_size A : Optional[Any] = hidden_dropout_prob A : Optional[Any] = attention_probs_dropout_prob A : Tuple = max_position_embeddings A : Optional[int] = initializer_range A : Optional[Any] = layer_norm_eps A : Optional[int] = position_embedding_type A : List[str] = cross_attention_frequency A : Union[str, Any] = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Optional[int] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__lowerCamelCase ) A : Union[str, Any] = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": A : Optional[int] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = "blip-2" a__ = True def __init__( self : Union[str, Any] , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Tuple=32 , **__lowerCamelCase : Any ) -> Optional[int]: super().__init__(**__lowerCamelCase ) if vision_config is None: A : List[str] = {} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values." ) if qformer_config is None: A : Dict = {} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values." ) if text_config is None: A : Any = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) A : List[Any] = BlipaVisionConfig(**__lowerCamelCase ) A : List[Any] = BlipaQFormerConfig(**__lowerCamelCase ) A : Union[str, Any] = text_config["model_type"] if "model_type" in text_config else "opt" A : Tuple = CONFIG_MAPPING[text_model_type](**__lowerCamelCase ) A : Tuple = self.text_config.tie_word_embeddings A : Union[str, Any] = self.text_config.is_encoder_decoder A : Union[str, Any] = num_query_tokens A : str = self.vision_config.hidden_size A : int = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES A : Any = 1.0 A : Optional[int] = 0.02 @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , __lowerCamelCase : BlipaVisionConfig , __lowerCamelCase : BlipaQFormerConfig , __lowerCamelCase : PretrainedConfig , **__lowerCamelCase : Tuple , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__lowerCamelCase , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> int: A : str = copy.deepcopy(self.__dict__ ) A : List[str] = self.vision_config.to_dict() A : int = self.qformer_config.to_dict() A : Dict = self.text_config.to_dict() A : Optional[int] = self.__class__.model_type return output
709
from sklearn.metrics import recall_score import datasets __SCREAMING_SNAKE_CASE = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ __SCREAMING_SNAKE_CASE = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ __SCREAMING_SNAKE_CASE = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Tuple="binary" , __lowerCamelCase : Tuple=None , __lowerCamelCase : Tuple="warn" , ) -> Optional[Any]: A : str = recall_score( __lowerCamelCase , __lowerCamelCase , labels=__lowerCamelCase , pos_label=__lowerCamelCase , average=__lowerCamelCase , sample_weight=__lowerCamelCase , zero_division=__lowerCamelCase , ) return {"recall": float(__lowerCamelCase ) if score.size == 1 else score}
17
0
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp __UpperCamelCase = 5 __UpperCamelCase = 10 @require_sentencepiece @require_tokenizers class _A ( __lowercase , unittest.TestCase ): lowercase__: Optional[Any] = SpeechaTextTokenizer lowercase__: Optional[int] = False lowercase__: Union[str, Any] = True def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" super().setUp() __snake_case : Tuple = sp.SentencePieceProcessor() spm_model.Load(__magic_name__ ) __snake_case : int = ["""<s>""", """<pad>""", """</s>""", """<unk>"""] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )] __snake_case : int = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) __snake_case : Union[str, Any] = Path(self.tmpdirname ) save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) __snake_case : Dict = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" __snake_case : Any = """<pad>""" __snake_case : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__magic_name__ ) , 10_01 ) def lowercase__ ( self : List[str] ) -> int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def lowercase__ ( self : str ) -> Tuple: """simple docstring""" __snake_case : Union[str, Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __snake_case : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__magic_name__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [2_89, 50, 14, 1_74, 3_86] , ) __snake_case : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) __snake_case : Union[str, Any] = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) __snake_case : List[Any] = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def lowercase__ ( self : int ) -> Tuple: """simple docstring""" __snake_case : List[Any] = {"""input_ids""": [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , ) @require_sentencepiece class _A ( unittest.TestCase ): lowercase__: List[Any] = '''valhalla/s2t_mustc_multilinguial_medium''' lowercase__: Union[str, Any] = '''C\'est trop cool''' lowercase__: Union[str, Any] = '''Esto es genial''' @classmethod def lowercase__ ( cls : Optional[Any] ) -> int: """simple docstring""" __snake_case : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 11 ) def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" self.assertIn(__magic_name__ , self.tokenizer.all_special_ids ) __snake_case : Tuple = [ES_CODE, 4, 16_01, 47, 76_47, 2] __snake_case : Any = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) __snake_case : int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertNotIn(self.tokenizer.eos_token , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = """fr""" __snake_case : int = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __magic_name__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def lowercase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = """fr""" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) __snake_case : Any = """es""" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
26
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Dict ={"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[int] =[ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _UpperCamelCase : Optional[int] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
"""simple docstring""" from __future__ import annotations def UpperCamelCase ( _A , _A , _A , _A ) -> List[Any]: # noqa: E741 while r - l > 1: lowercase : List[str] = (l + r) // 2 if v[m] >= key: lowercase : Dict = m else: lowercase : List[Any] = m # noqa: E741 return r def UpperCamelCase ( _A ) -> int: if len(_A ) == 0: return 0 lowercase : Union[str, Any] = [0] * len(_A ) lowercase : Tuple = 1 lowercase : Optional[int] = v[0] for i in range(1 , len(_A ) ): if v[i] < tail[0]: lowercase : int = v[i] elif v[i] > tail[length - 1]: lowercase : Dict = v[i] length += 1 else: lowercase : List[str] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
348
"""simple docstring""" from __future__ import annotations _lowerCAmelCase = [True] * 1_00_00_01 _lowerCAmelCase = 2 while i * i <= 1_00_00_00: if seive[i]: for j in range(i * i, 1_00_00_01, i): _lowerCAmelCase = False i += 1 def UpperCamelCase ( _A ) -> bool: return seive[n] def UpperCamelCase ( _A ) -> bool: return any(digit in """02468""" for digit in str(_A ) ) def UpperCamelCase ( _A = 1_000_000 ) -> list[int]: lowercase : Dict = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(_A ) and not contains_an_even_digit(_A ): lowercase : str = str(_A ) lowercase : int = [int(str_num[j:] + str_num[:j] ) for j in range(len(_A ) )] if all(is_prime(_A ) for i in list_nums ): result.append(_A ) return result def UpperCamelCase ( ) -> int: return len(find_circular_primes() ) if __name__ == "__main__": print(F'{len(find_circular_primes()) = }')
348
1
'''simple docstring''' import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase_ : Any = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase_ : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase_ : Dict = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowerCAmelCase_ : List[Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def _lowerCamelCase (__lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : List[Any] ) -> Tuple: a__ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): a__ = True # Deal with multi-line cases elif ( re.search( rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , __lowerCamelCase , ) is not None ): a__ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: a__ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files a__ = [ "bos_index", "eos_index", "pad_index", "unk_index", "mask_index", "image_size", "use_cache", "out_features", "out_indices", ] a__ = ["encoder_no_repeat_ngram_size"] # Special cases to be allowed a__ = True if not attribute_used: a__ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: a__ = True elif attribute in ["tie_word_embeddings"] and default_value is False: a__ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: a__ = True elif attribute.endswith("_token_id" ): a__ = True # configuration class specific cases if not case_allowed: a__ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) a__ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def _lowerCamelCase (__lowerCamelCase : int ) -> List[Any]: a__ = dict(inspect.signature(config_class.__init__ ).parameters ) a__ = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]] a__ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass a__ = {} if len(config_class.attribute_map ) > 0: a__ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files a__ = inspect.getsourcefile(__lowerCamelCase ) a__ = os.path.dirname(__lowerCamelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. a__ = [os.path.join(__lowerCamelCase , __lowerCamelCase ) for fn in os.listdir(__lowerCamelCase ) if fn.startswith("modeling_" )] # Get the source code strings a__ = [] for path in modeling_paths: if os.path.isfile(__lowerCamelCase ): with open(__lowerCamelCase ) as fp: modeling_sources.append(fp.read() ) a__ = [] for config_param, default_value in zip(__lowerCamelCase , __lowerCamelCase ): # `attributes` here is all the variant names for `config_param` a__ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): unused_attributes.append(attributes[0] ) return sorted(__lowerCamelCase ) def _lowerCamelCase () -> List[Any]: a__ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) a__ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __lowerCamelCase : inspect.isclass(__lowerCamelCase ) and issubclass(__lowerCamelCase , __lowerCamelCase ) and inspect.getmodule(__lowerCamelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: a__ = check_config_attributes_being_used(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: a__ = unused_attributes if len(__lowerCamelCase ) > 0: a__ = "The following configuration classes contain unused attributes in the corresponding modeling files:\n" for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(__lowerCamelCase ) if __name__ == "__main__": check_config_attributes()
489
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCAmelCase_ : Tuple = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _lowerCamelCase (__lowerCamelCase : str ) -> List[str]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _lowerCamelCase (__lowerCamelCase : List[Any] , __lowerCamelCase : Dict ) -> Optional[Any]: if args.student_type == "roberta": a__ = False elif args.student_type == "gpt2": a__ = False def _lowerCamelCase (__lowerCamelCase : Tuple , __lowerCamelCase : List[str] ) -> Union[str, Any]: if args.student_type == "roberta": a__ = False def _lowerCamelCase () -> int: a__ = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=__lowerCamelCase , required=__lowerCamelCase , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=__lowerCamelCase , required=__lowerCamelCase , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=__lowerCamelCase , choices=["distilbert", "roberta", "gpt2"] , required=__lowerCamelCase , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=__lowerCamelCase , type=__lowerCamelCase , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=__lowerCamelCase , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=__lowerCamelCase , required=__lowerCamelCase , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=__lowerCamelCase , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=__lowerCamelCase , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=__lowerCamelCase , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=__lowerCamelCase , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=__lowerCamelCase , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=__lowerCamelCase , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.15 , type=__lowerCamelCase , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=__lowerCamelCase , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=__lowerCamelCase , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=__lowerCamelCase , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=__lowerCamelCase , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=__lowerCamelCase , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , ) parser.add_argument("--n_epoch" , type=__lowerCamelCase , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=__lowerCamelCase , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=__lowerCamelCase , default=50 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.05 , type=__lowerCamelCase , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=__lowerCamelCase , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5e-4 , type=__lowerCamelCase , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1e-6 , type=__lowerCamelCase , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=__lowerCamelCase , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.02 , type=__lowerCamelCase , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=__lowerCamelCase , default="O1" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=__lowerCamelCase , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=__lowerCamelCase , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=__lowerCamelCase , default=56 , help="Random seed" ) parser.add_argument("--log_interval" , type=__lowerCamelCase , default=500 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=__lowerCamelCase , default=4000 , help="Checkpoint interval." ) a__ = parser.parse_args() sanity_checks(__lowerCamelCase ) # ARGS # init_gpu_params(__lowerCamelCase ) set_seed(__lowerCamelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(f'''Param: {args}''' ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(__lowerCamelCase ) , __lowerCamelCase , indent=4 ) git_log(args.dump_path ) a__ , a__ , a__ = MODEL_CLASSES[args.student_type] a__ , a__ , a__ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # a__ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) a__ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): a__ = tokenizer.all_special_tokens.index(__lowerCamelCase ) a__ = tokenizer.all_special_ids[idx] logger.info(f'''Special tokens {special_tok_ids}''' ) a__ = special_tok_ids a__ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'''Loading data from {args.data_file}''' ) with open(args.data_file , "rb" ) as fp: a__ = pickle.load(__lowerCamelCase ) if args.mlm: logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , "rb" ) as fp: a__ = pickle.load(__lowerCamelCase ) a__ = np.maximum(__lowerCamelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): a__ = 0.0 # do not predict special tokens a__ = torch.from_numpy(__lowerCamelCase ) else: a__ = None a__ = LmSeqsDataset(params=__lowerCamelCase , data=__lowerCamelCase ) logger.info("Data loader created." ) # STUDENT # logger.info(f'''Loading student config from {args.student_config}''' ) a__ = student_config_class.from_pretrained(args.student_config ) a__ = True if args.student_pretrained_weights is not None: logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' ) a__ = student_model_class.from_pretrained(args.student_pretrained_weights , config=__lowerCamelCase ) else: a__ = student_model_class(__lowerCamelCase ) if args.n_gpu > 0: student.to(f'''cuda:{args.local_rank}''' ) logger.info("Student loaded." ) # TEACHER # a__ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__lowerCamelCase ) if args.n_gpu > 0: teacher.to(f'''cuda:{args.local_rank}''' ) logger.info(f'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__lowerCamelCase , __lowerCamelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__lowerCamelCase , __lowerCamelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() a__ = Distiller( params=__lowerCamelCase , dataset=__lowerCamelCase , token_probs=__lowerCamelCase , student=__lowerCamelCase , teacher=__lowerCamelCase ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
489
1
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( snake_case_ , unittest.TestCase ): _lowerCAmelCase : List[Any] = LxmertTokenizer _lowerCAmelCase : Tuple = LxmertTokenizerFast _lowerCAmelCase : str = True _lowerCAmelCase : List[Any] = True def __lowercase ( self : str ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE : Tuple = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self : str , lowerCAmelCase__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE : Optional[int] = '''unwanted, running''' return input_text, output_text def __lowercase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE : int = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowerCAmelCase__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [7, 4, 5, 10, 8, 9] ) def __lowercase ( self : Optional[Any] ): """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : Dict = '''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
464
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] , A : Any ): SCREAMING_SNAKE_CASE : List[str] = 1.5 SCREAMING_SNAKE_CASE : str = int(factor * num_class_images ) SCREAMING_SNAKE_CASE : Union[str, Any] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=A , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=A ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: SCREAMING_SNAKE_CASE : Union[str, Any] = client.query(text=A ) if len(A ) >= factor * num_class_images or num_images > 1e4: break else: SCREAMING_SNAKE_CASE : Optional[int] = int(factor * num_images ) SCREAMING_SNAKE_CASE : str = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=A , aesthetic_weight=0.1 , ) SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Tuple = tqdm(desc='''downloading real regularization images''' , total=A ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: SCREAMING_SNAKE_CASE : int = class_images[count] count += 1 try: SCREAMING_SNAKE_CASE : int = requests.get(images['''url'''] ) if img.status_code == 200: SCREAMING_SNAKE_CASE : List[str] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCAmelCase ( ): SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser('''''' , add_help=A ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=A , type=A ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=A , type=A ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=200 , type=A ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ : List[str] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
464
1
def lowercase_ (A : int , A : Optional[Any] , A : Union[str, Any] ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__A ) ) def lowercase_ (A : List[str] , A : Tuple , A : Tuple , A : int ): if index == len(__A ): return True # Recursive Step for i in range(__A ): if valid_coloring(graph[index] , __A , __A ): # Color current vertex snake_case__ : List[str] = i # Validate coloring if util_color(__A , __A , __A , index + 1 ): return True # Backtrack snake_case__ : Union[str, Any] = -1 return False def lowercase_ (A : Optional[Any] , A : Any ): snake_case__ : str = [-1] * len(__A ) if util_color(__A , __A , __A , 0 ): return colored_vertices return []
478
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= '' A__= 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self : List[str] , _lowercase : Optional[DatasetInfo] = None , _lowercase : Optional[str] = None , **_lowercase : Optional[Any] , ): """simple docstring""" super().__init__(self , **_lowercase ) UpperCAmelCase__ = repo_info UpperCAmelCase__ = token UpperCAmelCase__ = None def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" if self.dir_cache is None: UpperCAmelCase__ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes UpperCAmelCase__ = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(_lowercase ): {"name": str(_lowercase ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _UpperCAmelCase ( self : str , _lowercase : str , _lowercase : str = "rb" , **_lowercase : int , ): """simple docstring""" if not isinstance(self.repo_info , _lowercase ): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) UpperCAmelCase__ = hf_hub_url(self.repo_info.id , _lowercase , revision=self.repo_info.sha ) return fsspec.open( _lowercase , mode=_lowercase , headers=get_authentication_headers_for_url(_lowercase , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def _UpperCAmelCase ( self : Union[str, Any] , _lowercase : Dict , **_lowercase : Optional[int] ): """simple docstring""" self._get_dirs() UpperCAmelCase__ = self._strip_protocol(_lowercase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowercase ) def _UpperCAmelCase ( self : int , _lowercase : Optional[Any] , _lowercase : Any=False , **_lowercase : int ): """simple docstring""" self._get_dirs() UpperCAmelCase__ = PurePosixPath(path.strip("/" ) ) UpperCAmelCase__ = {} for p, f in self.dir_cache.items(): UpperCAmelCase__ = PurePosixPath(p.strip("/" ) ) UpperCAmelCase__ = p.parent if root == path: UpperCAmelCase__ = f UpperCAmelCase__ = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
475
0
'''simple docstring''' def _snake_case ( lowercase ) -> Dict: for i in range(0 , lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def _snake_case ( lowercase ) -> int: for i in range(lowercase , 0 , -1 ): for _ in range(lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def _snake_case ( lowercase ) -> Optional[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(lowercase ) # upper half reverse_floyd(lowercase ) # lower half if __name__ == "__main__": print(r'| /\ | |- | |- |--| |\ /| |-') print(r'|/ \| |- |_ |_ |__| | \/ | |_') __SCREAMING_SNAKE_CASE : Dict = 1 while K: __SCREAMING_SNAKE_CASE : Optional[Any] = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) __SCREAMING_SNAKE_CASE : List[Any] = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
715
'''simple docstring''' import qiskit def _snake_case ( lowercase , lowercase ) -> qiskit.result.counts.Counts: __a : Any = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register __a : str = qiskit.QuantumCircuit(lowercase , lowercase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __a : Any = qiskit.execute(lowercase , lowercase , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
697
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ ="""data2vec-text""" def __init__( self : List[str] , _a : int=3_0522 , _a : int=768 , _a : Dict=12 , _a : List[str]=12 , _a : Optional[int]=3072 , _a : Union[str, Any]="gelu" , _a : Union[str, Any]=0.1 , _a : List[Any]=0.1 , _a : Optional[int]=512 , _a : List[Any]=2 , _a : int=0.02 , _a : Optional[int]=1e-12 , _a : List[str]=1 , _a : Any=0 , _a : Union[str, Any]=2 , _a : str="absolute" , _a : Tuple=True , _a : Any=None , **_a : str , ) -> List[str]: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) __lowerCamelCase : List[str] = vocab_size __lowerCamelCase : int = hidden_size __lowerCamelCase : Union[str, Any] = num_hidden_layers __lowerCamelCase : Any = num_attention_heads __lowerCamelCase : List[str] = hidden_act __lowerCamelCase : Union[str, Any] = intermediate_size __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : Optional[Any] = attention_probs_dropout_prob __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : List[str] = type_vocab_size __lowerCamelCase : List[Any] = initializer_range __lowerCamelCase : Union[str, Any] = layer_norm_eps __lowerCamelCase : Optional[int] = position_embedding_type __lowerCamelCase : Optional[int] = use_cache __lowerCamelCase : Optional[Any] = classifier_dropout class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def _lowercase ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowerCamelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
459
'''simple docstring''' import argparse from collections import defaultdict import yaml _UpperCamelCase = 'docs/source/en/_toctree.yml' def a_ ( _lowerCAmelCase ) -> Any: __lowerCamelCase : Optional[int] = defaultdict(_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : Union[str, Any] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(_lowerCAmelCase ) __lowerCamelCase : Dict = new_doc_list __lowerCamelCase : Optional[Any] = [key for key, value in counts.items() if value > 1] __lowerCamelCase : int = [] for duplicate_key in duplicates: __lowerCamelCase : int = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(_lowerCAmelCase ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) __lowerCamelCase : Dict = sorted(_lowerCAmelCase ,key=lambda _lowerCAmelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_lowerCAmelCase ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(_lowerCAmelCase ) # Sort return overview_doc def a_ ( _lowerCAmelCase=False ) -> Optional[Any]: with open(_lowerCAmelCase ,encoding='utf-8' ) as f: __lowerCamelCase : str = yaml.safe_load(f.read() ) # Get to the API doc __lowerCamelCase : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 __lowerCamelCase : List[str] = content[api_idx]['sections'] # Then to the model doc __lowerCamelCase : List[Any] = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __lowerCamelCase : List[Any] = api_doc[scheduler_idx]['sections'] __lowerCamelCase : Optional[Any] = clean_doc_toc(_lowerCAmelCase ) __lowerCamelCase : str = False if new_scheduler_doc != scheduler_doc: __lowerCamelCase : int = True if overwrite: __lowerCamelCase : Any = new_scheduler_doc if diff: if overwrite: __lowerCamelCase : Tuple = api_doc with open(_lowerCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(yaml.dump(_lowerCAmelCase ,allow_unicode=_lowerCAmelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def a_ ( _lowerCAmelCase=False ) -> List[Any]: with open(_lowerCAmelCase ,encoding='utf-8' ) as f: __lowerCamelCase : List[str] = yaml.safe_load(f.read() ) # Get to the API doc __lowerCamelCase : List[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 __lowerCamelCase : Optional[Any] = content[api_idx]['sections'] # Then to the model doc __lowerCamelCase : List[Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __lowerCamelCase : int = False __lowerCamelCase : str = api_doc[pipeline_idx]['sections'] __lowerCamelCase : Optional[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __lowerCamelCase : str = pipeline_doc['section'] __lowerCamelCase : Optional[Any] = clean_doc_toc(_lowerCAmelCase ) if overwrite: __lowerCamelCase : Union[str, Any] = new_sub_pipeline_doc new_pipeline_docs.append(_lowerCAmelCase ) # sort overall pipeline doc __lowerCamelCase : int = clean_doc_toc(_lowerCAmelCase ) if new_pipeline_docs != pipeline_docs: __lowerCamelCase : Tuple = True if overwrite: __lowerCamelCase : int = new_pipeline_docs if diff: if overwrite: __lowerCamelCase : Tuple = api_doc with open(_lowerCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(yaml.dump(_lowerCAmelCase ,allow_unicode=_lowerCAmelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _UpperCamelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
459
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class _a ( unittest.TestCase ): '''simple docstring''' A :Dict = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Any = hf_hub_download( repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) a__ : str = VideoClassificationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase , top_k=2 ) a__ : Optional[int] = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def _A ( self , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" for example in examples: a__ : List[Any] = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, ] , ) @require_torch def _A ( self ): """simple docstring""" a__ : Tuple = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' a__ : Dict = VideoMAEFeatureExtractor( size={"shortest_edge": 10} , crop_size={"height": 10, "width": 10} ) a__ : Union[str, Any] = pipeline( "video-classification" , model=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , frame_sampling_rate=4 ) a__ : str = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) a__ : Dict = video_classifier(_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"score": 0.5_1_9_9, "label": "LABEL_0"}, {"score": 0.4_8_0_1, "label": "LABEL_1"}] , ) a__ : str = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [{"score": 0.5_1_9_9, "label": "LABEL_0"}, {"score": 0.4_8_0_1, "label": "LABEL_1"}], [{"score": 0.5_1_9_9, "label": "LABEL_0"}, {"score": 0.4_8_0_1, "label": "LABEL_1"}], ] , ) @require_tf def _A ( self ): """simple docstring""" pass
713
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> int: a__ : List[Any] = prime_factors(__UpperCamelCase ) if is_square_free(__UpperCamelCase ): return -1 if len(__UpperCamelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
207
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def lowercase ( SCREAMING_SNAKE_CASE ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def lowercase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE_ = np.nan for i in range(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ = features[:, labels == i] SCREAMING_SNAKE_CASE_ = data.mean(1 ) # Centralize the data of class i SCREAMING_SNAKE_CASE_ = data - column_reshape(SCREAMING_SNAKE_CASE ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(SCREAMING_SNAKE_CASE , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) SCREAMING_SNAKE_CASE_ = np.dot(SCREAMING_SNAKE_CASE , centered_data.T ) return covariance_sum / features.shape[1] def lowercase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE_ = features.mean(1 ) SCREAMING_SNAKE_CASE_ = np.nan for i in range(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ = features[:, labels == i] SCREAMING_SNAKE_CASE_ = data.shape[1] SCREAMING_SNAKE_CASE_ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(SCREAMING_SNAKE_CASE ) - column_reshape(SCREAMING_SNAKE_CASE ) , (column_reshape(SCREAMING_SNAKE_CASE ) - column_reshape(SCREAMING_SNAKE_CASE )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) SCREAMING_SNAKE_CASE_ = device_data * np.dot( column_reshape(SCREAMING_SNAKE_CASE ) - column_reshape(SCREAMING_SNAKE_CASE ) , (column_reshape(SCREAMING_SNAKE_CASE ) - column_reshape(SCREAMING_SNAKE_CASE )).T , ) return covariance_sum / features.shape[1] def lowercase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.ndarray: '''simple docstring''' if features.any(): SCREAMING_SNAKE_CASE_ = features.mean(1 ) # Center the dataset SCREAMING_SNAKE_CASE_ = features - np.reshape(SCREAMING_SNAKE_CASE , (data_mean.size, 1) ) SCREAMING_SNAKE_CASE_ = np.dot(SCREAMING_SNAKE_CASE , centered_data.T ) / features.shape[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.linalg.eigh(SCREAMING_SNAKE_CASE ) # Take all the columns in the reverse order (-1), and then takes only the first SCREAMING_SNAKE_CASE_ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space SCREAMING_SNAKE_CASE_ = np.dot(filtered_eigenvectors.T , SCREAMING_SNAKE_CASE ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=SCREAMING_SNAKE_CASE ) logging.error('Dataset empty' ) raise AssertionError def lowercase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = eigh( covariance_between_classes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , covariance_within_classes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) SCREAMING_SNAKE_CASE_ = eigenvectors[:, ::-1][:, :dimensions] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.linalg.svd(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = svd_matrix[:, 0:dimensions] SCREAMING_SNAKE_CASE_ = np.dot(filtered_svd_matrix.T , SCREAMING_SNAKE_CASE ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=SCREAMING_SNAKE_CASE ) logging.error('Dataset empty' ) raise AssertionError def lowercase ( ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) SCREAMING_SNAKE_CASE_ = np.array([0, 0, 0, 1, 1] ) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(SCREAMING_SNAKE_CASE ) as error_info: SCREAMING_SNAKE_CASE_ = linear_discriminant_analysis( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def lowercase ( ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(SCREAMING_SNAKE_CASE ) as error_info: SCREAMING_SNAKE_CASE_ = principal_component_analysis(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
205
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ : Dict = { "vocab_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt" ), "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt" ), "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json" ), "bert-base-multilingual-cased": ( "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json" ), "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-cased": ( "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ : List[Any] = { "bert-base-uncased": 5_12, "bert-large-uncased": 5_12, "bert-base-cased": 5_12, "bert-large-cased": 5_12, "bert-base-multilingual-uncased": 5_12, "bert-base-multilingual-cased": 5_12, "bert-base-chinese": 5_12, "bert-base-german-cased": 5_12, "bert-large-uncased-whole-word-masking": 5_12, "bert-large-cased-whole-word-masking": 5_12, "bert-large-uncased-whole-word-masking-finetuned-squad": 5_12, "bert-large-cased-whole-word-masking-finetuned-squad": 5_12, "bert-base-cased-finetuned-mrpc": 5_12, "bert-base-german-dbmdz-cased": 5_12, "bert-base-german-dbmdz-uncased": 5_12, "TurkuNLP/bert-base-finnish-cased-v1": 5_12, "TurkuNLP/bert-base-finnish-uncased-v1": 5_12, "wietsedv/bert-base-dutch-cased": 5_12, } SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "bert-base-uncased": {"do_lower_case": True}, "bert-large-uncased": {"do_lower_case": True}, "bert-base-cased": {"do_lower_case": False}, "bert-large-cased": {"do_lower_case": False}, "bert-base-multilingual-uncased": {"do_lower_case": True}, "bert-base-multilingual-cased": {"do_lower_case": False}, "bert-base-chinese": {"do_lower_case": False}, "bert-base-german-cased": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, "bert-large-cased-whole-word-masking": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, "bert-base-german-dbmdz-cased": {"do_lower_case": False}, "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, } class a_ ( SCREAMING_SNAKE_CASE__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_INIT_CONFIGURATION A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = BertTokenizer def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="[UNK]" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="[PAD]" , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[MASK]" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , tokenize_chinese_chars=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_ = getattr(SCREAMING_SNAKE_CASE , normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = strip_accents SCREAMING_SNAKE_CASE_ = tokenize_chinese_chars SCREAMING_SNAKE_CASE_ = normalizer_class(**SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = do_lower_case def A_( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE ) return tuple(SCREAMING_SNAKE_CASE )
