code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from functools import lru_cache def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = 2 __lowerCAmelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(lowerCAmelCase_ ) if n > 1: factors.add(lowerCAmelCase_ ) return factors @lru_cache def a_ ( lowerCAmelCase_ : int ): return len(unique_prime_factors(lowerCAmelCase_ ) ) def a_ ( lowerCAmelCase_ : list ): return len(set(lowerCAmelCase_ ) ) in (0, 1) def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = 2 while True: # Increment each value of a generated range __lowerCAmelCase = [base + i for i in range(lowerCAmelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowerCAmelCase = [upf_len(lowerCAmelCase_ ) for x in group] checker.append(lowerCAmelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(lowerCAmelCase_ ): return group # Increment our base variable by 1 base += 1 def a_ ( lowerCAmelCase_ : int = 4 ): __lowerCAmelCase = run(lowerCAmelCase_ ) return results[0] if len(lowerCAmelCase_ ) else None if __name__ == "__main__": print(solution())
53
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any]=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load('facebookresearch/dino:main', lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class _a ( lowercase__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=64 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , __UpperCAmelCase=2 , __UpperCAmelCase=2 , __UpperCAmelCase=2 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=1 , ): __A : Optional[int] = parent __A : Optional[Any] = batch_size __A : List[str] = seq_length __A : Dict = is_training __A : int = use_input_mask __A : str = use_token_type_ids __A : Optional[Any] = use_labels __A : Optional[Any] = vocab_size __A : Tuple = hidden_size __A : List[Any] = num_hidden_layers __A : List[Any] = num_attention_heads __A : List[Any] = intermediate_size __A : int = hidden_act __A : Tuple = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : Dict = max_position_embeddings __A : int = type_vocab_size __A : Union[str, Any] = type_sequence_label_size __A : Union[str, Any] = initializer_range __A : List[Any] = num_labels __A : Dict = num_choices __A : Dict = scope __A : List[str] = q_groups __A : List[str] = k_groups __A : Dict = v_groups __A : Dict = post_attention_groups __A : Tuple = intermediate_groups __A : Optional[int] = output_groups def __UpperCAmelCase( self ): __A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : List[str] = None if self.use_input_mask: __A : Any = random_attention_mask([self.batch_size, self.seq_length] ) __A : Dict = None __A : List[str] = None __A : Optional[int] = None if self.use_labels: __A : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : Dict = ids_tensor([self.batch_size] , self.num_choices ) __A : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase( self ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Tuple = SqueezeBertModel(config=__lowercase ) model.to(__lowercase ) model.eval() __A : Optional[Any] = model(__lowercase , __lowercase ) __A : Optional[int] = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Union[str, Any] = SqueezeBertForMaskedLM(config=__lowercase ) model.to(__lowercase ) model.eval() __A : Union[str, Any] = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Union[str, Any] = SqueezeBertForQuestionAnswering(config=__lowercase ) model.to(__lowercase ) model.eval() __A : List[str] = model( __lowercase , attention_mask=__lowercase , start_positions=__lowercase , end_positions=__lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : int = self.num_labels __A : List[str] = SqueezeBertForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __A : List[str] = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : List[Any] = self.num_labels __A : Optional[Any] = SqueezeBertForTokenClassification(config=__lowercase ) model.to(__lowercase ) model.eval() __A : Union[str, Any] = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Optional[int] = self.num_choices __A : Union[str, Any] = SqueezeBertForMultipleChoice(config=__lowercase ) model.to(__lowercase ) model.eval() __A : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A : Any = model( __lowercase , attention_mask=__lowercase , labels=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCAmelCase( self ): __A : List[str] = self.prepare_config_and_inputs() ((__A) , (__A) , (__A) , (__A) , (__A) , (__A)) : int = config_and_inputs __A : str = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _a ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Tuple = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase_ : List[str] = ( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase_ : Tuple = False lowerCamelCase_ : Dict = True lowerCamelCase_ : Union[str, Any] = False def __UpperCAmelCase( self ): __A : Tuple = SqueezeBertModelTester(self ) __A : Optional[int] = ConfigTester(self , config_class=__lowercase , dim=37 ) def __UpperCAmelCase( self ): self.config_tester.run_common_tests() def __UpperCAmelCase( self ): __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*__lowercase ) def __UpperCAmelCase( self ): __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*__lowercase ) def __UpperCAmelCase( self ): __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*__lowercase ) def __UpperCAmelCase( self ): __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*__lowercase ) def __UpperCAmelCase( self ): __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*__lowercase ) def __UpperCAmelCase( self ): __A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*__lowercase ) @slow def __UpperCAmelCase( self ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : str = SqueezeBertModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_sentencepiece @require_tokenizers @require_torch class _a ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase( self ): __A : str = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) __A : Optional[Any] = torch.tensor([[1, 29_414, 232, 328, 740, 1_140, 12_695, 69, 13, 1_588, 2]] ) __A : Dict = model(__lowercase )[0] __A : Tuple = torch.Size((1, 3) ) self.assertEqual(output.shape , __lowercase ) __A : List[Any] = torch.tensor([[0.64_01, -0.03_49, -0.60_41]] ) self.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1e-4 ) )
715
import pprint import requests UpperCamelCase = 'https://zenquotes.io/api' def lowerCamelCase_ ( ) -> list: return requests.get(API_ENDPOINT_URL + "/today" ).json() def lowerCamelCase_ ( ) -> list: return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": UpperCamelCase = random_quotes() pprint.pprint(response)
387
0
def A__ ( snake_case_ : int = 2_000_000 ): SCREAMING_SNAKE_CASE__: Optional[Any]= [0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE__: Any= 1 SCREAMING_SNAKE_CASE__: Union[str, Any]= 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , snake_case_ ): SCREAMING_SNAKE_CASE__: List[Any]= 1 SCREAMING_SNAKE_CASE__: List[str]= 0 for i in range(snake_case_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
64
import string from math import logaa def A__ ( _a : str , _a : str ): '''simple docstring''' snake_case__ : List[Any] =document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) snake_case__ : Any =document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A__ ( _a : str , _a : str ): '''simple docstring''' snake_case__ : str =corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' snake_case__ : str =corpus_without_punctuation.split("""\n""" ) snake_case__ : Tuple =term.lower() return (len([doc for doc in docs if term in doc] ), len(_a )) def A__ ( _a : int , _a : int , _a : Tuple=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def A__ ( _a : int , _a : int ): '''simple docstring''' return round(tf * idf , 3 )
385
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case_( a__): lowerCamelCase :List[Any] = ["""image_processor""", """tokenizer"""] lowerCamelCase :int = """BlipImageProcessor""" lowerCamelCase :List[Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , __lowercase , __lowercase ) -> Union[str, Any]: lowerCamelCase : int =False super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCamelCase : Tuple =self.image_processor def __call__( self , __lowercase = None , __lowercase = None , __lowercase = True , __lowercase = False , __lowercase = None , __lowercase = None , __lowercase = 0 , __lowercase = None , __lowercase = None , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = False , __lowercase = True , __lowercase = None , **__lowercase , ) -> BatchEncoding: if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowerCamelCase : int =self.tokenizer lowerCamelCase : int =self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) return text_encoding # add pixel_values lowerCamelCase : Union[str, Any] =self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) if text is not None: lowerCamelCase : List[Any] =self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) else: lowerCamelCase : List[str] =None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase__ ) return encoding_image_processor def __lowercase ( self , *__lowercase , **__lowercase ) -> str: return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __lowercase ( self , *__lowercase , **__lowercase ) -> List[str]: return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __lowercase ( self ) -> Any: lowerCamelCase : Dict =self.tokenizer.model_input_names lowerCamelCase : Union[str, Any] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
709
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case_ ( _A): def __lowercase ( self ) -> Optional[Any]: lowerCamelCase : Optional[Any] =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(__lowercase , '''depth_multiplier''' ) ) class snake_case_ : def __init__( self , __lowercase , __lowercase=1_3 , __lowercase=3 , __lowercase=3_2 , __lowercase=0.2_5 , __lowercase=8 , __lowercase=8 , __lowercase=6 , __lowercase=3_2 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase="relu6" , __lowercase=1_2_8_0 , __lowercase=0.1 , __lowercase=0.0_2 , __lowercase=True , __lowercase=True , __lowercase=1_0 , __lowercase=None , ) -> int: lowerCamelCase : Union[str, Any] =parent lowerCamelCase : Union[str, Any] =batch_size lowerCamelCase : int =num_channels lowerCamelCase : str =image_size lowerCamelCase : List[Any] =depth_multiplier lowerCamelCase : Dict =depth_divisible_by lowerCamelCase : Optional[Any] =min_depth lowerCamelCase : Optional[Any] =expand_ratio lowerCamelCase : List[str] =tf_padding lowerCamelCase : int =output_stride lowerCamelCase : Optional[Any] =first_layer_is_expansion lowerCamelCase : List[Any] =finegrained_output lowerCamelCase : int =hidden_act lowerCamelCase : List[str] =last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) lowerCamelCase : str =classifier_dropout_prob lowerCamelCase : int =use_labels lowerCamelCase : Optional[int] =is_training lowerCamelCase : int =num_labels lowerCamelCase : Dict =initializer_range lowerCamelCase : Tuple =scope def __lowercase ( self ) -> List[str]: lowerCamelCase : Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : Tuple =None lowerCamelCase : Any =None if self.use_labels: lowerCamelCase : int =ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase : List[str] =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase : Optional[Any] =self.get_config() return config, pixel_values, labels, pixel_labels def __lowercase ( self ) -> Optional[Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __lowercase ( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: lowerCamelCase : Optional[Any] =MobileNetVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() lowerCamelCase : int =model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def __lowercase ( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> List[Any]: lowerCamelCase : Optional[Any] =self.num_labels lowerCamelCase : Optional[int] =MobileNetVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() lowerCamelCase : Any =model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> str: lowerCamelCase : int =self.num_labels lowerCamelCase : List[Any] =MobileNetVaForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() lowerCamelCase : List[str] =model(__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCamelCase : Union[str, Any] =model(__lowercase , labels=__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowercase ( self ) -> Optional[Any]: lowerCamelCase : Any =self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : str =config_and_inputs lowerCamelCase : Dict ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case_ ( _A , _A , unittest.TestCase): lowerCamelCase :Union[str, Any] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase :Any = ( { "feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification, "image-segmentation": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase :List[str] = False lowerCamelCase :Dict = False lowerCamelCase :Any = False lowerCamelCase :Dict = False def __lowercase ( self ) -> Any: lowerCamelCase : Union[str, Any] =MobileNetVaModelTester(self ) lowerCamelCase : List[str] =MobileNetVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def __lowercase ( self ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def __lowercase ( self ) -> Dict: pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def __lowercase ( self ) -> Optional[Any]: pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> List[Any]: lowerCamelCase , lowerCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : int =model_class(__lowercase ) lowerCamelCase : Any =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : str =[*signature.parameters.keys()] lowerCamelCase : Optional[Any] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def __lowercase ( self ) -> Optional[Any]: lowerCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def __lowercase ( self ) -> str: def check_hidden_states_output(__lowercase , __lowercase , __lowercase ): lowerCamelCase : Dict =model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): lowerCamelCase : Tuple =model(**self._prepare_for_class(__lowercase , __lowercase ) ) lowerCamelCase : Union[str, Any] =outputs.hidden_states lowerCamelCase : Tuple =1_6 self.assertEqual(len(__lowercase ) , __lowercase ) lowerCamelCase , lowerCamelCase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : int =True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : Optional[int] =True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def __lowercase ( self ) -> List[Any]: lowerCamelCase : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def __lowercase ( self ) -> int: lowerCamelCase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) @slow def __lowercase ( self ) -> List[Any]: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Dict =MobileNetVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def A__ ( ) -> List[Any]: lowerCamelCase : List[str] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case_ ( unittest.TestCase): @cached_property def __lowercase ( self ) -> int: return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def __lowercase ( self ) -> int: lowerCamelCase : Tuple =MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(__lowercase ) lowerCamelCase : Dict =self.default_image_processor lowerCamelCase : Dict =prepare_img() lowerCamelCase : List[Any] =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): lowerCamelCase : Any =model(**__lowercase ) # verify the logits lowerCamelCase : Optional[Any] =torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , __lowercase ) lowerCamelCase : Optional[Any] =torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) ) @slow def __lowercase ( self ) -> List[Any]: lowerCamelCase : Optional[Any] =MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) lowerCamelCase : Union[str, Any] =model.to(__lowercase ) lowerCamelCase : List[Any] =MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) lowerCamelCase : Any =prepare_img() lowerCamelCase : Dict =image_processor(images=__lowercase , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): lowerCamelCase : Optional[Any] =model(**__lowercase ) lowerCamelCase : List[str] =outputs.logits # verify the logits lowerCamelCase : int =torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape , __lowercase ) lowerCamelCase : List[Any] =torch.tensor( [ [[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ] , device=__lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1e-4 ) )
262
0
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowercase : Optional[int] , __lowercase : Union[str, Any]=3 , __lowercase : str=32 , __lowercase : Any=3 , __lowercase : List[str]=10 , __lowercase : str=[10, 20, 30, 40] , __lowercase : Union[str, Any]=[1, 1, 2, 1] , __lowercase : List[str]=True , __lowercase : Optional[int]=True , __lowercase : str="relu" , __lowercase : List[Any]=3 , __lowercase : Tuple=None , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = num_channels __a = embeddings_size __a = hidden_sizes __a = depths __a = is_training __a = use_labels __a = hidden_act __a = num_labels __a = scope __a = len(__lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCamelCase_ ( self : Dict , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : Optional[Any] ): '''simple docstring''' __a = RegNetModel(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase_ ( self : int , __lowercase : Optional[int] , __lowercase : Union[str, Any] , __lowercase : Optional[int] ): '''simple docstring''' __a = self.num_labels __a = RegNetForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : int =(RegNetModel, RegNetForImageClassification) if is_torch_available() else () __lowerCamelCase : str =( {'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification} if is_torch_available() else {} ) __lowerCamelCase : Optional[Any] =False __lowerCamelCase : Any =False __lowerCamelCase : List[str] =False __lowerCamelCase : Tuple =False def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = RegNetModelTester(self ) __a = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : int ): '''simple docstring''' return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__lowercase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(config=__lowercase ) for name, module in model.named_modules(): if isinstance(__lowercase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' def check_hidden_states_output(__lowercase : List[Any] , __lowercase : Optional[int] , __lowercase : int ): __a = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __a = self.model_tester.num_stages self.assertEqual(len(__lowercase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __a = layer_type __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = RegNetModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase__ ( ): """simple docstring""" __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' __a = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowercase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) # verify the logits __a = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) __a = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) )
225
import random def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = num - 1 __a = 0 while s % 2 == 0: __a = s // 2 t += 1 for _ in range(5 ): __a = random.randrange(2 , num - 1 ) __a = pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if v != 1: __a = 0 while v != (num - 1): if i == t - 1: return False else: __a = i + 1 __a = (v**2) % num return True def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if num < 2: return False __a = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 1024 ): """simple docstring""" while True: __a = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(_SCREAMING_SNAKE_CASE ): return num if __name__ == "__main__": lowerCamelCase__ = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
225
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowercase : Optional[Any] = logging.get_logger(__name__) __lowercase : List[str] = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __lowercase ( _lowercase ): lowerCamelCase : List[Any] = "instructblip_vision_model" def __init__(self , A=1_4_0_8 , A=6_1_4_4 , A=3_9 , A=1_6 , A=2_2_4 , A=1_4 , A="gelu" , A=1E-6 , A=0.0 , A=1E-10 , A=True , **A , ): super().__init__(**A ) lowerCamelCase_ : List[Any] = hidden_size lowerCamelCase_ : Any = intermediate_size lowerCamelCase_ : Any = num_hidden_layers lowerCamelCase_ : str = num_attention_heads lowerCamelCase_ : List[str] = patch_size lowerCamelCase_ : Optional[Any] = image_size lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Tuple = attention_dropout lowerCamelCase_ : str = layer_norm_eps lowerCamelCase_ : List[Any] = hidden_act lowerCamelCase_ : List[str] = qkv_bias @classmethod def UpperCAmelCase__ (cls , A , **A ): cls._set_token_in_kwargs(A ) lowerCamelCase_ : int = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": lowerCamelCase_ : List[str] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A , **A ) class __lowercase ( _lowercase ): lowerCamelCase : List[str] = "instructblip_qformer" def __init__(self , A=3_0_5_2_2 , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=0.02 , A=1E-12 , A=0 , A="absolute" , A=2 , A=1_4_0_8 , **A , ): super().__init__(pad_token_id=A , **A ) lowerCamelCase_ : Dict = vocab_size lowerCamelCase_ : int = hidden_size lowerCamelCase_ : Union[str, Any] = num_hidden_layers lowerCamelCase_ : Optional[Any] = num_attention_heads lowerCamelCase_ : Union[str, Any] = hidden_act lowerCamelCase_ : Optional[Any] = intermediate_size lowerCamelCase_ : List[str] = hidden_dropout_prob lowerCamelCase_ : Any = attention_probs_dropout_prob lowerCamelCase_ : Optional[int] = max_position_embeddings lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Tuple = layer_norm_eps lowerCamelCase_ : Optional[int] = position_embedding_type lowerCamelCase_ : int = cross_attention_frequency lowerCamelCase_ : Tuple = encoder_hidden_size @classmethod def UpperCAmelCase__ (cls , A , **A ): cls._set_token_in_kwargs(A ) lowerCamelCase_ : List[Any] = cls.get_config_dict(A , **A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": lowerCamelCase_ : Optional[Any] = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A , **A ) class __lowercase ( _lowercase ): lowerCamelCase : Union[str, Any] = "instructblip" lowerCamelCase : Tuple = True def __init__(self , A=None , A=None , A=None , A=3_2 , **A ): super().__init__(**A ) if vision_config is None: lowerCamelCase_ : int = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''' ) if qformer_config is None: lowerCamelCase_ : int = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''' ) if text_config is None: lowerCamelCase_ : Union[str, Any] = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) lowerCamelCase_ : Optional[Any] = InstructBlipVisionConfig(**A ) lowerCamelCase_ : List[str] = InstructBlipQFormerConfig(**A ) lowerCamelCase_ : Dict = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' lowerCamelCase_ : Union[str, Any] = CONFIG_MAPPING[text_model_type](**A ) lowerCamelCase_ : Union[str, Any] = self.text_config.tie_word_embeddings lowerCamelCase_ : List[Any] = self.text_config.is_encoder_decoder lowerCamelCase_ : int = num_query_tokens lowerCamelCase_ : Union[str, Any] = self.vision_config.hidden_size lowerCamelCase_ : Optional[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase_ : str = 1.0 lowerCamelCase_ : int = 0.02 @classmethod def UpperCAmelCase__ (cls , A , A , A , **A , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A , ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = copy.deepcopy(self.__dict__ ) lowerCamelCase_ : Optional[int] = self.vision_config.to_dict() lowerCamelCase_ : int = self.qformer_config.to_dict() lowerCamelCase_ : Optional[int] = self.text_config.to_dict() lowerCamelCase_ : str = self.__class__.model_type return output