205
1
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger() @dataclass class _UpperCamelCase : '''simple docstring''' lowerCAmelCase__ = 42 lowerCAmelCase__ = field(default_factory=A ) lowerCAmelCase__ = field(default_factory=A ) def __lowerCamelCase ( self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tensor , _lowerCAmelCase : Tensor): '''simple docstring''' __lowercase =len(list(m.modules())) == 1 or isinstance(_lowerCAmelCase , nn.Convad) or isinstance(_lowerCAmelCase , nn.BatchNormad) if has_not_submodules: self.traced.append(_lowerCAmelCase) def __call__( self : Dict , _lowerCAmelCase : Tensor): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(_lowerCAmelCase) [x.remove() for x in self.handles] return self @property def __lowerCamelCase ( self : Any): '''simple docstring''' return list(filter(lambda _lowerCAmelCase: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class _UpperCamelCase : '''simple docstring''' lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 0 lowerCAmelCase__ = field(default_factory=A ) lowerCAmelCase__ = field(default_factory=A ) def __call__( self : Any , _lowerCAmelCase : Tensor): '''simple docstring''' __lowercase =Tracker(self.dest)(_lowerCAmelCase).parametrized __lowercase =Tracker(self.src)(_lowerCAmelCase).parametrized __lowercase =list(filter(lambda _lowerCAmelCase: type(_lowerCAmelCase) not in self.src_skip , _lowerCAmelCase)) __lowercase =list(filter(lambda _lowerCAmelCase: type(_lowerCAmelCase) not in self.dest_skip , _lowerCAmelCase)) if len(_lowerCAmelCase) != len(_lowerCAmelCase): raise Exception( f"""Numbers of operations are different. Source module has {len(_lowerCAmelCase)} operations while""" f""" destination module has {len(_lowerCAmelCase)}.""") for dest_m, src_m in zip(_lowerCAmelCase , _lowerCAmelCase): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""") def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True ): """simple docstring""" print(f"""Converting {name}...""" ) with torch.no_grad(): __lowercase =timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ).eval() __lowercase =ResNetForImageClassification(_lowerCAmelCase ).eval() __lowercase =ModuleTransfer(src=_lowerCAmelCase , dest=_lowerCAmelCase ) __lowercase =torch.randn((1, 3, 224, 224) ) module_transfer(_lowerCAmelCase ) assert torch.allclose(from_model(_lowerCAmelCase ) , our_model(_lowerCAmelCase ).logits ), "The model logits don't match the original one." __lowercase =f"""resnet{'-'.join(name.split('resnet' ) )}""" print(_lowerCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=_lowerCAmelCase , ) # we can use the convnext one __lowercase =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=_lowerCAmelCase , ) print(f"""Pushed {checkpoint_name}""" ) def _A ( _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = True ): """simple docstring""" __lowercase ='imagenet-1k-id2label.json' __lowercase =1_000 __lowercase =(1, num_labels) __lowercase ='huggingface/label-files' __lowercase =num_labels __lowercase =json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) __lowercase ={int(_lowerCAmelCase ): v for k, v in idalabel.items()} __lowercase =idalabel __lowercase ={v: k for k, v in idalabel.items()} __lowercase =partial(_lowerCAmelCase , num_labels=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase ) __lowercase ={ 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(_lowerCAmelCase , names_to_config[model_name] , _lowerCAmelCase , _lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowerCamelCase = parser.parse_args() lowerCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase = { """configuration_mask2former""": [ """MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Mask2FormerConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""Mask2FormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """Mask2FormerForUniversalSegmentation""", """Mask2FormerModel""", """Mask2FormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
454
0
'''simple docstring''' import os import pytest from attr import dataclass lowercase_ = """us-east-1""" # defaults region @dataclass class a_ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' UpperCamelCase = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 16, '''per_device_eval_batch_size''': 16, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 5_00, '''save_steps''': 55_00, } UpperCamelCase = {**hyperparameters, '''max_steps''': 10_00} @property def snake_case_( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def snake_case_( self ) -> str: return f'{self.framework}-transfromers-test' @property def snake_case_( self ) -> str: return f'./tests/sagemaker/scripts/{self.framework}' @property def snake_case_( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def lowerCamelCase ( __lowerCamelCase : List[str] ) ->List[str]: _SCREAMING_SNAKE_CASE = SageMakerTestEnvironment(framework=request.cls.framework )
314
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str ) ->str | Literal[False]: _SCREAMING_SNAKE_CASE = list(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = list(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = 0 for i in range(len(__lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 _SCREAMING_SNAKE_CASE = """_""" if count > 1: return False else: return "".join(__lowerCamelCase ) def lowerCamelCase ( __lowerCamelCase : list[str] ) ->list[str]: _SCREAMING_SNAKE_CASE = [] while True: _SCREAMING_SNAKE_CASE = ["""$"""] * len(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = [] for i in range(len(__lowerCamelCase ) ): for j in range(i + 1 , len(__lowerCamelCase ) ): _SCREAMING_SNAKE_CASE = compare_string(binary[i] , binary[j] ) if k is False: _SCREAMING_SNAKE_CASE = """*""" _SCREAMING_SNAKE_CASE = """*""" temp.append("""X""" ) for i in range(len(__lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__lowerCamelCase ) == 0: return pi _SCREAMING_SNAKE_CASE = list(set(__lowerCamelCase ) ) def lowerCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Sequence[float] ) ->list[str]: _SCREAMING_SNAKE_CASE = [] for minterm in minterms: _SCREAMING_SNAKE_CASE = """""" for _ in range(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = str(minterm % 2 ) + string minterm //= 2 temp.append(__lowerCamelCase ) return temp def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : int ) ->bool: _SCREAMING_SNAKE_CASE = list(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = list(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = 0 for i in range(len(__lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase ( __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[str] ) ->list[str]: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [0] * len(__lowerCamelCase ) for i in range(len(chart[0] ) ): _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = -1 for j in range(len(__lowerCamelCase ) ): if chart[j][i] == 1: count += 1 _SCREAMING_SNAKE_CASE = j if count == 1: _SCREAMING_SNAKE_CASE = 1 for i in range(len(__lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__lowerCamelCase ) ): _SCREAMING_SNAKE_CASE = 0 temp.append(prime_implicants[i] ) while True: _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = -1 _SCREAMING_SNAKE_CASE = 0 for i in range(len(__lowerCamelCase ) ): _SCREAMING_SNAKE_CASE = chart[i].count(1 ) if count_n > max_n: _SCREAMING_SNAKE_CASE = count_n _SCREAMING_SNAKE_CASE = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__lowerCamelCase ) ): _SCREAMING_SNAKE_CASE = 0 def lowerCamelCase ( __lowerCamelCase : list[str] , __lowerCamelCase : list[str] ) ->list[list[int]]: _SCREAMING_SNAKE_CASE = [[0 for x in range(len(__lowerCamelCase ) )] for x in range(len(__lowerCamelCase ) )] for i in range(len(__lowerCamelCase ) ): _SCREAMING_SNAKE_CASE = prime_implicants[i].count("""_""" ) for j in range(len(__lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , __lowerCamelCase ): _SCREAMING_SNAKE_CASE = 1 return chart def lowerCamelCase ( ) ->None: _SCREAMING_SNAKE_CASE = int(input("""Enter the no. of variables\n""" ) ) _SCREAMING_SNAKE_CASE = [ float(__lowerCamelCase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _SCREAMING_SNAKE_CASE = decimal_to_binary(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = check(__lowerCamelCase ) print("""Prime Implicants are:""" ) print(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = prime_implicant_chart(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = selection(__lowerCamelCase , __lowerCamelCase ) print("""Essential Prime Implicants are:""" ) print(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
314
1
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase__ : def __init__( self , A__ , ): """simple docstring""" UpperCAmelCase_: int = parent UpperCAmelCase_: Tuple = 13 UpperCAmelCase_: Tuple = 7 UpperCAmelCase_: str = True UpperCAmelCase_: str = True UpperCAmelCase_: str = False UpperCAmelCase_: List[str] = True UpperCAmelCase_: Union[str, Any] = 99 UpperCAmelCase_: Optional[int] = 32 UpperCAmelCase_: List[str] = 2 UpperCAmelCase_: Any = 4 UpperCAmelCase_: Dict = 37 UpperCAmelCase_: List[str] = "gelu" UpperCAmelCase_: Optional[int] = 0.1 UpperCAmelCase_: str = 0.1 UpperCAmelCase_: Optional[Any] = 512 UpperCAmelCase_: Optional[Any] = 16 UpperCAmelCase_: Union[str, Any] = 2 UpperCAmelCase_: int = 0.02 UpperCAmelCase_: Optional[int] = 3 UpperCAmelCase_: Optional[Any] = 4 UpperCAmelCase_: List[str] = None def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_: Union[str, Any] = None if self.use_input_mask: UpperCAmelCase_: Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_: int = None UpperCAmelCase_: Optional[int] = None UpperCAmelCase_: List[str] = None if self.use_labels: UpperCAmelCase_: List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_: List[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_: Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self , A__ , A__ , A__ , A__ , A__ , A__ ): """simple docstring""" UpperCAmelCase_: int = TFDistilBertModel(config=A__ ) UpperCAmelCase_: Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase_: Union[str, Any] = model(A__ ) UpperCAmelCase_: Union[str, Any] = [input_ids, input_mask] UpperCAmelCase_: int = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , A__ , A__ , A__ , A__ , A__ , A__ ): """simple docstring""" UpperCAmelCase_: int = TFDistilBertForMaskedLM(config=A__ ) UpperCAmelCase_: Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase_: Optional[int] = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , A__ , A__ , A__ , A__ , A__ , A__ ): """simple docstring""" UpperCAmelCase_: Dict = TFDistilBertForQuestionAnswering(config=A__ ) UpperCAmelCase_: List[str] = { "input_ids": input_ids, "attention_mask": input_mask, } UpperCAmelCase_: Any = model(A__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self , A__ , A__ , A__ , A__ , A__ , A__ ): """simple docstring""" UpperCAmelCase_: Any = self.num_labels UpperCAmelCase_: Union[str, Any] = TFDistilBertForSequenceClassification(A__ ) UpperCAmelCase_: List[str] = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase_: Optional[Any] = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , A__ , A__ , A__ , A__ , A__ , A__ ): """simple docstring""" UpperCAmelCase_: Tuple = self.num_choices UpperCAmelCase_: List[str] = TFDistilBertForMultipleChoice(A__ ) UpperCAmelCase_: Union[str, Any] = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_: int = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_: Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } UpperCAmelCase_: str = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self , A__ , A__ , A__ , A__ , A__ , A__ ): """simple docstring""" UpperCAmelCase_: str = self.num_labels UpperCAmelCase_: List[Any] = TFDistilBertForTokenClassification(A__ ) UpperCAmelCase_: Any = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase_: Optional[Any] = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[Any] = self.prepare_config_and_inputs() (UpperCAmelCase_): Tuple = config_and_inputs UpperCAmelCase_: Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( snake_case__ , snake_case__ , unittest.TestCase ): snake_case_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) snake_case_ = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Dict = TFDistilBertModelTester(self ) UpperCAmelCase_: Tuple = ConfigTester(self , config_class=A__ , dim=37 ) def snake_case_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*A__ ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*A__ ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*A__ ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*A__ ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*A__ ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*A__ ) @slow def snake_case_ ( self ): """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): UpperCAmelCase_: Union[str, Any] = TFDistilBertModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): @slow def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Optional[Any] = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_: str = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase_: str = model(A__ )[0] UpperCAmelCase_: Union[str, Any] = [1, 6, 768] self.assertEqual(output.shape , A__ ) UpperCAmelCase_: Tuple = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A__ , atol=1E-4 )
709
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: str = 1 UpperCAmelCase_: Optional[Any] = 3 UpperCAmelCase_: Optional[int] = (32, 32) UpperCAmelCase_: int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A__ ) return image @property def snake_case_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_: str = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=A__ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def snake_case_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_: int = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def snake_case_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(A__ ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Any = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: Optional[Any] = self.dummy_cond_unet_upscale UpperCAmelCase_: Dict = DDPMScheduler() UpperCAmelCase_: Optional[int] = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_: Union[str, Any] = self.dummy_vae UpperCAmelCase_: Optional[int] = self.dummy_text_encoder UpperCAmelCase_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_: Optional[int] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_: Dict = Image.fromarray(np.uinta(A__ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_: Optional[int] = StableDiffusionUpscalePipeline( unet=A__ , low_res_scheduler=A__ , scheduler=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , max_noise_level=350 , ) UpperCAmelCase_: Optional[int] = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) UpperCAmelCase_: Union[str, Any] = "A painting of a squirrel eating a burger" UpperCAmelCase_: Any = torch.Generator(device=A__ ).manual_seed(0 ) UpperCAmelCase_: int = sd_pipe( [prompt] , image=A__ , generator=A__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_: Optional[Any] = output.images UpperCAmelCase_: List[str] = torch.Generator(device=A__ ).manual_seed(0 ) UpperCAmelCase_: List[Any] = sd_pipe( [prompt] , image=A__ , generator=A__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=A__ , )[0] UpperCAmelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_: List[str] = image_from_tuple[0, -3:, -3:, -1] UpperCAmelCase_: int = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) UpperCAmelCase_: List[str] = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: Optional[Any] = self.dummy_cond_unet_upscale UpperCAmelCase_: Union[str, Any] = DDPMScheduler() UpperCAmelCase_: Optional[Any] = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_: Dict = self.dummy_vae UpperCAmelCase_: Any = self.dummy_text_encoder UpperCAmelCase_: Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_: Union[str, Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_: List[str] = Image.fromarray(np.uinta(A__ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_: str = StableDiffusionUpscalePipeline( unet=A__ , low_res_scheduler=A__ , scheduler=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , max_noise_level=350 , ) UpperCAmelCase_: int = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) UpperCAmelCase_: Any = "A painting of a squirrel eating a burger" UpperCAmelCase_: Union[str, Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_: Any = output.images assert image.shape[0] == 2 UpperCAmelCase_: Any = torch.Generator(device=A__ ).manual_seed(0 ) UpperCAmelCase_: Any = sd_pipe( [prompt] , image=A__ , generator=A__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_: Dict = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[str] = self.dummy_cond_unet_upscale UpperCAmelCase_: Dict = DDPMScheduler() UpperCAmelCase_: int = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_: Dict = self.dummy_vae UpperCAmelCase_: Dict = self.dummy_text_encoder UpperCAmelCase_: Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_: List[str] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_: Union[str, Any] = Image.fromarray(np.uinta(A__ ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 UpperCAmelCase_: List[str] = unet.half() UpperCAmelCase_: Union[str, Any] = text_encoder.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_: Optional[Any] = StableDiffusionUpscalePipeline( unet=A__ , low_res_scheduler=A__ , scheduler=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , max_noise_level=350 , ) UpperCAmelCase_: Optional[int] = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) UpperCAmelCase_: Any = "A painting of a squirrel eating a burger" UpperCAmelCase_: List[Any] = torch.manual_seed(0 ) UpperCAmelCase_: str = sd_pipe( [prompt] , image=A__ , generator=A__ , num_inference_steps=2 , output_type="np" , ).images UpperCAmelCase_: str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_: List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) UpperCAmelCase_: Optional[Any] = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_: Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained(A__ ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() UpperCAmelCase_: List[str] = "a cat sitting on a park bench" UpperCAmelCase_: Any = torch.manual_seed(0 ) UpperCAmelCase_: Any = pipe( prompt=A__ , image=A__ , generator=A__ , output_type="np" , ) UpperCAmelCase_: Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_: Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) UpperCAmelCase_: Optional[int] = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_: Any = StableDiffusionUpscalePipeline.from_pretrained( A__ , torch_dtype=torch.floataa , ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() UpperCAmelCase_: Any = "a cat sitting on a park bench" UpperCAmelCase_: Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_: Optional[Any] = pipe( prompt=A__ , image=A__ , generator=A__ , output_type="np" , ) UpperCAmelCase_: str = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def snake_case_ ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_: List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_: Tuple = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_: Union[str, Any] = StableDiffusionUpscalePipeline.from_pretrained( A__ , torch_dtype=torch.floataa , ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_: str = "a cat sitting on a park bench" UpperCAmelCase_: Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_: Union[str, Any] = pipe( prompt=A__ , image=A__ , generator=A__ , num_inference_steps=5 , output_type="np" , ) UpperCAmelCase_: Any = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
306
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A : str = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Tuple: '''simple docstring''' UpperCAmelCase = DPTConfig() if "large" in checkpoint_url: UpperCAmelCase = 1024 UpperCAmelCase = 4096 UpperCAmelCase = 24 UpperCAmelCase = 16 UpperCAmelCase = [5, 11, 17, 23] UpperCAmelCase = [256, 512, 1024, 1024] UpperCAmelCase = (1, 384, 384) if "ade" in checkpoint_url: UpperCAmelCase = True UpperCAmelCase = 150 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''ade20k-id2label.json''' UpperCAmelCase = json.load(open(cached_download(hf_hub_url(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = [1, 150, 480, 480] return config, expected_shape def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Any: '''simple docstring''' UpperCAmelCase = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Tuple: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: UpperCAmelCase = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: UpperCAmelCase = name.replace('''patch_embed''' , '''patch_embeddings''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: UpperCAmelCase = name.replace('''proj''' , '''projection''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: UpperCAmelCase = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: UpperCAmelCase = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: UpperCAmelCase = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: UpperCAmelCase = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: UpperCAmelCase = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: UpperCAmelCase = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: UpperCAmelCase = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: UpperCAmelCase = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: UpperCAmelCase = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: UpperCAmelCase = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: UpperCAmelCase = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: UpperCAmelCase = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: UpperCAmelCase = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: UpperCAmelCase = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: UpperCAmelCase = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: UpperCAmelCase = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) return name def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' UpperCAmelCase , UpperCAmelCase = get_dpt_config(lowerCAmelCase_ ) # load original state_dict from URL UpperCAmelCase = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(lowerCAmelCase_ ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase = state_dict.pop(lowerCAmelCase_ ) UpperCAmelCase = val # read in qkv matrices read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ ) # load HuggingFace model UpperCAmelCase = DPTForSemanticSegmentation(lowerCAmelCase_ ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() # Check outputs on an image UpperCAmelCase = 480 if '''ade''' in checkpoint_url else 384 UpperCAmelCase = DPTImageProcessor(size=lowerCAmelCase_ ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(lowerCAmelCase_ , return_tensors='''pt''' ) # forward pass UpperCAmelCase = model(**lowerCAmelCase_ ).logits if '''ade''' in checkpoint_url else model(**lowerCAmelCase_ ).predicted_depth # Assert logits UpperCAmelCase = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: UpperCAmelCase = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(lowerCAmelCase_ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCAmelCase_ , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCAmelCase_ ) ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=lowerCAmelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you\'re pushing to the hub.", ) __A : Optional[int] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
130
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __a ( ) -> int: '''simple docstring''' UpperCAmelCase_, UpperCAmelCase_= 9, 14 # noqa: F841 UpperCAmelCase_= [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCAmelCase_= defaultdict(lowerCAmelCase_ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) UpperCAmelCase_= mst(lowerCAmelCase_ ) UpperCAmelCase_= [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: UpperCAmelCase_= tuple(answer[:2] ) UpperCAmelCase_= tuple(edge[::-1] ) assert edge in result or reverse in result
593
0
import os import sys import unittest lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowercase_ = os.path.join(git_repo_path, "src", "diffusers") class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Optional[Any] )-> str: '''simple docstring''' A__ = find_backend(' if not is_torch_available():' ) self.assertEqual(lowercase_,'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") A__ = find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(lowercase_,'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") A__ = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(lowercase_,'torch_and_transformers_and_onnx' ) def snake_case__ ( self : Optional[int] )-> Union[str, Any]: '''simple docstring''' A__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch',lowercase_ ) self.assertIn('torch_and_transformers',lowercase_ ) self.assertIn('flax_and_transformers',lowercase_ ) self.assertIn('torch_and_transformers_and_onnx',lowercase_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel',objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel',objects['flax'] ) self.assertIn('StableDiffusionPipeline',objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline',objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler',objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline',objects['torch_and_transformers_and_onnx'] ) def snake_case__ ( self : int )-> Any: '''simple docstring''' A__ = create_dummy_object('CONSTANT','\'torch\'' ) self.assertEqual(lowercase_,'\nCONSTANT = None\n' ) A__ = create_dummy_object('function','\'torch\'' ) self.assertEqual( lowercase_,'\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) A__ = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' A__ = create_dummy_object('FakeClass','\'torch\'' ) self.assertEqual(lowercase_,lowercase_ ) def snake_case__ ( self : Any )-> Tuple: '''simple docstring''' A__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' A__ = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'],lowercase_ )
586
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowercase_ = random.Random() def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int]=1.0 , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Tuple=None ) -> List[Any]: '''simple docstring''' if rng is None: A__ = global_rng A__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class A ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple,lowercase_ : str,lowercase_ : Optional[Any]=7,lowercase_ : Union[str, Any]=4_0_0,lowercase_ : Optional[int]=2_0_0_0,lowercase_ : Dict=2_0_4_8,lowercase_ : int=1_2_8,lowercase_ : str=1,lowercase_ : List[Any]=5_1_2,lowercase_ : Union[str, Any]=3_0,lowercase_ : Any=4_4_1_0_0,)-> Union[str, Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = min_seq_length A__ = max_seq_length A__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ = spectrogram_length A__ = feature_size A__ = num_audio_channels A__ = hop_length A__ = chunk_length A__ = sampling_rate def snake_case__ ( self : Tuple )-> Dict: '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def snake_case__ ( self : Tuple,lowercase_ : List[Any]=False,lowercase_ : Optional[int]=False )-> str: '''simple docstring''' def _flatten(lowercase_ : Any ): return list(itertools.chain(*lowercase_ ) ) if equal_length: A__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length,self.max_seq_length,self.seq_length_diff ) ] if numpify: A__ = [np.asarray(lowercase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = TvltFeatureExtractor def snake_case__ ( self : Optional[Any] )-> Dict: '''simple docstring''' A__ = TvltFeatureExtractionTester(self ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowercase_,'spectrogram_length' ) ) self.assertTrue(hasattr(lowercase_,'feature_size' ) ) self.assertTrue(hasattr(lowercase_,'num_audio_channels' ) ) self.assertTrue(hasattr(lowercase_,'hop_length' ) ) self.assertTrue(hasattr(lowercase_,'chunk_length' ) ) self.assertTrue(hasattr(lowercase_,'sampling_rate' ) ) def snake_case__ ( self : Dict )-> Any: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = feat_extract_first.save_pretrained(lowercase_ )[0] check_json_file_has_correct_format(lowercase_ ) A__ = self.feature_extraction_class.from_pretrained(lowercase_ ) A__ = feat_extract_first.to_dict() A__ = feat_extract_second.to_dict() A__ = dict_first.pop('mel_filters' ) A__ = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowercase_,lowercase_ ) ) self.assertEqual(lowercase_,lowercase_ ) def snake_case__ ( self : str )-> Dict: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = os.path.join(lowercase_,'feat_extract.json' ) feat_extract_first.to_json_file(lowercase_ ) A__ = self.feature_extraction_class.from_json_file(lowercase_ ) A__ = feat_extract_first.to_dict() A__ = feat_extract_second.to_dict() A__ = dict_first.pop('mel_filters' ) A__ = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowercase_,lowercase_ ) ) self.assertEqual(lowercase_,lowercase_ ) def snake_case__ ( self : Optional[int] )-> Optional[int]: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 A__ = [floats_list((1, x) )[0] for x in range(8_0_0,1_4_0_0,2_0_0 )] A__ = [np.asarray(lowercase_ ) for speech_input in speech_inputs] # Test not batched input A__ = feature_extractor(np_speech_inputs[0],return_tensors='np',sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched A__ = feature_extractor(lowercase_,return_tensors='np',sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking A__ = feature_extractor( lowercase_,return_tensors='np',sampling_rate=4_4_1_0_0,mask_audio=lowercase_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. A__ = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] A__ = np.asarray(lowercase_ ) A__ = feature_extractor(lowercase_,return_tensors='np',sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def snake_case__ ( self : Optional[Any],lowercase_ : Tuple )-> Tuple: '''simple docstring''' A__ = load_dataset('hf-internal-testing/librispeech_asr_dummy','clean',split='validation' ) # automatic decoding with librispeech A__ = ds.sort('id' ).select(range(lowercase_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' A__ = self._load_datasamples(1 ) A__ = TvltFeatureExtractor() A__ = feature_extractor(lowercase_,return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape,(1, 1, 1_9_2, 1_2_8) ) A__ = torch.tensor([[-0.3_032, -0.2_708], [-0.4_434, -0.4_007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2],lowercase_,atol=1E-4 ) )
586
1
def A ( lowercase__ : int , lowercase__ : float , lowercase__ : float ) -> float: return round(float(moles / volume ) * nfactor ) def A ( lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> float: return round(float((moles * 0.0821 * temperature) / (volume) ) ) def A ( lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> float: return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def A ( lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> float: return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
45
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowerCAmelCase__ ( __lowercase ): def __init__( self , a=0.01 , a=10_00 ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = p_stop _UpperCamelCase = max_length def __iter__( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = 0 _UpperCamelCase = False while not stop and count < self.max_length: yield count count += 1 _UpperCamelCase = random.random() < self.p_stop class lowerCAmelCase__ ( unittest.TestCase ): def A_ ( self , a , a , a=False , a=True ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = [ BatchSamplerShard(a , 2 , a , split_batches=a , even_batches=a ) for i in range(2 ) ] _UpperCamelCase = [list(a ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(a ) for shard in batch_sampler_shards] , [len(a ) for e in expected] ) self.assertListEqual(a , a ) def A_ ( self ) -> Any: '''simple docstring''' _UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=a ) # Expected shouldn't change self.check_batch_sampler_shards(a , a ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a ) # Check the shards when the dataset is very small. _UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [[], []] self.check_batch_sampler_shards(a , a ) def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) _UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=a ) # Expected shouldn't change self.check_batch_sampler_shards(a , a , split_batches=a ) # Check the shards when the dataset is not a round multiple of batch size. _UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) _UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) _UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) # Check the shards when the dataset is very small. _UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(a , a , split_batches=a ) _UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [[], []] self.check_batch_sampler_shards(a , a , split_batches=a ) def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=a ) # Expected shouldn't change self.check_batch_sampler_shards(a , a , even_batches=a ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) # Check the shards when the dataset is very small. _UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [[], []] self.check_batch_sampler_shards(a , a , even_batches=a ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) _UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=a ) # Expected shouldn't change self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) # Check the shards when the dataset is not a round multiple of batch size. _UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) _UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) _UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) # Check the shards when the dataset is very small. _UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) _UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [[], []] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) def A_ ( self ) -> List[Any]: '''simple docstring''' _UpperCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _UpperCamelCase = [BatchSamplerShard(a , 2 , a , even_batches=a ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def A_ ( self , a , a , a , a=False , a=2 , a=False ) -> Any: '''simple docstring''' random.seed(a ) _UpperCamelCase = list(a ) _UpperCamelCase = [ IterableDatasetShard( a , batch_size=a , drop_last=a , num_processes=a , process_index=a , split_batches=a , ) for i in range(a ) ] _UpperCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(a ) iterable_dataset_lists.append(list(a ) ) _UpperCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _UpperCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(a ) , len(a ) ) self.assertTrue(len(a ) % shard_batch_size == 0 ) _UpperCamelCase = [] for idx in range(0 , len(a ) , a ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(a ) < len(a ): reference += reference self.assertListEqual(a , reference[: len(a )] ) def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = 42 _UpperCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) # Edge case with a very small dataset _UpperCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) def A_ ( self ) -> Any: '''simple docstring''' _UpperCamelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = SkipBatchSampler(a , 2 ) self.assertListEqual(list(a ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) _UpperCamelCase = skip_first_batches(a , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' Accelerator() _UpperCamelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