708
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowercase : Union[str, Any] = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def lowercase_ ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> Tuple: '''simple docstring''' if attention_mask is None: lowerCamelCase_ : Union[str, Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase_ : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase_ : List[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase_ : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase_ : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __lowercase : def __init__(self , A , A=1_3 , A=7 , A=True , A=False , A=9_9 , A=1_6 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=3_2 , A=2 , A=1 , A=0 , A=0.02 , ): lowerCamelCase_ : int = parent lowerCamelCase_ : Optional[Any] = batch_size lowerCamelCase_ : Union[str, Any] = seq_length lowerCamelCase_ : List[str] = is_training lowerCamelCase_ : Optional[Any] = use_labels lowerCamelCase_ : Tuple = vocab_size lowerCamelCase_ : Optional[int] = hidden_size lowerCamelCase_ : str = num_hidden_layers lowerCamelCase_ : Tuple = num_attention_heads lowerCamelCase_ : Union[str, Any] = intermediate_size lowerCamelCase_ : Union[str, Any] = hidden_act lowerCamelCase_ : Tuple = hidden_dropout_prob lowerCamelCase_ : List[str] = attention_probs_dropout_prob lowerCamelCase_ : Any = max_position_embeddings lowerCamelCase_ : Union[str, Any] = eos_token_id lowerCamelCase_ : Union[str, Any] = pad_token_id lowerCamelCase_ : str = bos_token_id lowerCamelCase_ : int = initializer_range def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCamelCase_ : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCamelCase_ : Any = shift_tokens_right(A , 1 , 2 ) lowerCamelCase_ : Any = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=A , ) lowerCamelCase_ : List[str] = prepare_blenderbot_inputs_dict(A , A , A ) return config, inputs_dict def UpperCAmelCase__ (self ): lowerCamelCase_, lowerCamelCase_ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ (self , A , A , A ): lowerCamelCase_ : Any = 2_0 lowerCamelCase_ : Dict = model_class_name(A ) lowerCamelCase_ : List[str] = model.encode(inputs_dict['''input_ids'''] ) lowerCamelCase_, lowerCamelCase_ : Tuple = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCamelCase_ : Any = model.init_cache(decoder_input_ids.shape[0] , A , A ) lowerCamelCase_ : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowerCamelCase_ : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase_ : List[Any] = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) lowerCamelCase_ : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCamelCase_ : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , A , decoder_attention_mask=A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=A , ) lowerCamelCase_ : str = model.decode(A , A ) lowerCamelCase_ : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCAmelCase__ (self , A , A , A ): lowerCamelCase_ : Tuple = 2_0 lowerCamelCase_ : Dict = model_class_name(A ) lowerCamelCase_ : Optional[Any] = model.encode(inputs_dict['''input_ids'''] ) lowerCamelCase_, lowerCamelCase_ : Optional[int] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCamelCase_ : List[str] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCamelCase_ : Any = model.init_cache(decoder_input_ids.shape[0] , A , A ) lowerCamelCase_ : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase_ : List[Any] = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) lowerCamelCase_ : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCamelCase_ : str = model.decode( decoder_input_ids[:, -1:] , A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=A , decoder_position_ids=A , ) lowerCamelCase_ : Union[str, Any] = model.decode(A , A , decoder_attention_mask=A ) lowerCamelCase_ : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class __lowercase ( unittest.TestCase ): lowerCamelCase : Optional[int] = 99 def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase_ : Optional[int] = input_ids.shape[0] lowerCamelCase_ : int = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCAmelCase__ (self ): lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Any = self._get_config_and_data() lowerCamelCase_ : List[str] = FlaxBlenderbotSmallForConditionalGeneration(A ) lowerCamelCase_ : Optional[Any] = lm_model(input_ids=A ) lowerCamelCase_ : List[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) lowerCamelCase_ : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(A ) lowerCamelCase_ : List[Any] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) lowerCamelCase_ : str = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) lowerCamelCase_ : Optional[int] = lm_model(input_ids=A , decoder_input_ids=A ) lowerCamelCase_ : List[str] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) lowerCamelCase_ : Dict = shift_tokens_right(A , 1 , 2 ) lowerCamelCase_ : Union[str, Any] = np.equal(A , 1 ).astype(np.floataa ).sum() lowerCamelCase_ : List[str] = np.equal(A , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(A , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __lowercase ( _lowercase , unittest.TestCase , _lowercase ): lowerCamelCase : Dict = True lowerCamelCase : str = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) lowerCamelCase : List[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = FlaxBlenderbotSmallModelTester(self ) def UpperCAmelCase__ (self ): lowerCamelCase_, lowerCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A , A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_, lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A , A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_, lowerCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_ : Optional[int] = self._prepare_for_class(A , A ) lowerCamelCase_ : Any = model_class(A ) @jax.jit def encode_jitted(A , A=None , **A ): return model.encode(input_ids=A , attention_mask=A ) with self.subTest('''JIT Enabled''' ): lowerCamelCase_ : int = encode_jitted(**A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCamelCase_ : Union[str, Any] = encode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase__ (self ): lowerCamelCase_, lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_ : Any = model_class(A ) lowerCamelCase_ : Union[str, Any] = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowerCamelCase_ : Union[str, Any] = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(A , A , A ): return model.decode( decoder_input_ids=A , decoder_attention_mask=A , encoder_outputs=A , ) with self.subTest('''JIT Enabled''' ): lowerCamelCase_ : Tuple = decode_jitted(**A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCamelCase_ : Optional[Any] = decode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase__ (self ): for model_class_name in self.all_model_classes: lowerCamelCase_ : Union[str, Any] = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase_ : Optional[Any] = np.ones((1, 1) ) * model.config.eos_token_id lowerCamelCase_ : Optional[int] = model(A ) self.assertIsNotNone(A )
357
0
from __future__ import annotations def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : int =0.0_0 __magic_name__ : Tuple =0 for resistor in resistors: if resistor <= 0: __magic_name__ : Optional[int] =F"Resistor at index {index} has a negative or zero value!" raise ValueError(lowerCamelCase ) first_sum += 1 / float(lowerCamelCase ) index += 1 return 1 / first_sum def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[int] =0.0_0 __magic_name__ : Optional[Any] =0 for resistor in resistors: sum_r += resistor if resistor < 0: __magic_name__ : Optional[int] =F"Resistor at index {index} has a negative value!" raise ValueError(lowerCamelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
21
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def _lowerCAmelCase (_lowercase ): """simple docstring""" return x + 2 class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase_ ( self : Union[str, Any] ): a__ = "x = 3" a__ = {} a__ = evaluate(a__ ,{} ,state=a__ ) assert result == 3 self.assertDictEqual(a__ ,{"x": 3} ) a__ = "x = y" a__ = {"y": 5} a__ = evaluate(a__ ,{} ,state=a__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(a__ ,{"x": 5, "y": 5} ) def lowerCAmelCase_ ( self : str ): a__ = "y = add_two(x)" a__ = {"x": 3} a__ = evaluate(a__ ,{"add_two": add_two} ,state=a__ ) assert result == 5 self.assertDictEqual(a__ ,{"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: a__ = evaluate(a__ ,{} ,state=a__ ) assert result is None assert "tried to execute add_two" in out.out def lowerCAmelCase_ ( self : Any ): a__ = "x = 3" a__ = {} a__ = evaluate(a__ ,{} ,state=a__ ) assert result == 3 self.assertDictEqual(a__ ,{"x": 3} ) def lowerCAmelCase_ ( self : Dict ): a__ = "test_dict = {'x': x, 'y': add_two(x)}" a__ = {"x": 3} a__ = evaluate(a__ ,{"add_two": add_two} ,state=a__ ) self.assertDictEqual(a__ ,{"x": 3, "y": 5} ) self.assertDictEqual(a__ ,{"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowerCAmelCase_ ( self : Dict ): a__ = "x = 3\ny = 5" a__ = {} a__ = evaluate(a__ ,{} ,state=a__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(a__ ,{"x": 3, "y": 5} ) def lowerCAmelCase_ ( self : str ): a__ = "text = f'This is x: {x}.'" a__ = {"x": 3} a__ = evaluate(a__ ,{} ,state=a__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(a__ ,{"x": 3, "text": "This is x: 3."} ) def lowerCAmelCase_ ( self : Union[str, Any] ): a__ = "if x <= 3:\n y = 2\nelse:\n y = 5" a__ = {"x": 3} a__ = evaluate(a__ ,{} ,state=a__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(a__ ,{"x": 3, "y": 2} ) a__ = {"x": 8} a__ = evaluate(a__ ,{} ,state=a__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(a__ ,{"x": 8, "y": 5} ) def lowerCAmelCase_ ( self : List[Any] ): a__ = "test_list = [x, add_two(x)]" a__ = {"x": 3} a__ = evaluate(a__ ,{"add_two": add_two} ,state=a__ ) self.assertListEqual(a__ ,[3, 5] ) self.assertDictEqual(a__ ,{"x": 3, "test_list": [3, 5]} ) def lowerCAmelCase_ ( self : Any ): a__ = "y = x" a__ = {"x": 3} a__ = evaluate(a__ ,{} ,state=a__ ) assert result == 3 self.assertDictEqual(a__ ,{"x": 3, "y": 3} ) def lowerCAmelCase_ ( self : Tuple ): a__ = "test_list = [x, add_two(x)]\ntest_list[1]" a__ = {"x": 3} a__ = evaluate(a__ ,{"add_two": add_two} ,state=a__ ) assert result == 5 self.assertDictEqual(a__ ,{"x": 3, "test_list": [3, 5]} ) a__ = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" a__ = {"x": 3} a__ = evaluate(a__ ,{"add_two": add_two} ,state=a__ ) assert result == 5 self.assertDictEqual(a__ ,{"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowerCAmelCase_ ( self : List[Any] ): a__ = "x = 0\nfor i in range(3):\n x = i" a__ = {} a__ = evaluate(a__ ,{"range": range} ,state=a__ ) assert result == 2 self.assertDictEqual(a__ ,{"x": 2, "i": 2} )
331
0
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> Tuple: """simple docstring""" if openai_config_file == "": UpperCamelCase = OpenAIGPTConfig() else: UpperCamelCase = OpenAIGPTConfig.from_json_file(_UpperCamelCase) UpperCamelCase = OpenAIGPTModel(_UpperCamelCase) # Load weights from numpy load_tf_weights_in_openai_gpt(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) # Save pytorch-model UpperCamelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME UpperCamelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}') torch.save(model.state_dict() , _UpperCamelCase) print(F'Save configuration file to {pytorch_config_dump_path}') with open(_UpperCamelCase , 'w' , encoding='utf-8') as f: f.write(config.to_json_string()) if __name__ == "__main__": __magic_name__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--openai_checkpoint_folder_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--openai_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) __magic_name__ : List[str] = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
410
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer __magic_name__ : Optional[Any] = logging.get_logger(__name__) __magic_name__ : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ : str = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } __magic_name__ : Any = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } __magic_name__ : Any = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class A__ ( __snake_case ): '''simple docstring''' snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = RealmTokenizer def __init__( self : str , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Optional[Any]=True , _SCREAMING_SNAKE_CASE : Tuple="[UNK]" , _SCREAMING_SNAKE_CASE : Optional[int]="[SEP]" , _SCREAMING_SNAKE_CASE : Dict="[PAD]" , _SCREAMING_SNAKE_CASE : Any="[CLS]" , _SCREAMING_SNAKE_CASE : int="[MASK]" , _SCREAMING_SNAKE_CASE : int=True , _SCREAMING_SNAKE_CASE : List[str]=None , **_SCREAMING_SNAKE_CASE : int , ): """simple docstring""" super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('strip_accents' , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCamelCase = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop('type' ) ) UpperCamelCase = do_lower_case UpperCamelCase = strip_accents UpperCamelCase = tokenize_chinese_chars UpperCamelCase = normalizer_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = do_lower_case def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str , **_SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase = PaddingStrategy.MAX_LENGTH UpperCamelCase = text UpperCamelCase = kwargs.pop('text_pair' , _SCREAMING_SNAKE_CASE ) UpperCamelCase = kwargs.pop('return_tensors' , _SCREAMING_SNAKE_CASE ) UpperCamelCase = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(_SCREAMING_SNAKE_CASE ): if batch_text_pair is not None: UpperCamelCase = batch_text_pair[idx] else: UpperCamelCase = None UpperCamelCase = super().__call__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = encoded_candidates.get('input_ids' ) UpperCamelCase = encoded_candidates.get('attention_mask' ) UpperCamelCase = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(_SCREAMING_SNAKE_CASE ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_SCREAMING_SNAKE_CASE ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = {key: item for key, item in output_data.items() if len(_SCREAMING_SNAKE_CASE ) != 0} return BatchEncoding(_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any]=None ): """simple docstring""" UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : int , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" UpperCamelCase = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
410
1
lowercase_ = """Input must be a string of 8 numbers plus letter""" lowercase_ = """TRWAGMYFPDXBNJZSQVHLCKE""" def a__ ( snake_case ): """simple docstring""" if not isinstance(snake_case , snake_case ): __SCREAMING_SNAKE_CASE : List[Any] = F'''Expected string as input, found {type(snake_case ).__name__}''' raise TypeError(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = spanish_id.replace('''-''' , '''''' ).upper() if len(snake_case ) != 9: raise ValueError(snake_case ) try: __SCREAMING_SNAKE_CASE : Optional[Any] = int(spanish_id_clean[0:8] ) __SCREAMING_SNAKE_CASE : Tuple = spanish_id_clean[8] except ValueError as ex: raise ValueError(snake_case ) from ex if letter.isdigit(): raise ValueError(snake_case ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
74
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup lowercase_ = logging.get_logger(__name__) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Optional[Any] , **_A : Dict ): """simple docstring""" requires_backends(self , ['''bs4'''] ) super().__init__(**_A ) def UpperCAmelCase__ ( self : Optional[int] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : Any = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __SCREAMING_SNAKE_CASE : Optional[int] = parent.find_all(child.name , recursive=_A ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_A ) else next(i for i, s in enumerate(_A , 1 ) if s is child ) ) __SCREAMING_SNAKE_CASE : Any = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def UpperCAmelCase__ ( self : Dict , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = BeautifulSoup(_A , '''html.parser''' ) __SCREAMING_SNAKE_CASE : str = [] __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : int = [] for element in html_code.descendants: if type(_A ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __SCREAMING_SNAKE_CASE : List[Any] = html.unescape(_A ).strip() if not text_in_this_tag: continue all_doc_strings.append(_A ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = self.xpath_soup(_A ) stringaxtag_seq.append(_A ) stringaxsubs_seq.append(_A ) if len(_A ) != len(_A ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_A ) != len(_A ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def UpperCAmelCase__ ( self : int , _A : Tuple , _A : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' for tagname, subs in zip(_A , _A ): xpath += F'''/{tagname}''' if subs != 0: xpath += F'''[{subs}]''' return xpath def __call__( self : Optional[int] , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = False # Check that strings has a valid type if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Any = True elif isinstance(_A , (list, tuple) ): if len(_A ) == 0 or isinstance(html_strings[0] , _A ): __SCREAMING_SNAKE_CASE : List[Any] = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F'''but is of type {type(_A )}.''' ) __SCREAMING_SNAKE_CASE : Any = bool(isinstance(_A , (list, tuple) ) and (isinstance(html_strings[0] , _A )) ) if not is_batched: __SCREAMING_SNAKE_CASE : Dict = [html_strings] # Get nodes + xpaths __SCREAMING_SNAKE_CASE : str = [] __SCREAMING_SNAKE_CASE : Tuple = [] for html_string in html_strings: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_three_from_single(_A ) nodes.append(_A ) __SCREAMING_SNAKE_CASE : Dict = [] for node, tag_list, sub_list in zip(_A , _A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = self.construct_xpath(_A , _A ) xpath_strings.append(_A ) xpaths.append(_A ) # return as Dict __SCREAMING_SNAKE_CASE : Optional[int] = {'''nodes''': nodes, '''xpaths''': xpaths} __SCREAMING_SNAKE_CASE : List[str] = BatchFeature(data=_A , tensor_type=_A ) return encoded_inputs
74
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase :Optional[int] = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :str = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :Optional[int] = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __lowercase :Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( lowercase__ ): """simple docstring""" snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "CLIPImageProcessor" snake_case_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Any , a : List[Any]=None , a : Any=None , **a : int ) ->int: SCREAMING_SNAKE_CASE__ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a , ) SCREAMING_SNAKE_CASE__ : List[Any] = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE__ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a , a ) def __call__( self : Tuple , a : Tuple=None , a : Union[str, Any]=None , a : List[str]=None , **a : Optional[Any] ) ->Optional[Any]: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE__ : str = self.tokenizer(a , return_tensors=a , **a ) if images is not None: SCREAMING_SNAKE_CASE__ : int = self.image_processor(a , return_tensors=a , **a ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def A_ ( self : Optional[int] , *a : Any , **a : List[str] ) ->Any: return self.tokenizer.batch_decode(*a , **a ) def A_ ( self : Any , *a : Optional[int] , **a : Dict ) ->Any: return self.tokenizer.decode(*a , **a ) @property def A_ ( self : List[str] ) ->Union[str, Any]: SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A_ ( self : Optional[int] ) ->List[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a , ) return self.image_processor_class @property def A_ ( self : Dict ) ->str: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a , ) return self.image_processor
26
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") lowercase_ = logging.getLogger(__name__) @dataclass class __A : '''simple docstring''' __lowerCamelCase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowerCamelCase : Optional[str] = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase : Optional[str] = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase : Optional[str] = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __lowerCamelCase : bool = field( default=A , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowerCamelCase : bool = field( default=A , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) @dataclass class __A : '''simple docstring''' __lowerCamelCase : Optional[str] = field(default=A , metadata={'help': 'The input training data file (a text file).'} ) __lowerCamelCase : Optional[str] = field( default=A , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __lowerCamelCase : bool = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __lowerCamelCase : Optional[int] = field( default=A , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) __lowerCamelCase : Optional[int] = field( default=A , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase : bool = field( default=A , metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) } , ) __lowerCamelCase : Optional[int] = field( default=A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowerCamelCase : Optional[int] = field( default=A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def a__ (self ) -> str: """simple docstring""" if self.train_file is not None: _a = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _a = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __A : '''simple docstring''' __lowerCamelCase : PreTrainedTokenizerBase __lowerCamelCase : Union[bool, str, PaddingStrategy] = True __lowerCamelCase : Optional[int] = None __lowerCamelCase : Optional[int] = None def __call__(self , A ) -> int: """simple docstring""" _a = '''label''' if '''label''' in features[0].keys() else '''labels''' _a = [feature.pop(A ) for feature in features] _a = len(A ) _a = len(features[0]['''input_ids'''] ) _a = [ [{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features ] _a = list(chain(*A ) ) _a = self.tokenizer.pad( A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten _a = {k: v.view(A , A , -1 ) for k, v in batch.items()} # Add back labels _a = torch.tensor(A , dtype=torch.intaa ) return batch def lowerCAmelCase (): """simple docstring""" _a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith('''.json'''): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _a , _a , _a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: _a , _a , _a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , __A , __A) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout)] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _a = training_args.get_process_log_level() logger.setLevel(__A) datasets.utils.logging.set_verbosity(__A) transformers.utils.logging.set_verbosity(__A) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}''') logger.info(F'''Training/evaluation parameters {training_args}''') # Detecting last checkpoint. _a = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: _a = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''') elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''') # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _a = {} if data_args.train_file is not None: _a = data_args.train_file if data_args.validation_file is not None: _a = data_args.validation_file _a = data_args.train_file.split('''.''')[-1] _a = load_dataset( __A , data_files=__A , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _a = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _a = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _a = [F'''ending{i}''' for i in range(4)] _a = '''sent1''' _a = '''sent2''' if data_args.max_seq_length is None: _a = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''') _a = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''') _a = min(data_args.max_seq_length , tokenizer.model_max_length) # Preprocessing the datasets. def preprocess_function(__A): _a = [[context] * 4 for context in examples[context_name]] _a = examples[question_header_name] _a = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(__A) ] # Flatten out _a = list(chain(*__A)) _a = list(chain(*__A)) # Tokenize _a = tokenizer( __A , __A , truncation=__A , max_length=__A , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__A) , 4)] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''') _a = raw_datasets['''train'''] if data_args.max_train_samples is not None: _a = min(len(__A) , data_args.max_train_samples) _a = train_dataset.select(range(__A)) with training_args.main_process_first(desc='''train dataset map pre-processing'''): _a = train_dataset.map( __A , batched=__A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''') _a = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: _a = min(len(__A) , data_args.max_eval_samples) _a = eval_dataset.select(range(__A)) with training_args.main_process_first(desc='''validation dataset map pre-processing'''): _a = eval_dataset.map( __A , batched=__A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _a = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__A , pad_to_multiple_of=8 if training_args.fpaa else None) ) # Metric def compute_metrics(__A): _a , _a = eval_predictions _a = np.argmax(__A , axis=1) return {"accuracy": (preds == label_ids).astype(np.floataa).mean().item()} # Initialize our Trainer _a = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__A , data_collator=__A , compute_metrics=__A , ) # Training if training_args.do_train: _a = None if training_args.resume_from_checkpoint is not None: _a = training_args.resume_from_checkpoint elif last_checkpoint is not None: _a = last_checkpoint _a = trainer.train(resume_from_checkpoint=__A) trainer.save_model() # Saves the tokenizer too for easy upload _a = train_result.metrics _a = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A) ) _a = min(__A , len(__A)) trainer.log_metrics('''train''' , __A) trainer.save_metrics('''train''' , __A) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''') _a = trainer.evaluate() _a = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A) _a = min(__A , len(__A)) trainer.log_metrics('''eval''' , __A) trainer.save_metrics('''eval''' , __A) _a = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**__A) else: trainer.create_model_card(**__A) def lowerCAmelCase (__A): """simple docstring""" main() if __name__ == "__main__": main()
11
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase :Dict = datasets.utils.logging.get_logger(__name__) class _lowerCamelCase ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' A_ : bool = None A_ : bool = None class _lowerCamelCase ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' A_ : Union[str, Any] = datasets.Audio() A_ : Tuple = """audio""" A_ : Optional[Any] = AudioFolderConfig A_ : List[str] # definition at the bottom of the script A_ : Any = AudioClassification(audio_column="""audio""" , label_column="""label""" ) lowerCAmelCase :List[str] = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] lowerCAmelCase :str = AUDIO_EXTENSIONS
561
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCAmelCase : @staticmethod def lowerCamelCase__ ( *snake_case_ , **snake_case_ ): pass @is_pipeline_test @require_vision @require_torch class _UpperCAmelCase ( unittest.TestCase): __lowercase : str = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ ): _snake_case : str = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) _snake_case : int = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def lowerCamelCase__ ( self , snake_case_ , snake_case_ ): _snake_case : Optional[int] = object_detector(examples[0] , threshold=0.0 ) _snake_case : Tuple = len(lowerCAmelCase_ ) self.assertGreater(lowerCAmelCase_ , 0 ) self.assertEqual( lowerCAmelCase_ , [ { "score": ANY(lowerCAmelCase_ ), "label": ANY(lowerCAmelCase_ ), "box": {"xmin": ANY(lowerCAmelCase_ ), "ymin": ANY(lowerCAmelCase_ ), "xmax": ANY(lowerCAmelCase_ ), "ymax": ANY(lowerCAmelCase_ )}, } for i in range(lowerCAmelCase_ ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowerCamelCase__ ( self ): pass @require_torch def lowerCamelCase__ ( self ): _snake_case : Tuple = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) _snake_case : Any = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.7235, "label": "cat", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 2_74, "xmax": 93, "ymax": 2_97}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}}, ] , ) _snake_case : List[Any] = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 2_74, "xmax": 93, "ymax": 2_97}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}}, ] ] , ) @require_torch @slow def lowerCamelCase__ ( self ): _snake_case : Any = pipeline("zero-shot-object-detection" ) _snake_case : Tuple = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_35, "ymin": 74, "xmax": 3_71, "ymax": 1_87}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_42, "ymax": 4_76}}, ] , ) _snake_case : int = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_35, "ymin": 74, "xmax": 3_71, "ymax": 1_87}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_42, "ymax": 4_76}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_35, "ymin": 74, "xmax": 3_71, "ymax": 1_87}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_42, "ymax": 4_76}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowerCamelCase__ ( self ): pass @require_torch @slow def lowerCamelCase__ ( self ): _snake_case : Dict = 0.2 _snake_case : List[Any] = pipeline("zero-shot-object-detection" ) _snake_case : Optional[int] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=lowerCAmelCase_ , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}}, ] , ) @require_torch @slow def lowerCamelCase__ ( self ): _snake_case : List[str] = 2 _snake_case : Union[str, Any] = pipeline("zero-shot-object-detection" ) _snake_case : List[Any] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=lowerCAmelCase_ , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}}, ] , )
711
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
87
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
84
def __lowerCamelCase ( _lowercase ) -> str: return "".join(chr(ord(_lowercase ) - 32 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
282
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str ) -> list: if n_term == "": return [] __lowerCAmelCase : list = [] for temp in range(int(SCREAMING_SNAKE_CASE ) ): series.append(F'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": _UpperCAmelCase = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
718
from math import asin, atan, cos, radians, sin, sqrt, tan _UpperCAmelCase = 6_378_137.0 _UpperCAmelCase = 6_356_752.314_245 _UpperCAmelCase = 637_8137 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float: __lowerCAmelCase : List[Any] = (AXIS_A - AXIS_B) / AXIS_A __lowerCAmelCase : Tuple = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE ) ) ) __lowerCAmelCase : str = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE ) ) ) __lowerCAmelCase : int = radians(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = radians(SCREAMING_SNAKE_CASE ) # Equation __lowerCAmelCase : List[str] = sin((phi_a - phi_a) / 2 ) __lowerCAmelCase : Optional[int] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __lowerCAmelCase : Optional[Any] = sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE ) * cos(SCREAMING_SNAKE_CASE ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
240
0
"""simple docstring""" def A__ ( A__ = 5000_0000 ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = int((limit - 24) ** (1 / 2) ) _UpperCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , __lowercase ) ) ) for primea in primes: _UpperCAmelCase = primea * primea for primea in primes: _UpperCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: _UpperCAmelCase = primea * primea * primea * primea _UpperCAmelCase = square + cube + tetr if total >= limit: break ret.add(__lowercase ) return len(__lowercase ) if __name__ == "__main__": print(f'''{solution() = }''')
426
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase ( __A , __A , __A ): '''simple docstring''' @register_to_config def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = False , ): """simple docstring""" super().__init__() A_ : Optional[int] = nn.Embedding(lowercase , lowercase ) A_ : Any = nn.Embedding(lowercase , lowercase ) A_ : int = False A_ : Tuple = nn.Dropout(p=lowercase ) A_ : List[Any] = TaConfig( vocab_size=lowercase , d_model=lowercase , num_heads=lowercase , d_kv=lowercase , d_ff=lowercase , dropout_rate=lowercase , feed_forward_proj=lowercase , is_decoder=lowercase , is_encoder_decoder=lowercase , ) A_ : List[str] = nn.ModuleList() for lyr_num in range(lowercase ): A_ : Dict = TaBlock(lowercase ) self.encoders.append(lowercase ) A_ : Any = TaLayerNorm(lowercase ) A_ : Optional[int] = nn.Dropout(p=lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" A_ : Any = self.token_embedder(lowercase ) A_ : List[Any] = encoder_input_tokens.shape[1] A_ : int = torch.arange(lowercase , device=encoder_input_tokens.device ) x += self.position_encoding(lowercase ) A_ : Dict = self.dropout_pre(lowercase ) # inverted the attention mask A_ : List[Any] = encoder_input_tokens.size() A_ : Dict = self.get_extended_attention_mask(lowercase , lowercase ) for lyr in self.encoders: A_ : List[str] = lyr(lowercase , lowercase )[0] A_ : Optional[int] = self.layer_norm(lowercase ) return self.dropout_post(lowercase ), encoder_inputs_mask
558
0
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) a_ :Optional[int] = logging.getLogger(__name__) a_ :Tuple = tf.data.AUTOTUNE def lowercase_ (): snake_case__ : List[Any] = argparse.ArgumentParser(description='Train a masked language model on TPU.' ) parser.add_argument( '--pretrained_model_config' , type=lowerCAmelCase__ , default='roberta-base' , help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!' , ) parser.add_argument( '--tokenizer' , type=lowerCAmelCase__ , default='unigram-tokenizer-wikitext' , help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.' , ) parser.add_argument( '--per_replica_batch_size' , type=lowerCAmelCase__ , default=8 , help='Batch size per TPU core.' , ) parser.add_argument( '--no_tpu' , action='store_true' , help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.' , ) parser.add_argument( '--tpu_name' , type=lowerCAmelCase__ , help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.' , default='local' , ) parser.add_argument( '--tpu_zone' , type=lowerCAmelCase__ , help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.' , ) parser.add_argument( '--gcp_project' , type=lowerCAmelCase__ , help='Google cloud project name. Only used for non-Colab TPU nodes.' ) parser.add_argument( '--bfloat16' , action='store_true' , help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.' , ) parser.add_argument( '--train_dataset' , type=lowerCAmelCase__ , help='Path to training dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--shuffle_buffer_size' , type=lowerCAmelCase__ , default=2**1_8 , help='Size of the shuffle buffer (in samples)' , ) parser.add_argument( '--eval_dataset' , type=lowerCAmelCase__ , help='Path to evaluation dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--num_epochs' , type=lowerCAmelCase__ , default=1 , help='Number of epochs to train for.' , ) parser.add_argument( '--learning_rate' , type=lowerCAmelCase__ , default=1e-4 , help='Learning rate to use for training.' , ) parser.add_argument( '--weight_decay_rate' , type=lowerCAmelCase__ , default=1e-3 , help='Weight decay rate to use for training.' , ) parser.add_argument( '--max_length' , type=lowerCAmelCase__ , default=5_1_2 , help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py' , ) parser.add_argument( '--mlm_probability' , type=lowerCAmelCase__ , default=0.15 , help='Fraction of tokens to mask during training.' , ) parser.add_argument('--output_dir' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='Path to save model checkpoints to.' ) parser.add_argument('--hub_model_id' , type=lowerCAmelCase__ , help='Model ID to upload to on the Hugging Face Hub.' ) snake_case__ : Union[str, Any] = parser.parse_args() return args def lowercase_ (A : List[str] ): try: if args.tpu_name: snake_case__ : Dict = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: snake_case__ : Any = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( 'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ' '--gcp_project. When running on a TPU VM, use --tpu_name local.' ) tf.config.experimental_connect_to_cluster(lowerCAmelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ ) return tpu def lowercase_ (A : List[Any] ): snake_case__ : Union[str, Any] = 0 for file in file_list: snake_case__ : Dict = file.split('/' )[-1] snake_case__ : Any = re.search(r'-\d+-(\d+)\.tfrecord' , lowerCAmelCase__ ).group(1 ) snake_case__ : Dict = int(lowerCAmelCase__ ) num_samples += sample_count return num_samples def lowercase_ (A : Tuple , A : Optional[Any] , A : Optional[Any] , A : Any , A : Dict , A : List[str]=None ): snake_case__ : Union[str, Any] = count_samples(lowerCAmelCase__ ) snake_case__ : int = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ ) if shuffle: snake_case__ : List[str] = dataset.shuffle(len(lowerCAmelCase__ ) ) snake_case__ : Optional[int] = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here snake_case__ : List[Any] = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) ) snake_case__ : List[str] = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) if shuffle: assert shuffle_buffer_size is not None snake_case__ : Any = dataset.shuffle(args.shuffle_buffer_size ) snake_case__ : str = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ ) snake_case__ : Any = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) snake_case__ : int = dataset.prefetch(lowerCAmelCase__ ) return dataset def lowercase_ (A : Optional[Any] ): if not args.no_tpu: snake_case__ : Tuple = initialize_tpu(lowerCAmelCase__ ) snake_case__ : str = tf.distribute.TPUStrategy(lowerCAmelCase__ ) else: snake_case__ : List[Any] = tf.distribute.OneDeviceStrategy(device='/gpu:0' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' ) snake_case__ : str = AutoTokenizer.from_pretrained(args.tokenizer ) snake_case__ : Optional[Any] = AutoConfig.from_pretrained(args.pretrained_model_config ) snake_case__ : Any = tokenizer.vocab_size snake_case__ : str = tf.io.gfile.glob(os.path.join(args.train_dataset , '*.tfrecord' ) ) if not training_records: raise ValueError(F'''No .tfrecord files found in {args.train_dataset}.''' ) snake_case__ : str = tf.io.gfile.glob(os.path.join(args.eval_dataset , '*.tfrecord' ) ) if not eval_records: raise ValueError(F'''No .tfrecord files found in {args.eval_dataset}.''' ) snake_case__ : Optional[Any] = count_samples(lowerCAmelCase__ ) snake_case__ : int = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) snake_case__ : Optional[Any] = steps_per_epoch * args.num_epochs with strategy.scope(): snake_case__ : Optional[Any] = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built snake_case__ : str = create_optimizer( num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCAmelCase__ , metrics=['accuracy'] ) def decode_fn(A : Optional[int] ): snake_case__ : int = { 'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), 'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. snake_case__ : Union[str, Any] = DataCollatorForLanguageModeling( tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors='tf' ) def mask_with_collator(A : Optional[Any] ): # TF really needs an isin() function snake_case__ : Tuple = ( ~tf.cast(batch['attention_mask'] , tf.bool ) | (batch['input_ids'] == tokenizer.cls_token_id) | (batch['input_ids'] == tokenizer.sep_token_id) ) snake_case__ : Optional[int] = data_collator.tf_mask_tokens( batch['input_ids'] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , ) return batch snake_case__ : Any = args.per_replica_batch_size * strategy.num_replicas_in_sync snake_case__ : Optional[int] = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) snake_case__ : List[Any] = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , ) snake_case__ : str = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) ) model.fit( lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": a_ :Union[str, Any] = parse_args() main(args)
709
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: a_ :Dict = None a_ :List[str] = logging.get_logger(__name__) a_ :Dict = "▁" a_ :Dict = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} a_ :Union[str, Any] = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } a_ :List[Any] = { "google/pegasus-xsum": 512, } class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = PegasusTokenizer _SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__( self : Any, _snake_case : Any=None, _snake_case : Optional[Any]=None, _snake_case : Tuple="<pad>", _snake_case : Tuple="</s>", _snake_case : List[str]="<unk>", _snake_case : Any="<mask_2>", _snake_case : Optional[Any]="<mask_1>", _snake_case : Tuple=None, _snake_case : str=1_0_3, **_snake_case : Dict, ) ->List[Any]: snake_case__ : Any = offset if additional_special_tokens is not None: if not isinstance(_snake_case, _snake_case ): raise TypeError( F'''additional_special_tokens should be of type {type(_snake_case )}, but is''' F''' {type(_snake_case )}''' ) snake_case__ : int = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(_snake_case ), self.offset - 1 ) ] if len(set(_snake_case ) ) != len(_snake_case ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) snake_case__ : Optional[int] = additional_special_tokens_extended else: snake_case__ : Optional[Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2, self.offset )] super().__init__( _snake_case, tokenizer_file=_snake_case, pad_token=_snake_case, eos_token=_snake_case, unk_token=_snake_case, mask_token=_snake_case, mask_token_sent=_snake_case, offset=_snake_case, additional_special_tokens=_snake_case, **_snake_case, ) snake_case__ : str = vocab_file snake_case__ : int = False if not self.vocab_file else True def lowercase_ ( self : Optional[Any], _snake_case : str ) ->Dict: snake_case__ : int = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( 'There should be 3 special tokens: mask_token, pad_token, and eos_token +' F''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase_ ( self : Dict, _snake_case : List, _snake_case : Optional[List] = None, _snake_case : bool = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_snake_case ) elif token_ids_a is None: return self._special_token_mask(_snake_case ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase_ ( self : Any, _snake_case : Union[str, Any], _snake_case : Union[str, Any]=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[Any], _snake_case : str, _snake_case : Optional[str] = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( _snake_case, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ): copyfile(self.vocab_file, _snake_case ) return (out_vocab_file,)
243
0
'''simple docstring''' from scipy.stats import spearmanr import datasets UpperCAmelCase_ : int = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' UpperCAmelCase_ : int = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' UpperCAmelCase_ : Optional[Any] = R'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): '''simple docstring''' def snake_case__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def snake_case__ ( self , __lowercase , __lowercase , __lowercase=False ): """simple docstring""" __A : Union[str, Any] = spearmanr(_snake_case , _snake_case ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
365
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput A : Any = 'scheduler_config.json' class __A( a ): snake_case_ = 1 snake_case_ = 2 snake_case_ = 3 snake_case_ = 4 snake_case_ = 5 @dataclass class __A( a ): snake_case_ = 42 class __A: snake_case_ = SCHEDULER_CONFIG_NAME snake_case_ = ['''dtype'''] snake_case_ = [] snake_case_ = True @classmethod def SCREAMING_SNAKE_CASE_ ( cls , _snake_case = None , _snake_case = None , _snake_case=False , **_snake_case , ) -> List[Any]: '''simple docstring''' __a , __a = cls.load_config( pretrained_model_name_or_path=_snake_case , subfolder=_snake_case , return_unused_kwargs=_snake_case , **_snake_case , ) __a , __a = cls.from_config(_snake_case , return_unused_kwargs=_snake_case , **_snake_case ) if hasattr(_snake_case , '''create_state''' ) and getattr(_snake_case , '''has_state''' , _snake_case ): __a = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = False , **_snake_case ) -> List[Any]: '''simple docstring''' self.save_config(save_directory=_snake_case , push_to_hub=_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' return self._get_compatibles() @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Any: '''simple docstring''' __a = list(set([cls.__name__] + cls._compatibles ) ) __a = importlib.import_module(__name__.split('''.''' )[0] ) __a = [ getattr(_snake_case , _snake_case ) for c in compatible_classes_str if hasattr(_snake_case , _snake_case ) ] return compatible_classes def __lowerCAmelCase ( a__ , a__ ) -> jnp.ndarray: assert len(a__ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(a__ ) - x.ndim) ) , a__ ) def __lowerCAmelCase ( a__ , a__=0.999 , a__=jnp.floataa ) -> jnp.ndarray: def alpha_bar(a__ ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 __a = [] for i in range(a__ ): __a = i / num_diffusion_timesteps __a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(a__ ) / alpha_bar(a__ ) , a__ ) ) return jnp.array(a__ , dtype=a__ ) @flax.struct.dataclass class __A: snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 @classmethod def SCREAMING_SNAKE_CASE_ ( cls , _snake_case ) -> int: '''simple docstring''' __a = scheduler.config if config.trained_betas is not None: __a = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __a = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __a = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __a = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) __a = 1.0 - betas __a = jnp.cumprod(_snake_case , axis=0 ) return cls( alphas=_snake_case , betas=_snake_case , alphas_cumprod=_snake_case , ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> Dict: __a = state.alphas_cumprod __a = alphas_cumprod[timesteps] ** 0.5 __a = sqrt_alpha_prod.flatten() __a = broadcast_to_shape_from_left(a__ , original_samples.shape ) __a = (1 - alphas_cumprod[timesteps]) ** 0.5 __a = sqrt_one_minus_alpha_prod.flatten() __a = broadcast_to_shape_from_left(a__ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> int: __a , __a = get_sqrt_alpha_prod(a__ , a__ , a__ , a__ ) __a = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> Union[str, Any]: __a , __a = get_sqrt_alpha_prod(a__ , a__ , a__ , a__ ) __a = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
219
0