612
0
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE__ = Lock() def lowerCamelCase ( _snake_case : Any ,_snake_case : List[str] ,_snake_case : str ,_snake_case : Dict ,_snake_case : int ,_snake_case : Optional[Any] ,_snake_case : str ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 ,10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_snake_case ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowercase__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowercase__ = min(_snake_case ,_snake_case ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_snake_case ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowercase__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowercase__ = max(_snake_case ,_snake_case ) # after all swaps are performed, send the values back to main result_pipe[1].send(_snake_case ) def lowerCamelCase ( _snake_case : Optional[Any] ): '''simple docstring''' lowercase__ = [] lowercase__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowercase__ = Pipe() lowercase__ = Pipe() process_array_.append( Process( target=_snake_case ,args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) ,) ) lowercase__ = temp_rs lowercase__ = temp_rr for i in range(1 ,len(_snake_case ) - 1 ): lowercase__ = Pipe() lowercase__ = Pipe() process_array_.append( Process( target=_snake_case ,args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) ,) ) lowercase__ = temp_rs lowercase__ = temp_rr process_array_.append( Process( target=_snake_case ,args=( len(_snake_case ) - 1, arr[len(_snake_case ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_snake_case ) - 1], ) ,) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 ,len(_snake_case ) ): lowercase__ = result_pipe[p][0].recv() process_array_[p].join() return arr def lowerCamelCase ( ): '''simple docstring''' lowercase__ = list(range(10 ,0 ,-1 ) ) print("Initial List" ) print(*_snake_case ) lowercase__ = odd_even_transposition(_snake_case ) print("Sorted List\n" ) print(*_snake_case ) if __name__ == "__main__": main()
539
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } SCREAMING_SNAKE_CASE__ = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } SCREAMING_SNAKE_CASE__ = { "facebook/blenderbot_small-90M": 512, } class snake_case (UpperCamelCase ): lowerCAmelCase__ :Union[str, Any] = VOCAB_FILES_NAMES lowerCAmelCase__ :Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ :List[Any] = BlenderbotSmallTokenizer def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_="<|endoftext|>" ,UpperCAmelCase_="<|endoftext|>" ,UpperCAmelCase_="<|endoftext|>" ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,) -> Optional[Any]: super().__init__( ByteLevelBPETokenizer( vocab=UpperCAmelCase_ ,merges=UpperCAmelCase_ ,add_prefix_space=UpperCAmelCase_ ,trim_offsets=UpperCAmelCase_ ,) ,bos_token=UpperCAmelCase_ ,eos_token=UpperCAmelCase_ ,unk_token=UpperCAmelCase_ ,**UpperCAmelCase_ ,) lowercase__ = add_prefix_space def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ) -> Optional[int]: lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ) -> List[int]: lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
539
1
import logging import os from .state import PartialState class A ( logging.LoggerAdapter ): @staticmethod def lowercase_ (__UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase_ (self : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) UpperCAmelCase__ = kwargs.pop("main_process_only" , __UpperCAmelCase ) UpperCAmelCase__ = kwargs.pop("in_order" , __UpperCAmelCase ) if self.isEnabledFor(__UpperCAmelCase ): if self._should_log(__UpperCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ = self.process(__UpperCAmelCase , __UpperCAmelCase ) self.logger.log(__UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) elif in_order: UpperCAmelCase__ = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCAmelCase__ , UpperCAmelCase__ = self.process(__UpperCAmelCase , __UpperCAmelCase ) self.logger.log(__UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) state.wait_for_everyone() def lowerCAmelCase_ ( __A, __A = None ) -> Union[str, Any]: '''simple docstring''' if log_level is None: UpperCAmelCase__ = os.environ.get("ACCELERATE_LOG_LEVEL", __A ) UpperCAmelCase__ = logging.getLogger(__A ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__A, {} )
486
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = '▁' UpperCamelCase__ = {'vocab_file': 'spiece.model'} UpperCamelCase__ = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } UpperCamelCase__ = { 'google/reformer-crime-and-punishment': 5_2_4_2_8_8, } class A ( UpperCAmelCase_ ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : str = ['input_ids', 'attention_mask'] def __init__(self : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple="</s>" , __UpperCAmelCase : List[Any]="<unk>" , __UpperCAmelCase : Union[str, Any]=[] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Union[str, Any] , ) -> None: """simple docstring""" UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) UpperCAmelCase__ = vocab_file UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def lowercase_ (self : Tuple ) -> Dict: """simple docstring""" return self.sp_model.get_piece_size() def lowercase_ (self : Dict ) -> Dict[str, int]: """simple docstring""" UpperCAmelCase__ = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self : str ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None return state def __setstate__(self : Dict , __UpperCAmelCase : Any ) -> Tuple: """simple docstring""" UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ (self : int , __UpperCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Dict ) -> Optional[int]: """simple docstring""" return self.sp_model.piece_to_id(__UpperCAmelCase ) def lowercase_ (self : Tuple , __UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if index < self.sp_model.get_piece_size(): UpperCAmelCase__ = self.sp_model.IdToPiece(__UpperCAmelCase ) return token def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCAmelCase ) + token UpperCAmelCase__ = [] else: current_sub_tokens.append(__UpperCAmelCase ) out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def lowercase_ (self : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , "wb" ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
486
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : str ) -> List[str]: """simple docstring""" if "resnet-50" in model_name: a_ = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: a_ = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) a_ = DetrConfig(use_timm_backbone=UpperCamelCase , backbone_config=UpperCamelCase ) # set label attributes a_ = """panoptic""" in model_name if is_panoptic: a_ = 250 else: a_ = 91 a_ = """huggingface/label-files""" a_ = """coco-detection-id2label.json""" a_ = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) a_ = {int(UpperCamelCase ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Any ) -> str: """simple docstring""" a_ = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def __SCREAMING_SNAKE_CASE ( UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Dict ) -> Tuple: """simple docstring""" a_ = state_dict.pop(UpperCamelCase ) a_ = val def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Optional[Any] , UpperCamelCase : Dict=False ) -> Union[str, Any]: """simple docstring""" a_ = """""" if is_panoptic: a_ = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a_ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) a_ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a_ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) a_ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention a_ = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) a_ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict a_ = in_proj_weight_cross_attn[:256, :] a_ = in_proj_bias_cross_attn[:256] a_ = in_proj_weight_cross_attn[256:512, :] a_ = in_proj_bias_cross_attn[256:512] a_ = in_proj_weight_cross_attn[-256:, :] a_ = in_proj_bias_cross_attn[-256:] def __SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" a_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" a_ = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( UpperCamelCase : List[str] , UpperCamelCase : Tuple=None , UpperCamelCase : List[str]=False ) -> Optional[Any]: """simple docstring""" a_ , a_ = get_detr_config(UpperCamelCase ) # load original model from torch hub a_ = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(F"""Converting model {model_name}...""" ) a_ = torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=UpperCamelCase ).eval() a_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCamelCase ): if is_panoptic: a_ = """detr.""" + src rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase , is_panoptic=UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a_ = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): a_ = state_dict.pop(UpperCamelCase ) a_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: a_ = state_dict.pop(UpperCamelCase ) a_ = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: a_ = state_dict.pop(UpperCamelCase ) a_ = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): a_ = state_dict.pop(UpperCamelCase ) a_ = val # finally, create HuggingFace model and load state dict a_ = DetrForSegmentation(UpperCamelCase ) if is_panoptic else DetrForObjectDetection(UpperCamelCase ) model.load_state_dict(UpperCamelCase ) model.eval() # verify our conversion on an image a_ = """coco_panoptic""" if is_panoptic else """coco_detection""" a_ = DetrImageProcessor(format=UpperCamelCase ) a_ = processor(images=prepare_img() , return_tensors="""pt""" ) a_ = encoding["""pixel_values"""] a_ = detr(UpperCamelCase ) a_ = model(UpperCamelCase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) model.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(F"""nielsr/{model_name}""" ) processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') _A = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
403
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowerCamelCase_ ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=4 , ): a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_attention_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_choices def __magic_name__ ( self ): a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ = None if self.use_attention_mask: a_ = random_attention_mask([self.batch_size, self.seq_length] ) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __magic_name__ ( self ): a_ = self.prepare_config_and_inputs() a_ , a_ , a_ , a_ = config_and_inputs a_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def __magic_name__ ( self ): a_ = self.prepare_config_and_inputs() a_ , a_ , a_ , a_ = config_and_inputs a_ = True a_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCamelCase : Optional[Any] = True _lowerCamelCase : List[Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __magic_name__ ( self ): a_ = FlaxRobertaPreLayerNormModelTester(self ) @slow def __magic_name__ ( self ): for model_class_name in self.all_model_classes: a_ = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_SCREAMING_SNAKE_CASE ) a_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_flax class lowerCamelCase_ ( unittest.TestCase ): @slow def __magic_name__ ( self ): a_ = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_SCREAMING_SNAKE_CASE ) a_ = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) a_ = model(_SCREAMING_SNAKE_CASE )[0] a_ = [1, 11, 5_0265] self.assertEqual(list(output.shape ) , _SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. a_ = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def __magic_name__ ( self ): a_ = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_SCREAMING_SNAKE_CASE ) a_ = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) a_ = model(_SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. a_ = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
403
1
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = (DDIMParallelScheduler,) __lowercase : List[Any] = (('''eta''', 0.0), ('''num_inference_steps''', 5_0)) def snake_case__ ( self , **__lowercase ): """simple docstring""" __A : List[str] = { 'num_train_timesteps': 1_000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**UpperCamelCase__ ) return config def snake_case__ ( self , **__lowercase ): """simple docstring""" __A : int = self.scheduler_classes[0] __A : List[Any] = self.get_scheduler_config(**UpperCamelCase__ ) __A : Tuple = scheduler_class(**UpperCamelCase__ ) __A ,__A : List[Any] = 10, 0.0 __A : Tuple = self.dummy_model() __A : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for t in scheduler.timesteps: __A : Optional[Any] = model(UpperCamelCase__ , UpperCamelCase__ ) __A : List[Any] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case__ ( self ): """simple docstring""" for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def snake_case__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCamelCase__ ) __A : Optional[Any] = self.scheduler_classes[0] __A : Any = self.get_scheduler_config(steps_offset=1 ) __A : List[Any] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def snake_case__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ ) def snake_case__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def snake_case__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def snake_case__ ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def snake_case__ ( self ): """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=UpperCamelCase__ ) def snake_case__ ( self ): """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=UpperCamelCase__ ) def snake_case__ ( self ): """simple docstring""" self.check_over_configs(thresholding=UpperCamelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase__ , prediction_type=UpperCamelCase__ , sample_max_value=UpperCamelCase__ , ) def snake_case__ ( self ): """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=UpperCamelCase__ ) def snake_case__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=UpperCamelCase__ , num_inference_steps=UpperCamelCase__ ) def snake_case__ ( self ): """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=UpperCamelCase__ , eta=UpperCamelCase__ ) def snake_case__ ( self ): """simple docstring""" __A : Any = self.scheduler_classes[0] __A : Dict = self.get_scheduler_config() __A : str = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4_7_7_1 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2_4_6_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.0_2 ) ) < 1E-5 def snake_case__ ( self ): """simple docstring""" __A : Optional[int] = self.scheduler_classes[0] __A : Any = self.get_scheduler_config() __A : List[str] = scheduler_class(**UpperCamelCase__ ) __A ,__A : Optional[Any] = 10, 0.0 scheduler.set_timesteps(UpperCamelCase__ ) __A : str = self.dummy_model() __A : Any = self.dummy_sample_deter __A : Optional[int] = self.dummy_sample_deter + 0.1 __A : Tuple = self.dummy_sample_deter - 0.1 __A : Tuple = samplea.shape[0] __A : Optional[int] = torch.stack([samplea, samplea, samplea] , dim=0 ) __A : int = torch.arange(UpperCamelCase__ )[0:3, None].repeat(1 , UpperCamelCase__ ) __A : Tuple = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __A : Dict = scheduler.batch_step_no_noise(UpperCamelCase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , UpperCamelCase__ ) __A : str = torch.sum(torch.abs(UpperCamelCase__ ) ) __A : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1E-2 assert abs(result_mean.item() - 0.4_9_8_2 ) < 1E-3 def snake_case__ ( self ): """simple docstring""" __A : int = self.full_loop() __A : Tuple = torch.sum(torch.abs(UpperCamelCase__ ) ) __A : Any = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 1_7_2.0_0_6_7 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_9_6_7 ) < 1E-3 def snake_case__ ( self ): """simple docstring""" __A : Tuple = self.full_loop(prediction_type='v_prediction' ) __A : Union[str, Any] = torch.sum(torch.abs(UpperCamelCase__ ) ) __A : Optional[int] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 5_2.5_3_0_2 ) < 1E-2 assert abs(result_mean.item() - 0.0_6_8_4 ) < 1E-3 def snake_case__ ( self ): """simple docstring""" __A : str = self.full_loop(set_alpha_to_one=UpperCamelCase__ , beta_start=0.0_1 ) __A : int = torch.sum(torch.abs(UpperCamelCase__ ) ) __A : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 1_4_9.8_2_9_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_5_1 ) < 1E-3 def snake_case__ ( self ): """simple docstring""" __A : Optional[Any] = self.full_loop(set_alpha_to_one=UpperCamelCase__ , beta_start=0.0_1 ) __A : Tuple = torch.sum(torch.abs(UpperCamelCase__ ) ) __A : Tuple = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 1_4_9.0_7_8_4 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_4_1 ) < 1E-3
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase : Any = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : str = ['''MaskFormerFeatureExtractor'''] _UpperCAmelCase : str = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] _UpperCAmelCase : int = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _UpperCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
107
0
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) # TODO Update this __A : Tuple = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """esm""" def __init__( self : Any , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Dict=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : str=7_6_8 , __UpperCamelCase : Tuple=1_2 , __UpperCamelCase : Tuple=1_2 , __UpperCamelCase : Optional[int]=3_0_7_2 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Optional[Any]=1_0_2_6 , __UpperCamelCase : List[str]=0.0_2 , __UpperCamelCase : str=1e-12 , __UpperCamelCase : List[Any]="absolute" , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : int=None , __UpperCamelCase : Any=False , __UpperCamelCase : Dict=False , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : int=None , **__UpperCamelCase : Union[str, Any] , )->Dict: super().__init__(pad_token_id=__UpperCamelCase , mask_token_id=__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = emb_layer_norm_before _UpperCAmelCase = token_dropout _UpperCAmelCase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _UpperCAmelCase = EsmFoldConfig() elif isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = EsmFoldConfig(**__UpperCamelCase ) _UpperCAmelCase = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _UpperCAmelCase = get_default_vocab_list() else: _UpperCAmelCase = vocab_list else: _UpperCAmelCase = None _UpperCAmelCase = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , __UpperCamelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def lowercase__ ( self : Tuple )->Any: _UpperCAmelCase = super().to_dict() if isinstance(self.esmfold_config , __UpperCamelCase ): _UpperCAmelCase = self.esmfold_config.to_dict() return output @dataclass class _a : """simple docstring""" UpperCamelCase__ = None UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = 0 UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = 128 UpperCamelCase__ = None def lowercase__ ( self : Union[str, Any] )->Any: if self.trunk is None: _UpperCAmelCase = TrunkConfig() elif isinstance(self.trunk , __UpperCamelCase ): _UpperCAmelCase = TrunkConfig(**self.trunk ) def lowercase__ ( self : Optional[int] )->Union[str, Any]: _UpperCAmelCase = asdict(self ) _UpperCAmelCase = self.trunk.to_dict() return output @dataclass class _a : """simple docstring""" UpperCamelCase__ = 48 UpperCamelCase__ = 1_024 UpperCamelCase__ = 128 UpperCamelCase__ = 32 UpperCamelCase__ = 32 UpperCamelCase__ = 32 UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = False UpperCamelCase__ = 4 UpperCamelCase__ = 128 UpperCamelCase__ = None def lowercase__ ( self : str )->str: if self.structure_module is None: _UpperCAmelCase = StructureModuleConfig() elif isinstance(self.structure_module , __UpperCamelCase ): _UpperCAmelCase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) _UpperCAmelCase = self.sequence_state_dim // self.sequence_head_width _UpperCAmelCase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(F'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase = asdict(self ) _UpperCAmelCase = self.structure_module.to_dict() return output @dataclass class _a : """simple docstring""" UpperCamelCase__ = 384 UpperCamelCase__ = 128 UpperCamelCase__ = 16 UpperCamelCase__ = 128 UpperCamelCase__ = 12 UpperCamelCase__ = 4 UpperCamelCase__ = 8 UpperCamelCase__ = 0.1 UpperCamelCase__ = 8 UpperCamelCase__ = 1 UpperCamelCase__ = 2 UpperCamelCase__ = 7 UpperCamelCase__ = 10 UpperCamelCase__ = 1e-8 UpperCamelCase__ = 1e5 def lowercase__ ( self : List[str] )->Optional[Any]: return asdict(self ) def lowercase ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
708
"""simple docstring""" import operator def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : list | None = None ): '''simple docstring''' _UpperCAmelCase = operator.lt if reverse else operator.gt _UpperCAmelCase = solution or [] if not arr: return solution _UpperCAmelCase = [arr.pop(0 )] for i, item in enumerate(_SCREAMING_SNAKE_CASE ): if _operator(_SCREAMING_SNAKE_CASE , sublist[-1] ): sublist.append(_SCREAMING_SNAKE_CASE ) arr.pop(_SCREAMING_SNAKE_CASE ) # merging sublist into solution list if not solution: solution.extend(_SCREAMING_SNAKE_CASE ) else: while sublist: _UpperCAmelCase = sublist.pop(0 ) for i, xx in enumerate(_SCREAMING_SNAKE_CASE ): if not _operator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): solution.insert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) break else: solution.append(_SCREAMING_SNAKE_CASE ) strand_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
95
0
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase_ ( __a ) -> float: """simple docstring""" return np.dot(__a , __a ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : List[str] , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ) ->None: '''simple docstring''' lowerCamelCase__: Dict =regularization lowerCamelCase__: Any =gamma if kernel == "linear": lowerCamelCase__: Dict =self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("rbf kernel requires gamma") if not isinstance(self.gamma , (float, int)): raise ValueError("gamma must be float or int") if not self.gamma > 0: raise ValueError("gamma must be > 0") lowerCamelCase__: Tuple =self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowerCamelCase__: Optional[Any] =F"""Unknown kernel: {kernel}""" raise ValueError(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray) ->float: '''simple docstring''' return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray) ->float: '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray) ->None: '''simple docstring''' lowerCamelCase__: Optional[Any] =observations lowerCamelCase__: Optional[int] =classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((lowerCamelCase__) , ): List[str] =np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: lowerCamelCase__: int =0 ((lowerCamelCase__) , ): Optional[Any] =np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) lowerCamelCase__: List[Any] =LinearConstraint(UpperCAmelCase_ , 0 , 0) lowerCamelCase__: str =Bounds(0 , self.regularization) lowerCamelCase__: Union[str, Any] =minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x lowerCamelCase__: str =l_star # calculating mean offset of separation plane to points lowerCamelCase__: Tuple =0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) lowerCamelCase__: int =s / n def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : ndarray) ->int: '''simple docstring''' lowerCamelCase__: Optional[Any] =sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
59
from __future__ import annotations from math import pi def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" if (inductance, frequency, reactance).count(0) != 1: raise ValueError("""One and only one argument must be 0""") if inductance < 0: raise ValueError("""Inductance cannot be negative""") if frequency < 0: raise ValueError("""Frequency cannot be negative""") if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""") if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""") if __name__ == "__main__": import doctest doctest.testmod()
648
0
from __future__ import annotations UpperCamelCase_ = [] def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' for i in range(len(__UpperCAmelCase ) ): if board[row][i] == 1: return False for i in range(len(__UpperCAmelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(__UpperCAmelCase , -1 , -1 ) , range(__UpperCAmelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__UpperCAmelCase , -1 , -1 ) , range(__UpperCAmelCase , len(__UpperCAmelCase ) ) ): if board[i][j] == 1: return False return True def A ( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' if row >= len(__UpperCAmelCase ): solution.append(__UpperCAmelCase ) printboard(__UpperCAmelCase ) print() return True for i in range(len(__UpperCAmelCase ) ): if is_safe(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_ = 1 solve(__UpperCAmelCase , row + 1 ) UpperCAmelCase_ = 0 return False def A ( __UpperCAmelCase ) -> None: '''simple docstring''' for i in range(len(__UpperCAmelCase ) ): for j in range(len(__UpperCAmelCase ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) UpperCamelCase_ = 8 UpperCamelCase_ = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
705
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] ="instructblip_vision_model" def __init__( self :int , _lowercase :List[str]=1408 , _lowercase :Dict=6144 , _lowercase :List[Any]=39 , _lowercase :List[Any]=16 , _lowercase :Union[str, Any]=224 , _lowercase :int=14 , _lowercase :Any="gelu" , _lowercase :Optional[Any]=1E-6 , _lowercase :List[Any]=0.0 , _lowercase :Union[str, Any]=1E-1_0 , _lowercase :List[Any]=True , **_lowercase :Optional[int] , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = patch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = hidden_act UpperCAmelCase_ = qkv_bias @classmethod def __a ( cls :Union[str, Any] , _lowercase :Union[str, os.PathLike] , **_lowercase :Tuple) -> "PretrainedConfig": cls._set_token_in_kwargs(_lowercase) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_lowercase , **_lowercase) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''') == "instructblip": UpperCAmelCase_ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(_lowercase , **_lowercase) class a_ ( _snake_case ): UpperCamelCase__ : str ="instructblip_qformer" def __init__( self :List[Any] , _lowercase :List[Any]=30522 , _lowercase :str=768 , _lowercase :str=12 , _lowercase :int=12 , _lowercase :str=3072 , _lowercase :Optional[Any]="gelu" , _lowercase :Optional[int]=0.1 , _lowercase :int=0.1 , _lowercase :List[Any]=512 , _lowercase :Any=0.02 , _lowercase :Dict=1E-1_2 , _lowercase :int=0 , _lowercase :Any="absolute" , _lowercase :Optional[int]=2 , _lowercase :Optional[int]=1408 , **_lowercase :List[Any] , ) -> str: super().__init__(pad_token_id=_lowercase , **_lowercase) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = cross_attention_frequency UpperCAmelCase_ = encoder_hidden_size @classmethod def __a ( cls :Any , _lowercase :Union[str, os.PathLike] , **_lowercase :int) -> "PretrainedConfig": cls._set_token_in_kwargs(_lowercase) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_lowercase , **_lowercase) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''') == "instructblip": UpperCAmelCase_ = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(_lowercase , **_lowercase) class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] ="instructblip" UpperCamelCase__ : int =True def __init__( self :List[Any] , _lowercase :Tuple=None , _lowercase :Tuple=None , _lowercase :Any=None , _lowercase :Any=32 , **_lowercase :Union[str, Any]) -> List[str]: super().__init__(**_lowercase) if vision_config is None: UpperCAmelCase_ = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''') if qformer_config is None: UpperCAmelCase_ = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''') if text_config is None: UpperCAmelCase_ = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''') UpperCAmelCase_ = InstructBlipVisionConfig(**_lowercase) UpperCAmelCase_ = InstructBlipQFormerConfig(**_lowercase) UpperCAmelCase_ = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' UpperCAmelCase_ = CONFIG_MAPPING[text_model_type](**_lowercase) UpperCAmelCase_ = self.text_config.tie_word_embeddings UpperCAmelCase_ = self.text_config.is_encoder_decoder UpperCAmelCase_ = num_query_tokens UpperCAmelCase_ = self.vision_config.hidden_size UpperCAmelCase_ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase_ = 1.0 UpperCAmelCase_ = 0.02 @classmethod def __a ( cls :Tuple , _lowercase :InstructBlipVisionConfig , _lowercase :InstructBlipQFormerConfig , _lowercase :PretrainedConfig , **_lowercase :str , ) -> Union[str, Any]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_lowercase , ) def __a ( self :Any) -> Tuple: UpperCAmelCase_ = copy.deepcopy(self.__dict__) UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.qformer_config.to_dict() UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
561
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) class __lowercase ( __snake_case ): UpperCamelCase = '''timm_backbone''' def __init__( self : Optional[int] , __lowerCamelCase : int=None , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : str=True , __lowerCamelCase : int=None , **__lowerCamelCase : Optional[int] , ) -> Any: """simple docstring""" super().__init__(**__lowerCamelCase ) UpperCAmelCase = backbone UpperCAmelCase = num_channels UpperCAmelCase = features_only UpperCAmelCase = use_pretrained_backbone UpperCAmelCase = True UpperCAmelCase = out_indices if out_indices is not None else (-1,)
377
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->Optional[Any]: UpperCAmelCase = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""") UpperCAmelCase = ( ("""layer.""", """layer_"""), ("""word_embeddings.weight""", """word_embeddings"""), ("""position_embeddings.weight""", """position_embeddings"""), ("""token_type_embeddings.weight""", """token_type_embeddings"""), (""".""", """/"""), ("""LayerNorm/weight""", """LayerNorm/gamma"""), ("""LayerNorm/bias""", """LayerNorm/beta"""), ("""weight""", """kernel"""), ) if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) UpperCAmelCase = model.state_dict() def to_tf_var_name(lowerCAmelCase_ ): for patt, repl in iter(lowerCAmelCase_ ): UpperCAmelCase = name.replace(lowerCAmelCase_ , lowerCAmelCase_ ) return F"""bert/{name}""" def create_tf_var(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase = tf.get_variable(dtype=lowerCAmelCase_ , shape=tensor.shape , name=lowerCAmelCase_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowerCAmelCase_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase = to_tf_var_name(lowerCAmelCase_ ) UpperCAmelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase = torch_tensor.T UpperCAmelCase = create_tf_var(tensor=lowerCAmelCase_ , name=lowerCAmelCase_ , session=lowerCAmelCase_ ) tf.keras.backend.set_value(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase = session.run(lowerCAmelCase_ ) print(F"""Successfully created {tf_name}: {np.allclose(lowerCAmelCase_ , lowerCAmelCase_ )}""" ) UpperCAmelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) ) def _UpperCamelCase ( lowerCAmelCase_=None ) ->Union[str, Any]: UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""Directory in which to save tensorflow model""" ) UpperCAmelCase = parser.parse_args(lowerCAmelCase_ ) UpperCAmelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCAmelCase_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
377
1
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase__ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase__ = {ord(char) for char in VALID_CHARS} UpperCamelCase__ = ['the', 'be', 'to', 'of', 'and', 'in', 'that', 'have'] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : str = "" lowercase_ : int lowercase_ : int lowercase_ : int for keychar, cipherchar in zip(cycle(lowercase_ ) , lowercase_ ): lowercase_ : Dict = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowercase_ ) return decoded def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : list[str] = [] for key in product(lowercase_ , repeat=3 ): lowercase_ : int = try_key(lowercase_ , lowercase_ ) if encoded is not None: possibles.append(lowercase_ ) return possibles def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = "p059_cipher.txt" ): """simple docstring""" lowercase_ : list[int] lowercase_ : list[str] lowercase_ : str lowercase_ : str lowercase_ : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" ) lowercase_ : Optional[Any] = [int(lowercase_ ) for number in data.strip().split("," )] lowercase_ : List[str] = filter_valid_chars(lowercase_ ) for common_word in COMMON_WORDS: lowercase_ : Union[str, Any] = filter_common_word(lowercase_ , lowercase_ ) if len(lowercase_ ) == 1: break lowercase_ : Union[str, Any] = possibles[0] return sum(ord(lowercase_ ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
707