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowercase__ ( __lowercase : Optional[int] ) -> str: """simple docstring""" return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowercase__ ( __lowercase : Dict , __lowercase : str ) -> str: """simple docstring""" __UpperCamelCase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue __UpperCamelCase = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' ) __UpperCamelCase = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' ) __UpperCamelCase = key.replace('heads.cmd.itm_head.cls' , 'itm_head' ) __UpperCamelCase = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' ) __UpperCamelCase = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' ) __UpperCamelCase = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' ) __UpperCamelCase = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' ) __UpperCamelCase = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' ) __UpperCamelCase = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' ) __UpperCamelCase = key.replace('image_encoder.module' , 'flava.image_model' ) __UpperCamelCase = key.replace('text_encoder.module' , 'flava.text_model' ) __UpperCamelCase = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' ) __UpperCamelCase = key.replace('mm_encoder.module' , 'flava.multimodal_model' ) __UpperCamelCase = key.replace('text_projection' , 'flava.text_projection' ) __UpperCamelCase = key.replace('image_projection' , 'flava.image_projection' ) __UpperCamelCase = value.float() for key, value in codebook_state_dict.items(): __UpperCamelCase = value return upgrade @torch.no_grad() def lowercase__ ( __lowercase : str , __lowercase : List[Any] , __lowercase : Any , __lowercase : Optional[int]=None ) -> str: """simple docstring""" if config_path is not None: __UpperCamelCase = FlavaConfig.from_pretrained(_snake_case ) else: __UpperCamelCase = FlavaConfig() __UpperCamelCase = FlavaForPreTraining(_snake_case ).eval() __UpperCamelCase = convert_dalle_checkpoint(_snake_case , _snake_case , save_checkpoint=_snake_case ) if os.path.exists(_snake_case ): __UpperCamelCase = torch.load(_snake_case , map_location='cpu' ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(_snake_case , map_location='cpu' ) __UpperCamelCase = upgrade_state_dict(_snake_case , _snake_case ) hf_model.load_state_dict(_snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(_snake_case ) __UpperCamelCase = count_parameters(_snake_case ) + count_parameters(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": a__ : int =argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--codebook_path''', default=None, type=str, help='''Path to flava codebook checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') a__ : Dict =parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
711
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowercase__ ( ) -> Optional[int]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def lowercase__ ( ) -> Any: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def lowercase__ ( ) -> List[str]: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
434
0
print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
101
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _snake_case : str = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =["""input_values""", """padding_mask"""] def __init__( self, _a = 1, _a = 2_40_00, _a = 0.0, _a = None, _a = None, **_a, ) -> str: super().__init__(feature_size=_a, sampling_rate=_a, padding_value=_a, **_a ) __SCREAMING_SNAKE_CASE = chunk_length_s __SCREAMING_SNAKE_CASE = overlap @property def __lowerCAmelCase ( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __lowerCAmelCase ( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1, int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self, _a, _a = None, _a = False, _a = None, _a = None, _a = None, ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if padding and truncation: raise ValueError("Both padding and truncation were set. Make sure you only set one." ) elif padding is None: # by default let's pad the inputs __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = bool( isinstance(_a, (list, tuple) ) and (isinstance(raw_audio[0], (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE = [np.asarray(_a, dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_a, np.ndarray ): __SCREAMING_SNAKE_CASE = np.asarray(_a, dtype=np.floataa ) elif isinstance(_a, np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE = raw_audio.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE = [np.asarray(_a ).T] # verify inputs are valid for idx, example in enumerate(_a ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = BatchFeature({"input_values": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: __SCREAMING_SNAKE_CASE = min(array.shape[0] for array in raw_audio ) __SCREAMING_SNAKE_CASE = int(np.floor(max_length / self.chunk_stride ) ) __SCREAMING_SNAKE_CASE = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: __SCREAMING_SNAKE_CASE = max(array.shape[0] for array in raw_audio ) __SCREAMING_SNAKE_CASE = int(np.ceil(max_length / self.chunk_stride ) ) __SCREAMING_SNAKE_CASE = (nb_step - 1) * self.chunk_stride + self.chunk_length __SCREAMING_SNAKE_CASE = "max_length" else: __SCREAMING_SNAKE_CASE = input_values # normal padding on batch if padded_inputs is None: __SCREAMING_SNAKE_CASE = self.pad( _a, max_length=_a, truncation=_a, padding=_a, return_attention_mask=_a, ) if padding: __SCREAMING_SNAKE_CASE = padded_inputs.pop("attention_mask" ) __SCREAMING_SNAKE_CASE = [] for example in padded_inputs.pop("input_values" ): if self.feature_size == 1: __SCREAMING_SNAKE_CASE = example[..., None] input_values.append(example.T ) __SCREAMING_SNAKE_CASE = input_values if return_tensors is not None: __SCREAMING_SNAKE_CASE = padded_inputs.convert_to_tensors(_a ) return padded_inputs
693
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def A__ ( __A , __A=False ): '''simple docstring''' try: _lowerCamelCase : List[str] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _lowerCamelCase : Optional[int] = default else: # KEY is set, convert it to True or False. try: _lowerCamelCase : List[str] = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value lowerCAmelCase : str =parse_flag_from_env("RUN_SLOW", default=False) def A__ ( __A ): '''simple docstring''' return unittest.skip("""Test was skipped""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , """test is slow""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(__A ) def A__ ( __A=None , __A=None ): '''simple docstring''' if test_case is None: return partial(__A , version=__A ) return unittest.skipUnless(is_torch_version(""">=""" , __A ) , F"""test requires torch version >= {version}""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(__A ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(__A ) lowerCAmelCase : Union[str, Any] =( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def A__ ( __A ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(__A ) class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = True @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = tempfile.mkdtemp() @classmethod def _SCREAMING_SNAKE_CASE ( cls : int) ->List[Any]: """simple docstring""" if os.path.exists(cls.tmpdir): shutil.rmtree(cls.tmpdir) def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir).glob("""**/*"""): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_UpperCamelCase) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Union[mock.Mock, List[mock.Mock]]) ->List[str]: """simple docstring""" _lowerCamelCase : Optional[Any] = mocks if isinstance(_UpperCamelCase , (tuple, list)) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop) def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = AcceleratorState() _lowerCamelCase : Tuple = tensor[None].clone().to(state.device ) _lowerCamelCase : int = gather(__A ).cpu() _lowerCamelCase : Optional[int] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __A ): return False return True class __snake_case : '''simple docstring''' def __init__( self : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->List[str]: """simple docstring""" _lowerCamelCase : List[str] = returncode _lowerCamelCase : Union[str, Any] = stdout _lowerCamelCase : List[Any] = stderr async def A__ ( __A , __A ): '''simple docstring''' while True: _lowerCamelCase : List[str] = await stream.readline() if line: callback(__A ) else: break async def A__ ( __A , __A=None , __A=None , __A=None , __A=False , __A=False ): '''simple docstring''' if echo: print("""\nRunning: """ , """ """.join(__A ) ) _lowerCamelCase : Dict = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _lowerCamelCase : int = [] _lowerCamelCase : int = [] def tee(__A , __A , __A , __A="" ): _lowerCamelCase : Dict = line.decode("""utf-8""" ).rstrip() sink.append(__A ) if not quiet: print(__A , __A , file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __A : tee(__A , __A , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __A : tee(__A , __A , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=__A , ) return _RunOutput(await p.wait() , __A , __A ) def A__ ( __A , __A=None , __A=None , __A=180 , __A=False , __A=True ): '''simple docstring''' _lowerCamelCase : List[Any] = asyncio.get_event_loop() _lowerCamelCase : Any = loop.run_until_complete( _stream_subprocess(__A , env=__A , stdin=__A , timeout=__A , quiet=__A , echo=__A ) ) _lowerCamelCase : Optional[int] = """ """.join(__A ) if result.returncode > 0: _lowerCamelCase : Optional[Any] = """\n""".join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) return result class __snake_case ( __lowerCAmelCase ): '''simple docstring''' pass def A__ ( __A , __A=False ): '''simple docstring''' try: _lowerCamelCase : Optional[Any] = subprocess.check_output(__A , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__A , """decode""" ): _lowerCamelCase : List[str] = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{' '.join(__A )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
15
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""") _lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : str = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""") _lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
15
1
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case : List[str] = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("""encoder""" ): __snake_case : Optional[int] = k.replace(""".attn""" , """.self_attn""" ) __snake_case : Tuple = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __snake_case : List[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : str = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __snake_case : Optional[int] = k.replace("""norm3""" , """final_layer_norm""" ) return k def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __snake_case : Optional[Any] = sd.pop(_lowerCamelCase ) __snake_case : List[str] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __snake_case : Union[str, Any] = v __UpperCamelCase = ["START"] @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __snake_case : Dict = model["""model"""] __snake_case : Optional[int] = BlenderbotConfig.from_json_file(_lowerCamelCase ) __snake_case : Union[str, Any] = BlenderbotForConditionalGeneration(_lowerCamelCase ) __snake_case : List[Any] = m.model.state_dict().keys() __snake_case : int = [] __snake_case : Union[str, Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case : Optional[int] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
from __future__ import annotations def _snake_case( SCREAMING_SNAKE_CASE__ ) -> list[int]: lowercase : int = [True] * limit lowercase : Tuple = False lowercase : List[Any] = False lowercase : Union[str, Any] = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowercase : Tuple = i * 2 while index < limit: lowercase : Optional[int] = False lowercase : Optional[int] = index + i lowercase : int = [2] for i in range(3 , SCREAMING_SNAKE_CASE__ , 2 ): if is_prime[i]: primes.append(SCREAMING_SNAKE_CASE__ ) return primes def _snake_case( SCREAMING_SNAKE_CASE__ = 1_000_000 ) -> int: lowercase : int = prime_sieve(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = 0 lowercase : Dict = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(i + length , len(SCREAMING_SNAKE_CASE__ ) ): lowercase : Optional[int] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowercase : Any = j - i lowercase : int = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
336
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=7 , lowerCAmelCase_=3 , lowerCAmelCase_=30 , lowerCAmelCase_=4_00 , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=0.9 , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[0.5, 0.5, 0.5] , lowerCAmelCase_=[0.5, 0.5, 0.5] , ): '''simple docstring''' a_ : Any = size if size is not None else {"""shortest_edge""": 30} a_ : Any = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} a_ : Optional[Any] = parent a_ : List[Any] = batch_size a_ : Optional[int] = num_channels a_ : Union[str, Any] = min_resolution a_ : List[Any] = max_resolution a_ : Dict = do_resize_and_center_crop a_ : Union[str, Any] = size a_ : Any = crop_pct a_ : str = crop_size a_ : List[Any] = do_normalize a_ : Optional[Any] = image_mean a_ : int = image_std def _lowerCAmelCase ( self ): '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _UpperCAmelCase ( lowerCAmelCase__ ,unittest.TestCase ): """simple docstring""" a_ = PoolFormerImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self ): '''simple docstring''' a_ : str = PoolFormerImageProcessingTester(self ) @property def _lowerCAmelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """crop_pct""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """image_std""" ) ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) a_ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _lowerCAmelCase ( self ): '''simple docstring''' pass def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input a_ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched a_ : List[str] = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input a_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched a_ : Optional[Any] = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input a_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched a_ : Optional[Any] = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
460
'''simple docstring''' from torch import nn def _snake_case ( A_ : Dict ): """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
460
1
import numpy as np def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ = 1E-12 , lowercase_ = 1_00 , ) -> tuple[float, np.ndarray]: '''simple docstring''' assert np.shape(lowercase_ )[0] == np.shape(lowercase_ )[1] # Ensure proper dimensionality. assert np.shape(lowercase_ )[0] == np.shape(lowercase_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowercase_ ) == np.iscomplexobj(lowercase_ ) lowercase__ : Dict = np.iscomplexobj(lowercase_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowercase_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. lowercase__ : Optional[Any] = False lowercase__ : Union[str, Any] = 0 lowercase__ : Tuple = 0 lowercase__ : Dict = 1E12 while not convergence: # Multiple matrix by the vector. lowercase__ : Tuple = np.dot(lowercase_ , lowercase_ ) # Normalize the resulting output vector. lowercase__ : int = w / np.linalg.norm(lowercase_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lowercase__ : List[Any] = vector.conj().T if is_complex else vector.T lowercase__ : Optional[Any] = np.dot(lowercase_ , np.dot(lowercase_ , lowercase_ ) ) # Check convergence. lowercase__ : Union[str, Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: lowercase__ : Any = True lowercase__ : List[str] = lambda_ if is_complex: lowercase__ : Tuple = np.real(lambda_ ) return lambda_, vector def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase__ : Dict = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) lowercase__ : Any = np.array([41, 4, 20] ) lowercase__ : Optional[int] = real_input_matrix.astype(np.complexaaa ) lowercase__ : Tuple = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T lowercase__ : Any = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": lowercase__ : Tuple = real_input_matrix lowercase__ : Optional[Any] = real_vector elif problem_type == "complex": lowercase__ : Optional[int] = complex_input_matrix lowercase__ : int = complex_vector # Our implementation. lowercase__ , lowercase__ : Tuple = power_iteration(lowercase_ , lowercase_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). lowercase__ , lowercase__ : Dict = np.linalg.eigh(lowercase_ ) # Last eigenvalue is the maximum one. lowercase__ : List[Any] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. lowercase__ : Any = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowercase_ ) - np.abs(lowercase_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
12
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : BigBirdConfig __lowerCAmelCase : jnp.dtype = jnp.floataa __lowerCAmelCase : bool = True def lowercase__ ( self): '''simple docstring''' super().setup() lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ): lowercase__ : int = logits.shape[-1] lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" ) lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 ) lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase__ : Optional[int] = reduction(lowercase_ ) return loss lowercase__ : int = partial(lowercase_ , reduction=jnp.mean ) lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _snake_case : __lowerCAmelCase : str = "google/bigbird-roberta-base" __lowerCAmelCase : int = 3_000 __lowerCAmelCase : int = 10_500 __lowerCAmelCase : int = 128 __lowerCAmelCase : int = 3 __lowerCAmelCase : int = 1 __lowerCAmelCase : int = 5 # tx_args __lowerCAmelCase : float = 3e-5 __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 20_000 __lowerCAmelCase : float = 0.0_095 __lowerCAmelCase : str = "bigbird-roberta-natural-questions" __lowerCAmelCase : str = "training-expt" __lowerCAmelCase : str = "data/nq-training.jsonl" __lowerCAmelCase : str = "data/nq-validation.jsonl" def lowercase__ ( self): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_) lowercase__ : Any = os.path.join(self.base_dir , self.save_dir) lowercase__ : str = self.batch_size_per_device * jax.device_count() @dataclass class _snake_case : __lowerCAmelCase : int __lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs def __call__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""]) lowercase__ : str = { """input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa), } return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))] while len(SCREAMING_SNAKE_CASE_) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]: '''simple docstring''' if seed is not None: lowercase__ : Any = dataset.shuffle(seed=lowercase_ ) for i in range(len(lowercase_ ) // batch_size ): lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase_ ) @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int: '''simple docstring''' def loss_fn(lowercase_ ): lowercase__ : Dict = model_inputs.pop("""start_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""end_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Any = outputs return state.loss_fn( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ ) lowercase__ : Tuple = jax.value_and_grad(lowercase_ ) lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params ) lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" ) lowercase__ : str = state.apply_gradients(grads=lowercase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str: '''simple docstring''' lowercase__ : Tuple = model_inputs.pop("""start_labels""" ) lowercase__ : List[str] = model_inputs.pop("""end_labels""" ) lowercase__ : int = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class _snake_case ( train_state.TrainState ): __lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ ) @dataclass class _snake_case : __lowerCAmelCase : Args __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : wandb __lowerCAmelCase : Callable = None def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : List[str] = model.params lowercase__ : Dict = TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , ) if ckpt_dir is not None: lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = train_state.TrainState( step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Optional[Any] = args lowercase__ : Union[str, Any] = data_collator lowercase__ : str = lr lowercase__ : Union[str, Any] = params lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_) return state def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = self.args lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size lowercase__ : int = jax.random.PRNGKey(0) lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count()) for epoch in range(args.max_epochs): lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa) lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 if i % args.logging_steps == 0: lowercase__ : List[str] = jax_utils.unreplicate(state.step) lowercase__ : str = running_loss.item() / i lowercase__ : Tuple = self.scheduler_fn(state_step - 1) lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE_)) self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size) lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa) lowercase__ : Optional[Any] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 return running_loss / i def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_) print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """) self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib""")) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib""")) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f: json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_) print("""DONE""") def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ ) with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase__ : Optional[Any] = from_bytes(state.params , f.read() ) with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase__ : Dict = from_bytes(state.opt_state , f.read() ) lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) ) lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) ) with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f: lowercase__ : int = json.load(lowercase_ ) lowercase__ : Optional[Any] = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Optional[int] = num_train_steps - warmup_steps lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ ) lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ ) lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' def weight_decay_mask(lowercase_ ): lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ ) lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase_ ) lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ ) return tx, lr
12