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ): """simple docstring""" lowercase_ : Union[str, Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=512 , _UpperCamelCase=512 ): """simple docstring""" lowercase_ : Union[str, Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : str = np.array(pil_image.convert("RGB" ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 127.5 - 1 lowercase_ : int = np.transpose(_UpperCamelCase , [2, 0, 1] ) lowercase_ : str = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class _UpperCAmelCase ( snake_case ): def __init__( self : List[Any] , a : UNetaDConditionModel , a : DDPMScheduler , a : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=a , scheduler=a , movq=a , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self : Union[str, Any] , a : Tuple , a : List[str] , a : List[Any] ): '''simple docstring''' lowercase_ : Dict = min(int(num_inference_steps * strength ) , a ) lowercase_ : str = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : Union[str, Any] , a : int , a : List[Any] , a : Tuple , a : Union[str, Any] , a : int , a : Tuple , a : Optional[Any]=None ): '''simple docstring''' if not isinstance(a , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a )}""" ) lowercase_ : str = image.to(device=a , dtype=a ) lowercase_ : Any = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(a , a ) and len(a ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(a )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(a , a ): lowercase_ : str = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a ) ] lowercase_ : List[Any] = torch.cat(a , dim=0 ) else: lowercase_ : Tuple = self.movq.encode(a ).latent_dist.sample(a ) lowercase_ : Union[str, Any] = self.movq.config.scaling_factor * init_latents lowercase_ : Tuple = torch.cat([init_latents] , dim=0 ) lowercase_ : List[Any] = init_latents.shape lowercase_ : Union[str, Any] = randn_tensor(a , generator=a , device=a , dtype=a ) # get latents lowercase_ : Dict = self.scheduler.add_noise(a , a , a ) lowercase_ : Tuple = init_latents return latents def lowerCAmelCase__ ( self : List[Any] , a : str=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase_ : Optional[Any] = torch.device(f"""cuda:{gpu_id}""" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) def lowerCAmelCase__ ( self : Optional[int] , a : Union[str, Any]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase_ : Any = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Union[str, Any] = cpu_offload_with_hook(a , a , prev_module_hook=a ) # We'll offload the last model manually. lowercase_ : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a ) def __call__( self : Optional[int] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : int = 5_1_2 , a : int = 5_1_2 , a : int = 1_0_0 , a : float = 4.0 , a : float = 0.3 , a : int = 1 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[str] = "pil" , a : bool = True , ): '''simple docstring''' lowercase_ : Optional[int] = self._execution_device lowercase_ : Dict = guidance_scale > 1.0 if isinstance(a , a ): lowercase_ : Dict = torch.cat(a , dim=0 ) lowercase_ : Dict = image_embeds.shape[0] if isinstance(a , a ): lowercase_ : str = torch.cat(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : Optional[Any] = image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = negative_image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a ) if not isinstance(a , a ): lowercase_ : List[Any] = [image] if not all(isinstance(a , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"""Input is in incorrect format: {[type(a ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) lowercase_ : List[Any] = torch.cat([prepare_image(a , a , a ) for i in image] , dim=0 ) lowercase_ : List[Any] = image.to(dtype=image_embeds.dtype , device=a ) lowercase_ : Optional[int] = self.movq.encode(a )["latents"] lowercase_ : Dict = latents.repeat_interleave(a , dim=0 ) self.scheduler.set_timesteps(a , device=a ) lowercase_ , lowercase_ : List[Any] = self.get_timesteps(a , a , a ) lowercase_ : Tuple = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Optional[Any] = downscale_height_and_width(a , a , self.movq_scale_factor ) lowercase_ : Tuple = self.prepare_latents( a , a , a , a , image_embeds.dtype , a , a ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : int = {"image_embeds": image_embeds} lowercase_ : Optional[int] = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : int = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Any = variance_pred.chunk(2 ) lowercase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( a , a , a , generator=a , )[0] # post-processing lowercase_ : Optional[Any] = self.movq.decode(a , force_not_quantize=a )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowercase_ : Tuple = image * 0.5 + 0.5 lowercase_ : Any = image.clamp(0 , 1 ) lowercase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : Tuple = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
640
0
'''simple docstring''' a_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} a_ = ['a', 'b', 'c', 'd', 'e'] def _a( UpperCamelCase__ : str, UpperCamelCase__ : str, UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =start # add current to visited visited.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: SCREAMING_SNAKE_CASE__ : List[Any] =topological_sort(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # if all neighbors visited add current to sort sort.append(UpperCamelCase__ ) # if all vertices haven't been visited select a new one to visit if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): for vertice in vertices: if vertice not in visited: SCREAMING_SNAKE_CASE__ : int =topological_sort(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # return sort return sort if __name__ == "__main__": a_ = topological_sort('a', [], []) print(sort)
296
'''simple docstring''' from __future__ import annotations import requests def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =f"https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty" return requests.get(UpperCamelCase__ ).json() def _a( UpperCamelCase__ : int = 1_0 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] ='''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' SCREAMING_SNAKE_CASE__ : str =requests.get(UpperCamelCase__ ).json()[:max_stories] return [get_hackernews_story(UpperCamelCase__ ) for story_id in story_ids] def _a( UpperCamelCase__ : int = 1_0 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =hackernews_top_stories(UpperCamelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**UpperCamelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
296
1
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class UpperCAmelCase: """simple docstring""" def __init__( self ) -> Tuple: """simple docstring""" lowercase__ : Dict = {} def __a ( self , lowerCamelCase ) -> None: """simple docstring""" lowercase__ : Optional[int] = {} def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> None: """simple docstring""" if nodea not in self.connections: self.add_node(lowerCamelCase ) if nodea not in self.connections: self.add_node(lowerCamelCase ) lowercase__ : Optional[int] = probability def __a ( self ) -> list[str]: """simple docstring""" return list(self.connections ) def __a ( self , lowerCamelCase ) -> str: """simple docstring""" lowercase__ : Tuple = 0 lowercase__ : List[str] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> dict[str, int]: lowercase__ : Optional[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) lowercase__ : Dict = Counter(graph.get_nodes() ) lowercase__ : Tuple = start for _ in range(SCREAMING_SNAKE_CASE_ ): lowercase__ : Optional[int] = graph.transition(SCREAMING_SNAKE_CASE_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
720
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __a : str = logging.get_logger(__name__) __a : Any = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Tuple = """longformer""" def __init__( self , lowerCamelCase = 512 , lowerCamelCase = 2 , lowerCamelCase = 1 , lowerCamelCase = 0 , lowerCamelCase = 2 , lowerCamelCase = 30522 , lowerCamelCase = 768 , lowerCamelCase = 12 , lowerCamelCase = 12 , lowerCamelCase = 3072 , lowerCamelCase = "gelu" , lowerCamelCase = 0.1 , lowerCamelCase = 0.1 , lowerCamelCase = 512 , lowerCamelCase = 2 , lowerCamelCase = 0.02 , lowerCamelCase = 1E-12 , lowerCamelCase = False , **lowerCamelCase , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase ) lowercase__ : Dict = attention_window lowercase__ : Optional[int] = sep_token_id lowercase__ : List[Any] = bos_token_id lowercase__ : List[str] = eos_token_id lowercase__ : Union[str, Any] = vocab_size lowercase__ : int = hidden_size lowercase__ : Tuple = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Optional[Any] = hidden_act lowercase__ : int = intermediate_size lowercase__ : Optional[int] = hidden_dropout_prob lowercase__ : Optional[int] = attention_probs_dropout_prob lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : Optional[int] = type_vocab_size lowercase__ : Any = initializer_range lowercase__ : Any = layer_norm_eps lowercase__ : List[Any] = onnx_export class UpperCAmelCase( snake_case_ ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase = "default" , lowerCamelCase = None ) -> Any: """simple docstring""" super().__init__(lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowercase__ : str = True @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: lowercase__ : Union[str, Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowercase__ : Optional[Any] = super().outputs if self.task == "default": lowercase__ : Optional[Any] = {0: "batch"} return outputs @property def __a ( self ) -> float: """simple docstring""" return 1E-4 @property def __a ( self ) -> int: """simple docstring""" return max(super().default_onnx_opset , 14 ) def __a ( self , lowerCamelCase , lowerCamelCase = -1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , ) -> Mapping[str, Any]: """simple docstring""" lowercase__ : int = super().generate_dummy_inputs( preprocessor=lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowercase__ : Any = torch.zeros_like(inputs["input_ids"] ) # make every second token global lowercase__ : List[Any] = 1 return inputs
298
0
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase ) -> bool: """simple docstring""" if len(_snake_case ) == 0: return False __snake_case : int = len(_snake_case ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _snake_case ) else: return binary_search(a_list[midpoint + 1 :] , _snake_case ) if __name__ == "__main__": __UpperCamelCase = input("Enter numbers separated by comma:\n").strip() __UpperCamelCase = [int(item.strip()) for item in user_input.split(",")] __UpperCamelCase = int(input("Enter the number to be found in the list:\n").strip()) __UpperCamelCase = "" if binary_search(sequence, target) else "not " print(f"""{target} was {not_str}found in {sequence}""")
26
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = "openai-gpt" a__ : Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Union[str, Any] , __lowerCAmelCase : int=4_04_78 , __lowerCAmelCase : Tuple=5_12 , __lowerCAmelCase : str=7_68 , __lowerCAmelCase : List[Any]=12 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[str]=1E-5 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[Any]="cls_index" , __lowerCAmelCase : str=True , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=0.1 , **__lowerCAmelCase : Tuple , ) -> Optional[Any]: _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = afn _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_first_dropout _A = summary_proj_to_labels super().__init__(**__lowerCAmelCase )
2
0
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance lowercase__ = 6378137.0 lowercase__ = 6356752.314245 lowercase__ = 6_37_81_37 def __snake_case ( lowercase : float , lowercase : float , lowercase : float , lowercase : float ): snake_case_ = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude snake_case_ = atan((1 - flattening) * tan(radians(lowercase ) ) ) snake_case_ = atan((1 - flattening) * tan(radians(lowercase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius snake_case_ = haversine_distance(lowercase , lowercase , lowercase , lowercase ) / EQUATORIAL_RADIUS # Intermediate P and Q values snake_case_ = (b_lata + b_lata) / 2 snake_case_ = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) snake_case_ = (sin(lowercase ) ** 2) * (cos(lowercase ) ** 2) snake_case_ = cos(sigma / 2 ) ** 2 snake_case_ = (sigma - sin(lowercase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) snake_case_ = (cos(lowercase ) ** 2) * (sin(lowercase ) ** 2) snake_case_ = sin(sigma / 2 ) ** 2 snake_case_ = (sigma + sin(lowercase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
420
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __snake_case ( lowercase : float , lowercase : float , lowercase : bool = False ): if radian_mode: return [magnitude * cos(lowercase ), magnitude * sin(lowercase )] return [magnitude * cos(radians(lowercase ) ), magnitude * sin(radians(lowercase ) )] def __snake_case ( lowercase : NDArray[floataa] , lowercase : NDArray[floataa] , lowercase : float = 10**-1 ): snake_case_ = cross(lowercase , lowercase ) snake_case_ = sum(lowercase ) return abs(lowercase ) < eps if __name__ == "__main__": # Test to check if it works lowercase__ = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) lowercase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowercase__ = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) lowercase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowercase__ = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) lowercase__ = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
420
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[str] = '''roformer''' def __init__( self, A=50_000, A=None, A=768, A=12, A=12, A=3_072, A="gelu", A=0.1, A=0.1, A=1_536, A=2, A=0.02, A=1E-12, A=0, A=False, A=True, **A, ): '''simple docstring''' super().__init__(pad_token_id=A, **A ) SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : Tuple = rotary_value SCREAMING_SNAKE_CASE : str = use_cache class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def UpperCamelCase_ ( self ): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE : Optional[int] = {0: 'batch', 1: 'sequence'} SCREAMING_SNAKE_CASE : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
28
'''simple docstring''' from torch import nn def __lowercase (_lowercase ) -> Union[str, Any]: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"Unsupported activation function: {act_fn}" )
150
0
def _UpperCamelCase (a__ :int , a__ :int ): """simple docstring""" return 1 if input_a == input_a else 0 def _UpperCamelCase (): """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
721
from typing import Any def _UpperCamelCase (a__ :list ): """simple docstring""" if not input_list: return [] UpperCamelCase__ = [input_list.count(a__ ) for value in input_list] UpperCamelCase__ = max(a__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(a__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
548
0
'''simple docstring''' def a_ ( UpperCamelCase_ ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
452
'''simple docstring''' from __future__ import annotations from typing import Any def a_ ( UpperCamelCase_ ): create_state_space_tree(UpperCamelCase_ , [] , 0 ) def a_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if index == len(UpperCamelCase_ ): print(UpperCamelCase_ ) return create_state_space_tree(UpperCamelCase_ , UpperCamelCase_ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(UpperCamelCase_ , UpperCamelCase_ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __SCREAMING_SNAKE_CASE : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
452
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
37
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) lowercase__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowercase__ = 1 if upper_limit > 0: lowercase__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(SCREAMING_SNAKE_CASE_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: lowercase_ = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F'The Catalan numbers from 0 through {N} are:') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
37
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = """""" __lowerCAmelCase : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __lowerCAmelCase : str = None # compression type in fsspec. ex: "gzip" __lowerCAmelCase : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self ,__snake_case = "" ,__snake_case = None ,__snake_case = None ,**__snake_case ): """simple docstring""" super().__init__(self ,**__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode A_ = fsspec.open( __snake_case ,mode='''rb''' ,protocol=__snake_case ,compression=self.compression ,client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' ,{} ), # To avoid issues if it was already passed. } ,**(target_options or {}) ,) A_ = os.path.basename(self.file.path.split('''::''' )[0] ) A_ = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) A_ = None @classmethod def __UpperCAmelCase ( cls ,__snake_case ): """simple docstring""" return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def __UpperCAmelCase ( self ): """simple docstring""" if self.dir_cache is None: A_ = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} A_ = {f['''name''']: f} def __UpperCAmelCase ( self ,__snake_case ): """simple docstring""" return self.file.open().read() def __UpperCAmelCase ( self ,__snake_case ,__snake_case = "rb" ,__snake_case=None ,__snake_case=True ,__snake_case=None ,**__snake_case ,): """simple docstring""" A_ = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(f'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = """bz2""" __lowerCAmelCase : List[Any] = """bz2""" __lowerCAmelCase : Optional[int] = """.bz2""" class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = """gzip""" __lowerCAmelCase : List[Any] = """gzip""" __lowerCAmelCase : Dict = """.gz""" class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = """lz4""" __lowerCAmelCase : int = """lz4""" __lowerCAmelCase : List[str] = """.lz4""" class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = """xz""" __lowerCAmelCase : str = """xz""" __lowerCAmelCase : Tuple = """.xz""" class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = """zstd""" __lowerCAmelCase : int = """zstd""" __lowerCAmelCase : Dict = """.zst""" def __init__( self ,__snake_case ,__snake_case = "rb" ,__snake_case = None ,__snake_case = None ,__snake_case = DEFAULT_BLOCK_SIZE ,**__snake_case ,): """simple docstring""" super().__init__( fo=__snake_case ,mode=__snake_case ,target_protocol=__snake_case ,target_options=__snake_case ,block_size=__snake_case ,**__snake_case ,) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 A_ = self.file.__enter__ class UpperCAmelCase_ : def __init__( self ,__snake_case ): """simple docstring""" A_ = file_ def __enter__( self ): """simple docstring""" self._file.__enter__() return self def __exit__( self ,*__snake_case ,**__snake_case ): """simple docstring""" self._file.__exit__(*__snake_case ,**__snake_case ) def __iter__( self ): """simple docstring""" return iter(self._file ) def __UpperCAmelCase ( self ): """simple docstring""" return next(self._file ) def __getattr__( self ,__snake_case ): """simple docstring""" return getattr(self._file ,__snake_case ) def fixed_enter(*__snake_case ,**__snake_case ): return WrappedFile(_enter(*__snake_case ,**__snake_case ) ) A_ = fixed_enter
188
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a__ : Dict = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = ["""pixel_values"""] def __init__( self ,__snake_case = True ,__snake_case = None ,__snake_case = None ,__snake_case = PILImageResampling.BILINEAR ,__snake_case = True ,__snake_case = 1 / 2_5_5 ,__snake_case = True ,__snake_case = None ,__snake_case = None ,**__snake_case ,): """simple docstring""" super().__init__(**__snake_case ) A_ = size if size is not None else {'''shortest_edge''': 3_8_4} A_ = get_size_dict(__snake_case ,default_to_square=__snake_case ) A_ = do_resize A_ = size # Default value set here for backwards compatibility where the value in config is None A_ = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 A_ = resample A_ = do_rescale A_ = rescale_factor A_ = do_normalize A_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCAmelCase ( self ,__snake_case ,__snake_case ,__snake_case ,__snake_case = PILImageResampling.BICUBIC ,__snake_case = None ,**__snake_case ,): """simple docstring""" A_ = get_size_dict(__snake_case ,default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(f'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) A_ = size['''shortest_edge'''] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct A_ = int(shortest_edge / crop_pct ) A_ = get_resize_output_image_size(__snake_case ,size=__snake_case ,default_to_square=__snake_case ) A_ = resize(image=__snake_case ,size=__snake_case ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__snake_case ,size=(shortest_edge, shortest_edge) ,data_format=__snake_case ,**__snake_case ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __snake_case ,size=(shortest_edge, shortest_edge) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) def __UpperCAmelCase ( self ,__snake_case ,__snake_case ,__snake_case = None ,**__snake_case ,): """simple docstring""" return rescale(__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def __UpperCAmelCase ( self ,__snake_case ,__snake_case ,__snake_case ,__snake_case = None ,**__snake_case ,): """simple docstring""" return normalize(__snake_case ,mean=__snake_case ,std=__snake_case ,data_format=__snake_case ,**__snake_case ) def __UpperCAmelCase ( self ,__snake_case ,__snake_case = None ,__snake_case = None ,__snake_case = None ,__snake_case = None ,__snake_case = None ,__snake_case = None ,__snake_case = None ,__snake_case = None ,__snake_case = None ,__snake_case = None ,__snake_case = ChannelDimension.FIRST ,**__snake_case ,): """simple docstring""" A_ = do_resize if do_resize is not None else self.do_resize A_ = crop_pct if crop_pct is not None else self.crop_pct A_ = resample if resample is not None else self.resample A_ = do_rescale if do_rescale is not None else self.do_rescale A_ = rescale_factor if rescale_factor is not None else self.rescale_factor A_ = do_normalize if do_normalize is not None else self.do_normalize A_ = image_mean if image_mean is not None else self.image_mean A_ = image_std if image_std is not None else self.image_std A_ = size if size is not None else self.size A_ = get_size_dict(__snake_case ,default_to_square=__snake_case ) A_ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A_ = [to_numpy_array(__snake_case ) for image in images] if do_resize: A_ = [self.resize(image=__snake_case ,size=__snake_case ,crop_pct=__snake_case ,resample=__snake_case ) for image in images] if do_rescale: A_ = [self.rescale(image=__snake_case ,scale=__snake_case ) for image in images] if do_normalize: A_ = [self.normalize(image=__snake_case ,mean=__snake_case ,std=__snake_case ) for image in images] A_ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] A_ = {'''pixel_values''': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
188
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A_ = logging.get_logger(__name__) A_ = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'layoutlmv3' def __init__( self : int , snake_case : str=5_0265 , snake_case : List[Any]=768 , snake_case : Tuple=12 , snake_case : int=12 , snake_case : Any=3072 , snake_case : Optional[Any]="gelu" , snake_case : Dict=0.1 , snake_case : str=0.1 , snake_case : Union[str, Any]=512 , snake_case : Optional[Any]=2 , snake_case : int=0.02 , snake_case : Union[str, Any]=1e-5 , snake_case : Any=1 , snake_case : Tuple=0 , snake_case : List[str]=2 , snake_case : Union[str, Any]=1024 , snake_case : Any=128 , snake_case : List[Any]=128 , snake_case : Union[str, Any]=True , snake_case : str=32 , snake_case : List[str]=128 , snake_case : Tuple=64 , snake_case : Dict=256 , snake_case : str=True , snake_case : int=True , snake_case : Tuple=True , snake_case : str=224 , snake_case : List[Any]=3 , snake_case : Optional[Any]=16 , snake_case : Dict=None , **snake_case : int , ): '''simple docstring''' super().__init__( vocab_size=snake_case , hidden_size=snake_case , num_hidden_layers=snake_case , num_attention_heads=snake_case , intermediate_size=snake_case , hidden_act=snake_case , hidden_dropout_prob=snake_case , attention_probs_dropout_prob=snake_case , max_position_embeddings=snake_case , type_vocab_size=snake_case , initializer_range=snake_case , layer_norm_eps=snake_case , pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case , ) A__ : List[Any] = max_ad_position_embeddings A__ : Optional[int] = coordinate_size A__ : Optional[Any] = shape_size A__ : Tuple = has_relative_attention_bias A__ : List[Any] = rel_pos_bins A__ : Union[str, Any] = max_rel_pos A__ : int = has_spatial_attention_bias A__ : Any = rel_ad_pos_bins A__ : Optional[int] = max_rel_ad_pos A__ : Dict = text_embed A__ : List[str] = visual_embed A__ : Dict = input_size A__ : List[Any] = num_channels A__ : List[Any] = patch_size A__ : Dict = classifier_dropout class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = version.parse('1.12' ) @property def _UpperCamelCase ( self : Any ): '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def _UpperCamelCase ( self : str ): '''simple docstring''' return 1e-5 @property def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 12 def _UpperCamelCase ( self : List[str] , snake_case : "ProcessorMixin" , snake_case : int = -1 , snake_case : int = -1 , snake_case : bool = False , snake_case : Optional["TensorType"] = None , snake_case : int = 3 , snake_case : int = 40 , snake_case : int = 40 , ): '''simple docstring''' setattr(processor.image_processor , """apply_ocr""" , snake_case ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A__ : Dict = compute_effective_axis_dimension( snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A__ : Any = processor.tokenizer.num_special_tokens_to_add(snake_case ) A__ : Dict = compute_effective_axis_dimension( snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case ) # Generate dummy inputs according to compute batch and sequence A__ : Any = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes A__ : Optional[int] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) A__ : Optional[Any] = self._generate_dummy_images(snake_case , snake_case , snake_case , snake_case ) A__ : Any = dict( processor( snake_case , text=snake_case , boxes=snake_case , return_tensors=snake_case , ) ) return inputs
498
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Union[str, Any]=None ) ->Tuple: A__ : Dict = None if token is not None: A__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} A__ : Dict = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' A__ : Any = requests.get(UpperCAmelCase__, headers=UpperCAmelCase__ ).json() A__ : Tuple = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) A__ : Optional[Any] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(UpperCAmelCase__ ): A__ : str = requests.get(url + f'&page={i + 2}', headers=UpperCAmelCase__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : str=None ) ->List[str]: A__ : Optional[Any] = None if token is not None: A__ : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} A__ : str = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' A__ : Dict = requests.get(UpperCAmelCase__, headers=UpperCAmelCase__ ).json() A__ : Any = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) A__ : Union[str, Any] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(UpperCAmelCase__ ): A__ : Union[str, Any] = requests.get(url + f'&page={i + 2}', headers=UpperCAmelCase__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Any ) ->Tuple: A__ : Tuple = None if token is not None: A__ : List[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} A__ : Tuple = requests.get(UpperCAmelCase__, headers=UpperCAmelCase__, allow_redirects=UpperCAmelCase__ ) A__ : Dict = result.headers["""Location"""] A__ : Union[str, Any] = requests.get(UpperCAmelCase__, allow_redirects=UpperCAmelCase__ ) A__ : int = os.path.join(UpperCAmelCase__, f'{artifact_name}.zip' ) with open(UpperCAmelCase__, """wb""" ) as fp: fp.write(response.content ) def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple=None ) ->Tuple: A__ : int = [] A__ : Union[str, Any] = [] A__ : Optional[Any] = None with zipfile.ZipFile(UpperCAmelCase__ ) as z: for filename in z.namelist(): if not os.path.isdir(UpperCAmelCase__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(UpperCAmelCase__ ) as f: for line in f: A__ : int = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs A__ : List[str] = line[: line.index(""": """ )] A__ : str = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed A__ : Any = line[len("""FAILED """ ) :] failed_tests.append(UpperCAmelCase__ ) elif filename == "job_name.txt": A__ : Any = line if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( f'`errors` and `failed_tests` should have the same number of elements. Got {len(UpperCAmelCase__ )} for `errors` ' f'and {len(UpperCAmelCase__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' """ problem.""" ) A__ : List[str] = None if job_name and job_links: A__ : Any = job_links.get(UpperCAmelCase__, UpperCAmelCase__ ) # A list with elements of the form (line of error, error, failed test) A__ : str = [x + [y] + [job_link] for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ )] return result def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int=None ) ->str: A__ : List[Any] = [] A__ : Dict = [os.path.join(UpperCAmelCase__, UpperCAmelCase__ ) for p in os.listdir(UpperCAmelCase__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(UpperCAmelCase__, job_links=UpperCAmelCase__ ) ) return errors def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Dict=None ) ->List[Any]: A__ : Dict = Counter() counter.update([x[1] for x in logs] ) A__ : str = counter.most_common() A__ : Dict = {} for error, count in counts: if error_filter is None or error not in error_filter: A__ : Optional[int] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} A__ : List[str] = dict(sorted(r.items(), key=lambda UpperCAmelCase__ : item[1]["count"], reverse=UpperCAmelCase__ ) ) return r def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->str: A__ : List[str] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): A__ : Union[str, Any] = test.split("""/""" )[2] else: A__ : int = None return test def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : str=None ) ->Optional[Any]: A__ : Any = [(x[0], x[1], get_model(x[2] )) for x in logs] A__ : List[Any] = [x for x in logs if x[2] is not None] A__ : Union[str, Any] = {x[2] for x in logs} A__ : int = {} for test in tests: A__ : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) A__ : Any = counter.most_common() A__ : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} A__ : List[str] = sum(error_counts.values() ) if n_errors > 0: A__ : str = {"""count""": n_errors, """errors""": error_counts} A__ : Dict = dict(sorted(r.items(), key=lambda UpperCAmelCase__ : item[1]["count"], reverse=UpperCAmelCase__ ) ) return r def _lowerCAmelCase ( UpperCAmelCase__ : Dict ) ->List[Any]: A__ : List[Any] = """| no. | error | status |""" A__ : Union[str, Any] = """|-:|:-|:-|""" A__ : Dict = [header, sep] for error in reduced_by_error: A__ : List[Any] = reduced_by_error[error]["""count"""] A__ : List[Any] = f'| {count} | {error[:1_0_0]} | |' lines.append(UpperCAmelCase__ ) return "\n".join(UpperCAmelCase__ ) def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->int: A__ : str = """| model | no. of errors | major error | count |""" A__ : Optional[int] = """|-:|-:|-:|-:|""" A__ : Tuple = [header, sep] for model in reduced_by_model: A__ : Optional[Any] = reduced_by_model[model]["""count"""] A__ , A__ : Optional[Any] = list(reduced_by_model[model]["""errors"""].items() )[0] A__ : Optional[int] = f'| {model} | {count} | {error[:6_0]} | {_count} |' lines.append(UpperCAmelCase__ ) return "\n".join(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') A_ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) A_ = get_job_links(args.workflow_run_id, token=args.token) A_ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: A_ = k.find(''' / ''') A_ = k[index + len(''' / ''') :] A_ = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) A_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) A_ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error A_ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors A_ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) A_ = reduce_by_error(errors) A_ = reduce_by_model(errors) A_ = make_github_table(reduced_by_error) A_ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
498
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class a__ ( snake_case__ ): lowercase_ = 'vit_msn' def __init__( self : List[str] , UpperCamelCase_ : Optional[int]=768 , UpperCamelCase_ : str=12 , UpperCamelCase_ : str=12 , UpperCamelCase_ : Optional[Any]=3072 , UpperCamelCase_ : Any="gelu" , UpperCamelCase_ : List[str]=0.0 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Tuple=1e-06 , UpperCamelCase_ : Optional[int]=224 , UpperCamelCase_ : Tuple=16 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : int=True , **UpperCamelCase_ : Tuple , ): """simple docstring""" super().__init__(**A_) __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : List[str] = num_attention_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Tuple = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Dict = layer_norm_eps __UpperCAmelCase : str = image_size __UpperCAmelCase : Union[str, Any] = patch_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : Optional[int] = qkv_bias
77
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _A = logging.get_logger(__name__) _A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp _A = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } _A = { "RUCAIBox/mvp": 1_024, } class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Dict = VOCAB_FILES_NAMES _snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Tuple = ['input_ids', 'attention_mask'] _snake_case : Any = MvpTokenizer def __init__( self : str , A_ : int=None , A_ : List[Any]=None , A_ : Optional[Any]=None , A_ : int="replace" , A_ : int="<s>" , A_ : Any="</s>" , A_ : List[str]="</s>" , A_ : Optional[int]="<s>" , A_ : Optional[int]="<unk>" , A_ : Optional[int]="<pad>" , A_ : Union[str, Any]="<mask>" , A_ : str=False , A_ : List[str]=True , **A_ : Union[str, Any] , )-> Any: super().__init__( A_ , A_ , tokenizer_file=A_ , errors=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , trim_offsets=A_ , **A_ , ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , A_ ) != add_prefix_space: __UpperCamelCase = getattr(A_ , pre_tok_state.pop("type" ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**A_ ) __UpperCamelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __UpperCamelCase = "post_processor" __UpperCamelCase = getattr(self.backend_tokenizer , A_ , A_ ) if tokenizer_component_instance: __UpperCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCamelCase = tuple(state["sep"] ) if "cls" in state: __UpperCamelCase = tuple(state["cls"] ) __UpperCamelCase = False if state.get("add_prefix_space" , A_ ) != add_prefix_space: __UpperCamelCase = add_prefix_space __UpperCamelCase = True if state.get("trim_offsets" , A_ ) != trim_offsets: __UpperCamelCase = trim_offsets __UpperCamelCase = True if changes_to_apply: __UpperCamelCase = getattr(A_ , state.pop("type" ) ) __UpperCamelCase = component_class(**A_ ) setattr(self.backend_tokenizer , A_ , A_ ) @property def A ( self : List[str] )-> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A ( self : Any , A_ : List[Any] )-> List[Any]: __UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else value __UpperCamelCase = value def A ( self : str , *A_ : Dict , **A_ : Dict )-> BatchEncoding: __UpperCamelCase = kwargs.get("is_split_into_words" , A_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_ , **A_ ) def A ( self : Tuple , *A_ : str , **A_ : List[str] )-> BatchEncoding: __UpperCamelCase = kwargs.get("is_split_into_words" , A_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*A_ , **A_ ) def A ( self : Optional[int] , A_ : str , A_ : Optional[str] = None )-> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def A ( self : Any , A_ : Dict , A_ : Dict=None )-> Union[str, Any]: __UpperCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : Optional[int] , A_ : List[int] , A_ : Optional[List[int]] = None )-> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
505
0
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( UpperCamelCase_ , unittest.TestCase ): _lowerCAmelCase =DebertaTokenizer _lowerCAmelCase =True _lowerCAmelCase =DebertaTokenizerFast def UpperCAmelCase__ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] snake_case__ : str = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) snake_case__ : Tuple = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] snake_case__ : Optional[Any] = {'unk_token': '[UNK]'} snake_case__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_lowerCamelCase ) ) def UpperCAmelCase__ ( self : str , **_lowerCamelCase : Optional[int] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def UpperCAmelCase__ ( self : Dict , _lowerCamelCase : List[str] ): snake_case__ : int = 'lower newer' snake_case__ : Optional[int] = 'lower newer' return input_text, output_text def UpperCAmelCase__ ( self : Optional[Any] ): snake_case__ : Union[str, Any] = self.get_tokenizer() snake_case__ : List[Any] = 'lower newer' snake_case__ : str = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] snake_case__ : Tuple = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) snake_case__ : int = tokens + [tokenizer.unk_token] snake_case__ : int = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): snake_case__ : Dict = self.get_tokenizer() snake_case__ : str = tokenizer('Hello' , 'World' ) snake_case__ : str = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , _lowerCamelCase ) @slow def UpperCAmelCase__ ( self : Tuple ): snake_case__ : Union[str, Any] = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) snake_case__ : int = tokenizer.encode('sequence builders' , add_special_tokens=_lowerCamelCase ) snake_case__ : str = tokenizer.encode('multi-sequence build' , add_special_tokens=_lowerCamelCase ) snake_case__ : List[Any] = tokenizer.encode( 'sequence builders' , add_special_tokens=_lowerCamelCase , add_prefix_space=_lowerCamelCase ) snake_case__ : Dict = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_lowerCamelCase , add_prefix_space=_lowerCamelCase ) snake_case__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) snake_case__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def UpperCAmelCase__ ( self : int ): snake_case__ : List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: snake_case__ : List[Any] = tokenizer_class.from_pretrained('microsoft/deberta-base' ) snake_case__ : int = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] snake_case__ : str = tokenizer(_lowerCamelCase , padding=_lowerCamelCase ) snake_case__ : List[Any] = [tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) for seq in encoding['input_ids']] # fmt: off snake_case__ : Optional[int] = { 'input_ids': [ [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 3_5, 8_3, 2_5_1_9_1, 1_6_3, 1_8_8_5_4, 1_3, 1_2_1_5_6, 1_2, 1_6_1_0_1, 2_5_3_7_6, 1_3_8_0_7, 9, 2_2_2_0_5, 2_7_8_9_3, 1_6_3_5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 2_4_5_3_6, 8_0, 4_3_7_9_7, 4_8_7_8, 7_3_7_3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_3_3, 7_8, 6_5, 1_6, 1_0, 3_7_2_4, 1_5_3_8, 3_3_1_8_3, 1_1_3_0_3, 4_3_7_9_7, 1_9_3_8, 4, 8_7_0, 2_4_1_6_5, 2_9_1_0_5, 5, 7_3_9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 3_6_1_7_3, 8_8, 8_0, 6_5_0, 7_8_2_1, 4_5_9_4_0, 6, 5_2, 2_5_5_9, 5, 1_8_3_6, 9, 5, 7_3_9_7, 1_3_1_7_1, 3_1, 5, 1_8_3_6, 9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on snake_case__ : Tuple = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , _lowerCamelCase ) for expected, decoded in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(_lowerCamelCase , _lowerCamelCase )
709
from __future__ import annotations from math import ceil, floor, sqrt def lowercase__( A = 2_0_0_0_0_0_0 ): snake_case__ : list[int] = [0] snake_case__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case__ : int = 0 # the area corresponding to the grid that gives the product closest to target snake_case__ : int = 0 # an estimate of b, using the quadratic formula snake_case__ : float # the largest integer less than b_estimate snake_case__ : int # the largest integer less than b_estimate snake_case__ : int # the triangle number corresponding to b_floor snake_case__ : int # the triangle number corresponding to b_ceil snake_case__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case__ : List[Any] = floor(A ) snake_case__ : List[str] = ceil(A ) snake_case__ : List[str] = triangle_numbers[b_floor] snake_case__ : Dict = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case__ : str = triangle_b_first_guess * triangle_a snake_case__ : int = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case__ : Union[str, Any] = triangle_b_second_guess * triangle_a snake_case__ : List[str] = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
303
0
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase__ (snake_case__ : BertModel , snake_case__ : str , snake_case__ : str ): """simple docstring""" _snake_case : Optional[Any] = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""") _snake_case : Optional[Any] = ( ("""layer.""", """layer_"""), ("""word_embeddings.weight""", """word_embeddings"""), ("""position_embeddings.weight""", """position_embeddings"""), ("""token_type_embeddings.weight""", """token_type_embeddings"""), (""".""", """/"""), ("""LayerNorm/weight""", """LayerNorm/gamma"""), ("""LayerNorm/bias""", """LayerNorm/beta"""), ("""weight""", """kernel"""), ) if not os.path.isdir(snake_case__ ): os.makedirs(snake_case__ ) _snake_case : Any = model.state_dict() def to_tf_var_name(snake_case__ : str ): for patt, repl in iter(snake_case__ ): _snake_case : Union[str, Any] = name.replace(snake_case__ , snake_case__ ) return F"bert/{name}" def create_tf_var(snake_case__ : np.ndarray , snake_case__ : str , snake_case__ : tf.Session ): _snake_case : Any = tf.dtypes.as_dtype(tensor.dtype ) _snake_case : Tuple = tf.get_variable(dtype=snake_case__ , shape=tensor.shape , name=snake_case__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(snake_case__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _snake_case : Dict = to_tf_var_name(snake_case__ ) _snake_case : int = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _snake_case : int = torch_tensor.T _snake_case : int = create_tf_var(tensor=snake_case__ , name=snake_case__ , session=snake_case__ ) tf.keras.backend.set_value(snake_case__ , snake_case__ ) _snake_case : Dict = session.run(snake_case__ ) print(F"Successfully created {tf_name}: {np.allclose(snake_case__ , snake_case__ )}" ) _snake_case : Optional[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(snake_case__ , os.path.join(snake_case__ , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) ) def UpperCAmelCase__ (snake_case__ : Dict=None ): """simple docstring""" _snake_case : Dict = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=snake_case__ , required=snake_case__ , help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" , type=snake_case__ , default=snake_case__ , required=snake_case__ , help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" , type=snake_case__ , required=snake_case__ , help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" , type=snake_case__ , required=snake_case__ , help="""Directory in which to save tensorflow model""" ) _snake_case : List[str] = parser.parse_args(snake_case__ ) _snake_case : Union[str, Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=snake_case__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
609
"""simple docstring""" from scipy.stats import spearmanr import datasets A_ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' A_ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' A_ = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self: Dict ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ), reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""], ) def UpperCamelCase_ ( self: Any, a_: Union[str, Any], a_: Union[str, Any], a_: str=False ): '''simple docstring''' _snake_case : Optional[Any] = spearmanr(a_, a_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
609
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str =ArgumentParser('Transformers CLI tool' ,usage='transformers-cli <command> [<args>]' ) SCREAMING_SNAKE_CASE_ : Optional[Any] =parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go SCREAMING_SNAKE_CASE_ : str =parser.parse_args() if not hasattr(lowerCAmelCase_ ,'func' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ : int =args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
153
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : str ,lowerCAmelCase_ : str ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] =get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] =0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: SCREAMING_SNAKE_CASE_ : Optional[Any] =failure[j - 1] continue i += 1 return False def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : str ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =[0] SCREAMING_SNAKE_CASE_ : List[str] =0 SCREAMING_SNAKE_CASE_ : int =1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: SCREAMING_SNAKE_CASE_ : Optional[int] =failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) __SCREAMING_SNAKE_CASE = 'abc1abc12' __SCREAMING_SNAKE_CASE = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __SCREAMING_SNAKE_CASE = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __SCREAMING_SNAKE_CASE = 'ABABX' __SCREAMING_SNAKE_CASE = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) __SCREAMING_SNAKE_CASE = 'AAAB' __SCREAMING_SNAKE_CASE = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) __SCREAMING_SNAKE_CASE = 'abcdabcy' __SCREAMING_SNAKE_CASE = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) __SCREAMING_SNAKE_CASE = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
153
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
408
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[str] = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } UpperCAmelCase_ : str = { 'google/realm-cc-news-pretrained-embedder': 5_1_2, 'google/realm-cc-news-pretrained-encoder': 5_1_2, 'google/realm-cc-news-pretrained-scorer': 5_1_2, 'google/realm-cc-news-pretrained-openqa': 5_1_2, 'google/realm-orqa-nq-openqa': 5_1_2, 'google/realm-orqa-nq-reader': 5_1_2, 'google/realm-orqa-wq-openqa': 5_1_2, 'google/realm-orqa-wq-reader': 5_1_2, } UpperCAmelCase_ : str = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class _lowerCamelCase ( snake_case_ ): '''simple docstring''' __lowercase : Union[str, Any] = VOCAB_FILES_NAMES __lowercase : int = PRETRAINED_VOCAB_FILES_MAP __lowercase : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION __lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[str] = RealmTokenizer def __init__( self , __lowercase=None , __lowercase=None , __lowercase=True , __lowercase="[UNK]" , __lowercase="[SEP]" , __lowercase="[PAD]" , __lowercase="[CLS]" , __lowercase="[MASK]" , __lowercase=True , __lowercase=None , **__lowercase , ): """simple docstring""" super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) __A : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , __lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __lowercase ) != tokenize_chinese_chars ): __A : Tuple = getattr(__lowercase , normalizer_state.pop('type' ) ) __A : Optional[int] = do_lower_case __A : List[str] = strip_accents __A : Dict = tokenize_chinese_chars __A : List[Any] = normalizer_class(**__lowercase ) __A : int = do_lower_case def snake_case__ ( self , __lowercase , **__lowercase ): """simple docstring""" __A : Dict = PaddingStrategy.MAX_LENGTH __A : Optional[int] = text __A : Union[str, Any] = kwargs.pop('text_pair' , __lowercase ) __A : List[str] = kwargs.pop('return_tensors' , __lowercase ) __A : int = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(__lowercase ): if batch_text_pair is not None: __A : Tuple = batch_text_pair[idx] else: __A : Union[str, Any] = None __A : Optional[int] = super().__call__(__lowercase , __lowercase , return_tensors=__lowercase , **__lowercase ) __A : str = encoded_candidates.get('input_ids' ) __A : Union[str, Any] = encoded_candidates.get('attention_mask' ) __A : Optional[int] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(__lowercase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(__lowercase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__lowercase ) __A : List[str] = {key: item for key, item in output_data.items() if len(__lowercase ) != 0} return BatchEncoding(__lowercase , tensor_type=__lowercase ) def snake_case__ ( self , __lowercase , __lowercase=None ): """simple docstring""" __A : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self , __lowercase , __lowercase = None ): """simple docstring""" __A : Union[str, Any] = [self.sep_token_id] __A : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , __lowercase , __lowercase = None ): """simple docstring""" __A : int = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
365
0
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : _a = field( default="codeparrot/codeparrot",metadata={"help": "Model name or path of model to be trained."} ) _a = field( default="./",metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) _a = field( default="codeparrot/codeparrot-clean-train",metadata={"help": "Name or path of training dataset."} ) _a = field( default="codeparrot/codeparrot-clean-valid",metadata={"help": "Name or path of validation dataset."} ) _a = field(default=2,metadata={"help": "Batch size for training."} ) _a = field(default=2,metadata={"help": "Batch size for evaluation."} ) _a = field(default=0.1,metadata={"help": "Value of weight decay."} ) _a = field( default=1_0_0_0_0,metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) _a = field(default=2e-4,metadata={"help": "Learning rate fo training."} ) _a = field(default="cosine",metadata={"help": "Learning rate."} ) _a = field( default=7_5_0,metadata={"help": "Number of warmup steps in the learning rate schedule."} ) _a = field( default=1_6,metadata={"help": "Number of gradient accumulation steps."} ) _a = field( default=UpperCamelCase__,metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) _a = field(default=5_0_0_0_0,metadata={"help": "Maximum number of training steps."} ) _a = field( default=-1,metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _a = field(default=1_0_2_4,metadata={"help": "Sequence lengths used for training."} ) _a = field(default=1,metadata={"help": "Training seed."} ) _a = field( default=1_0_2_4,metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."},) _a = field( default=UpperCamelCase__,metadata={"help": "States path if the training should continue from a checkpoint folder."} ) _a = field(default=UpperCamelCase__,metadata={"help": "If True the data is pretokenized."} ) @dataclass class lowercase : _a = field( default="codeparrot/codeparrot",metadata={"help": "Model name or path of model to be evaluated."} ) _a = field( default="codeparrot/codeparrot-clean-valid",metadata={"help": "Name or path of validation dataset."} ) _a = field(default=2,metadata={"help": "Batch size used for evaluation."} ) _a = field( default=-1,metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _a = field(default=1_0_2_4,metadata={"help": "Length of sequences to be evaluated."} ) _a = field(default=1,metadata={"help": "Random seed used for evaluation."} ) @dataclass class lowercase : _a = field( default="codeparrot/codeparrot",metadata={"help": "Model name or path of model to be evaluated."} ) _a = field(default=UpperCamelCase__,metadata={"help": "Number of workers used for code evaluation."} ) _a = field( default=UpperCamelCase__,metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."},) _a = field( default=UpperCamelCase__,metadata={"help": "Sample from the language model's output distribution."} ) _a = field(default=0.2,metadata={"help": "Sampling temperature used for generation."} ) _a = field(default=2_5_6,metadata={"help": "Maximum number of newly generated tokens."} ) _a = field(default=0,metadata={"help": "Top-k parameter used for generation."} ) _a = field(default=0.95,metadata={"help": "Top-p parameter used for nucleus sampling."} ) _a = field(default=1_0,metadata={"help": "Number of generations to run in parallel."} ) _a = field( default=2_0_0,metadata={"help": "Number of completions to generate for each sample."} ) _a = field(default=1,metadata={"help": "Random seed used for evaluation."} ) _a = field( default="eval_results.json",metadata={"help": "Random seed used for evaluation."} ) _a = field( default="0",metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) _a = field( default=-1,metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) },) @dataclass class lowercase : _a = field( default=UpperCamelCase__,metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." },) _a = field( default="transformersbook/codeparrot",metadata={"help": "Folder or name of dataset to process."} ) _a = field( default="codeparrot-clean",metadata={"help": "Folder to save processed processed dataset."} ) _a = field( default=1_0_0_0_0_0,metadata={"help": "Number of files to save per JSON output file."} ) _a = field(default="content",metadata={"help": "Column containing text data to process."} ) _a = field( default=1_0_0_0,metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) _a = field( default=1_0_0,metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) _a = field( default=0.25,metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) _a = field( default=1.5,metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) _a = field( default=0.7,metadata={"help": "Probability for filtering config, test and uncommon files."} ) _a = field( default="codeparrot/codeparrot",metadata={"help": "Name or path to the tokenizer."},) _a = field( default=UpperCamelCase__,metadata={"help": "If True, near-duplicate samples are removed."} ) _a = field( default=0.85,metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class lowercase : _a = field( default="gpt2",metadata={"help": "Base tokenizer to build new tokenizer from."} ) _a = field( default="transformersbook/codeparrot-train",metadata={"help": "Dataset to train tokenizer on."} ) _a = field(default="content",metadata={"help": "Column containing text data to process."} ) _a = field(default=2_0_0_0_0_0,metadata={"help": "Number of examples to train tokenizer on."} ) _a = field( default=3_2_7_6_8,metadata={"help": "Number of examples to train the tokenizer on."} ) _a = field(default="codeparrot",metadata={"help": "Name of new tokenizer."} ) _a = field(default=UpperCamelCase__,metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class lowercase : _a = field( default="codeparrot/codeparrot",metadata={"help": "Name or path to the tokenizer."} ) _a = field( default="codeparrot/codeparrot-clean-train",metadata={"help": "Name or path to the dataset to pretokenize."} ) _a = field( default="tokenized-codeparrot-train",metadata={"help": "Repo name of the pretokenized data."} ) _a = field(default=UpperCamelCase__,metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class lowercase : _a = field( default="gpt2-large",metadata={"help": "Configuration to use for model initialization."} ) _a = field( default="codeparrot/codeparrot",metadata={"help": "Tokenizer attached to model."} ) _a = field(default="codeparrot",metadata={"help": "Name of the created model."} ) _a = field(default=UpperCamelCase__,metadata={"help": "Push saved tokenizer to the hub."} )
54
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ = None ): _A : Tuple = word_bank or [] # create a table _A : int = len(snake_case_ ) + 1 _A : list[list[list[str]]] = [] for _ in range(snake_case_ ): table.append([] ) # seed value _A : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(snake_case_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(snake_case_ )] == word: _A : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(snake_case_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(snake_case_ )]: combination.reverse() return table[len(snake_case_ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
54
1
def _SCREAMING_SNAKE_CASE ( __snake_case ) -> int: if not isinstance(__snake_case , __snake_case ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) _UpperCAmelCase = 0 _UpperCAmelCase = str(__snake_case ) while len(__snake_case ) != 1: _UpperCAmelCase = [int(__snake_case ) for i in num_string] _UpperCAmelCase = 1 for i in range(0 , len(__snake_case ) ): total *= numbers[i] _UpperCAmelCase = str(__snake_case ) steps += 1 return steps def _SCREAMING_SNAKE_CASE ( __snake_case ) -> int: if not isinstance(__snake_case , __snake_case ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) _UpperCAmelCase = 0 _UpperCAmelCase = str(__snake_case ) while len(__snake_case ) != 1: _UpperCAmelCase = [int(__snake_case ) for i in num_string] _UpperCAmelCase = 0 for i in range(0 , len(__snake_case ) ): total += numbers[i] _UpperCAmelCase = str(__snake_case ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
108
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __magic_name__ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def _lowerCAmelCase ( UpperCamelCase_ = "mumbai" ): __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): __SCREAMING_SNAKE_CASE = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() __SCREAMING_SNAKE_CASE = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F"""Job {i:>2} is {job[0]} at {job[1]}""")
155
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def A (__lowerCamelCase :Union[str, Any] ): _lowerCAmelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def A (__lowerCamelCase :Tuple ): _lowerCAmelCase , _lowerCAmelCase = emb.weight.shape _lowerCAmelCase = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _lowerCAmelCase = emb.weight.data return lin_layer def A (__lowerCamelCase :List[str] ): _lowerCAmelCase = torch.load(__lowerCamelCase , map_location="""cpu""" ) _lowerCAmelCase = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] _lowerCAmelCase = mam_aaa["""model"""] remove_ignore_keys_(__lowerCamelCase ) _lowerCAmelCase = state_dict["""encoder.embed_tokens.weight"""].shape[0] _lowerCAmelCase = MaMaaaConfig( vocab_size=__lowerCamelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) _lowerCAmelCase = state_dict["""decoder.embed_tokens.weight"""] _lowerCAmelCase = MaMaaaForConditionalGeneration(__lowerCamelCase ) model.model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) _lowerCAmelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _lowercase = parser.parse_args() _lowercase = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
162
'''simple docstring''' def A (__lowerCamelCase :str , __lowerCamelCase :str ): assert x is not None assert y is not None _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = len(__lowerCamelCase ) # declaring the array for storing the dp values _lowerCAmelCase = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 _lowerCAmelCase = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _lowerCAmelCase = """""" _lowerCAmelCase , _lowerCAmelCase = m, n while i > 0 and j > 0: _lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _lowerCAmelCase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _lowercase = """AGGTAB""" _lowercase = """GXTXAYB""" _lowercase = 4 _lowercase = """GTAB""" _lowercase , _lowercase = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
162
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCamelCase : str = 16 __lowerCamelCase : str = 32 def __UpperCAmelCase ( __magic_name__ ,__magic_name__ = 16 )-> str: """simple docstring""" snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) snake_case_ : Optional[Any] = load_dataset("glue" ,"mrpc" ) def tokenize_function(__magic_name__ ): # max_length=None => use the model max length (it's actually the default) snake_case_ : Union[str, Any] = tokenizer(examples["sentence1"] ,examples["sentence2"] ,truncation=__magic_name__ ,max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case_ : Union[str, Any] = datasets.map( __magic_name__ ,batched=__magic_name__ ,remove_columns=["idx", "sentence1", "sentence2"] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ : List[Any] = tokenized_datasets.rename_column("label" ,"labels" ) def collate_fn(__magic_name__ ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case_ : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case_ : List[str] = 16 elif accelerator.mixed_precision != "no": snake_case_ : Union[str, Any] = 8 else: snake_case_ : Dict = None return tokenizer.pad( __magic_name__ ,padding="longest" ,max_length=__magic_name__ ,pad_to_multiple_of=__magic_name__ ,return_tensors="pt" ,) # Instantiate dataloaders. snake_case_ : Union[str, Any] = DataLoader( tokenized_datasets["train"] ,shuffle=__magic_name__ ,collate_fn=__magic_name__ ,batch_size=__magic_name__ ) snake_case_ : int = DataLoader( tokenized_datasets["validation"] ,shuffle=__magic_name__ ,collate_fn=__magic_name__ ,batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __lowerCamelCase : str = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> List[Any]: """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" ,__magic_name__ ) == "1": snake_case_ : int = 2 # New Code # snake_case_ : str = int(args.gradient_accumulation_steps ) snake_case_ : List[str] = int(args.local_sgd_steps ) # Initialize accelerator snake_case_ : Dict = Accelerator( cpu=args.cpu ,mixed_precision=args.mixed_precision ,gradient_accumulation_steps=__magic_name__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ : List[str] = config["lr"] snake_case_ : Union[str, Any] = int(config["num_epochs"] ) snake_case_ : Dict = int(config["seed"] ) snake_case_ : int = int(config["batch_size"] ) snake_case_ : Union[str, Any] = evaluate.load("glue" ,"mrpc" ) set_seed(__magic_name__ ) snake_case_, snake_case_ : Optional[int] = get_dataloaders(__magic_name__ ,__magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" ,return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ : Tuple = model.to(accelerator.device ) # Instantiate optimizer snake_case_ : Dict = AdamW(params=model.parameters() ,lr=__magic_name__ ) # Instantiate scheduler snake_case_ : str = get_linear_schedule_with_warmup( optimizer=__magic_name__ ,num_warmup_steps=100 ,num_training_steps=(len(__magic_name__ ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ : List[str] = accelerator.prepare( __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() with LocalSGD( accelerator=__magic_name__ ,model=__magic_name__ ,local_sgd_steps=__magic_name__ ,enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__magic_name__ ): snake_case_ : str = model(**__magic_name__ ) snake_case_ : List[Any] = output.loss accelerator.backward(__magic_name__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ : List[str] = model(**__magic_name__ ) snake_case_ : List[str] = outputs.logits.argmax(dim=-1 ) snake_case_, snake_case_ : str = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__magic_name__ ,references=__magic_name__ ,) snake_case_ : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' ,__magic_name__ ) def __UpperCAmelCase ( )-> str: """simple docstring""" snake_case_ : Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" ,type=__magic_name__ ,default=__magic_name__ ,choices=["no", "fp16", "bf16", "fp8"] ,help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ,) # New Code # parser.add_argument( "--gradient_accumulation_steps" ,type=__magic_name__ ,default=1 ,help="The number of minibatches to be ran before gradients are accumulated." ,) parser.add_argument( "--local_sgd_steps" ,type=__magic_name__ ,default=8 ,help="Number of local SGD steps or None to disable local SGD" ) parser.add_argument("--cpu" ,action="store_true" ,help="If passed, will train on the CPU." ) snake_case_ : str = parser.parse_args() snake_case_ : Any = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(__magic_name__ ,__magic_name__ ) if __name__ == "__main__": main()
653
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() A_ : str =logging.get_logger(__name__) A_ : Any ="""https://openaipublic.azureedge.net/jukebox/models/""" A_ : Dict ={ """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def SCREAMING_SNAKE_CASE_ ( snake_case : str )-> Optional[Any]: if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCamelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCamelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCamelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCamelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCamelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCamelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCamelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCamelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def SCREAMING_SNAKE_CASE_ ( snake_case : Tuple , snake_case : Optional[int] , snake_case : int , snake_case : Union[str, Any] )-> Dict: _lowerCamelCase = {} import re _lowerCamelCase = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCamelCase = re.compile( r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCamelCase = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCamelCase = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCamelCase = re.compile( r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCamelCase = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCamelCase = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCamelCase = re.compile( r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCamelCase = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(snake_case ): _lowerCamelCase = re_encoder_block_conv_in.match(snake_case ) _lowerCamelCase = regex_match.groups() _lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) _lowerCamelCase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' _lowerCamelCase = re_encoder_block_conv_in.sub(snake_case , snake_case ) elif re_encoder_block_resnet.fullmatch(snake_case ): _lowerCamelCase = re_encoder_block_resnet.match(snake_case ) _lowerCamelCase = regex_match.groups() _lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) _lowerCamelCase = {'1': 1, '3': 2}[groups[-2]] _lowerCamelCase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' _lowerCamelCase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' _lowerCamelCase = prefix + resnet_block _lowerCamelCase = re_encoder_block_resnet.sub(snake_case , snake_case ) elif re_encoder_block_proj_out.fullmatch(snake_case ): _lowerCamelCase = re_encoder_block_proj_out.match(snake_case ) _lowerCamelCase = regex_match.groups() _lowerCamelCase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' _lowerCamelCase = re_encoder_block_proj_out.sub(snake_case , snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(snake_case ): _lowerCamelCase = re_decoder_block_conv_out.match(snake_case ) _lowerCamelCase = regex_match.groups() _lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCamelCase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' _lowerCamelCase = re_decoder_block_conv_out.sub(snake_case , snake_case ) elif re_decoder_block_resnet.fullmatch(snake_case ): _lowerCamelCase = re_decoder_block_resnet.match(snake_case ) _lowerCamelCase = regex_match.groups() _lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCamelCase = {'1': 1, '3': 2}[groups[-2]] _lowerCamelCase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' _lowerCamelCase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' _lowerCamelCase = prefix + resnet_block _lowerCamelCase = re_decoder_block_resnet.sub(snake_case , snake_case ) elif re_decoder_block_proj_in.fullmatch(snake_case ): _lowerCamelCase = re_decoder_block_proj_in.match(snake_case ) _lowerCamelCase = regex_match.groups() _lowerCamelCase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' _lowerCamelCase = re_decoder_block_proj_in.sub(snake_case , snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(snake_case ): _lowerCamelCase = re_prior_cond_conv_out.match(snake_case ) _lowerCamelCase = regex_match.groups() _lowerCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCamelCase = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' _lowerCamelCase = re_prior_cond_conv_out.sub(snake_case , snake_case ) elif re_prior_cond_resnet.fullmatch(snake_case ): _lowerCamelCase = re_prior_cond_resnet.match(snake_case ) _lowerCamelCase = regex_match.groups() _lowerCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCamelCase = {'1': 1, '3': 2}[groups[-2]] _lowerCamelCase = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' _lowerCamelCase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' _lowerCamelCase = prefix + resnet_block _lowerCamelCase = re_prior_cond_resnet.sub(snake_case , snake_case ) elif re_prior_cond_proj_in.fullmatch(snake_case ): _lowerCamelCase = re_prior_cond_proj_in.match(snake_case ) _lowerCamelCase = regex_match.groups() _lowerCamelCase = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' _lowerCamelCase = re_prior_cond_proj_in.sub(snake_case , snake_case ) # keep original key else: _lowerCamelCase = original_key _lowerCamelCase = replace_key(snake_case ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: _lowerCamelCase = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) _lowerCamelCase = original_key _lowerCamelCase = original_key _lowerCamelCase = value return new_dict @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( snake_case : Union[str, Any]=None , snake_case : List[str]=None )-> Union[str, Any]: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): _lowerCamelCase = requests.get(f'{PREFIX}{file}' , allow_redirects=snake_case ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=snake_case ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , 'wb' ).write(r.content ) _lowerCamelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCamelCase = JukeboxConfig.from_pretrained(snake_case ) _lowerCamelCase = JukeboxModel(snake_case ) _lowerCamelCase = [] _lowerCamelCase = {} for i, dict_name in enumerate(snake_case ): _lowerCamelCase = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['model'] _lowerCamelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCamelCase = old_dic[k] elif k.endswith('.w' ): _lowerCamelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCamelCase = old_dic[k] else: _lowerCamelCase = old_dic[k] _lowerCamelCase = 'vqvae' if i == 0 else f'priors.{3 - i}' _lowerCamelCase = fix_jukebox_keys(snake_case , model.state_dict() , snake_case , snake_case ) weight_dict.append(snake_case ) _lowerCamelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(snake_case ) for i in range(len(snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(snake_case ).mkdir(exist_ok=snake_case ) with open(f'{pytorch_dump_folder_path}/mapping.json' , 'w' ) as txtfile: json.dump(snake_case , snake_case ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case ) return weight_dict if __name__ == "__main__": A_ : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) A_ : Optional[int] =parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