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCAmelCase = 16 __UpperCAmelCase = 32 def snake_case_ (__A : Accelerator , __A : int = 1_6 ) -> List[str]: __lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowerCAmelCase : str = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__A : str ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase : Tuple = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__A , max_length=__A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCAmelCase : Union[str, Any] = datasets.map( __A , batched=__A , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase : Optional[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__A : int ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCAmelCase : List[Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCAmelCase : Optional[Any] = 1_6 elif accelerator.mixed_precision != "no": __lowerCAmelCase : str = 8 else: __lowerCAmelCase : Optional[Any] = None return tokenizer.pad( __A , padding="""longest""" , max_length=__A , pad_to_multiple_of=__A , return_tensors="""pt""" , ) # Instantiate dataloaders. __lowerCAmelCase : Dict = DataLoader( tokenized_datasets["""train"""] , shuffle=__A , collate_fn=__A , batch_size=__A ) __lowerCAmelCase : Optional[int] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__A , collate_fn=__A , batch_size=__A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCAmelCase = mocked_dataloaders # noqa: F811 def snake_case_ (__A : int , __A : int ) -> Dict: if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __A ) == "1": __lowerCAmelCase : Union[str, Any] = 2 # Initialize accelerator __lowerCAmelCase : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase : Dict = config['''lr'''] __lowerCAmelCase : Tuple = int(config["""num_epochs"""] ) __lowerCAmelCase : List[Any] = int(config["""seed"""] ) __lowerCAmelCase : Tuple = int(config["""batch_size"""] ) __lowerCAmelCase : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__A ) def inner_training_loop(__A : Tuple ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase : List[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase : Any = AdamW(params=model.parameters() , lr=__A ) __lowerCAmelCase : Tuple = get_dataloaders(__A , __A ) # Instantiate scheduler __lowerCAmelCase : Any = get_linear_schedule_with_warmup( optimizer=__A , num_warmup_steps=1_0_0 , num_training_steps=(len(__A ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase : List[Any] = accelerator.prepare( __A , __A , __A , __A , __A ) # Now we train the model for epoch in range(__A ): model.train() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCAmelCase : List[str] = model(**__A ) __lowerCAmelCase : int = outputs.loss accelerator.backward(__A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCAmelCase : List[Any] = model(**__A ) __lowerCAmelCase : Optional[Any] = outputs.logits.argmax(dim=-1 ) __lowerCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__A , references=__A , ) __lowerCAmelCase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __A ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def snake_case_ () -> List[str]: __lowerCAmelCase : Any = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__A , default=__A , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __lowerCAmelCase : Tuple = parser.parse_args() __lowerCAmelCase : Optional[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(__A , __A ) if __name__ == "__main__": main()
708
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""MobileViTFeatureExtractor"""] __UpperCAmelCase = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
218
0
"""simple docstring""" from __future__ import annotations from math import pi def lowercase (_snake_case ,_snake_case ,_snake_case ) -> Dict: '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
505
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): A_ = CpmAntTokenizer A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' super().setUp() __a : str = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] __a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) __a : int = '今天天气真好!' __a : int = ['今天', '天气', '真', '好', '!'] __a : Optional[Any] = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __a : Dict = '今天天气真好!' __a : Union[str, Any] = [tokenizer.bos_token] + tokens __a : int = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) __a : Any = tokenizer.decode(__a ) self.assertEqual(__a , __a )
476
0
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE_ ( _lowercase): '''simple docstring''' __magic_name__ : int = '''efficientformer''' def __init__( self , lowerCamelCase__ = [3, 2, 6, 4] , lowerCamelCase__ = [48, 96, 224, 448] , lowerCamelCase__ = [True, True, True, True] , lowerCamelCase__ = 448 , lowerCamelCase__ = 32 , lowerCamelCase__ = 4 , lowerCamelCase__ = 7 , lowerCamelCase__ = 5 , lowerCamelCase__ = 8 , lowerCamelCase__ = 4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 16 , lowerCamelCase__ = 3 , lowerCamelCase__ = 3 , lowerCamelCase__ = 3 , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 1 , lowerCamelCase__ = True , lowerCamelCase__ = True , lowerCamelCase__ = 1E-5 , lowerCamelCase__ = "gelu" , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1E-12 , lowerCamelCase__ = 224 , lowerCamelCase__ = 1E-05 , **lowerCamelCase__ , ) -> None: '''simple docstring''' super().__init__(**lowerCamelCase__) snake_case__ : List[Any] = hidden_act snake_case__ : Optional[int] = hidden_dropout_prob snake_case__ : str = hidden_sizes snake_case__ : Dict = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Union[str, Any] = initializer_range snake_case__ : str = layer_norm_eps snake_case__ : int = patch_size snake_case__ : Optional[Any] = num_channels snake_case__ : List[Any] = depths snake_case__ : str = mlp_expansion_ratio snake_case__ : Union[str, Any] = downsamples snake_case__ : List[str] = dim snake_case__ : Optional[Any] = key_dim snake_case__ : Optional[int] = attention_ratio snake_case__ : Optional[int] = resolution snake_case__ : str = pool_size snake_case__ : List[Any] = downsample_patch_size snake_case__ : Union[str, Any] = downsample_stride snake_case__ : Any = downsample_pad snake_case__ : Any = drop_path_rate snake_case__ : int = num_metaad_blocks snake_case__ : Dict = distillation snake_case__ : str = use_layer_scale snake_case__ : List[str] = layer_scale_init_value snake_case__ : Dict = image_size snake_case__ : Dict = batch_norm_eps
150
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Union[str, Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[int] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : str = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) def A__ ( *_UpperCAmelCase : str , **_UpperCAmelCase : List[str] ) -> str: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : int , **_UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : str = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : str = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Union[str, Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : str = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[int] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"])
150
1
'''simple docstring''' __a = 65_521 def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Union[str, Any] = 0 for plain_chr in plain_text: _UpperCAmelCase : List[Any] = (a + ord(a_ )) % MOD_ADLER _UpperCAmelCase : Tuple = (b + a) % MOD_ADLER return (b << 16) | a
494
'''simple docstring''' import warnings from .generation import TFGenerationMixin class A__ ( UpperCamelCase ): """simple docstring""" warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , UpperCamelCase , )
494
1
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
708
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version A__ = { '''<''': operator.lt, '''<=''': operator.le, '''==''': operator.eq, '''!=''': operator.ne, '''>=''': operator.ge, '''>''': operator.gt, } def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(__lowerCAmelCase ) , version.parse(__lowerCAmelCase ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase = None ) -> None: """simple docstring""" snake_case__ : List[str] = f"""\n{hint}""" if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , __lowerCAmelCase ): snake_case__ , snake_case__ , snake_case__ : Tuple = requirement, None, None else: snake_case__ : Union[str, Any] = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , __lowerCAmelCase ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f""" got {requirement}""" ) snake_case__ , snake_case__ : int = match[0] snake_case__ : List[str] = want_full.split(''',''' ) # there could be multiple requirements snake_case__ : Tuple = {} for w in want_range: snake_case__ : str = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , __lowerCAmelCase ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f""" but got {requirement}""" ) snake_case__ , snake_case__ : List[Any] = match[0] snake_case__ : Any = want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": snake_case__ : Dict = '''.'''.join([str(__lowerCAmelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return # check if any version is installed try: snake_case__ : List[Any] = importlib.metadata.version(__lowerCAmelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase ) -> int: """simple docstring""" snake_case__ : Any = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(__lowerCAmelCase , __lowerCAmelCase )
219
0
from __future__ import annotations from decimal import Decimal from numpy import array def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list[list[float]]: _lowercase : List[str] = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(SCREAMING_SNAKE_CASE ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _lowercase : List[Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements _lowercase : Optional[Any] = [[0.0, 0.0], [0.0, 0.0]] _lowercase , _lowercase : str = matrix[1][1], matrix[0][0] _lowercase , _lowercase : Optional[int] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(SCREAMING_SNAKE_CASE ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(SCREAMING_SNAKE_CASE ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _lowercase : str = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix _lowercase : str = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _lowercase : Dict = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _lowercase : List[str] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _lowercase : Dict = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _lowercase : Dict = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _lowercase : Tuple = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _lowercase : Optional[Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _lowercase : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _lowercase : Dict = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _lowercase : List[str] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _lowercase : Tuple = array(SCREAMING_SNAKE_CASE ) for i in range(3 ): for j in range(3 ): _lowercase : str = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _lowercase : List[Any] = array(SCREAMING_SNAKE_CASE ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(SCREAMING_SNAKE_CASE ) # Calculate the inverse of the matrix return [[float(d(SCREAMING_SNAKE_CASE ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
66
from __future__ import annotations import math def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list[int]: if num <= 0: _lowercase : List[str] = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = [True] * (num + 1) _lowercase : Union[str, Any] = [] _lowercase : Dict = 2 _lowercase : Union[str, Any] = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE ): if sieve[i] is True: _lowercase : str = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
66
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" snake_case_ = BlenderbotSmallTokenizer snake_case_ = False def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" super().setUp() lowerCamelCase__ = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] lowerCamelCase__ = dict(zip(a_ , range(len(a_ ) ) ) ) lowerCamelCase__ = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] lowerCamelCase__ = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a_ ) ) def _UpperCamelCase ( self : Optional[Any] , **a_ : Union[str, Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **a_ ) def _UpperCamelCase ( self : List[Any] , a_ : Dict ): """simple docstring""" lowerCamelCase__ = """adapt act apte""" lowerCamelCase__ = """adapt act apte""" return input_text, output_text def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" lowerCamelCase__ = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase__ = """adapt act apte""" lowerCamelCase__ = ["""adapt""", """act""", """ap@@""", """te"""] lowerCamelCase__ = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) lowerCamelCase__ = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowerCamelCase__ = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def _UpperCamelCase ( self : Tuple ): """simple docstring""" lowerCamelCase__ = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [13_84] lowerCamelCase__ = """I am a small frog.""" lowerCamelCase__ = tok([src_text] , padding=a_ , truncation=a_ )["""input_ids"""] lowerCamelCase__ = tok.batch_decode(a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _UpperCamelCase ( self : int ): """simple docstring""" lowerCamelCase__ = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) lowerCamelCase__ = """I am a small frog .""" lowerCamelCase__ = """.""" lowerCamelCase__ = tok(a_ )["""input_ids"""] lowerCamelCase__ = tok(a_ )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
235
import os from collections import deque import torch from torch.utils.data import Dataset class lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , a_ : List[str]="" , a_ : str="train" ): """simple docstring""" assert os.path.isdir(a_ ) lowerCamelCase__ = [] lowerCamelCase__ = os.listdir(a_ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue lowerCamelCase__ = os.path.join(a_ , a_ ) if not os.path.isfile(a_ ): continue self.documents.append(a_ ) def __len__( self : List[Any] ): """simple docstring""" return len(self.documents ) def __getitem__( self : Optional[int] , a_ : Any ): """simple docstring""" lowerCamelCase__ = self.documents[idx] lowerCamelCase__ = document_path.split("""/""" )[-1] with open(a_ , encoding="""utf-8""" ) as source: lowerCamelCase__ = source.read() lowerCamelCase__ , lowerCamelCase__ = process_story(a_ ) return document_name, story_lines, summary_lines def snake_case (UpperCamelCase : Optional[Any] ): '''simple docstring''' lowerCamelCase__ = list(filter(lambda UpperCamelCase : len(UpperCamelCase ) != 0 , [line.strip() for line in raw_story.split("""\n""" )] ) ) # for some unknown reason some lines miss a period, add it lowerCamelCase__ = [_add_missing_period(UpperCamelCase ) for line in nonempty_lines] # gather article lines lowerCamelCase__ = [] lowerCamelCase__ = deque(UpperCamelCase ) while True: try: lowerCamelCase__ = lines.popleft() if element.startswith("""@highlight""" ): break story_lines.append(UpperCamelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines lowerCamelCase__ = list(filter(lambda UpperCamelCase : not t.startswith("""@highlight""" ) , UpperCamelCase ) ) return story_lines, summary_lines def snake_case (UpperCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ = [""".""", """!""", """?""", """...""", """'""", """`""", """\"""", """\u2019""", """\u2019""", """)"""] if line.startswith("""@highlight""" ): return line if line[-1] in END_TOKENS: return line return line + "." def snake_case (UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] ): '''simple docstring''' if len(UpperCamelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(UpperCamelCase )) ) return sequence def snake_case (UpperCamelCase : List[str] , UpperCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ = torch.ones_like(UpperCamelCase ) lowerCamelCase__ = sequence == pad_token_id lowerCamelCase__ = 0 return mask def snake_case (UpperCamelCase : int , UpperCamelCase : List[str] , UpperCamelCase : str ): '''simple docstring''' lowerCamelCase__ = [tokenizer.encode(UpperCamelCase ) for line in story_lines] lowerCamelCase__ = [token for sentence in story_lines_token_ids for token in sentence] lowerCamelCase__ = [tokenizer.encode(UpperCamelCase ) for line in summary_lines] lowerCamelCase__ = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def snake_case (UpperCamelCase : Optional[int] , UpperCamelCase : Optional[Any] ): '''simple docstring''' lowerCamelCase__ = [] for sequence in batch: lowerCamelCase__ = -1 lowerCamelCase__ = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(UpperCamelCase ) return torch.tensor(UpperCamelCase )
235
1
'''simple docstring''' import json import sys def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]: with open(__UpperCamelCase ,encoding='utf-8' ) as f: lowerCamelCase_ = json.load(__UpperCamelCase ) lowerCamelCase_ = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(__UpperCamelCase ): lowerCamelCase_ = results[benchmark_name] lowerCamelCase_ = benchmark_name.split('/' )[-1] output_md.append(f'''### Benchmark: {benchmark_file_name}''' ) lowerCamelCase_ = '| metric |' lowerCamelCase_ = '|--------|' lowerCamelCase_ = '| new / old (diff) |' for metric_name in sorted(__UpperCamelCase ): lowerCamelCase_ = benchmark_res[metric_name] lowerCamelCase_ = metric_vals['new'] lowerCamelCase_ = metric_vals.get('old' ,__UpperCamelCase ) lowerCamelCase_ = metric_vals.get('diff' ,__UpperCamelCase ) lowerCamelCase_ = f''' {new_val:f}''' if isinstance(__UpperCamelCase ,(int, float) ) else 'None' if old_val is not None: val_str += f''' / {old_val:f}''' if isinstance(__UpperCamelCase ,(int, float) ) else "None" if dif_val is not None: val_str += f''' ({dif_val:f})''' if isinstance(__UpperCamelCase ,(int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(__UpperCamelCase ,'w' ,encoding='utf-8' ) as f: f.writelines('\n'.join(__UpperCamelCase ) ) if __name__ == "__main__": A_ = sys.argv[1] A_ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
42
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase : def __init__( self :Dict , lowercase_ :Union[str, Any] , lowercase_ :Tuple , lowercase_ :List[Any] , lowercase_ :List[str] , lowercase_ :Dict , lowercase_ :Tuple=0.2 , lowercase_ :List[str]=0.2 )-> Any: A__ = bp_numa A__ = bp_numa A__ = bp_numa A__ = conva_get[:2] A__ = conva_get[2] A__ = size_pa A__ = rate_w A__ = rate_t A__ = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] A__ = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) A__ = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) A__ = -2 * np.random.rand(self.conva[1] ) + 1 A__ = -2 * np.random.rand(self.num_bpa ) + 1 A__ = -2 * np.random.rand(self.num_bpa ) + 1 def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :Optional[Any] )-> Optional[Any]: # save model dict with pickle A__ = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(lowercase_ , "wb" ) as f: pickle.dump(lowercase_ , lowercase_ ) print(F"Model saved: {save_path}" ) @classmethod def UpperCAmelCase_ ( cls :Any , lowercase_ :List[Any] )-> Optional[Any]: # read saved model with open(lowercase_ , "rb" ) as f: A__ = pickle.load(lowercase_ ) # noqa: S301 A__ = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) A__ = model_dic.get("size_pooling1" ) A__ = model_dic.get("num_bp1" ) A__ = model_dic.get("num_bp2" ) A__ = model_dic.get("num_bp3" ) A__ = model_dic.get("rate_weight" ) A__ = model_dic.get("rate_thre" ) # create model instance A__ = CNN(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # modify model parameter A__ = model_dic.get("w_conv1" ) A__ = model_dic.get("wkj" ) A__ = model_dic.get("vji" ) A__ = model_dic.get("thre_conv1" ) A__ = model_dic.get("thre_bp2" ) A__ = model_dic.get("thre_bp3" ) return conv_ins def UpperCAmelCase_ ( self :Dict , lowercase_ :Optional[int] )-> Optional[Any]: return 1 / (1 + np.exp(-1 * x )) def UpperCAmelCase_ ( self :List[Any] , lowercase_ :Optional[Any] )-> Any: return round(lowercase_ , 3 ) def UpperCAmelCase_ ( self :int , lowercase_ :Tuple , lowercase_ :List[Any] , lowercase_ :Tuple , lowercase_ :Union[str, Any] , lowercase_ :Dict )-> str: # convolution process A__ = convs[0] A__ = convs[1] A__ = np.shape(lowercase_ )[0] # get the data slice of original image data, data_focus A__ = [] for i_focus in range(0 , size_data - size_conv + 1 , lowercase_ ): for j_focus in range(0 , size_data - size_conv + 1 , lowercase_ ): A__ = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowercase_ ) # calculate the feature map of every single kernel, and saved as list of matrix A__ = [] A__ = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowercase_ ): A__ = [] for i_focus in range(len(lowercase_ ) ): A__ = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowercase_ ) ) A__ = np.asmatrix(lowercase_ ).reshape( lowercase_ , lowercase_ ) data_featuremap.append(lowercase_ ) # expanding the data slice to One dimenssion A__ = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowercase_ ) ) A__ = np.asarray(lowercase_ ) return focus_list, data_featuremap def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :Optional[int] , lowercase_ :Union[str, Any] , lowercase_ :Optional[Any]="average_pool" )-> Dict: # pooling process A__ = len(featuremaps[0] ) A__ = int(size_map / size_pooling ) A__ = [] for i_map in range(len(lowercase_ ) ): A__ = featuremaps[i_map] A__ = [] for i_focus in range(0 , lowercase_ , lowercase_ ): for j_focus in range(0 , lowercase_ , lowercase_ ): A__ = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowercase_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowercase_ ) ) A__ = np.asmatrix(lowercase_ ).reshape(lowercase_ , lowercase_ ) featuremap_pooled.append(lowercase_ ) return featuremap_pooled def UpperCAmelCase_ ( self :str , lowercase_ :Any )-> List[Any]: # expanding three dimension data to one dimension list A__ = [] for i in range(len(lowercase_ ) ): A__ = np.shape(data[i] ) A__ = data[i].reshape(1 , shapes[0] * shapes[1] ) A__ = data_listed.getA().tolist()[0] data_expanded.extend(lowercase_ ) A__ = np.asarray(lowercase_ ) return data_expanded def UpperCAmelCase_ ( self :int , lowercase_ :Optional[Any] )-> Dict: # expanding matrix to one dimension list A__ = np.asarray(lowercase_ ) A__ = np.shape(lowercase_ ) A__ = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :List[str] , lowercase_ :Any , lowercase_ :str , lowercase_ :Any , lowercase_ :Union[str, Any] )-> Any: A__ = [] A__ = 0 for i_map in range(lowercase_ ): A__ = np.ones((size_map, size_map) ) for i in range(0 , lowercase_ , lowercase_ ): for j in range(0 , lowercase_ , lowercase_ ): A__ = pd_pool[ i_pool ] A__ = i_pool + 1 A__ = np.multiply( lowercase_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(lowercase_ ) return pd_all def UpperCAmelCase_ ( self :List[str] , lowercase_ :Optional[Any] , lowercase_ :Optional[Any] , lowercase_ :Union[str, Any] , lowercase_ :List[Any] , lowercase_ :Union[str, Any] , lowercase_ :str=bool )-> Tuple: # model traning print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(lowercase_ )) ) print((" - - Shape: Teach_Data ", np.shape(lowercase_ )) ) A__ = 0 A__ = [] A__ = 1_00_00 while rp < n_repeat and mse >= error_accuracy: A__ = 0 print(F"-------------Learning Time {rp}--------------" ) for p in range(len(lowercase_ ) ): # print('------------Learning Image: %d--------------'%p) A__ = np.asmatrix(datas_train[p] ) A__ = np.asarray(datas_teach[p] ) A__, A__ = self.convolute( lowercase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A__ = self.pooling(lowercase_ , self.size_poolinga ) A__ = np.shape(lowercase_ ) A__ = self._expand(lowercase_ ) A__ = data_bp_input A__ = np.dot(lowercase_ , self.vji.T ) - self.thre_bpa A__ = self.sig(lowercase_ ) A__ = np.dot(lowercase_ , self.wkj.T ) - self.thre_bpa A__ = self.sig(lowercase_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- A__ = np.multiply( (data_teach - bp_outa) , np.multiply(lowercase_ , (1 - bp_outa) ) ) A__ = np.multiply( np.dot(lowercase_ , self.wkj ) , np.multiply(lowercase_ , (1 - bp_outa) ) ) A__ = np.dot(lowercase_ , self.vji ) A__ = pd_i_all / (self.size_poolinga * self.size_poolinga) A__ = pd_conva_pooled.T.getA().tolist() A__ = self._calculate_gradient_from_pool( lowercase_ , lowercase_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): A__ = self._expand_mat(pd_conva_all[k_conv] ) A__ = self.rate_weight * np.dot(lowercase_ , lowercase_ ) A__ = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) A__ = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer A__ = self.wkj + pd_k_all.T * bp_outa * self.rate_weight A__ = self.vji + pd_j_all.T * bp_outa * self.rate_weight A__ = self.thre_bpa - pd_k_all * self.rate_thre A__ = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image A__ = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) A__ = rp + 1 A__ = error_count / patterns all_mse.append(lowercase_ ) def draw_error(): A__ = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowercase_ , "+-" ) plt.plot(lowercase_ , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(lowercase_ , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, F" - - Mse: {mse:.6f}") ) if draw_e: draw_error() return mse def UpperCAmelCase_ ( self :Dict , lowercase_ :List[Any] )-> Optional[Any]: # model predict A__ = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(lowercase_ )) ) for p in range(len(lowercase_ ) ): A__ = np.asmatrix(datas_test[p] ) A__, A__ = self.convolute( lowercase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A__ = self.pooling(lowercase_ , self.size_poolinga ) A__ = self._expand(lowercase_ ) A__ = data_bp_input A__ = bp_outa * self.vji.T - self.thre_bpa A__ = self.sig(lowercase_ ) A__ = bp_outa * self.wkj.T - self.thre_bpa A__ = self.sig(lowercase_ ) produce_out.extend(bp_outa.getA().tolist() ) A__ = [list(map(self.do_round , lowercase_ ) ) for each in produce_out] return np.asarray(lowercase_ ) def UpperCAmelCase_ ( self :Dict , lowercase_ :Optional[int] )-> List[str]: # return the data of image after convoluting process so we can check it out A__ = np.asmatrix(lowercase_ ) A__, A__ = self.convolute( lowercase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A__ = self.pooling(lowercase_ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