650
0
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A_ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = DebertaTokenizer SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : Any = DebertaTokenizerFast def __UpperCAmelCase ( self : int ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] _lowercase = dict(zip(__A ,range(len(__A ) ) ) ) _lowercase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowercase = {'unk_token': '[UNK]'} _lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(__A ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(__A ) ) def __UpperCAmelCase ( self : List[str] ,**__A : Dict ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**__A ) def __UpperCAmelCase ( self : Any ,__A : Any ) -> Dict: _lowercase = 'lower newer' _lowercase = 'lower newer' return input_text, output_text def __UpperCAmelCase ( self : Any ) -> List[str]: _lowercase = self.get_tokenizer() _lowercase = 'lower newer' _lowercase = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowercase = tokenizer.tokenize(__A ) self.assertListEqual(__A ,__A ) _lowercase = tokens + [tokenizer.unk_token] _lowercase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) ,__A ) def __UpperCAmelCase ( self : Optional[Any] ) -> Any: _lowercase = self.get_tokenizer() _lowercase = tokenizer('Hello' ,'World' ) _lowercase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] ,__A ) @slow def __UpperCAmelCase ( self : List[str] ) -> Tuple: _lowercase = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) _lowercase = tokenizer.encode('sequence builders' ,add_special_tokens=__A ) _lowercase = tokenizer.encode('multi-sequence build' ,add_special_tokens=__A ) _lowercase = tokenizer.encode( 'sequence builders' ,add_special_tokens=__A ,add_prefix_space=__A ) _lowercase = tokenizer.encode( 'sequence builders' ,'multi-sequence build' ,add_special_tokens=__A ,add_prefix_space=__A ) _lowercase = tokenizer.build_inputs_with_special_tokens(__A ) _lowercase = tokenizer.build_inputs_with_special_tokens(__A ,__A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __UpperCAmelCase ( self : Tuple ) -> List[Any]: _lowercase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: _lowercase = tokenizer_class.from_pretrained('microsoft/deberta-base' ) _lowercase = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] _lowercase = tokenizer(__A ,padding=__A ) _lowercase = [tokenizer.decode(__A ,skip_special_tokens=__A ) for seq in encoding['input_ids']] # fmt: off _lowercase = { 'input_ids': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _lowercase = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data ,__A ) for expected, decoded in zip(__A ,__A ): self.assertEqual(__A ,__A )
706
from __future__ import annotations from collections.abc import Generator def SCREAMING_SNAKE_CASE__ ( ) -> Generator[int, None, None]: _lowercase = {} _lowercase = 2 while True: _lowercase = factor_map.pop(snake_case__ , snake_case__ ) if factor: _lowercase = factor + prime while x in factor_map: x += factor _lowercase = factor else: _lowercase = prime yield prime prime += 1 def SCREAMING_SNAKE_CASE__ ( snake_case__ :float = 1E10 ) -> int: _lowercase = sieve() _lowercase = 1 while True: _lowercase = next(snake_case__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(snake_case__ ) n += 2 if __name__ == "__main__": print(solution())
535
0
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ : Tuple =logging.get_logger(__name__) __magic_name__ : Optional[int] ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __magic_name__ : Union[str, Any] ={ "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } __magic_name__ : Union[str, Any] ={"facebook/blenderbot_small-90M": 5_12} def __snake_case ( lowerCamelCase_ : Optional[int] ): '''simple docstring''' __magic_name__ = set() __magic_name__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ = char __magic_name__ = set(a_ ) return pairs class UpperCamelCase_ ( _UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str="__start__" , _lowerCamelCase : Any="__end__" , _lowerCamelCase : Optional[Any]="__unk__" , _lowerCamelCase : List[Any]="__null__" , **_lowerCamelCase : int , ) -> Optional[int]: super().__init__(unk_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , **lowerCamelCase_ ) with open(lowerCamelCase_ , encoding="utf-8" ) as vocab_handle: __magic_name__ = json.load(lowerCamelCase_ ) __magic_name__ = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase_ , encoding="utf-8" ) as merges_handle: __magic_name__ = merges_handle.read().split("\n" )[1:-1] __magic_name__ = [tuple(merge.split() ) for merge in merges] __magic_name__ = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) __magic_name__ = {} @property def __A ( self : Optional[int] ) -> int: return len(self.encoder ) def __A ( self : List[Any] ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self : Tuple , _lowerCamelCase : str ) -> str: if token in self.cache: return self.cache[token] __magic_name__ = re.sub("([.,!?()])" , r" \1" , lowerCamelCase_ ) __magic_name__ = re.sub("(\')" , r" \1 " , lowerCamelCase_ ) __magic_name__ = re.sub(r"\s{2,}" , " " , lowerCamelCase_ ) if "\n" in token: __magic_name__ = token.replace("\n" , " __newln__" ) __magic_name__ = token.split(" " ) __magic_name__ = [] for token in tokens: if not len(lowerCamelCase_ ): continue __magic_name__ = token.lower() __magic_name__ = tuple(lowerCamelCase_ ) __magic_name__ = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) __magic_name__ = get_pairs(lowerCamelCase_ ) if not pairs: words.append(lowerCamelCase_ ) continue while True: __magic_name__ = min(lowerCamelCase_ , key=lambda _lowerCamelCase : self.bpe_ranks.get(lowerCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ = bigram __magic_name__ = [] __magic_name__ = 0 while i < len(lowerCamelCase_ ): try: __magic_name__ = word.index(lowerCamelCase_ , lowerCamelCase_ ) new_word.extend(word[i:j] ) __magic_name__ = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ = tuple(lowerCamelCase_ ) __magic_name__ = new_word if len(lowerCamelCase_ ) == 1: break else: __magic_name__ = get_pairs(lowerCamelCase_ ) __magic_name__ = '''@@ '''.join(lowerCamelCase_ ) __magic_name__ = word[:-4] __magic_name__ = word words.append(lowerCamelCase_ ) return " ".join(lowerCamelCase_ ) def __A ( self : Optional[Any] , _lowerCamelCase : str ) -> List[str]: __magic_name__ = [] __magic_name__ = re.findall(r"\S+\n?" , lowerCamelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase_ ).split(" " ) ) ) return split_tokens def __A ( self : Any , _lowerCamelCase : str ) -> int: __magic_name__ = token.lower() return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def __A ( self : Optional[int] , _lowerCamelCase : int ) -> str: return self.decoder.get(lowerCamelCase_ , self.unk_token ) def __A ( self : List[Any] , _lowerCamelCase : List[str] ) -> str: __magic_name__ = ''' '''.join(lowerCamelCase_ ).replace("@@ " , "" ).strip() return out_string def __A ( self : int , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ = os.path.join( lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __magic_name__ = os.path.join( lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + "\n" ) __magic_name__ = 0 with open(lowerCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) __magic_name__ = token_index writer.write(" ".join(lowerCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file
664
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """bert""" def __init__( self :Any , lowerCamelCase_ :List[Any]=3_05_22 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :int=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :int="absolute" , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :List[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
698
0
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _A : Optional[int] = numpy.array([0, 0]) _A : Union[str, Any] = numpy.array([0.5, 0.8_66_02_54]) _A : List[Any] = numpy.array([1, 0]) _A : List[Any] = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __lowerCAmelCase ( snake_case : list[numpy.ndarray] , snake_case : int ) -> list[numpy.ndarray]: __lowerCamelCase: Optional[int] = initial_vectors for _ in range(snake_case ): __lowerCamelCase: int = iteration_step(snake_case ) return vectors def __lowerCAmelCase ( snake_case : list[numpy.ndarray] ) -> list[numpy.ndarray]: __lowerCamelCase: Optional[int] = [] for i, start_vector in enumerate(vectors[:-1] ): __lowerCamelCase: Union[str, Any] = vectors[i + 1] new_vectors.append(snake_case ) __lowerCamelCase: List[str] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __lowerCAmelCase ( snake_case : numpy.ndarray , snake_case : float ) -> numpy.ndarray: __lowerCamelCase: List[Any] = numpy.radians(snake_case ) __lowerCamelCase: Dict = numpy.cos(snake_case ), numpy.sin(snake_case ) __lowerCamelCase: Optional[int] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(snake_case , snake_case ) def __lowerCAmelCase ( snake_case : list[numpy.ndarray] ) -> None: __lowerCamelCase: Optional[Any] = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __lowerCamelCase: Optional[int] = zip(*snake_case ) plt.plot(snake_case , snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _A : Dict = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
705
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
189
0
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowerCamelCase__( unittest.TestCase ): @slow def __magic_name__ ( self ): """simple docstring""" __lowercase = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) __lowercase = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(__UpperCAmelCase ) from datasets import load_dataset __lowercase = load_dataset("""nielsr/rvlcdip-demo""" ) __lowercase = dataset["""train"""][0]["""image"""].convert("""RGB""" ) __lowercase = image_processor(__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __lowercase = model(**__UpperCAmelCase ) __lowercase = outputs.logits __lowercase = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __lowercase = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=__UpperCAmelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
566
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin snake_case : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') snake_case : Tuple = {'target_lang': 'fi', 'source_lang': 'en'} snake_case : str = '>>zh<<' snake_case : Optional[Any] = 'Helsinki-NLP/' if is_torch_available(): snake_case : Optional[Any] = 'pt' elif is_tf_available(): snake_case : Optional[int] = 'tf' else: snake_case : Optional[Any] = 'jax' @require_sentencepiece class lowerCamelCase__( snake_case_ , unittest.TestCase ): UpperCamelCase : Any = MarianTokenizer UpperCamelCase : Optional[Any] = False UpperCamelCase : Any = True def __magic_name__ ( self ): """simple docstring""" super().setUp() __lowercase = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __lowercase = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __lowercase = Path(self.tmpdirname ) save_json(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) __lowercase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self , **__UpperCAmelCase ): """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" return ( "This is a test", "This is a test", ) def __magic_name__ ( self ): """simple docstring""" __lowercase = """</s>""" __lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(__UpperCAmelCase ) , 9 ) def __magic_name__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __magic_name__ ( self ): """simple docstring""" __lowercase = MarianTokenizer.from_pretrained(F'''{ORG_NAME}opus-mt-en-de''' ) __lowercase = en_de_tokenizer(["""I am a small frog"""] , return_tensors=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(__UpperCAmelCase , batch.input_ids[0] ) __lowercase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(__UpperCAmelCase ) __lowercase = [x.name for x in Path(__UpperCAmelCase ).glob("""*""" )] self.assertIn("""source.spm""" , __UpperCAmelCase ) MarianTokenizer.from_pretrained(__UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = tok( ["""I am a small frog""" * 1_0_0_0, """I am a small frog"""] , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2) ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) ) @slow def __magic_name__ ( self ): """simple docstring""" __lowercase = {"""input_ids""": [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __magic_name__ ( self ): """simple docstring""" __lowercase = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) __lowercase = """Tämä on testi""" __lowercase = """This is a test""" __lowercase = [7_6, 7, 2_0_4_7, 2] __lowercase = [6_9, 1_2, 1_1, 9_4_0, 2] __lowercase = tokenizer(__UpperCAmelCase ).input_ids self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer(text_target=__UpperCAmelCase ).input_ids self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
566
1
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} ) a : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowerCAmelCase ( lowerCamelCase_ : DataTrainingArguments , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[str] = None , ): def _dataset(lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , ref_path=lowerCamelCase_ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase_ , file_path=lowerCamelCase_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase_ ) model.resize_token_embeddings(len(lowerCamelCase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase_ , tokenizer=lowerCamelCase_ , evaluate=lowerCamelCase_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase_ , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , data_collator=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , prediction_loss_only=lowerCamelCase_ , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output['''eval_loss'''] ) __lowercase = {'''perplexity''': perplexity} __lowercase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase_ ) return results def _lowerCAmelCase ( lowerCamelCase_ : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
703
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _SCREAMING_SNAKE_CASE = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase = test_results.split(''' ''' ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCAmelCase ( lowerCamelCase_ : Union[str, Any] ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): __lowercase = line __lowercase = False return failures class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = title __lowercase = doc_test_results['''time_spent'''].split(''',''' )[0] __lowercase = doc_test_results['''success'''] __lowercase = doc_test_results['''failures'''] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s" @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = 40 __lowercase = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase ,_lowerCamelCase )} __lowercase = '''''' for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _UpperCAmelCase () -> List[str]: '''simple docstring''' __lowercase = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text='''There was an issue running the tests.''' ,blocks=_lowerCamelCase ,) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) __lowercase = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' __lowercase = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,blocks=self.payload ,text=_lowerCamelCase ,) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''''' for key, value in failures.items(): __lowercase = value[:200] + ''' [Truncated]''' if len(_lowerCamelCase ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" __lowercase = job_name __lowercase = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: __lowercase = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _UpperCAmelCase (self ) -> Any: '''simple docstring''' if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) __lowercase = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) __lowercase = sorted(self.doc_test_results.items() ,key=lambda _lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): __lowercase = f"*Num failures* :{len(job_result['failed'] )} \n" __lowercase = job_result['''failures'''] __lowercase = self.get_reply_blocks(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,text=_lowerCamelCase ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] ,text=f"Results for {job}" ,blocks=_lowerCamelCase ,thread_ts=self.thread_ts['''ts'''] ,) time.sleep(1 ) def _lowerCAmelCase ( ): __lowercase = os.environ['''GITHUB_RUN_ID'''] __lowercase = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __lowercase = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , lowerCamelCase_ ) return {} def _lowerCAmelCase ( lowerCamelCase_ : str ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='''utf-8''' ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}." ) from e return _artifact def _lowerCAmelCase ( ): class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = name __lowercase = [] def __str__(self ) -> List[str]: '''simple docstring''' return self.name def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' self.paths.append({'''name''': self.name, '''path''': path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_job_links() _SCREAMING_SNAKE_CASE = retrieve_available_artifacts() _SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _SCREAMING_SNAKE_CASE = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _SCREAMING_SNAKE_CASE = github_actions_job_links.get('''run_doctests''') _SCREAMING_SNAKE_CASE = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = handle_test_results(artifact['''stats''']) _SCREAMING_SNAKE_CASE = failed _SCREAMING_SNAKE_CASE = success _SCREAMING_SNAKE_CASE = time_spent[1:-1] + ''', ''' _SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _SCREAMING_SNAKE_CASE = line.replace('''FAILED ''', '''''') _SCREAMING_SNAKE_CASE = line.split()[0].replace('''\n''', '''''') if "::" in line: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.split('''::''') else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) _SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else '''N/A''' _SCREAMING_SNAKE_CASE = failure break _SCREAMING_SNAKE_CASE = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
56
0
'''simple docstring''' __lowerCAmelCase = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
358
'''simple docstring''' def __lowerCamelCase ( ) -> Union[str, Any]: _a : Optional[Any] = [] _a : List[str] = 1 while len(lowerCAmelCase_ ) < 1E6: constant.append(str(lowerCAmelCase_ ) ) i += 1 _a : Optional[Any] = ''.join(lowerCAmelCase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
358
1
'''simple docstring''' import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib __A : int = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } __A : List[str] = logging.WARNING def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[int] = os.getenv("""DATASETS_VERBOSITY""" , lowerCamelCase_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option DATASETS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def UpperCAmelCase ( ): '''simple docstring''' return __name__.split(""".""" )[0] def UpperCAmelCase ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def UpperCAmelCase ( ): '''simple docstring''' # Apply our default configuration to the library root logger. snake_case_ : int = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : str = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def UpperCAmelCase ( lowerCamelCase_ :Optional[str] = None ): '''simple docstring''' if name is None: snake_case_ : List[str] = _get_library_name() return logging.getLogger(lowerCamelCase_ ) def UpperCAmelCase ( ): '''simple docstring''' return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' _get_library_root_logger().setLevel(lowerCamelCase_ ) def UpperCAmelCase ( ): '''simple docstring''' return set_verbosity(lowerCamelCase_ ) def UpperCAmelCase ( ): '''simple docstring''' return set_verbosity(lowerCamelCase_ ) def UpperCAmelCase ( ): '''simple docstring''' return set_verbosity(lowerCamelCase_ ) def UpperCAmelCase ( ): '''simple docstring''' return set_verbosity(lowerCamelCase_ ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[int] = False def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Any = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class __UpperCamelCase : def __init__( self :Optional[Any] ,*_UpperCamelCase :List[Any] ,**_UpperCamelCase :List[Any] ): # pylint: disable=unused-argument snake_case_ : Optional[int] = args[0] if args else None def __iter__( self :List[Any] ): return iter(self._iterator ) def __getattr__( self :int ,_UpperCamelCase :int ): def empty_fn(*_UpperCamelCase :Optional[int] ,**_UpperCamelCase :int ): # pylint: disable=unused-argument return return empty_fn def __enter__( self :Tuple ): return self def __exit__( self :Optional[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Optional[Any] ): return __A : List[Any] = True class __UpperCamelCase : def __call__( self :List[Any] ,*_UpperCamelCase :int ,_UpperCamelCase :Any=False ,**_UpperCamelCase :Optional[Any] ): if _tqdm_active and not disable: return tqdm_lib.tqdm(*_UpperCamelCase ,**_UpperCamelCase ) else: return EmptyTqdm(*_UpperCamelCase ,**_UpperCamelCase ) def a__ ( self :Any ,*_UpperCamelCase :Optional[int] ,**_UpperCamelCase :Tuple ): snake_case_ : int = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_UpperCamelCase ,**_UpperCamelCase ) def a__ ( self :Tuple ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() __A : str = _tqdm_cls() def UpperCAmelCase ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase ( ): '''simple docstring''' global _tqdm_active snake_case_ : Tuple = True def UpperCAmelCase ( ): '''simple docstring''' global _tqdm_active snake_case_ : Union[str, Any] = False
267
'''simple docstring''' import torch from transformers import AutoModel class __UpperCamelCase ( torch.nn.Module ): def __init__( self :Union[str, Any] ,_UpperCamelCase :Tuple="sayef/fsner-bert-base-uncased" ): super(_UpperCamelCase ,self ).__init__() snake_case_ : Dict = AutoModel.from_pretrained(_UpperCamelCase ,return_dict=_UpperCamelCase ) snake_case_ : Dict = torch.nn.CosineSimilarity(3 ,1E-0_8 ) snake_case_ : int = torch.nn.Softmax(dim=1 ) def a__ ( self :Optional[Any] ,**_UpperCamelCase :Optional[Any] ): return self.bert(**_UpperCamelCase ).last_hidden_state def a__ ( self :List[Any] ,_UpperCamelCase :Dict ): return token_embeddings.sum(2 ,keepdim=_UpperCamelCase ) def a__ ( self :Optional[Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :List[str] ,_UpperCamelCase :List[str]=1 ): return self.softmax(T * self.cos(_UpperCamelCase ,_UpperCamelCase ) ) def a__ ( self :Optional[Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :int ): snake_case_ : Union[str, Any] = W_supports["""sizes"""].tolist() snake_case_ : Dict = W_supports["""start_token_id"""].item() snake_case_ : int = W_supports["""end_token_id"""].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] snake_case_ : int = self.BERT(**_UpperCamelCase ) snake_case_ : int = self.BERT(**_UpperCamelCase ) snake_case_ : Any = None snake_case_ : Any = None snake_case_ : Union[str, Any] = W_supports["""input_ids"""] == start_token_id snake_case_ : Tuple = W_supports["""input_ids"""] == end_token_id for i, size in enumerate(_UpperCamelCase ): if i == 0: snake_case_ : str = 0 else: snake_case_ : Optional[Any] = support_sizes[i - 1] snake_case_ : Dict = S[s : s + size][start_token_masks[s : s + size]] snake_case_ : Optional[Any] = S[s : s + size][end_token_masks[s : s + size]] snake_case_ : int = torch.matmul(q[i] ,s_start.T ).sum(1 ).softmax(0 ) snake_case_ : List[str] = torch.matmul(q[i] ,s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: snake_case_ : List[str] = torch.vstack((p_starts, p_start) ) snake_case_ : Tuple = torch.vstack((p_ends, p_end) ) else: snake_case_ : Any = p_start snake_case_ : List[str] = p_end return p_starts, p_ends
267
1
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def __lowercase ( _UpperCAmelCase=32 , _UpperCAmelCase=10 , _UpperCAmelCase=100 , _UpperCAmelCase=1_026 , _UpperCAmelCase=True , _UpperCAmelCase="data/tokenized_stories_train_wikitext103.jbl" , _UpperCAmelCase="igf_context_pairs.jbl" , ) -> Any: '''simple docstring''' set_seed(3 ) # generate train_data and objective_set __lowercase , __lowercase = generate_datasets( _UpperCAmelCase , _UpperCAmelCase , number=_UpperCAmelCase , min_len=1_026 , trim=_UpperCAmelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __lowercase = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model __lowercase = load_gpta("gpt2" ).to(_UpperCAmelCase ) print("computing perplexity on objective set" ) __lowercase = compute_perplexity(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).item() print("perplexity on objective set:" , _UpperCAmelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def __lowercase ( _UpperCAmelCase , _UpperCAmelCase=15 , _UpperCAmelCase=128 , _UpperCAmelCase=100 , _UpperCAmelCase="igf_model.pt" , ) -> str: '''simple docstring''' set_seed(42 ) # Load pre-trained model __lowercase = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model __lowercase = SecondaryLearner(_UpperCAmelCase ) # Train secondary learner __lowercase = train_secondary_learner( _UpperCAmelCase , _UpperCAmelCase , max_epochs=_UpperCAmelCase , batch_size=_UpperCAmelCase , eval_freq=100 , igf_model_path=_UpperCAmelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=32 , _UpperCAmelCase=1_000 , _UpperCAmelCase=16 , _UpperCAmelCase=1.0 , _UpperCAmelCase=recopy_gpta , _UpperCAmelCase=None , _UpperCAmelCase=10 , _UpperCAmelCase="gpt2_finetuned.pt" , ) -> List[str]: '''simple docstring''' __lowercase = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) __lowercase = RandomSampler(_UpperCAmelCase ) __lowercase = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase ) __lowercase = max_steps // (len(_UpperCAmelCase )) + 1 __lowercase = 0 __lowercase = torch.zeros((1, context_len) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase , __lowercase , __lowercase = recopy_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) model.train() if secondary_learner is not None: secondary_learner.to(_UpperCAmelCase ) secondary_learner.eval() __lowercase = [] __lowercase = 0 __lowercase = [] __lowercase = [] # Compute the performance of the transformer model at the beginning __lowercase = compute_perplexity(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) test_perps.append(_UpperCAmelCase ) print("Test perplexity, step" , _UpperCAmelCase , ":" , _UpperCAmelCase ) for epoch in range(int(_UpperCAmelCase ) ): for step, example in enumerate(_UpperCAmelCase ): torch.cuda.empty_cache() __lowercase = random.randint(0 , example.size(2 ) - context_len - 1 ) __lowercase = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __lowercase = model(_UpperCAmelCase , labels=_UpperCAmelCase ) __lowercase = True if secondary_learner is not None: __lowercase = secondary_learner.forward( torch.tensor(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_UpperCAmelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __lowercase = -1 if predicted_q < threshold: __lowercase = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __lowercase = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __lowercase = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __lowercase = compute_perplexity(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) test_perps.append(_UpperCAmelCase ) print("Test perplexity, step" , _UpperCAmelCase , ":" , _UpperCAmelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _UpperCAmelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def __lowercase ( ) -> List[Any]: '''simple docstring''' __lowercase = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=32 , type=_UpperCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=100 , type=_UpperCAmelCase , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=100 , type=_UpperCAmelCase , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=1_000 , type=_UpperCAmelCase , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=128 , type=_UpperCAmelCase , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=_UpperCAmelCase , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=10 , type=_UpperCAmelCase , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=100 , type=_UpperCAmelCase , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=1_026 , type=_UpperCAmelCase , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=_UpperCAmelCase , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=_UpperCAmelCase , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=_UpperCAmelCase , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=_UpperCAmelCase , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner __lowercase = joblib.load("data/IGF_values.jbl" ) # Train secondary learner __lowercase = training_secondary_learner( _UpperCAmelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model __lowercase = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __lowercase , __lowercase = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=100 , min_len=1_026 , trim=_UpperCAmelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=_UpperCAmelCase , secondary_learner=_UpperCAmelCase , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
321
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = """bridgetower_vision_model""" def __init__( self , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=3 , lowerCAmelCase_=16 , lowerCAmelCase_=288 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-0_5 , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=False , **lowerCAmelCase_ , ): super().__init__(**lowerCAmelCase_ ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_channels __lowercase = patch_size __lowercase = image_size __lowercase = initializer_factor __lowercase = layer_norm_eps __lowercase = stop_gradient __lowercase = share_layernorm __lowercase = remove_last_layer @classmethod def snake_case__ ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ): __lowercase , __lowercase = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) if config_dict.get("model_type" ) == "bridgetower": __lowercase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = """bridgetower_text_model""" def __init__( self , lowerCAmelCase_=5_0265 , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=1 , lowerCAmelCase_=3072 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=514 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-0_5 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_="absolute" , lowerCAmelCase_=True , **lowerCAmelCase_ , ): super().__init__(**lowerCAmelCase_ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = initializer_factor __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = eos_token_id @classmethod def snake_case__ ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ): __lowercase , __lowercase = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) if config_dict.get("model_type" ) == "bridgetower": __lowercase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = """bridgetower""" def __init__( self , lowerCAmelCase_=True , lowerCAmelCase_="gelu" , lowerCAmelCase_=768 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-0_5 , lowerCAmelCase_=False , lowerCAmelCase_="add" , lowerCAmelCase_=12 , lowerCAmelCase_=6 , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): # TODO: remove this once the Hub files are updated. __lowercase = kwargs.pop("text_config_dict" , lowerCAmelCase_ ) __lowercase = kwargs.pop("vision_config_dict" , lowerCAmelCase_ ) super().__init__(**lowerCAmelCase_ ) __lowercase = share_cross_modal_transformer_layers __lowercase = hidden_act __lowercase = hidden_size __lowercase = initializer_factor __lowercase = layer_norm_eps __lowercase = share_link_tower_layers __lowercase = link_tower_type __lowercase = num_attention_heads __lowercase = num_hidden_layers __lowercase = tie_word_embeddings __lowercase = init_layernorm_from_vision_encoder if text_config is None: __lowercase = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: __lowercase = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) __lowercase = BridgeTowerTextConfig(**lowerCAmelCase_ ) __lowercase = BridgeTowerVisionConfig(**lowerCAmelCase_ ) @classmethod def snake_case__ ( cls , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.text_config.to_dict() __lowercase = self.vision_config.to_dict() __lowercase = self.__class__.model_type return output
321
1
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class snake_case ( __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = BlenderbotSmallTokenizer _A : List[Any] = False def A_ ( self : Optional[int] ): '''simple docstring''' super().setUp() __UpperCAmelCase : List[str] = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] __UpperCAmelCase : Dict = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __UpperCAmelCase : str = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] __UpperCAmelCase : List[str] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} __UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) def A_ ( self : int , **__lowercase : Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def A_ ( self : str , __lowercase : Any ): '''simple docstring''' __UpperCAmelCase : Any = '''adapt act apte''' __UpperCAmelCase : Optional[Any] = '''adapt act apte''' return input_text, output_text def A_ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase : Dict = '''adapt act apte''' __UpperCAmelCase : Optional[Any] = ['''adapt''', '''act''', '''ap@@''', '''te'''] __UpperCAmelCase : List[str] = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __UpperCAmelCase : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __UpperCAmelCase : List[Any] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def A_ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1_384] __UpperCAmelCase : List[str] = '''I am a small frog.''' __UpperCAmelCase : Union[str, Any] = tok([src_text] , padding=__lowercase , truncation=__lowercase )['''input_ids'''] __UpperCAmelCase : Any = tok.batch_decode(__lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def A_ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : List[str] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) __UpperCAmelCase : Tuple = '''I am a small frog .''' __UpperCAmelCase : str = '''.''' __UpperCAmelCase : List[str] = tok(__lowercase )['''input_ids'''] __UpperCAmelCase : Optional[Any] = tok(__lowercase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
374
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ): '''simple docstring''' super().__init__() __UpperCAmelCase : Dict = nn.Linear(3 , 4 ) __UpperCAmelCase : Union[str, Any] = nn.BatchNormad(4 ) __UpperCAmelCase : List[str] = nn.Linear(4 , 5 ) def A_ ( self : Any , __lowercase : Any ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__lowercase ) ) ) class snake_case ( __UpperCAmelCase ): '''simple docstring''' def A_ ( self : Union[str, Any] , __lowercase : Optional[int] , *__lowercase : str , **__lowercase : Optional[int] ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class snake_case ( __UpperCAmelCase ): '''simple docstring''' def A_ ( self : Any , __lowercase : Tuple , __lowercase : Any ): '''simple docstring''' return output + 1 class snake_case ( unittest.TestCase ): '''simple docstring''' def A_ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Dict = ModelForTest() __UpperCAmelCase : Optional[int] = ModelHook() add_hook_to_module(__lowercase , __lowercase ) self.assertEqual(test_model._hf_hook , __lowercase ) self.assertTrue(hasattr(__lowercase , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(__lowercase ) self.assertFalse(hasattr(__lowercase , '''_hf_hook''' ) ) self.assertFalse(hasattr(__lowercase , '''_old_forward''' ) ) def A_ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : str = ModelForTest() __UpperCAmelCase : Tuple = ModelHook() add_hook_to_module(__lowercase , __lowercase ) add_hook_to_module(__lowercase , __lowercase , append=__lowercase ) self.assertEqual(isinstance(test_model._hf_hook , __lowercase ) , __lowercase ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__lowercase , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(__lowercase ) self.assertFalse(hasattr(__lowercase , '''_hf_hook''' ) ) self.assertFalse(hasattr(__lowercase , '''_old_forward''' ) ) def A_ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Dict = ModelForTest() __UpperCAmelCase : Tuple = torch.randn(2 , 3 ) __UpperCAmelCase : Optional[int] = test_model(x + 1 ) __UpperCAmelCase : Optional[Any] = test_model(x + 2 ) __UpperCAmelCase : Optional[int] = PreForwardHook() add_hook_to_module(__lowercase , __lowercase ) __UpperCAmelCase : Union[str, Any] = test_model(__lowercase ) self.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __UpperCAmelCase : int = PreForwardHook() add_hook_to_module(__lowercase , __lowercase ) __UpperCAmelCase : Any = test_model(__lowercase ) self.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks __UpperCAmelCase : Any = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__lowercase , __lowercase ) __UpperCAmelCase : Tuple = test_model(__lowercase ) assert torch.allclose(__lowercase , __lowercase , atol=1e-5 ) def A_ ( self : Any ): '''simple docstring''' __UpperCAmelCase : int = ModelForTest() __UpperCAmelCase : List[Any] = torch.randn(2 , 3 ) __UpperCAmelCase : Tuple = test_model(__lowercase ) __UpperCAmelCase : int = PostForwardHook() add_hook_to_module(__lowercase , __lowercase ) __UpperCAmelCase : Optional[int] = test_model(__lowercase ) self.assertTrue(torch.allclose(__lowercase , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __UpperCAmelCase : str = PostForwardHook() add_hook_to_module(__lowercase , __lowercase ) __UpperCAmelCase : List[str] = test_model(__lowercase ) self.assertTrue(torch.allclose(__lowercase , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks __UpperCAmelCase : Optional[int] = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__lowercase , __lowercase ) __UpperCAmelCase : Dict = test_model(__lowercase ) assert torch.allclose(__lowercase , output + 2 , atol=1e-5 ) def A_ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : List[str] = ModelForTest() __UpperCAmelCase : Union[str, Any] = torch.randn(2 , 3 ) __UpperCAmelCase : str = test_model(__lowercase ) __UpperCAmelCase : Union[str, Any] = PostForwardHook() add_hook_to_module(__lowercase , __lowercase ) __UpperCAmelCase : Optional[int] = test_model(__lowercase ) self.assertTrue(torch.allclose(__lowercase , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : int = test_model(__lowercase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A_ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __UpperCAmelCase : Dict = torch.randn(2 , 3 ) __UpperCAmelCase : Any = model(__lowercase ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__lowercase , AlignDevicesHook(io_same_device=__lowercase ) ) __UpperCAmelCase : List[Any] = torch.randn(2 , 3 ).to(0 ) __UpperCAmelCase : int = model(__lowercase ) self.assertEqual(output.device , torch.device(0 ) ) def A_ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices __UpperCAmelCase : Tuple = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**__lowercase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__lowercase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__lowercase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device __UpperCAmelCase : Optional[int] = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , __lowercase ) __UpperCAmelCase : int = torch.randn(2 , 3 ) __UpperCAmelCase : Optional[int] = model(__lowercase ) self.assertEqual(output.device , __lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload __UpperCAmelCase : str = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__lowercase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__lowercase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__lowercase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) __UpperCAmelCase : Optional[Any] = torch.randn(2 , 3 ) __UpperCAmelCase : List[Any] = model(__lowercase ) self.assertEqual(output.device , __lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def A_ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : List[str] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices __UpperCAmelCase : Optional[Any] = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(__lowercase , execution_device=__lowercase , offload=__lowercase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device __UpperCAmelCase : Dict = torch.device(__lowercase ) self.assertEqual(model.batchnorm.running_mean.device , __lowercase ) __UpperCAmelCase : Optional[int] = torch.randn(2 , 3 ) __UpperCAmelCase : Dict = model(__lowercase ) self.assertEqual(output.device , __lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__lowercase ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(__lowercase , execution_device=__lowercase , offload=__lowercase , offload_buffers=__lowercase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) __UpperCAmelCase : Dict = torch.randn(2 , 3 ) __UpperCAmelCase : str = model(__lowercase ) self.assertEqual(output.device , __lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__lowercase ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def A_ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Dict = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices __UpperCAmelCase : str = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( __lowercase , execution_device=__lowercase , offload=__lowercase , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device __UpperCAmelCase : Optional[Any] = torch.device(__lowercase ) self.assertEqual(model.batchnorm.running_mean.device , __lowercase ) __UpperCAmelCase : Any = torch.randn(2 , 3 ) __UpperCAmelCase : Dict = model(__lowercase ) self.assertEqual(output.device , __lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__lowercase ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( __lowercase , execution_device=__lowercase , offload=__lowercase , weights_map=model.state_dict() , offload_buffers=__lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) __UpperCAmelCase : List[str] = torch.randn(2 , 3 ) __UpperCAmelCase : Optional[int] = model(__lowercase ) self.assertEqual(output.device , __lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__lowercase ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
374
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : List[Any] = 'deberta-v2' def __init__( self , lowerCamelCase__=1_2_8_1_0_0 , lowerCamelCase__=1_5_3_6 , lowerCamelCase__=2_4 , lowerCamelCase__=2_4 , lowerCamelCase__=6_1_4_4 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=5_1_2 , lowerCamelCase__=0 , lowerCamelCase__=0.0_2 , lowerCamelCase__=1e-7 , lowerCamelCase__=False , lowerCamelCase__=-1 , lowerCamelCase__=0 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=0 , lowerCamelCase__="gelu" , **lowerCamelCase__ , ): super().__init__(**lowerCamelCase__ ) _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = initializer_range _lowerCamelCase = relative_attention _lowerCamelCase = max_relative_positions _lowerCamelCase = pad_token_id _lowerCamelCase = position_biased_input # Backwards compatibility if type(lowerCamelCase__ ) == str: _lowerCamelCase = [x.strip() for x in pos_att_type.lower().split('''|''' )] _lowerCamelCase = pos_att_type _lowerCamelCase = vocab_size _lowerCamelCase = layer_norm_eps _lowerCamelCase = kwargs.get('''pooler_hidden_size''' , lowerCamelCase__ ) _lowerCamelCase = pooler_dropout _lowerCamelCase = pooler_hidden_act class lowerCamelCase_( A__ ): '''simple docstring''' @property def snake_case__ ( self ): if self.task == "multiple-choice": _lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _lowerCamelCase = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def snake_case__ ( self ): return 1_2 def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 3 , lowerCamelCase__ = 4_0 , lowerCamelCase__ = 4_0 , lowerCamelCase__ = None , ): _lowerCamelCase = super().generate_dummy_inputs(preprocessor=lowerCamelCase__ , framework=lowerCamelCase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
661
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def lowerCAmelCase_( lowercase_ : int = 2_00_00_00 ) -> int: _lowerCamelCase = [0] _lowerCamelCase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowerCamelCase = 0 # the area corresponding to the grid that gives the product closest to target _lowerCamelCase = 0 # an estimate of b, using the quadratic formula _lowerCamelCase = 42 # the largest integer less than b_estimate _lowerCamelCase = 42 # the largest integer less than b_estimate _lowerCamelCase = 42 # the triangle number corresponding to b_floor _lowerCamelCase = 42 # the triangle number corresponding to b_ceil _lowerCamelCase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowerCamelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowerCamelCase = floor(lowercase_ ) _lowerCamelCase = ceil(lowercase_ ) _lowerCamelCase = triangle_numbers[b_floor] _lowerCamelCase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowerCamelCase = triangle_b_first_guess * triangle_a _lowerCamelCase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowerCamelCase = triangle_b_second_guess * triangle_a _lowerCamelCase = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
661
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _snake_case ( _a , _a , _a , unittest.TestCase ): _A : Any = StableUnCLIPImgaImgPipeline _A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _A : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _A : Dict = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _A : Optional[Any] = frozenset([] ) def __UpperCamelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE:str = 32 SCREAMING_SNAKE_CASE:Optional[int] = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE:List[str] = CLIPImageProcessor(crop_size=32 ,size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE:str = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=SCREAMING_SNAKE_CASE__ ,projection_dim=SCREAMING_SNAKE_CASE__ ,num_hidden_layers=5 ,num_attention_heads=4 ,image_size=32 ,intermediate_size=37 ,patch_size=1 ,) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE:Tuple = StableUnCLIPImageNormalizer(embedding_dim=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE:Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE:List[Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=SCREAMING_SNAKE_CASE__ ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE:Optional[Any] = UNetaDConditionModel( sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") ,up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") ,block_out_channels=(32, 64) ,attention_head_dim=(2, 4) ,class_embed_type="projection" ,projection_class_embeddings_input_dim=embedder_projection_dim * 2 ,cross_attention_dim=SCREAMING_SNAKE_CASE__ ,layers_per_block=1 ,upcast_attention=SCREAMING_SNAKE_CASE__ ,use_linear_projection=SCREAMING_SNAKE_CASE__ ,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE:Tuple = DDIMScheduler( beta_schedule="scaled_linear" ,beta_start=0.00_085 ,beta_end=0.012 ,prediction_type="v_prediction" ,set_alpha_to_one=SCREAMING_SNAKE_CASE__ ,steps_offset=1 ,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE:Optional[Any] = AutoencoderKL() SCREAMING_SNAKE_CASE:Optional[int] = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def __UpperCamelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Any=0 ,SCREAMING_SNAKE_CASE__ : Any=True ): if str(SCREAMING_SNAKE_CASE__ ).startswith("mps" ): SCREAMING_SNAKE_CASE:Dict = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE:Optional[int] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) if pil_image: SCREAMING_SNAKE_CASE:Dict = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE:str = input_image.clamp(0 ,1 ) SCREAMING_SNAKE_CASE:Tuple = input_image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() SCREAMING_SNAKE_CASE:int = DiffusionPipeline.numpy_to_pil(SCREAMING_SNAKE_CASE__ )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:Dict = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE:List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE:Dict = StableUnCLIPImgaImgPipeline(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:str = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) inputs.update({"image_embeds": None} ) SCREAMING_SNAKE_CASE:List[str] = sd_pipe(**SCREAMING_SNAKE_CASE__ ).images SCREAMING_SNAKE_CASE:Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE:str = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : str ): SCREAMING_SNAKE_CASE:int = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[str] ): SCREAMING_SNAKE_CASE:int = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=SCREAMING_SNAKE_CASE__ ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() ,reason="XFormers attention is only available with CUDA and `xformers` installed" ,) def __UpperCamelCase ( self : List[str] ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=SCREAMING_SNAKE_CASE__ ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE:Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) SCREAMING_SNAKE_CASE:Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) SCREAMING_SNAKE_CASE:List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" ,torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE:Dict = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE:str = pipe(SCREAMING_SNAKE_CASE__ ,"anime turle" ,generator=SCREAMING_SNAKE_CASE__ ,output_type="np" ) SCREAMING_SNAKE_CASE:List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE:List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) SCREAMING_SNAKE_CASE:Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) SCREAMING_SNAKE_CASE:int = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" ,torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE:Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE:Union[str, Any] = pipe(SCREAMING_SNAKE_CASE__ ,"anime turle" ,generator=SCREAMING_SNAKE_CASE__ ,output_type="np" ) SCREAMING_SNAKE_CASE:int = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[str] ): SCREAMING_SNAKE_CASE:Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE:Dict = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" ,torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE:Union[str, Any] = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE:int = pipe( SCREAMING_SNAKE_CASE__ ,"anime turtle" ,num_inference_steps=2 ,output_type="np" ,) SCREAMING_SNAKE_CASE:Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
709
'''simple docstring''' import random def A_ ( snake_case , snake_case , snake_case = False ): SCREAMING_SNAKE_CASE:dict = {i: [] for i in range(snake_case )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(snake_case ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(snake_case ): for j in range(i + 1 , snake_case ): if random.random() < probability: graph[i].append(snake_case ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(snake_case ) return graph def A_ ( snake_case ): return { i: [j for j in range(snake_case ) if i != j] for i in range(snake_case ) } if __name__ == "__main__": import doctest doctest.testmod()
465
0
def _lowercase ( __lowerCamelCase : int ) -> "list[int]": '''simple docstring''' if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) UpperCamelCase__ : Optional[int] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCamelCase__ : Union[str, Any] = 1 if upper_limit > 0: UpperCamelCase__ : Union[str, Any] = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 ,upper_limit + 1 ): for j in range(__lowerCamelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _SCREAMING_SNAKE_CASE : Optional[Any] = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F'The Catalan numbers from 0 through {N} are:') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
344
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : str = [ """word_embeddings_layernorm.weight""", """word_embeddings_layernorm.bias""", """input_layernorm.weight""", """input_layernorm.bias""", """post_attention_layernorm.weight""", """post_attention_layernorm.bias""", """self_attention.dense.bias""", """mlp.dense_4h_to_h.bias""", """ln_f.weight""", """ln_f.bias""", ] _SCREAMING_SNAKE_CASE : Union[str, Any] = [ """mlp.dense_4h_to_h.weight""", """self_attention.dense.weight""", ] def _lowercase ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : int ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : str = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks UpperCamelCase__ : Optional[int] = int(re.match(R'''.*layer_(\d*).*''' ,__lowerCamelCase )[1] ) layer_number -= 3 return F'h.{layer_number}.' + key def _lowercase ( __lowerCamelCase : Optional[Any] ) -> str: '''simple docstring''' if dtype == torch.bool: return 1 / 8 UpperCamelCase__ : List[Any] = re.search(R'''[^\d](\d+)$''' ,str(__lowerCamelCase ) ) if bit_search is None: raise ValueError(F'`dtype` is not a valid dtype: {dtype}.' ) UpperCamelCase__ : Any = int(bit_search.groups()[0] ) return bit_size // 8 def _lowercase ( __lowerCamelCase : int ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : str ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Union[str, Any] ) -> Dict: '''simple docstring''' if bloom_config_file == "": UpperCamelCase__ : Union[str, Any] = BloomConfig() else: UpperCamelCase__ : int = BloomConfig.from_json_file(__lowerCamelCase ) if shard_model: UpperCamelCase__ : Tuple = os.listdir(__lowerCamelCase ) UpperCamelCase__ : Tuple = sorted(filter(lambda __lowerCamelCase : s.startswith('''layer''' ) and "model_00" in s ,__lowerCamelCase ) ) UpperCamelCase__ : Any = {'''weight_map''': {}, '''metadata''': {}} UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Dict = BloomConfig() for j, file in enumerate(__lowerCamelCase ): print('''Processing file: {}'''.format(__lowerCamelCase ) ) UpperCamelCase__ : str = None for i in range(__lowerCamelCase ): # load all TP files UpperCamelCase__ : Union[str, Any] = file.replace('''model_00''' ,F'model_0{i}' ) UpperCamelCase__ : List[str] = torch.load(os.path.join(__lowerCamelCase ,__lowerCamelCase ) ,map_location='''cpu''' ) # Rename keys in the transformers names UpperCamelCase__ : Optional[Any] = list(temp.keys() ) for key in keys: UpperCamelCase__ : Optional[Any] = temp.pop(__lowerCamelCase ) if tensors is None: UpperCamelCase__ : Dict = temp else: for key in tensors.keys(): if any(key.endswith(__lowerCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCamelCase__ : Dict = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCamelCase__ : str = torch.cat([tensors[key], temp[key]] ,dim=__lowerCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__lowerCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCamelCase__ : List[str] = tensors[key] / pretraining_tp torch.save( __lowerCamelCase ,os.path.join( __lowerCamelCase ,'''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) ,str(len(__lowerCamelCase ) ).zfill(5 ) ) ,) ,) for key in tensors.keys(): UpperCamelCase__ : Union[str, Any] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: UpperCamelCase__ : int = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) ,str(len(__lowerCamelCase ) ).zfill(5 ) ) UpperCamelCase__ : Union[str, Any] = BloomConfig() UpperCamelCase__ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCamelCase__ : Any = total_size with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(__lowerCamelCase ,WEIGHTS_NAME + '''.index.json''' ) ,'''w''' ,encoding='''utf-8''' ) as f: UpperCamelCase__ : List[Any] = json.dumps(__lowerCamelCase ,indent=2 ,sort_keys=__lowerCamelCase ) + '''\n''' f.write(__lowerCamelCase ) else: UpperCamelCase__ : Union[str, Any] = BloomModel(__lowerCamelCase ) UpperCamelCase__ : List[str] = os.listdir(__lowerCamelCase ) UpperCamelCase__ : int = sorted(filter(lambda __lowerCamelCase : s.startswith('''layer''' ) and "model_00" in s ,__lowerCamelCase ) ) UpperCamelCase__ : Any = None for i, file in enumerate(__lowerCamelCase ): UpperCamelCase__ : List[Any] = None for i in range(__lowerCamelCase ): # load all TP files UpperCamelCase__ : str = file.replace('''model_00''' ,F'model_0{i}' ) UpperCamelCase__ : List[Any] = torch.load(os.path.join(__lowerCamelCase ,__lowerCamelCase ) ,map_location='''cpu''' ) # Rename keys in the transformers names UpperCamelCase__ : Dict = list(temp.keys() ) for key in keys: UpperCamelCase__ : Any = temp.pop(__lowerCamelCase ) if tensors is None: UpperCamelCase__ : Optional[Any] = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(__lowerCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCamelCase__ : Dict = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCamelCase__ : str = torch.cat([tensors[key], temp[key]] ,dim=__lowerCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(__lowerCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCamelCase__ : Any = tensors[key] / pretraining_tp UpperCamelCase__ : Optional[Any] = model.load_state_dict(__lowerCamelCase ,strict=__lowerCamelCase ) assert not other_keys.unexpected_keys, F'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: UpperCamelCase__ : Optional[int] = set(other_keys.missing_keys ) else: UpperCamelCase__ : List[str] = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(__lowerCamelCase ,exist_ok=__lowerCamelCase ) UpperCamelCase__ : List[str] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCamelCase__ : int = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: UpperCamelCase__ : List[str] = model.to(config.torch_dtype ) torch.save(model.state_dict() ,__lowerCamelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bloom_checkpoint_path""", default=None, type=str, required=True, help="""Path to the Megatron-LM checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--bloom_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--shard_model""", action="""store_true""", help="""An optional setting to shard the output model \nThis enables sharding the converted checkpoint""", ) parser.add_argument( """--pretraining_tp""", default=4, type=int, help="""Pretraining TP rank that has been used when training the model in Megatron-LM \n""", ) _SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
344
1
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowercase ( unittest.TestCase): '''simple docstring''' def __init__( self : List[Any] , snake_case : int , snake_case : Optional[Any]=2 , snake_case : Tuple=56 , snake_case : Dict=True , snake_case : Any=True , snake_case : Any=True , snake_case : Tuple=True , snake_case : Dict=99 , snake_case : Dict=32 , snake_case : int=2 , snake_case : Optional[int]=2 , snake_case : List[str]=7 , snake_case : str="gelu_new" , snake_case : List[Any]=0.1 , snake_case : Tuple=0.1 , snake_case : Tuple=512 , snake_case : str=16 , snake_case : Tuple=2 , snake_case : str=0.02 , snake_case : Any=4 , snake_case : int="block_sparse" , snake_case : List[str]=True , snake_case : str=False , snake_case : Any=2 , snake_case : Optional[int]=3 , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : int = seq_length SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : Optional[Any] = use_attention_mask SCREAMING_SNAKE_CASE : List[Any] = use_token_type_ids SCREAMING_SNAKE_CASE : List[Any] = use_labels SCREAMING_SNAKE_CASE : Optional[int] = vocab_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : List[Any] = num_choices SCREAMING_SNAKE_CASE : Any = rescale_embeddings SCREAMING_SNAKE_CASE : Any = attention_type SCREAMING_SNAKE_CASE : Tuple = use_bias SCREAMING_SNAKE_CASE : str = block_size SCREAMING_SNAKE_CASE : Tuple = num_random_blocks def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : str = None if self.use_attention_mask: SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Dict = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[str] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Dict = config_and_inputs SCREAMING_SNAKE_CASE : Union[str, Any] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class lowercase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase): '''simple docstring''' UpperCAmelCase : Tuple = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase : Optional[Any] = False UpperCAmelCase : List[Any] = False def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCamelCase_ ( self : Any ): '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCamelCase_ ( self : Dict ): '''simple docstring''' super().test_hidden_states_output() @slow def lowerCamelCase_ ( self : int ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(snake_case ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE : int = self._prepare_for_class(snake_case , snake_case ) SCREAMING_SNAKE_CASE : Any = model_class(snake_case ) @jax.jit def model_jitted(snake_case : Tuple , snake_case : Tuple=None , **snake_case : List[str] ): return model(input_ids=snake_case , attention_mask=snake_case , **snake_case ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE : str = model_jitted(**snake_case ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE : Tuple = model_jitted(**snake_case ).to_tuple() self.assertEqual(len(snake_case ) , len(snake_case ) ) for jitted_output, output in zip(snake_case , snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase_ ( self : int , snake_case : List[Any] , snake_case : Tuple , snake_case : str , snake_case : Optional[Any]=1E-5 , snake_case : Any="outputs" , snake_case : int=None ): '''simple docstring''' if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case )
719
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _lowerCamelCase : int = """base_with_context""" def __a ( __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) SCREAMING_SNAKE_CASE : Dict = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): SCREAMING_SNAKE_CASE : Any = weights[F'''layers_{lyr_num}'''] SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) SCREAMING_SNAKE_CASE : List[Any] = ly_weight['attention'] SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def __a ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): SCREAMING_SNAKE_CASE : Dict = weights[F'''layers_{lyr_num}'''] SCREAMING_SNAKE_CASE : List[Any] = ly_weight['attention'] SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) SCREAMING_SNAKE_CASE : str = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def __a ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): SCREAMING_SNAKE_CASE : Tuple = weights[F'''layers_{lyr_num}'''] SCREAMING_SNAKE_CASE : Dict = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Any = ly_weight['self_attention'] SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) SCREAMING_SNAKE_CASE : str = ly_weight['MultiHeadDotProductAttention_0'] SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def __a ( __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[int] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) SCREAMING_SNAKE_CASE : int = jnp.tree_util.tree_map(onp.array , __lowerCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) SCREAMING_SNAKE_CASE : Dict = inference.parse_training_gin_file(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE : Dict = inference.InferenceModel(args.checkpoint_path , __lowerCAmelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) SCREAMING_SNAKE_CASE : List[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) SCREAMING_SNAKE_CASE : str = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) SCREAMING_SNAKE_CASE : str = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , __lowerCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , __lowerCAmelCase ) SCREAMING_SNAKE_CASE : Any = load_decoder(ta_checkpoint['target']['decoder'] , __lowerCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) SCREAMING_SNAKE_CASE : int = SpectrogramDiffusionPipeline( notes_encoder=__lowerCAmelCase , continuous_encoder=__lowerCAmelCase , decoder=__lowerCAmelCase , scheduler=__lowerCAmelCase , melgan=__lowerCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help="""Path to the original jax model checkpoint.""", ) _lowerCamelCase : Any = parser.parse_args() main(args)
308
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. SCREAMING_SNAKE_CASE_ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. SCREAMING_SNAKE_CASE_ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. SCREAMING_SNAKE_CASE_ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: str ) -> tuple[str, float]: _UpperCAmelCase : List[Any] = len([g for position, g in enumerate(lowerCAmelCase ) if g == main_target[position]] ) return (item, float(lowerCAmelCase )) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: str ) -> tuple[str, str]: _UpperCAmelCase : Optional[int] = random.randint(0 , len(lowerCAmelCase ) - 1 ) _UpperCAmelCase : Union[str, Any] = parent_a[:random_slice] + parent_a[random_slice:] _UpperCAmelCase : Any = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: list[str] ) -> str: _UpperCAmelCase : List[str] = list(lowerCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: _UpperCAmelCase : List[str] = random.choice(lowerCAmelCase ) return "".join(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: tuple[str, float] , lowerCAmelCase: list[tuple[str, float]] , lowerCAmelCase: list[str] , ) -> list[str]: _UpperCAmelCase : Union[str, Any] = [] # Generate more children proportionally to the fitness score. _UpperCAmelCase : Dict = int(parent_a[1] * 100 ) + 1 _UpperCAmelCase : int = 10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = population_score[random.randint(0 , lowerCAmelCase )][0] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = crossover(parent_a[0] , lowerCAmelCase ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase , lowerCAmelCase ) ) pop.append(mutate(lowerCAmelCase , lowerCAmelCase ) ) return pop def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: list[str] , lowerCAmelCase: bool = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: _UpperCAmelCase : Any = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCAmelCase : Any = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCAmelCase : List[str] = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCAmelCase ) # Generate random starting population. _UpperCAmelCase : Optional[Any] = [] for _ in range(lowerCAmelCase ): population.append("".join([random.choice(lowerCAmelCase ) for i in range(len(lowerCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCAmelCase : Tuple = [evaluate(lowerCAmelCase , lowerCAmelCase ) for item in population] # Check if there is a matching evolution. _UpperCAmelCase : str = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x[1] , reverse=lowerCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCAmelCase : Any = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase ) # Normalize population score to be between 0 and 1. _UpperCAmelCase : int = [ (item, score / len(lowerCAmelCase )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase ): population.extend(select(population_score[int(lowerCAmelCase )] , lowerCAmelCase , lowerCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase ) > N_POPULATION: break if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) SCREAMING_SNAKE_CASE_ = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
300
import os def __SCREAMING_SNAKE_CASE ( ) -> int: with open(os.path.dirname(lowerCAmelCase ) + "/grid.txt" ) as f: _UpperCAmelCase : Optional[Any] = [] # noqa: E741 for _ in range(20 ): l.append([int(lowerCAmelCase ) for x in f.readline().split()] ) _UpperCAmelCase : str = 0 # right for i in range(20 ): for j in range(17 ): _UpperCAmelCase : int = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: _UpperCAmelCase : List[Any] = temp # down for i in range(17 ): for j in range(20 ): _UpperCAmelCase : Dict = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: _UpperCAmelCase : Optional[int] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): _UpperCAmelCase : Optional[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: _UpperCAmelCase : Dict = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): _UpperCAmelCase : List[str] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: _UpperCAmelCase : Tuple = temp return maximum if __name__ == "__main__": print(solution())
300
1
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Tuple = len(UpperCAmelCase ) lowercase__ : Union[str, Any] = [[0] * n for i in range(UpperCAmelCase )] for i in range(UpperCAmelCase ): lowercase__ : str = y_points[i] for i in range(2 , UpperCAmelCase ): for j in range(UpperCAmelCase , UpperCAmelCase ): lowercase__ : Union[str, Any] = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
428
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a: Optional[Any] = logging.get_logger(__name__) __a: str = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "efficientnet" def __init__( self , __lowerCAmelCase = 3 , __lowerCAmelCase = 600 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 3.1 , __lowerCAmelCase = 8 , __lowerCAmelCase = [3, 3, 5, 3, 5, 5, 3] , __lowerCAmelCase = [32, 16, 24, 40, 80, 112, 192] , __lowerCAmelCase = [16, 24, 40, 80, 112, 192, 320] , __lowerCAmelCase = [] , __lowerCAmelCase = [1, 2, 2, 2, 1, 2, 1] , __lowerCAmelCase = [1, 2, 2, 3, 3, 4, 1] , __lowerCAmelCase = [1, 6, 6, 6, 6, 6, 6] , __lowerCAmelCase = 0.2_5 , __lowerCAmelCase = "swish" , __lowerCAmelCase = 2560 , __lowerCAmelCase = "mean" , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 0.0_0_1 , __lowerCAmelCase = 0.9_9 , __lowerCAmelCase = 0.5 , __lowerCAmelCase = 0.2 , **__lowerCAmelCase , ) -> Tuple: super().__init__(**__lowerCAmelCase ) lowercase__ : Optional[int] = num_channels lowercase__ : Any = image_size lowercase__ : Tuple = width_coefficient lowercase__ : Any = depth_coefficient lowercase__ : List[Any] = depth_divisor lowercase__ : Tuple = kernel_sizes lowercase__ : Tuple = in_channels lowercase__ : Optional[int] = out_channels lowercase__ : Dict = depthwise_padding lowercase__ : List[str] = strides lowercase__ : List[Any] = num_block_repeats lowercase__ : Union[str, Any] = expand_ratios lowercase__ : str = squeeze_expansion_ratio lowercase__ : str = hidden_act lowercase__ : Optional[Any] = hidden_dim lowercase__ : List[str] = pooling_type lowercase__ : Optional[int] = initializer_range lowercase__ : List[str] = batch_norm_eps lowercase__ : str = batch_norm_momentum lowercase__ : Any = dropout_rate lowercase__ : Any = drop_connect_rate lowercase__ : Dict = sum(__lowerCAmelCase ) * 4 class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = version.parse("1.11" ) @property def _lowerCAmelCase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCAmelCase( self ) -> float: return 1E-5