440
0
'''simple docstring''' # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = [False] * len(UpperCamelCase__ ) __UpperCAmelCase = [-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ : List[str] , UpperCamelCase__ : Any ): __UpperCAmelCase = True __UpperCAmelCase = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__ , 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__ , 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __lowerCAmelCase : Union[str, Any] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
1
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class a ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCamelCase :Optional[int] = CanineTokenizer lowerCamelCase :Tuple = False def UpperCAmelCase ( self ) -> int: super().setUp() _A = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase ( self ) -> Union[str, Any]: return CanineTokenizer.from_pretrained("""google/canine-s""" ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> List[Any]: _A = self.tokenizer_class.from_pretrained(self.tmpdirname , **_a ) _A = 10_24 return tokenizer @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: _A = self.canine_tokenizer _A = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off _A = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on _A = tokenizer(_a , padding=_a , return_tensors="""pt""" ) self.assertIsInstance(_a , _a ) _A = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_a , _a ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def UpperCAmelCase ( self ) -> Optional[int]: _A = self.canine_tokenizer _A = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] _A = tokenizer(_a , padding=_a , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , _a ) self.assertIn("""attention_mask""" , _a ) self.assertIn("""token_type_ids""" , _a ) @require_torch def UpperCAmelCase ( self ) -> List[Any]: _A = self.canine_tokenizer _A = [ """What's the weater?""", """It's about 25 degrees.""", ] _A = tokenizer( text_target=_a , max_length=32 , padding="""max_length""" , truncation=_a , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def UpperCAmelCase ( self ) -> int: _A = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _A = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _A = tempfile.mkdtemp() _A = """ He is very happy, UNwant\u00E9d,running""" _A = tokenizer.encode(_a , add_special_tokens=_a ) tokenizer.save_pretrained(_a ) _A = tokenizer.__class__.from_pretrained(_a ) _A = after_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) shutil.rmtree(_a ) _A = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _A = tempfile.mkdtemp() _A = """ He is very happy, UNwant\u00E9d,running""" _A = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _A = chr(0xe_007 ) additional_special_tokens.append(_a ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _A = tokenizer.encode(_a , add_special_tokens=_a ) tokenizer.save_pretrained(_a ) _A = tokenizer.__class__.from_pretrained(_a ) _A = after_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) self.assertIn(_a , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _A = tokenizer.__class__.from_pretrained(_a , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_a ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A , _A = self.get_clean_sequence(_a ) # a special token for Canine can be defined as follows: _A = 0xe_005 _A = chr(_a ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) _A = tokenizer.encode(_a , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _A = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_a ) _A = tokenizer.encode(_a , add_special_tokens=_a ) _A = tokenizer.encode(_a , add_special_tokens=_a ) _A = tokenizer.encode(_a , add_special_tokens=_a ) self.assertEqual(_a , input_encoded + special_token_id ) _A = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = chr(0xe_005 ) _A = chr(0xe_006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_a ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) _A = tokenizer.tokenize(_a ) _A = tokenizer.tokenize(_a ) self.assertEqual(len(_a ) , 1 ) self.assertEqual(len(_a ) , 1 ) self.assertEqual(token_a[0] , _a ) self.assertEqual(token_a[0] , _a ) @require_tokenizers def UpperCAmelCase ( self ) -> Optional[Any]: _A = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: _A = 0xe_006 _A = chr(_a ) _A = AddedToken(_a , lstrip=_a ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_a ) tokenizer.from_pretrained(_a ) def UpperCAmelCase ( self ) -> Optional[Any]: _A = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_a ) with open(os.path.join(_a , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: _A = json.load(_a ) with open(os.path.join(_a , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: _A = json.load(_a ) # a special token for Canine can be defined as follows: _A = 0xe_006 _A = chr(_a ) _A = [new_token_a] _A = [new_token_a] with open(os.path.join(_a , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_a , _a ) with open(os.path.join(_a , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_a , _a ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _A = tokenizer_class.from_pretrained(_a , extra_ids=0 ) self.assertIn(_a , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) _A = 0xe_007 _A = chr(_a ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _A = [AddedToken(_a , lstrip=_a )] _A = tokenizer_class.from_pretrained( _a , additional_special_tokens=_a , extra_ids=0 ) self.assertIn(_a , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def UpperCAmelCase ( self ) -> Tuple: _A = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = """hello world""" if self.space_between_special_tokens: _A = """[CLS] hello world [SEP]""" else: _A = input _A = tokenizer.encode(_a , add_special_tokens=_a ) _A = tokenizer.decode(_a , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_a , [output, output.lower()] ) def UpperCAmelCase ( self ) -> str: _A = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _A = """a""" _A = ord(_a ) for attr in attributes_list: setattr(_a , attr + """_id""" , _a ) self.assertEqual(getattr(_a , _a ) , _a ) self.assertEqual(getattr(_a , attr + """_id""" ) , _a ) setattr(_a , attr + """_id""" , _a ) self.assertEqual(getattr(_a , _a ) , _a ) self.assertEqual(getattr(_a , attr + """_id""" ) , _a ) setattr(_a , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(_a , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(_a , """additional_special_tokens_ids""" ) , [] ) _A = 0xe_006 _A = chr(_a ) setattr(_a , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(_a , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(_a , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def UpperCAmelCase ( self ) -> List[str]: pass def UpperCAmelCase ( self ) -> Any: pass def UpperCAmelCase ( self ) -> Dict: pass def UpperCAmelCase ( self ) -> str: pass def UpperCAmelCase ( self ) -> List[str]: pass def UpperCAmelCase ( self ) -> Dict: pass def UpperCAmelCase ( self ) -> Dict: pass def UpperCAmelCase ( self ) -> List[Any]: pass
401
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase : List[str] = object() # For specifying empty leaf dict `{}` lowerCAmelCase : Any = object() def a__ ( snake_case__ , snake_case__ ) -> List[Any]: lowerCamelCase = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(snake_case__ ) - len(snake_case__ ) + 1 ): lowerCamelCase = [x.match(snake_case__ ) for x, y in zip(snake_case__ , ks[i:] )] if matches and all(snake_case__ ): return True return False def a__ ( snake_case__ ) -> str: def replace(snake_case__ , snake_case__ ): for rule, replacement in rules: if _match(snake_case__ , snake_case__ ): return replacement return val return replace def a__ ( ) -> Union[str, Any]: return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""" , snake_case__ )), (("transformer", "wte", "embedding"), P("""mp""" , snake_case__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(snake_case__ , """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""" , snake_case__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(snake_case__ , """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""" , snake_case__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a__ ( snake_case__ ) -> Optional[Any]: lowerCamelCase = _get_partition_rules() lowerCamelCase = _replacement_rules(snake_case__ ) lowerCamelCase = {k: _unmatched for k in flatten_dict(snake_case__ )} lowerCamelCase = {k: replace(snake_case__ , snake_case__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(snake_case__ ) )
543
0
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC __lowerCamelCase : List[Any] = parse(importlib.metadata.version("""torch""")) def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Version] , snake_case_ : str , snake_case_ : str ): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) snake_case__ : List[str] = STR_OPERATION_TO_FUNC[operation] if isinstance(snake_case_ , snake_case_ ): snake_case__ : int = parse(importlib.metadata.version(snake_case_ ) ) return operation(snake_case_ , parse(snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str ): return compare_versions(snake_case_ , snake_case_ , snake_case_ )
25
def SCREAMING_SNAKE_CASE ( snake_case_ : list ): if len(snake_case_ ) <= 1: return lst snake_case__ : List[Any] = 1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case__, snake_case__ : Tuple = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case__ : Union[str, Any] = 1 return lst if __name__ == "__main__": __lowerCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() __lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
25
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _A : str = LEDTokenizer _A : List[Any] = LEDTokenizerFast _A : Dict = True def lowerCamelCase(self ): super().setUp() A_ : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] A_ : Any = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A_ : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] A_ : List[str] = {"""unk_token""": """<unk>"""} A_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase_ ) ) def lowerCamelCase(self , **lowerCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCamelCase(self , **lowerCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCamelCase(self , lowerCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase(self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase(self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase(self ): A_ : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] A_ : Any = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : Optional[int] = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors="""pt""" ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) A_ : int = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def lowerCamelCase(self ): A_ : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : Tuple = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors="""pt""" ) self.assertIn("""input_ids""" , lowerCAmelCase_ ) self.assertIn("""attention_mask""" , lowerCAmelCase_ ) self.assertNotIn("""labels""" , lowerCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" , lowerCAmelCase_ ) @require_torch def lowerCamelCase(self ): A_ : Tuple = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : Optional[int] = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase(self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : Optional[Any] = tokenizer( ["""I am a small frog""" * 1024, """I am a small frog"""] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""" ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowerCamelCase(self ): A_ : Dict = ["""A long paragraph for summarization."""] A_ : Any = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : int = tokenizer(lowerCAmelCase_ , return_tensors="""pt""" ) A_ : Optional[int] = tokenizer(text_target=lowerCAmelCase_ , return_tensors="""pt""" ) A_ : str = inputs["""input_ids"""] A_ : Tuple = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase(self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ : str = ["""Summary of the text.""", """Another summary."""] A_ : Dict = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] A_ : Optional[Any] = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) A_ : Any = [[0] * len(lowerCAmelCase_ ) for x in encoded_output["""input_ids"""]] A_ : Tuple = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , lowerCAmelCase_ ) def lowerCamelCase(self ): pass def lowerCamelCase(self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A_ : Optional[Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A_ : Optional[Any] = """A, <mask> AllenNLP sentence.""" A_ : List[Any] = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) A_ : Any = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) A_ : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) A_ : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( lowerCAmelCase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
180
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Dict = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
593
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Optional[Any] = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
593
1
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __SCREAMING_SNAKE_CASE ="""bert-base-cased""" __SCREAMING_SNAKE_CASE ="""google/pegasus-xsum""" __SCREAMING_SNAKE_CASE =[""" Sam ate lunch today.""", """Sams lunch ingredients."""] __SCREAMING_SNAKE_CASE =["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] __SCREAMING_SNAKE_CASE ="""patrickvonplaten/t5-tiny-random""" __SCREAMING_SNAKE_CASE ="""sshleifer/bart-tiny-random""" __SCREAMING_SNAKE_CASE ="""sshleifer/tiny-mbart""" __SCREAMING_SNAKE_CASE ="""sshleifer/tiny-marian-en-de""" def a (_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = '''\n'''.join(_lowerCAmelCase ) Path(_lowerCAmelCase ).open('''w''' ).writelines(_lowerCAmelCase ) def a (_lowerCAmelCase ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(_lowerCAmelCase , F"{split}.source" ) , _lowerCAmelCase ) _dump_articles(os.path.join(_lowerCAmelCase , F"{split}.target" ) , _lowerCAmelCase ) return tmp_dir class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def _A ( self: List[str] , _lowerCamelCase: Optional[Any] ): SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) SCREAMING_SNAKE_CASE_ = max(len(tokenizer.encode(_lowerCamelCase ) ) for a in ARTICLES ) SCREAMING_SNAKE_CASE_ = max(len(tokenizer.encode(_lowerCamelCase ) ) for a in SUMMARIES ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. SCREAMING_SNAKE_CASE_ = SeqaSeqDataset( _lowerCamelCase , data_dir=_lowerCamelCase , type_path='''train''' , max_source_length=_lowerCamelCase , max_target_length=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , ) SCREAMING_SNAKE_CASE_ = DataLoader(_lowerCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place SCREAMING_SNAKE_CASE_ = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def _A ( self: Dict , _lowerCamelCase: Optional[int] ): SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) SCREAMING_SNAKE_CASE_ = max(len(tokenizer.encode(_lowerCamelCase ) ) for a in ARTICLES ) SCREAMING_SNAKE_CASE_ = max(len(tokenizer.encode(_lowerCamelCase ) ) for a in SUMMARIES ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = LegacySeqaSeqDataset( _lowerCamelCase , data_dir=_lowerCamelCase , type_path='''train''' , max_source_length=20 , max_target_length=_lowerCamelCase , ) SCREAMING_SNAKE_CASE_ = DataLoader(_lowerCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def _A ( self: Union[str, Any] ): SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) SCREAMING_SNAKE_CASE_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) SCREAMING_SNAKE_CASE_ = tmp_dir.joinpath('''train.source''' ).open().readlines() SCREAMING_SNAKE_CASE_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_lowerCamelCase , _lowerCamelCase , 1_28 , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = {x.name for x in tmp_dir.iterdir()} SCREAMING_SNAKE_CASE_ = {x.name for x in save_dir.iterdir()} SCREAMING_SNAKE_CASE_ = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_lowerCamelCase ) < len(_lowerCamelCase ) assert len(_lowerCamelCase ) == 1 assert len(packed_examples[0] ) == sum(len(_lowerCamelCase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def _A ( self: List[str] ): if not FAIRSEQ_AVAILABLE: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_dataset(max_len=64 ) SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = ds.make_dynamic_sampler(_lowerCamelCase , required_batch_size_multiple=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [len(_lowerCamelCase ) for x in batch_sampler] assert len(set(_lowerCamelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_lowerCamelCase ) == len(_lowerCamelCase ) # no dropped or added examples SCREAMING_SNAKE_CASE_ = DataLoader(_lowerCamelCase , batch_sampler=_lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for batch in data_loader: SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape SCREAMING_SNAKE_CASE_ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple SCREAMING_SNAKE_CASE_ = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(_lowerCamelCase ) if num_src_tokens > (max_tokens * 1.1): failures.append(_lowerCamelCase ) assert num_src_per_batch[0] == max(_lowerCamelCase ) if failures: raise AssertionError(f"too many tokens in {len(_lowerCamelCase )} batches" ) def _A ( self: Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_dataset(max_len=5_12 ) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = ds.make_sortish_sampler(_lowerCamelCase , shuffle=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = DataLoader(_lowerCamelCase , batch_size=_lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 ) SCREAMING_SNAKE_CASE_ = DataLoader(_lowerCamelCase , batch_size=_lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.pad_token_id def count_pad_tokens(_lowerCamelCase: List[Any] , _lowerCamelCase: str="input_ids" ): return [batch[k].eq(_lowerCamelCase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_lowerCamelCase , k='''labels''' ) ) < sum(count_pad_tokens(_lowerCamelCase , k='''labels''' ) ) assert sum(count_pad_tokens(_lowerCamelCase ) ) < sum(count_pad_tokens(_lowerCamelCase ) ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) def _A ( self: Optional[Any] , _lowerCamelCase: str=10_00 , _lowerCamelCase: Tuple=1_28 ): if os.getenv('''USE_REAL_DATA''' , _lowerCamelCase ): SCREAMING_SNAKE_CASE_ = '''examples/seq2seq/wmt_en_ro''' SCREAMING_SNAKE_CASE_ = max_len * 2 * 64 if not Path(_lowerCamelCase ).joinpath('''train.len''' ).exists(): save_len_file(_lowerCamelCase , _lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = '''examples/seq2seq/test_data/wmt_en_ro''' SCREAMING_SNAKE_CASE_ = max_len * 4 save_len_file(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = SeqaSeqDataset( _lowerCamelCase , data_dir=_lowerCamelCase , type_path='''train''' , max_source_length=_lowerCamelCase , max_target_length=_lowerCamelCase , n_obs=_lowerCamelCase , ) return ds, max_tokens, tokenizer def _A ( self: int ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_dataset() SCREAMING_SNAKE_CASE_ = set(DistributedSortishSampler(_lowerCamelCase , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=_lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = set(DistributedSortishSampler(_lowerCamelCase , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=_lowerCamelCase ) ) assert idsa.intersection(_lowerCamelCase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def _A ( self: List[Any] , _lowerCamelCase: List[str] ): SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_lowerCamelCase , use_fast=_lowerCamelCase ) if tok_name == MBART_TINY: SCREAMING_SNAKE_CASE_ = SeqaSeqDataset( _lowerCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) SCREAMING_SNAKE_CASE_ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: SCREAMING_SNAKE_CASE_ = SeqaSeqDataset( _lowerCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) SCREAMING_SNAKE_CASE_ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_lowerCamelCase ) == 1 if tok_name == BART_TINY else len(_lowerCamelCase ) == 0
234
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = "informer" SCREAMING_SNAKE_CASE__ : Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self: Tuple , _lowerCamelCase: Optional[int] = None , _lowerCamelCase: Optional[int] = None , _lowerCamelCase: str = "student_t" , _lowerCamelCase: str = "nll" , _lowerCamelCase: int = 1 , _lowerCamelCase: List[int] = None , _lowerCamelCase: Optional[Union[str, bool]] = "mean" , _lowerCamelCase: int = 0 , _lowerCamelCase: int = 0 , _lowerCamelCase: int = 0 , _lowerCamelCase: int = 0 , _lowerCamelCase: Optional[List[int]] = None , _lowerCamelCase: Optional[List[int]] = None , _lowerCamelCase: int = 64 , _lowerCamelCase: int = 32 , _lowerCamelCase: int = 32 , _lowerCamelCase: int = 2 , _lowerCamelCase: int = 2 , _lowerCamelCase: int = 2 , _lowerCamelCase: int = 2 , _lowerCamelCase: bool = True , _lowerCamelCase: str = "gelu" , _lowerCamelCase: float = 0.05 , _lowerCamelCase: float = 0.1 , _lowerCamelCase: float = 0.1 , _lowerCamelCase: float = 0.1 , _lowerCamelCase: float = 0.1 , _lowerCamelCase: int = 1_00 , _lowerCamelCase: float = 0.02 , _lowerCamelCase: List[str]=True , _lowerCamelCase: str = "prob" , _lowerCamelCase: int = 5 , _lowerCamelCase: bool = True , **_lowerCamelCase: Tuple , ): # time series specific configuration SCREAMING_SNAKE_CASE_ = prediction_length SCREAMING_SNAKE_CASE_ = context_length or prediction_length SCREAMING_SNAKE_CASE_ = distribution_output SCREAMING_SNAKE_CASE_ = loss SCREAMING_SNAKE_CASE_ = input_size SCREAMING_SNAKE_CASE_ = num_time_features SCREAMING_SNAKE_CASE_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE_ = scaling SCREAMING_SNAKE_CASE_ = num_dynamic_real_features SCREAMING_SNAKE_CASE_ = num_static_real_features SCREAMING_SNAKE_CASE_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_lowerCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) SCREAMING_SNAKE_CASE_ = cardinality else: SCREAMING_SNAKE_CASE_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_lowerCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) SCREAMING_SNAKE_CASE_ = embedding_dimension else: SCREAMING_SNAKE_CASE_ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] SCREAMING_SNAKE_CASE_ = num_parallel_samples # Transformer architecture configuration SCREAMING_SNAKE_CASE_ = input_size * len(self.lags_sequence ) + self._number_of_features SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = use_cache # Informer SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = sampling_factor SCREAMING_SNAKE_CASE_ = distil super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _A ( self: List[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
234
1
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): """simple docstring""" @property def _a ( self : Dict ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : List[str] ): """simple docstring""" A =ort.SessionOptions() A =False return options def _a ( self : Dict ): """simple docstring""" A =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) A =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) A =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default A =OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A ="A red cat sitting on a park bench" A =np.random.RandomState(0 ) A =pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=__UpperCamelCase , output_type="np" , ) A =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-2
707
from __future__ import annotations def UpperCamelCase_ ( a_ ) ->None: create_state_space_tree(a_ , [] , 0 , [0 for i in range(len(a_ ) )] ) def UpperCamelCase_ ( a_ , a_ , a_ , a_ , ) ->None: if index == len(a_ ): print(a_ ) return for i in range(len(a_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) A =True create_state_space_tree(a_ , a_ , index + 1 , a_ ) current_sequence.pop() A =False __a = [3, 1, 2, 4] generate_all_permutations(sequence) __a = ["A", "B", "C"] generate_all_permutations(sequence_a)
689
0
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a ( __UpperCAmelCase : int=None ) -> List[Any]: if subparsers is not None: __magic_name__: str = subparsers.add_parser("""env""" ) else: __magic_name__: List[Any] = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=__UpperCAmelCase , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=__UpperCAmelCase ) return parser def a ( __UpperCAmelCase : Union[str, Any] ) -> int: __magic_name__: Union[str, Any] = torch.__version__ __magic_name__: Optional[int] = torch.cuda.is_available() __magic_name__: Tuple = is_xpu_available() __magic_name__: Tuple = is_npu_available() __magic_name__: str = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(__UpperCAmelCase ): __magic_name__: List[Any] = load_config_from_file(args.config_file ).to_dict() __magic_name__: str = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": f'{pt_version} ({pt_cuda_available})', """PyTorch XPU available""": str(__UpperCAmelCase ), """PyTorch NPU available""": str(__UpperCAmelCase ), """System RAM""": f'{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB', } if pt_cuda_available: __magic_name__: Union[str, Any] = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([f'- {prop}: {val}' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) __magic_name__: Optional[Any] = ( """\n""".join([f'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else f'\t{accelerate_config}' ) print(__UpperCAmelCase ) __magic_name__: Tuple = accelerate_config return info def a ( ) -> int: __magic_name__: List[Any] = env_command_parser() __magic_name__: Any = parser.parse_args() env_command(__UpperCAmelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
96
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __lowerCamelCase = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : float , **__snake_case : Optional[Any] ) -> str: __magic_name__: Optional[Any] = feature_size __magic_name__: List[Any] = sampling_rate __magic_name__: Tuple = padding_value __magic_name__: int = kwargs.pop("""padding_side""" , """right""" ) __magic_name__: Optional[Any] = kwargs.pop("""return_attention_mask""" , __snake_case ) super().__init__(**__snake_case ) def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case : Union[bool, str, PaddingStrategy] = True , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __magic_name__: Union[str, Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" F' to this method that includes {self.model_input_names[0]}, but you provided' F' {list(processed_features.keys() )}' ) __magic_name__: Any = processed_features[self.model_input_names[0]] __magic_name__: Tuple = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: __magic_name__: Optional[Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __magic_name__: Tuple = required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __magic_name__: str = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): __magic_name__: Optional[int] = required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): __magic_name__: List[str] = """tf""" elif is_torch_tensor(__snake_case ): __magic_name__: Any = """pt""" elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): __magic_name__: int = """np""" else: raise ValueError( F'type of {first_element} unknown: {type(__snake_case )}. ' """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __magic_name__: List[str] = to_numpy(__snake_case ) else: __magic_name__: Any = [to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy __magic_name__: str = self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) __magic_name__: str = processed_features[self.model_input_names[0]] __magic_name__: str = len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __magic_name__: List[Any] = [] for i in range(__snake_case ): __magic_name__: List[Any] = {k: v[i] for k, v in processed_features.items()} # truncation __magic_name__: List[Any] = self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __magic_name__: Union[str, Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __magic_name__: Union[str, Any] = PaddingStrategy.MAX_LENGTH __magic_name__: List[str] = {} for i in range(__snake_case ): # padding __magic_name__: str = self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: __magic_name__: Optional[Any] = [] if value.dtype is np.dtype(np.floataa ): __magic_name__: Any = value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def lowerCamelCase__ ( self : Tuple , __snake_case : Union[Dict[str, np.ndarray], BatchFeature] , __snake_case : Optional[int] = None , __snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ) -> dict: __magic_name__: List[str] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __magic_name__: List[Any] = len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__: List[str] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__: str = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __magic_name__: int = np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: __magic_name__: str = max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: __magic_name__: List[Any] = np.pad( processed_features["""attention_mask"""] , (0, difference) ) __magic_name__: Union[str, Any] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __magic_name__: int = np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __magic_name__: Dict = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __magic_name__: Optional[Any] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __magic_name__: int = np.pad( __snake_case , __snake_case , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Union[Dict[str, np.ndarray], BatchFeature] , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ) -> int: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __magic_name__: Dict = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __magic_name__: Optional[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __magic_name__: Tuple = len(__snake_case ) > max_length if needs_to_be_truncated: __magic_name__: Any = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __magic_name__: List[Any] = processed_features["""attention_mask"""][:max_length] return processed_features def lowerCamelCase__ ( self : List[Any] , __snake_case : int=False , __snake_case : Tuple=None ) -> Optional[Any]: # Get padding strategy if padding is not False: if padding is True: __magic_name__: Optional[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): __magic_name__: Tuple = PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): __magic_name__: Dict = padding else: __magic_name__: int = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
96
1
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class UpperCamelCase__ ( nn.Module ): def __init__(self : List[Any] ): super().__init__() __a : str = nn.Linear(3 , 4 ) __a : Tuple = nn.BatchNormad(4 ) __a : str = nn.Linear(4 , 5 ) def lowerCAmelCase (self : Any , snake_case_ : int ): return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): def lowerCAmelCase (self : int , snake_case_ : Optional[Any] , *snake_case_ : Union[str, Any] , **snake_case_ : Union[str, Any] ): return (args[0] + 1,) + args[1:], kwargs class UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): def lowerCAmelCase (self : int , snake_case_ : List[str] , snake_case_ : Dict ): return output + 1 class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : List[Any] ): __a : Tuple = ModelForTest() __a : Union[str, Any] = ModelHook() add_hook_to_module(_lowercase , _lowercase ) self.assertEqual(test_model._hf_hook , _lowercase ) self.assertTrue(hasattr(_lowercase , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(_lowercase ) self.assertFalse(hasattr(_lowercase , '''_hf_hook''' ) ) self.assertFalse(hasattr(_lowercase , '''_old_forward''' ) ) def lowerCAmelCase (self : int ): __a : str = ModelForTest() __a : List[Any] = ModelHook() add_hook_to_module(_lowercase , _lowercase ) add_hook_to_module(_lowercase , _lowercase , append=_lowercase ) self.assertEqual(isinstance(test_model._hf_hook , _lowercase ) , _lowercase ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(_lowercase , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(_lowercase ) self.assertFalse(hasattr(_lowercase , '''_hf_hook''' ) ) self.assertFalse(hasattr(_lowercase , '''_old_forward''' ) ) def lowerCAmelCase (self : Any ): __a : Union[str, Any] = ModelForTest() __a : List[Any] = torch.randn(2 , 3 ) __a : List[Any] = test_model(x + 1 ) __a : Tuple = test_model(x + 2 ) __a : List[str] = PreForwardHook() add_hook_to_module(_lowercase , _lowercase ) __a : Dict = test_model(_lowercase ) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __a : List[Any] = PreForwardHook() add_hook_to_module(_lowercase , _lowercase ) __a : Tuple = test_model(_lowercase ) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __a : Any = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(_lowercase , _lowercase ) __a : List[Any] = test_model(_lowercase ) assert torch.allclose(_lowercase , _lowercase , atol=1E-5 ) def lowerCAmelCase (self : int ): __a : Tuple = ModelForTest() __a : Union[str, Any] = torch.randn(2 , 3 ) __a : Optional[Any] = test_model(_lowercase ) __a : int = PostForwardHook() add_hook_to_module(_lowercase , _lowercase ) __a : Tuple = test_model(_lowercase ) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __a : Dict = PostForwardHook() add_hook_to_module(_lowercase , _lowercase ) __a : Dict = test_model(_lowercase ) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __a : List[str] = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(_lowercase , _lowercase ) __a : str = test_model(_lowercase ) assert torch.allclose(_lowercase , output + 2 , atol=1E-5 ) def lowerCAmelCase (self : List[str] ): __a : Tuple = ModelForTest() __a : Dict = torch.randn(2 , 3 ) __a : Optional[int] = test_model(_lowercase ) __a : List[str] = PostForwardHook() add_hook_to_module(_lowercase , _lowercase ) __a : Tuple = test_model(_lowercase ) self.assertTrue(torch.allclose(_lowercase , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __a : Optional[int] = True __a : List[Any] = test_model(_lowercase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowerCAmelCase (self : Optional[Any] ): __a : Optional[int] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __a : Tuple = torch.randn(2 , 3 ) __a : Optional[Any] = model(_lowercase ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowercase , AlignDevicesHook(io_same_device=_lowercase ) ) __a : List[Any] = torch.randn(2 , 3 ).to(0 ) __a : Tuple = model(_lowercase ) self.assertEqual(output.device , torch.device(0 ) ) def lowerCAmelCase (self : Dict ): __a : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices __a : Optional[Any] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device __a : Union[str, Any] = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , _lowercase ) __a : Optional[int] = torch.randn(2 , 3 ) __a : Dict = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload __a : List[str] = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) __a : Dict = torch.randn(2 , 3 ) __a : Dict = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def lowerCAmelCase (self : Optional[int] ): __a : Union[str, Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices __a : Tuple = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device __a : List[Any] = torch.device(_lowercase ) self.assertEqual(model.batchnorm.running_mean.device , _lowercase ) __a : int = torch.randn(2 , 3 ) __a : Optional[Any] = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase , offload_buffers=_lowercase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) __a : List[Any] = torch.randn(2 , 3 ) __a : int = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def lowerCAmelCase (self : Union[str, Any] ): __a : Optional[int] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices __a : Dict = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device __a : List[Any] = torch.device(_lowercase ) self.assertEqual(model.batchnorm.running_mean.device , _lowercase ) __a : Any = torch.randn(2 , 3 ) __a : int = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() , offload_buffers=_lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) __a : Optional[int] = torch.randn(2 , 3 ) __a : str = model(_lowercase ) self.assertEqual(output.device , _lowercase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
721
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot" ,metadata={"help": "Model name or path of model to be trained."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="./" ,metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot-clean-train" ,metadata={"help": "Name or path of training dataset."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot-clean-valid" ,metadata={"help": "Name or path of validation dataset."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=2 ,metadata={"help": "Batch size for training."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=2 ,metadata={"help": "Batch size for evaluation."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field(default=0.1 ,metadata={"help": "Value of weight decay."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=10_000 ,metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field(default=2e-4 ,metadata={"help": "Learning rate fo training."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default="cosine" ,metadata={"help": "Learning rate."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=750 ,metadata={"help": "Number of warmup steps in the learning rate schedule."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=16 ,metadata={"help": "Number of gradient accumulation steps."} ) _SCREAMING_SNAKE_CASE : Optional[bool] = field( default=__lowercase ,metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=50_000 ,metadata={"help": "Maximum number of training steps."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=-1 ,metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=1_024 ,metadata={"help": "Sequence lengths used for training."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=1 ,metadata={"help": "Training seed."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=1_024 ,metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} ,) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase ,metadata={"help": "States path if the training should continue from a checkpoint folder."} ) _SCREAMING_SNAKE_CASE : Optional[bool] = field(default=__lowercase ,metadata={"help": "If True the data is pretokenized."} ) @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot" ,metadata={"help": "Model name or path of model to be evaluated."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot-clean-valid" ,metadata={"help": "Name or path of validation dataset."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=2 ,metadata={"help": "Batch size used for evaluation."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=-1 ,metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=1_024 ,metadata={"help": "Length of sequences to be evaluated."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=1 ,metadata={"help": "Random seed used for evaluation."} ) @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot" ,metadata={"help": "Model name or path of model to be evaluated."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=__lowercase ,metadata={"help": "Number of workers used for code evaluation."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase ,metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} ,) _SCREAMING_SNAKE_CASE : Optional[bool] = field( default=__lowercase ,metadata={"help": "Sample from the language model's output distribution."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field(default=0.2 ,metadata={"help": "Sampling temperature used for generation."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=256 ,metadata={"help": "Maximum number of newly generated tokens."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=0 ,metadata={"help": "Top-k parameter used for generation."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field(default=0.95 ,metadata={"help": "Top-p parameter used for nucleus sampling."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=10 ,metadata={"help": "Number of generations to run in parallel."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=200 ,metadata={"help": "Number of completions to generate for each sample."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=1 ,metadata={"help": "Random seed used for evaluation."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="eval_results.json" ,metadata={"help": "Random seed used for evaluation."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="0" ,metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=-1 ,metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } ,) @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase ,metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } ,) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="transformersbook/codeparrot" ,metadata={"help": "Folder or name of dataset to process."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot-clean" ,metadata={"help": "Folder to save processed processed dataset."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=100_000 ,metadata={"help": "Number of files to save per JSON output file."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default="content" ,metadata={"help": "Column containing text data to process."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=1_000 ,metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=100 ,metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.25 ,metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=1.5 ,metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.7 ,metadata={"help": "Probability for filtering config, test and uncommon files."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot" ,metadata={"help": "Name or path to the tokenizer."} ,) _SCREAMING_SNAKE_CASE : Optional[bool] = field( default=__lowercase ,metadata={"help": "If True, near-duplicate samples are removed."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.85 ,metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default="gpt2" ,metadata={"help": "Base tokenizer to build new tokenizer from."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="transformersbook/codeparrot-train" ,metadata={"help": "Dataset to train tokenizer on."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default="content" ,metadata={"help": "Column containing text data to process."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=200_000 ,metadata={"help": "Number of examples to train tokenizer on."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=32_768 ,metadata={"help": "Number of examples to train the tokenizer on."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default="codeparrot" ,metadata={"help": "Name of new tokenizer."} ) _SCREAMING_SNAKE_CASE : Optional[bool] = field(default=__lowercase ,metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot" ,metadata={"help": "Name or path to the tokenizer."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot-clean-train" ,metadata={"help": "Name or path to the dataset to pretokenize."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="tokenized-codeparrot-train" ,metadata={"help": "Repo name of the pretokenized data."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field(default=__lowercase ,metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default="gpt2-large" ,metadata={"help": "Configuration to use for model initialization."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default="codeparrot/codeparrot" ,metadata={"help": "Tokenizer attached to model."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default="codeparrot" ,metadata={"help": "Name of the created model."} ) _SCREAMING_SNAKE_CASE : Optional[bool] = field(default=__lowercase ,metadata={"help": "Push saved tokenizer to the hub."} )
326