428
1
import mpmath # for roots of unity import numpy as np class lowercase : def __init__( self : List[str] , _lowercase : Optional[int]=None , _lowercase : Optional[int]=None ): # Input as list SCREAMING_SNAKE_CASE__ : List[str] = list(poly_a or [0] )[:] SCREAMING_SNAKE_CASE__ : Dict = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() SCREAMING_SNAKE_CASE__ : int = len(self.polyB ) # Add 0 to make lengths equal a power of 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform SCREAMING_SNAKE_CASE__ : Any = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product SCREAMING_SNAKE_CASE__ : Any = self.__multiply() def lowercase__ ( self : Optional[int] , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : str = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(_lowercase ) <= 1: return dft[0] # SCREAMING_SNAKE_CASE__ : Dict = self.c_max_length // 2 while next_ncol > 0: SCREAMING_SNAKE_CASE__ : str = [[] for i in range(_lowercase )] SCREAMING_SNAKE_CASE__ : List[Any] = self.root**next_ncol # First half of next step SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowercase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step SCREAMING_SNAKE_CASE__ : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowercase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update SCREAMING_SNAKE_CASE__ : Dict = new_dft SCREAMING_SNAKE_CASE__ : Tuple = next_ncol // 2 return dft[0] def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Tuple = self.__dft('''A''' ) SCREAMING_SNAKE_CASE__ : int = self.__dft('''B''' ) SCREAMING_SNAKE_CASE__ : int = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT SCREAMING_SNAKE_CASE__ : int = 2 while next_ncol <= self.c_max_length: SCREAMING_SNAKE_CASE__ : Any = [[] for i in range(_lowercase )] SCREAMING_SNAKE_CASE__ : Tuple = self.root ** (next_ncol // 2) SCREAMING_SNAKE_CASE__ : List[str] = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update SCREAMING_SNAKE_CASE__ : Tuple = new_inverse_c next_ncol *= 2 # Unpack SCREAMING_SNAKE_CASE__ : Tuple = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ): SCREAMING_SNAKE_CASE__ : Optional[int] = '''A = ''' + ''' + '''.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) SCREAMING_SNAKE_CASE__ : int = '''B = ''' + ''' + '''.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) SCREAMING_SNAKE_CASE__ : List[str] = '''A*B = ''' + ''' + '''.join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return f"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
35
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = DownBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' def lowerCAmelCase__ ( self : int ) -> Tuple: """simple docstring""" snake_case_ = [-0.0_232, -0.9_869, 0.8_054, -0.0_637, -0.1_688, -1.4_264, 0.4_470, -1.3_394, 0.0_904] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ResnetDownsampleBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' def lowerCAmelCase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" snake_case_ = [0.0_710, 0.2_410, -0.7_320, -1.0_757, -1.1_343, 0.3_540, -0.0_133, -0.2_576, 0.0_948] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = AttnDownBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' def lowerCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ = [0.0_636, 0.8_964, -0.6_234, -1.0_131, 0.0_844, 0.4_935, 0.3_437, 0.0_911, -0.2_957] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = CrossAttnDownBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' def lowerCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" snake_case_ , snake_case_ = super().prepare_init_args_and_inputs_for_common() snake_case_ = 3_2 return init_dict, inputs_dict def lowerCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" snake_case_ = [0.2_238, -0.7_396, -0.2_255, -0.3_829, 0.1_925, 1.1_665, 0.0_603, -0.7_295, 0.1_983] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = SimpleCrossAttnDownBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' @property def lowerCAmelCase__ ( self : Dict ) -> Any: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=_lowerCAmelCase ) def lowerCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" snake_case_ , snake_case_ = super().prepare_init_args_and_inputs_for_common() snake_case_ = 3_2 return init_dict, inputs_dict @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def lowerCAmelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" snake_case_ = [0.7_921, -0.0_992, -0.1_962, -0.7_695, -0.4_242, 0.7_804, 0.4_737, 0.2_765, 0.3_338] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = SkipDownBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' @property def lowerCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_skip_sample=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] ) -> int: """simple docstring""" snake_case_ = [-0.0_845, -0.2_087, -0.2_465, 0.0_971, 0.1_900, -0.0_484, 0.2_664, 0.4_179, 0.5_069] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = AttnSkipDownBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' @property def lowerCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" return super().get_dummy_input(include_skip_sample=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case_ = [0.5_539, 0.1_609, 0.4_924, 0.0_537, -0.1_995, 0.4_050, 0.0_979, -0.2_721, -0.0_642] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = DownEncoderBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' @property def lowerCAmelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ = { "in_channels": 3_2, "out_channels": 3_2, } snake_case_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" snake_case_ = [1.1_102, 0.5_302, 0.4_872, -0.0_023, -0.8_042, 0.0_483, -0.3_489, -0.5_632, 0.7_626] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = AttnDownEncoderBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' @property def lowerCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=_lowerCAmelCase ) def lowerCAmelCase__ ( self : int ) -> Dict: """simple docstring""" snake_case_ = { "in_channels": 3_2, "out_channels": 3_2, } snake_case_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self : List[str] ) -> Any: """simple docstring""" snake_case_ = [0.8_966, -0.1_486, 0.8_568, 0.8_141, -0.9_046, -0.1_342, -0.0_972, -0.7_417, 0.1_538] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UNetMidBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'mid' def lowerCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" snake_case_ = { "in_channels": 3_2, "temb_channels": 1_2_8, } snake_case_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" snake_case_ = [-0.1_062, 1.7_248, 0.3_494, 1.4_569, -0.0_910, -1.2_421, -0.9_984, 0.6_736, 1.0_028] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UNetMidBlockaDCrossAttn # noqa F405 _SCREAMING_SNAKE_CASE = 'mid' def lowerCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" snake_case_ , snake_case_ = super().prepare_init_args_and_inputs_for_common() snake_case_ = 3_2 return init_dict, inputs_dict def lowerCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" snake_case_ = [0.0_187, 2.4_220, 0.4_484, 1.1_203, -0.6_121, -1.5_122, -0.8_270, 0.7_851, 1.8_335] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UNetMidBlockaDSimpleCrossAttn # noqa F405 _SCREAMING_SNAKE_CASE = 'mid' @property def lowerCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" snake_case_ , snake_case_ = super().prepare_init_args_and_inputs_for_common() snake_case_ = 3_2 return init_dict, inputs_dict def lowerCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" snake_case_ = [0.7_143, 1.9_974, 0.5_448, 1.3_977, 0.1_282, -1.1_237, -1.4_238, 0.5_530, 0.8_880] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UpBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : Dict ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def lowerCAmelCase__ ( self : str ) -> Any: """simple docstring""" snake_case_ = [-0.2_041, -0.4_165, -0.3_022, 0.0_041, -0.6_628, -0.7_053, 0.1_928, -0.0_325, 0.0_523] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ResnetUpsampleBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : str ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case_ = [0.2_287, 0.3_549, -0.1_346, 0.4_797, -0.1_715, -0.9_649, 0.7_305, -0.5_864, -0.6_244] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = CrossAttnUpBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def lowerCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ , snake_case_ = super().prepare_init_args_and_inputs_for_common() snake_case_ = 3_2 return init_dict, inputs_dict def lowerCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ = [-0.1_403, -0.3_515, -0.0_420, -0.1_425, 0.3_167, 0.5_094, -0.2_181, 0.5_931, 0.5_582] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = SimpleCrossAttnUpBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase , include_encoder_hidden_states=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" snake_case_ , snake_case_ = super().prepare_init_args_and_inputs_for_common() snake_case_ = 3_2 return init_dict, inputs_dict def lowerCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" snake_case_ = [0.2_645, 0.1_480, 0.0_909, 0.8_044, -0.9_758, -0.9_083, 0.0_994, -1.1_453, -0.7_402] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = AttnUpBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def lowerCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" snake_case_ = [0.0_979, 0.1_326, 0.0_021, 0.0_659, 0.2_249, 0.0_059, 0.1_132, 0.5_952, 0.1_033] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = SkipUpBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" snake_case_ = [-0.0_893, -0.1_234, -0.1_506, -0.0_332, 0.0_123, -0.0_211, 0.0_566, 0.0_143, 0.0_362] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = AttnSkipUpBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" snake_case_ = [0.0_361, 0.0_617, 0.2_787, -0.0_350, 0.0_342, 0.3_421, -0.0_843, 0.0_913, 0.3_015] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UpDecoderBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_temb=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Any ) -> Any: """simple docstring""" snake_case_ = {"in_channels": 3_2, "out_channels": 3_2} snake_case_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" snake_case_ = [0.4_404, 0.1_998, -0.9_886, -0.3_320, -0.3_128, -0.7_034, -0.6_955, -0.2_338, -0.3_137] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = AttnUpDecoderBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" return super().get_dummy_input(include_temb=_lowerCAmelCase ) def lowerCAmelCase__ ( self : int ) -> Dict: """simple docstring""" snake_case_ = {"in_channels": 3_2, "out_channels": 3_2} snake_case_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case_ = [0.6_738, 0.4_491, 0.1_055, 1.0_710, 0.7_316, 0.3_339, 0.3_352, 0.1_023, 0.3_568] super().test_output(_lowerCAmelCase )
283
0
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _UpperCamelCase = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _UpperCamelCase = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def _lowerCAmelCase( UpperCAmelCase_ : List[Any] ) -> Tuple: lowerCAmelCase__ = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=UpperCAmelCase_ )[0] @deprecated(UpperCAmelCase_ , """Please use tf.data to implement this functionality.""" ) def _lowerCAmelCase( UpperCAmelCase_ : List[Any] ) -> Any: print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=UpperCAmelCase_ ) as bytestream: lowerCAmelCase__ = _readaa(UpperCAmelCase_ ) if magic != 2051: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) ) lowerCAmelCase__ = _readaa(UpperCAmelCase_ ) lowerCAmelCase__ = _readaa(UpperCAmelCase_ ) lowerCAmelCase__ = _readaa(UpperCAmelCase_ ) lowerCAmelCase__ = bytestream.read(rows * cols * num_images ) lowerCAmelCase__ = numpy.frombuffer(UpperCAmelCase_ , dtype=numpy.uinta ) lowerCAmelCase__ = data.reshape(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , 1 ) return data @deprecated(UpperCAmelCase_ , """Please use tf.one_hot on tensors.""" ) def _lowerCAmelCase( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ) -> Optional[Any]: lowerCAmelCase__ = labels_dense.shape[0] lowerCAmelCase__ = numpy.arange(UpperCAmelCase_ ) * num_classes lowerCAmelCase__ = numpy.zeros((num_labels, num_classes) ) lowerCAmelCase__ = 1 return labels_one_hot @deprecated(UpperCAmelCase_ , """Please use tf.data to implement this functionality.""" ) def _lowerCAmelCase( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Optional[int]=10 ) -> List[str]: print("""Extracting""" , f.name ) with gzip.GzipFile(fileobj=UpperCAmelCase_ ) as bytestream: lowerCAmelCase__ = _readaa(UpperCAmelCase_ ) if magic != 2049: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) ) lowerCAmelCase__ = _readaa(UpperCAmelCase_ ) lowerCAmelCase__ = bytestream.read(UpperCAmelCase_ ) lowerCAmelCase__ = numpy.frombuffer(UpperCAmelCase_ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(UpperCAmelCase_ , UpperCAmelCase_ ) return labels class lowerCamelCase__ : '''simple docstring''' @deprecated( __A , """Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""" , ) def __init__( self : Optional[int] , __A : Optional[Any] , __A : List[Any] , __A : Tuple=False , __A : str=False , __A : Any=dtypes.floataa , __A : Union[str, Any]=True , __A : Optional[int]=None , ) -> List[str]: '''simple docstring''' lowerCAmelCase__ ,lowerCAmelCase__ = random_seed.get_seed(__A ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCAmelCase__ = dtypes.as_dtype(__A ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: lowerCAmelCase__ = 1_0000 lowerCAmelCase__ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' lowerCAmelCase__ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCAmelCase__ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCAmelCase__ = images.astype(numpy.floataa ) lowerCAmelCase__ = numpy.multiply(__A , 1.0 / 2_5_5.0 ) lowerCAmelCase__ = images lowerCAmelCase__ = labels lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 @property def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' return self._images @property def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' return self._labels @property def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' return self._num_examples @property def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' return self._epochs_completed def lowercase__ ( self : Optional[Any] , __A : Union[str, Any] , __A : Any=False , __A : List[Any]=True ) -> Optional[int]: '''simple docstring''' if fake_data: lowerCAmelCase__ = [1] * 784 lowerCAmelCase__ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__A )], [fake_label for _ in range(__A )], ) lowerCAmelCase__ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCAmelCase__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__A ) lowerCAmelCase__ = self.images[perma] lowerCAmelCase__ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCAmelCase__ = self._num_examples - start lowerCAmelCase__ = self._images[start : self._num_examples] lowerCAmelCase__ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCAmelCase__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__A ) lowerCAmelCase__ = self.images[perm] lowerCAmelCase__ = self.labels[perm] # Start next epoch lowerCAmelCase__ = 0 lowerCAmelCase__ = batch_size - rest_num_examples lowerCAmelCase__ = self._index_in_epoch lowerCAmelCase__ = self._images[start:end] lowerCAmelCase__ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowerCAmelCase__ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(UpperCAmelCase_ , """Please write your own downloading logic.""" ) def _lowerCAmelCase( UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ) -> int: if not gfile.Exists(UpperCAmelCase_ ): gfile.MakeDirs(UpperCAmelCase_ ) lowerCAmelCase__ = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) if not gfile.Exists(UpperCAmelCase_ ): urllib.request.urlretrieve(UpperCAmelCase_ , UpperCAmelCase_ ) # noqa: S310 with gfile.GFile(UpperCAmelCase_ ) as f: lowerCAmelCase__ = f.size() print("""Successfully downloaded""" , UpperCAmelCase_ , UpperCAmelCase_ , """bytes.""" ) return filepath @deprecated( UpperCAmelCase_ , """Please use alternatives such as:""" """ tensorflow_datasets.load('mnist')""" ) def _lowerCAmelCase( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Dict=dtypes.floataa , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Any=5000 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str=DEFAULT_SOURCE_URL , ) -> List[str]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=UpperCAmelCase_ , one_hot=UpperCAmelCase_ , dtype=UpperCAmelCase_ , seed=UpperCAmelCase_ ) lowerCAmelCase__ = fake() lowerCAmelCase__ = fake() lowerCAmelCase__ = fake() return _Datasets(train=UpperCAmelCase_ , validation=UpperCAmelCase_ , test=UpperCAmelCase_ ) if not source_url: # empty string check lowerCAmelCase__ = DEFAULT_SOURCE_URL lowerCAmelCase__ = """train-images-idx3-ubyte.gz""" lowerCAmelCase__ = """train-labels-idx1-ubyte.gz""" lowerCAmelCase__ = """t10k-images-idx3-ubyte.gz""" lowerCAmelCase__ = """t10k-labels-idx1-ubyte.gz""" lowerCAmelCase__ = _maybe_download( UpperCAmelCase_ , UpperCAmelCase_ , source_url + train_images_file ) with gfile.Open(UpperCAmelCase_ , """rb""" ) as f: lowerCAmelCase__ = _extract_images(UpperCAmelCase_ ) lowerCAmelCase__ = _maybe_download( UpperCAmelCase_ , UpperCAmelCase_ , source_url + train_labels_file ) with gfile.Open(UpperCAmelCase_ , """rb""" ) as f: lowerCAmelCase__ = _extract_labels(UpperCAmelCase_ , one_hot=UpperCAmelCase_ ) lowerCAmelCase__ = _maybe_download( UpperCAmelCase_ , UpperCAmelCase_ , source_url + test_images_file ) with gfile.Open(UpperCAmelCase_ , """rb""" ) as f: lowerCAmelCase__ = _extract_images(UpperCAmelCase_ ) lowerCAmelCase__ = _maybe_download( UpperCAmelCase_ , UpperCAmelCase_ , source_url + test_labels_file ) with gfile.Open(UpperCAmelCase_ , """rb""" ) as f: lowerCAmelCase__ = _extract_labels(UpperCAmelCase_ , one_hot=UpperCAmelCase_ ) if not 0 <= validation_size <= len(UpperCAmelCase_ ): lowerCAmelCase__ = ( """Validation size should be between 0 and """ F'''{len(UpperCAmelCase_ )}. Received: {validation_size}.''' ) raise ValueError(UpperCAmelCase_ ) lowerCAmelCase__ = train_images[:validation_size] lowerCAmelCase__ = train_labels[:validation_size] lowerCAmelCase__ = train_images[validation_size:] lowerCAmelCase__ = train_labels[validation_size:] lowerCAmelCase__ = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed} lowerCAmelCase__ = _DataSet(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase__ = _DataSet(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase__ = _DataSet(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) return _Datasets(train=UpperCAmelCase_ , validation=UpperCAmelCase_ , test=UpperCAmelCase_ )
211
'''simple docstring''' import argparse import datetime def _lowerCAmelCase( UpperCAmelCase_ : str ) -> str: lowerCAmelCase__ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } lowerCAmelCase__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(UpperCAmelCase_ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month lowerCAmelCase__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) lowerCAmelCase__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day lowerCAmelCase__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator lowerCAmelCase__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year lowerCAmelCase__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation lowerCAmelCase__ = datetime.date(int(UpperCAmelCase_ ) , int(UpperCAmelCase_ ) , int(UpperCAmelCase_ ) ) # Start math if m <= 2: lowerCAmelCase__ = y - 1 lowerCAmelCase__ = m + 12 # maths var lowerCAmelCase__ = int(str(UpperCAmelCase_ )[:2] ) lowerCAmelCase__ = int(str(UpperCAmelCase_ )[2:] ) lowerCAmelCase__ = int(2.6 * m - 5.39 ) lowerCAmelCase__ = int(c / 4 ) lowerCAmelCase__ = int(k / 4 ) lowerCAmelCase__ = int(d + k ) lowerCAmelCase__ = int(t + u + v + x ) lowerCAmelCase__ = int(z - (2 * c) ) lowerCAmelCase__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response lowerCAmelCase__ = F'''Your date {date_input}, is a {days[str(UpperCAmelCase_ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCamelCase = parser.parse_args() zeller(args.date_input)
211
1
'''simple docstring''' # Lint as: python3 import itertools import os import re a_ : Optional[Any] = re.compile(R"""([A-Z]+)([A-Z][a-z])""") a_ : List[str] = re.compile(R"""([a-z\d])([A-Z])""") a_ : Optional[Any] = re.compile(R"""(?<!_)_(?!_)""") a_ : Optional[int] = re.compile(R"""(_{2,})""") a_ : List[Any] = R"""^\w+(\.\w+)*$""" a_ : Any = R"""<>:/\|?*""" def a_ ( __snake_case : Union[str, Any] ) -> Any: """simple docstring""" lowerCamelCase_ =_uppercase_uppercase_re.sub(r'''\1_\2''' , __snake_case ) lowerCamelCase_ =_lowercase_uppercase_re.sub(r'''\1_\2''' , __snake_case ) return name.lower() def a_ ( __snake_case : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ =_single_underscore_re.split(__snake_case ) lowerCamelCase_ =[_multiple_underscores_re.split(__snake_case ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__snake_case ) if n != '''''' ) def a_ ( __snake_case : Optional[Any] ) -> Optional[int]: """simple docstring""" if os.path.basename(__snake_case ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(__snake_case ) def a_ ( __snake_case : Any , __snake_case : Union[str, Any] ) -> List[str]: """simple docstring""" if os.path.basename(__snake_case ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , __snake_case ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(__snake_case )}-{split}''' def a_ ( __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : int=None ) -> str: """simple docstring""" lowerCamelCase_ =filename_prefix_for_split(__snake_case , __snake_case ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) return F'''{filepath}*''' def a_ ( __snake_case : Any , __snake_case : str , __snake_case : Dict , __snake_case : Union[str, Any]=None , __snake_case : Dict=None ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =filename_prefix_for_split(__snake_case , __snake_case ) lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) if shard_lengths: lowerCamelCase_ =len(__snake_case ) lowerCamelCase_ =[F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(__snake_case )] if filetype_suffix: lowerCamelCase_ =[filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: lowerCamelCase_ =prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
676
'''simple docstring''' from __future__ import annotations def a_ ( __snake_case : int ) -> list[int]: """simple docstring""" lowerCamelCase_ =[True] * limit lowerCamelCase_ =False lowerCamelCase_ =False lowerCamelCase_ =True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowerCamelCase_ =i * 2 while index < limit: lowerCamelCase_ =False lowerCamelCase_ =index + i lowerCamelCase_ =[2] for i in range(3 , __snake_case , 2 ): if is_prime[i]: primes.append(__snake_case ) return primes def a_ ( __snake_case : int = 100_0000 ) -> int: """simple docstring""" lowerCamelCase_ =prime_sieve(__snake_case ) lowerCamelCase_ =0 lowerCamelCase_ =0 for i in range(len(__snake_case ) ): for j in range(i + length , len(__snake_case ) ): lowerCamelCase_ =sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowerCamelCase_ =j - i lowerCamelCase_ =sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
676
1
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def a ( A__ : Optional[int]=32 , A__ : str=10 , A__ : Tuple=100 , A__ : Union[str, Any]=1026 , A__ : Tuple=True , A__ : Dict="data/tokenized_stories_train_wikitext103.jbl" , A__ : Dict="igf_context_pairs.jbl" , ) -> Optional[int]: """simple docstring""" set_seed(3 ) # generate train_data and objective_set _lowercase , _lowercase =generate_datasets( A__ , A__ , number=A__ , min_len=1026 , trim=A__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? _lowercase =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model _lowercase =load_gpta('gpt2' ).to(A__ ) print('computing perplexity on objective set' ) _lowercase =compute_perplexity(A__ , A__ , A__ ).item() print('perplexity on objective set:' , A__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def a ( A__ : str , A__ : str=15 , A__ : Optional[int]=128 , A__ : Dict=100 , A__ : Optional[Any]="igf_model.pt" , ) -> int: """simple docstring""" set_seed(42 ) # Load pre-trained model _lowercase =GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model _lowercase =SecondaryLearner(A__ ) # Train secondary learner _lowercase =train_secondary_learner( A__ , A__ , max_epochs=A__ , batch_size=A__ , eval_freq=100 , igf_model_path=A__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def a ( A__ : Dict , A__ : Optional[Any] , A__ : str , A__ : Union[str, Any]=32 , A__ : List[str]=1000 , A__ : int=16 , A__ : List[str]=1.0 , A__ : Tuple=recopy_gpta , A__ : Any=None , A__ : Tuple=10 , A__ : Tuple="gpt2_finetuned.pt" , ) -> str: """simple docstring""" _lowercase =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) _lowercase =RandomSampler(A__ ) _lowercase =DataLoader(A__ , sampler=A__ ) _lowercase =max_steps // (len(A__ )) + 1 _lowercase =0 _lowercase =torch.zeros((1, context_len) , dtype=torch.long , device=A__ ) _lowercase , _lowercase , _lowercase =recopy_model(A__ , A__ , A__ ) model.train() if secondary_learner is not None: secondary_learner.to(A__ ) secondary_learner.eval() _lowercase =[] _lowercase =0 _lowercase =[] _lowercase =[] # Compute the performance of the transformer model at the beginning _lowercase =compute_perplexity(A__ , A__ , A__ ) test_perps.append(A__ ) print('Test perplexity, step' , A__ , ':' , A__ ) for epoch in range(int(A__ ) ): for step, example in enumerate(A__ ): torch.cuda.empty_cache() _lowercase =random.randint(0 , example.size(2 ) - context_len - 1 ) _lowercase =example[0, 0, start : start + context_len] lm_optimizer.zero_grad() _lowercase =model(A__ , labels=A__ ) _lowercase =True if secondary_learner is not None: _lowercase =secondary_learner.forward( torch.tensor(A__ , dtype=torch.long , device=A__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(A__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: _lowercase =-1 if predicted_q < threshold: _lowercase =False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) _lowercase =outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() _lowercase =0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: _lowercase =compute_perplexity(A__ , A__ , A__ ) test_perps.append(A__ ) print('Test perplexity, step' , A__ , ':' , A__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , A__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def a ( ) -> Optional[int]: """simple docstring""" _lowercase =argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=A__ , type=A__ , required=A__ , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=A__ , type=A__ , required=A__ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=A__ , default=A__ , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=A__ , default=A__ , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=A__ , type=A__ , required=A__ , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=A__ , type=A__ , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=A__ , default=A__ , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=A__ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=A__ , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=A__ , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=1000 , type=A__ , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=A__ , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=A__ , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=A__ , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=A__ , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=1026 , type=A__ , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=A__ , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=A__ , type=A__ , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=A__ , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=A__ , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=A__ , type=A__ , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=A__ , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner _lowercase =joblib.load('data/IGF_values.jbl' ) # Train secondary learner _lowercase =training_secondary_learner( A__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model _lowercase =GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model _lowercase , _lowercase =generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=A__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( A__ , A__ , A__ , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=A__ , secondary_learner=A__ , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
380
print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
380
1
"""simple docstring""" from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Tuple = """WhisperFeatureExtractor""" __magic_name__ :Dict = """WhisperTokenizer""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :str = self.feature_extractor lowerCAmelCase__ :Any = False def snake_case ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=__UpperCAmelCase , language=__UpperCAmelCase , no_timestamps=__UpperCAmelCase ) def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = kwargs.pop('audio' , __UpperCAmelCase ) lowerCAmelCase__ :int = kwargs.pop('sampling_rate' , __UpperCAmelCase ) lowerCAmelCase__ :str = kwargs.pop('text' , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: lowerCAmelCase__ :int = args[0] lowerCAmelCase__ :Tuple = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCAmelCase__ :List[str] = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: lowerCAmelCase__ :Optional[int] = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase__ :Optional[int] = encodings['input_ids'] return inputs def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase="np" ): '''simple docstring''' return self.tokenizer.get_prompt_ids(__UpperCAmelCase , return_tensors=__UpperCAmelCase )
93
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _a ( __a ): """simple docstring""" A_ = (DDPMParallelScheduler,) def lowerCamelCase__ ( self : Optional[Any] , **lowercase_ : str ): '''simple docstring''' lowercase_ = { """num_train_timesteps""": 1_000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**lowercase_ ) return config def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowercase_ ) def lowerCamelCase__ ( self : str ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase_ ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' self.check_over_configs(thresholding=lowercase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=lowercase_ ) def lowerCamelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowercase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowercase_ ) lowercase_ = len(lowercase_ ) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = self.dummy_sample_deter + 0.1 lowercase_ = self.dummy_sample_deter - 0.1 lowercase_ = samplea.shape[0] lowercase_ = torch.stack([samplea, samplea, samplea] , dim=0 ) lowercase_ = torch.arange(lowercase_ )[0:3, None].repeat(1 , lowercase_ ) lowercase_ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowercase_ = scheduler.batch_step_no_noise(lowercase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) lowercase_ = torch.sum(torch.abs(lowercase_ ) ) lowercase_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3 def lowerCamelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowercase_ ) lowercase_ = len(lowercase_ ) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for t in reversed(range(lowercase_ ) ): # 1. predict noise residual lowercase_ = model(lowercase_ , lowercase_ ) # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(lowercase_ ) ) lowercase_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def lowerCamelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowercase_ = scheduler_class(**lowercase_ ) lowercase_ = len(lowercase_ ) lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for t in reversed(range(lowercase_ ) ): # 1. predict noise residual lowercase_ = model(lowercase_ , lowercase_ ) # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(lowercase_ ) ) lowercase_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def lowerCamelCase__ ( self : Any ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowercase_ ) lowercase_ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=lowercase_ ) lowercase_ = scheduler.timesteps for i, timestep in enumerate(lowercase_ ): if i == len(lowercase_ ) - 1: lowercase_ = -1 else: lowercase_ = timesteps[i + 1] lowercase_ = scheduler.previous_timestep(lowercase_ ) lowercase_ = prev_t.item() self.assertEqual(lowercase_ , lowercase_ ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowercase_ ) lowercase_ = [100, 87, 50, 51, 0] with self.assertRaises(lowercase_ , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=lowercase_ ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowercase_ ) lowercase_ = [100, 87, 50, 1, 0] lowercase_ = len(lowercase_ ) with self.assertRaises(lowercase_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=lowercase_ , timesteps=lowercase_ ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**lowercase_ ) lowercase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( lowercase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=lowercase_ )
451
0
from __future__ import annotations def A__ ( lowerCamelCase , lowerCamelCase ) -> list[list[int]]: UpperCamelCase_: list[list[int]] = [] UpperCamelCase_: list[int] = [] UpperCamelCase_: int = 0 UpperCamelCase_: Any = sum(lowerCamelCase ) create_state_space_tree(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) return result def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> None: if sum(lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(lowerCamelCase )) < max_sum: return if sum(lowerCamelCase ) == max_sum: result.append(lowerCamelCase ) return for index in range(lowerCamelCase , len(lowerCamelCase ) ): create_state_space_tree( lowerCamelCase , lowerCamelCase , index + 1 , [*path, nums[index]] , lowerCamelCase , remaining_nums_sum - nums[index] , ) lowerCamelCase_ : Tuple = [3, 34, 4, 12, 5, 2] lowerCamelCase_ : Optional[int] = 9 lowerCamelCase_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
670
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase_: List[Any] = TaConfig.from_json_file(lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Any = TaForConditionalGeneration(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
670
1