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : Tuple =logging.get_logger(__name__) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->List[str]: _lowerCamelCase : Dict = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: _lowerCamelCase : Optional[int] = 1024 _lowerCamelCase : List[Any] = 4096 _lowerCamelCase : Union[str, Any] = 24 _lowerCamelCase : Optional[Any] = 16 _lowerCamelCase : Any = [5, 11, 17, 23] _lowerCamelCase : Optional[int] = [256, 512, 1024, 1024] _lowerCamelCase : Any = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: _lowerCamelCase : Union[str, Any] = 768 _lowerCamelCase : List[Any] = [1, 1, 1, 0.5] _lowerCamelCase : Any = [256, 512, 768, 768] _lowerCamelCase : str = 150 _lowerCamelCase : Union[str, Any] = 16 _lowerCamelCase : Dict = (1, 384, 384) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = '''project''' if "ade" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = 768 _lowerCamelCase : List[Any] = [1, 1, 1, 0.5] _lowerCamelCase : Dict = 150 _lowerCamelCase : Any = 16 _lowerCamelCase : Optional[Any] = '''huggingface/label-files''' _lowerCamelCase : List[Any] = '''ade20k-id2label.json''' _lowerCamelCase : List[str] = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) ) , '''r''' ) ) _lowerCamelCase : Optional[int] = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _lowerCamelCase : Any = idalabel _lowerCamelCase : str = {v: k for k, v in idalabel.items()} _lowerCamelCase : int = [1, 150, 480, 480] return config, expected_shape def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Any: _lowerCamelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Any: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _lowerCamelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: _lowerCamelCase : Optional[Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: _lowerCamelCase : Any = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: _lowerCamelCase : Optional[Any] = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: _lowerCamelCase : Optional[int] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: _lowerCamelCase : List[str] = name.replace('''proj''' , '''projection''' ) if "blocks" in name: _lowerCamelCase : List[str] = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: _lowerCamelCase : List[str] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase : str = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: _lowerCamelCase : int = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: _lowerCamelCase : str = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: _lowerCamelCase : List[Any] = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: _lowerCamelCase : List[Any] = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: _lowerCamelCase : Optional[int] = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: _lowerCamelCase : Any = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: _lowerCamelCase : Dict = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: _lowerCamelCase : List[str] = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: _lowerCamelCase : str = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _lowerCamelCase : Optional[int] = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: _lowerCamelCase : Dict = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: _lowerCamelCase : Optional[int] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: _lowerCamelCase : int = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: _lowerCamelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: _lowerCamelCase : Optional[Any] = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _lowerCamelCase : Optional[Any] = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: _lowerCamelCase : str = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: _lowerCamelCase : Optional[Any] = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: _lowerCamelCase : Optional[int] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _lowerCamelCase : List[str] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: _lowerCamelCase : Optional[Any] = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: _lowerCamelCase : Optional[Any] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: _lowerCamelCase : List[str] = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: _lowerCamelCase : Dict = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: _lowerCamelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: _lowerCamelCase : Union[str, Any] = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: _lowerCamelCase : str = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: _lowerCamelCase : Tuple = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: _lowerCamelCase : Dict = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: _lowerCamelCase : List[str] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: _lowerCamelCase : List[Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: _lowerCamelCase : Union[str, Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: _lowerCamelCase : Optional[int] = name.replace('''..''' , '''.''' ) if "stem.conv" in name: _lowerCamelCase : Union[str, Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: _lowerCamelCase : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: _lowerCamelCase : str = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: _lowerCamelCase : int = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: _lowerCamelCase : Optional[int] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: _lowerCamelCase : List[str] = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: _lowerCamelCase : List[Any] = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->List[str]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : str = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) _lowerCamelCase : int = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Dict = in_proj_weight[: config.hidden_size, :] _lowerCamelCase : Union[str, Any] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( ) ->Any: _lowerCamelCase : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase : Tuple = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->int: _lowerCamelCase, _lowerCamelCase : List[str] = get_dpt_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _lowerCamelCase : Dict = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) # rename keys for key in state_dict.copy().keys(): _lowerCamelCase : Optional[int] = state_dict.pop(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Dict = val # read in qkv matrices read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load HuggingFace model _lowerCamelCase : str = DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) model.eval() # Check outputs on an image _lowerCamelCase : Optional[int] = 480 if '''ade''' in checkpoint_url else 384 _lowerCamelCase : Optional[int] = DPTImageProcessor(size=SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Optional[int] = prepare_img() _lowerCamelCase : List[Any] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) # forward pass _lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ).logits if '''ade''' in checkpoint_url else model(**SCREAMING_SNAKE_CASE_ ).predicted_depth if show_prediction: _lowerCamelCase : Tuple = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=SCREAMING_SNAKE_CASE_ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) SCREAMING_SNAKE_CASE__ : List[str] =parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
434
"""simple docstring""" class _UpperCAmelCase : """simple docstring""" def __init__( self , _lowercase ) -> Dict: # we need a list not a string, so do something to change the type _lowerCamelCase : List[str] = arr.split(''',''' ) def a__ ( self ) -> Optional[Any]: _lowerCamelCase : Optional[Any] = [int(self.array[0] )] * len(self.array ) _lowerCamelCase : str = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): _lowerCamelCase : Dict = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) _lowerCamelCase : List[str] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str =input('please input some numbers:') SCREAMING_SNAKE_CASE__ : str =SubArray(whole_array) SCREAMING_SNAKE_CASE__ : Optional[int] =array.solve_sub_array() print(('the results is:', re))
434
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = BartphoTokenizer lowerCAmelCase = False lowerCAmelCase = True def a__ ( self ) -> Dict: super().setUp() UpperCAmelCase_ : Any = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] UpperCAmelCase_ : str = dict(zip(_SCREAMING_SNAKE_CASE ,range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase_ : str = {'''unk_token''': '''<unk>'''} UpperCAmelCase_ : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) UpperCAmelCase_ : Optional[Any] = BartphoTokenizer(_SCREAMING_SNAKE_CASE ,self.monolingual_vocab_file ,**self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Any: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: UpperCAmelCase_ : Any = '''This is a là test''' UpperCAmelCase_ : int = '''This is a<unk><unk> test''' return input_text, output_text def a__ ( self ) -> str: UpperCAmelCase_ : Dict = BartphoTokenizer(_SCREAMING_SNAKE_CASE ,self.monolingual_vocab_file ,**self.special_tokens_map ) UpperCAmelCase_ : Dict = '''This is a là test''' UpperCAmelCase_ : int = '''▁This ▁is ▁a ▁l à ▁t est'''.split() UpperCAmelCase_ : List[Any] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = tokens + [tokenizer.unk_token] UpperCAmelCase_ : str = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE )
719
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure)
300
0
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase = 16 _lowerCamelCase = 32 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Union[str, Any]: UpperCAmelCase_ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase_ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase_ = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase_ = 8 else: UpperCAmelCase_ = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase_ = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase , drop_last=__UpperCamelCase ) UpperCAmelCase_ = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase , drop_last=(accelerator.mixed_precision == '''fp8''') , ) return train_dataloader, eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: # Initialize accelerator UpperCAmelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ = config["lr"] UpperCAmelCase_ = int(config['''num_epochs'''] ) UpperCAmelCase_ = int(config['''seed'''] ) UpperCAmelCase_ = int(config['''batch_size'''] ) UpperCAmelCase_ = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase_ = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase_ = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) UpperCAmelCase_ = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase_ = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase_ = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler UpperCAmelCase_ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase_ = model(**__UpperCamelCase ) UpperCAmelCase_ = outputs.loss UpperCAmelCase_ = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ = model(**__UpperCamelCase ) UpperCAmelCase_ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) UpperCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: UpperCAmelCase_ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
144
from __future__ import annotations def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> int: if len(lowercase ) < k or k < 0: raise ValueError("Invalid Input" ) __snake_case : Tuple = sum(array[:k] ) for i in range(len(lowercase ) - k ): __snake_case : str = current_sum - array[i] + array[i + k] __snake_case : List[str] = max(lowercase , lowercase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() _UpperCamelCase = [randint(-1000, 1000) for i in range(100)] _UpperCamelCase = randint(0, 110) print(F'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
243
0
'''simple docstring''' from itertools import permutations def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _SCREAMING_SNAKE_CASE = [7, 11, 13, 17] for i, test in enumerate(SCREAMING_SNAKE_CASE_ ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = 10 ) -> int: """simple docstring""" return sum( int("""""".join(map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) for num in permutations(range(SCREAMING_SNAKE_CASE_ ) ) if is_substring_divisible(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": print(f"""{solution() = }""")
718
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , A__ = None , A__ = None , **A__ , ) -> Optional[int]: super().__init__(self , **A__ ) _SCREAMING_SNAKE_CASE = repo_info _SCREAMING_SNAKE_CASE = token _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> Tuple: if self.dir_cache is None: _SCREAMING_SNAKE_CASE = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _SCREAMING_SNAKE_CASE = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(A__ ): {"""name""": str(A__ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def UpperCamelCase ( self , A__ , A__ = "rb" , **A__ , ) -> Optional[int]: if not isinstance(self.repo_info , A__ ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) _SCREAMING_SNAKE_CASE = hf_hub_url(self.repo_info.id , A__ , revision=self.repo_info.sha ) return fsspec.open( A__ , mode=A__ , headers=get_authentication_headers_for_url(A__ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def UpperCamelCase ( self , A__ , **A__ ) -> str: self._get_dirs() _SCREAMING_SNAKE_CASE = self._strip_protocol(A__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(A__ ) def UpperCamelCase ( self , A__ , A__=False , **A__ ) -> List[Any]: self._get_dirs() _SCREAMING_SNAKE_CASE = PurePosixPath(path.strip("""/""" ) ) _SCREAMING_SNAKE_CASE = {} for p, f in self.dir_cache.items(): _SCREAMING_SNAKE_CASE = PurePosixPath(p.strip("""/""" ) ) _SCREAMING_SNAKE_CASE = p.parent if root == path: _SCREAMING_SNAKE_CASE = f _SCREAMING_SNAKE_CASE = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
0
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : List[Any] = BertJapaneseTokenizer lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : str = True def A__ ( self ): super().setUp() UpperCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは", "世界", "##世界", "、", "##、", "。", "##。", ] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = "こんにちは、世界。 \nこんばんは、世界。" UpperCAmelCase_ = "こんにちは 、 世界 。 こんばんは 、 世界 。" return input_text, output_text def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = self.get_input_output_texts(UpperCAmelCase_ ) UpperCAmelCase_ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) UpperCAmelCase_ = tokenizer.decode(UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) return text, ids def A__ ( self ): pass # TODO add if relevant def A__ ( self ): pass # TODO add if relevant def A__ ( self ): pass # TODO add if relevant def A__ ( self ): UpperCAmelCase_ = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" ) self.assertListEqual(UpperCAmelCase_ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def A__ ( self ): UpperCAmelCase_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab" ) self.assertIsNotNone(UpperCAmelCase_ ) UpperCAmelCase_ = "こんにちは、世界。\nこんばんは、世界。" UpperCAmelCase_ = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(UpperCAmelCase_ , "wb" ) as handle: pickle.dump(UpperCAmelCase_ , UpperCAmelCase_ ) with open(UpperCAmelCase_ , "rb" ) as handle: UpperCAmelCase_ = pickle.load(UpperCAmelCase_ ) UpperCAmelCase_ = tokenizer_new.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A__ ( self ): UpperCAmelCase_ = MecabTokenizer(mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def A__ ( self ): try: UpperCAmelCase_ = MecabTokenizer(mecab_dic="unidic_lite" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def A__ ( self ): try: UpperCAmelCase_ = MecabTokenizer(mecab_dic="unidic" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def A__ ( self ): UpperCAmelCase_ = MecabTokenizer(do_lower_case=UpperCAmelCase_ , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def A__ ( self ): try: UpperCAmelCase_ = MecabTokenizer( do_lower_case=UpperCAmelCase_ , normalize_text=UpperCAmelCase_ , mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def A__ ( self ): UpperCAmelCase_ = MecabTokenizer(normalize_text=UpperCAmelCase_ , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def A__ ( self ): UpperCAmelCase_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi" ) self.assertIsNotNone(UpperCAmelCase_ ) UpperCAmelCase_ = "こんにちは、世界。\nこんばんは、世界。" UpperCAmelCase_ = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(UpperCAmelCase_ , "wb" ) as handle: pickle.dump(UpperCAmelCase_ , UpperCAmelCase_ ) with open(UpperCAmelCase_ , "rb" ) as handle: UpperCAmelCase_ = pickle.load(UpperCAmelCase_ ) UpperCAmelCase_ = tokenizer_new.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @require_sudachi def A__ ( self ): UpperCAmelCase_ = SudachiTokenizer(sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def A__ ( self ): UpperCAmelCase_ = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国", "人", "参政", "権"] ) @require_sudachi def A__ ( self ): UpperCAmelCase_ = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人", "参政権"] ) @require_sudachi def A__ ( self ): UpperCAmelCase_ = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人参政権"] ) @require_sudachi def A__ ( self ): UpperCAmelCase_ = SudachiTokenizer(do_lower_case=UpperCAmelCase_ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def A__ ( self ): UpperCAmelCase_ = SudachiTokenizer(normalize_text=UpperCAmelCase_ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def A__ ( self ): UpperCAmelCase_ = SudachiTokenizer(trim_whitespace=UpperCAmelCase_ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def A__ ( self ): UpperCAmelCase_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp" ) self.assertIsNotNone(UpperCAmelCase_ ) UpperCAmelCase_ = "こんにちは、世界。\nこんばんは、世界。" UpperCAmelCase_ = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(UpperCAmelCase_ , "wb" ) as handle: pickle.dump(UpperCAmelCase_ , UpperCAmelCase_ ) with open(UpperCAmelCase_ , "rb" ) as handle: UpperCAmelCase_ = pickle.load(UpperCAmelCase_ ) UpperCAmelCase_ = tokenizer_new.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @require_jumanpp def A__ ( self ): UpperCAmelCase_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def A__ ( self ): UpperCAmelCase_ = JumanppTokenizer(do_lower_case=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def A__ ( self ): UpperCAmelCase_ = JumanppTokenizer(normalize_text=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def A__ ( self ): UpperCAmelCase_ = JumanppTokenizer(trim_whitespace=UpperCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def A__ ( self ): UpperCAmelCase_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def A__ ( self ): UpperCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"] UpperCAmelCase_ = {} for i, token in enumerate(UpperCAmelCase_ ): UpperCAmelCase_ = i UpperCAmelCase_ = WordpieceTokenizer(vocab=UpperCAmelCase_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こんにちは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは" ) , ["こん", "##ばんは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) , ["こん", "##ばんは", "[UNK]", "こんにちは"] ) def A__ ( self ): UpperCAmelCase_ = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" ) UpperCAmelCase_ = tokenizer.subword_tokenizer UpperCAmelCase_ = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" ) self.assertListEqual(UpperCAmelCase_ , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] ) UpperCAmelCase_ = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" ) self.assertListEqual(UpperCAmelCase_ , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] ) def A__ ( self ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" ) UpperCAmelCase_ = tokenizer.encode("ありがとう。" , add_special_tokens=UpperCAmelCase_ ) UpperCAmelCase_ = tokenizer.encode("どういたしまして。" , add_special_tokens=UpperCAmelCase_ ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = BertJapaneseTokenizer lowerCAmelCase_ : Tuple = False def A__ ( self ): super().setUp() UpperCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def A__ ( self , **lowerCAmelCase ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **UpperCAmelCase_ ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = "こんにちは、世界。 \nこんばんは、世界。" UpperCAmelCase_ = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。" return input_text, output_text def A__ ( self ): pass # TODO add if relevant def A__ ( self ): pass # TODO add if relevant def A__ ( self ): pass # TODO add if relevant def A__ ( self ): UpperCAmelCase_ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character" ) UpperCAmelCase_ = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" ) self.assertListEqual( UpperCAmelCase_ , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def A__ ( self ): UpperCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] UpperCAmelCase_ = {} for i, token in enumerate(UpperCAmelCase_ ): UpperCAmelCase_ = i UpperCAmelCase_ = CharacterTokenizer(vocab=UpperCAmelCase_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こ", "ん", "に", "ち", "は"] ) self.assertListEqual(tokenizer.tokenize("こんにちほ" ) , ["こ", "ん", "に", "ち", "[UNK]"] ) def A__ ( self ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" ) UpperCAmelCase_ = tokenizer.encode("ありがとう。" , add_special_tokens=UpperCAmelCase_ ) UpperCAmelCase_ = tokenizer.encode("どういたしまして。" , add_special_tokens=UpperCAmelCase_ ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = "cl-tohoku/bert-base-japanese" UpperCAmelCase_ = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self ): UpperCAmelCase_ = "cl-tohoku/bert-base-japanese" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) ) UpperCAmelCase_ = "bert-base-cased" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertJapaneseTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) )
579
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = '''xlm-prophetnet''' UpperCamelCase_ : Tuple = ['''past_key_values'''] UpperCamelCase_ : int = { '''num_attention_heads''': '''num_encoder_attention_heads''', } def __init__( self : Dict , UpperCAmelCase_ : Optional[float] = 0.1 , UpperCAmelCase_ : Optional[Union[str, Callable]] = "gelu" , UpperCAmelCase_ : Optional[int] = 3_0522 , UpperCAmelCase_ : Optional[int] = 1024 , UpperCAmelCase_ : Optional[int] = 4096 , UpperCAmelCase_ : Optional[int] = 12 , UpperCAmelCase_ : Optional[int] = 16 , UpperCAmelCase_ : Optional[int] = 4096 , UpperCAmelCase_ : Optional[int] = 12 , UpperCAmelCase_ : Optional[int] = 16 , UpperCAmelCase_ : Optional[float] = 0.1 , UpperCAmelCase_ : Optional[float] = 0.1 , UpperCAmelCase_ : Optional[int] = 512 , UpperCAmelCase_ : Optional[float] = 0.02 , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : Optional[int] = 0 , UpperCAmelCase_ : Optional[int] = 2 , UpperCAmelCase_ : Optional[int] = 32 , UpperCAmelCase_ : Optional[int] = 128 , UpperCAmelCase_ : Optional[bool] = False , UpperCAmelCase_ : Optional[float] = 0.0 , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : Optional[int] = 0 , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : Optional[int] = 2 , **UpperCAmelCase_ : Dict , ): SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Tuple = encoder_ffn_dim SCREAMING_SNAKE_CASE : List[Any] = num_encoder_layers SCREAMING_SNAKE_CASE : Any = num_encoder_attention_heads SCREAMING_SNAKE_CASE : Dict = decoder_ffn_dim SCREAMING_SNAKE_CASE : List[str] = num_decoder_layers SCREAMING_SNAKE_CASE : List[Any] = num_decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = init_std # Normal(0, this parameter) SCREAMING_SNAKE_CASE : Union[str, Any] = activation_function # parameters for xlmprophetnet SCREAMING_SNAKE_CASE : Dict = ngram SCREAMING_SNAKE_CASE : Any = num_buckets SCREAMING_SNAKE_CASE : str = relative_max_distance SCREAMING_SNAKE_CASE : str = disable_ngram_loss SCREAMING_SNAKE_CASE : Dict = eps # 3 Types of Dropout SCREAMING_SNAKE_CASE : Union[str, Any] = attention_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_dropout SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : int = use_cache super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , add_cross_attention=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) @property def _A ( self : int ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def _A ( self : str , UpperCAmelCase_ : Optional[Any] ): raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" " `num_decoder_layers`." )
62
0
def _lowerCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
447
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): _lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCamelCase = 128022 _lowerCamelCase = 128028 @require_sentencepiece class _SCREAMING_SNAKE_CASE (UpperCamelCase , unittest.TestCase ): lowerCAmelCase = MaMaaaTokenizer lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = True def __snake_case ( self : Union[str, Any] )->Optional[Any]: super().setUp() __SCREAMING_SNAKE_CASE : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] __SCREAMING_SNAKE_CASE : List[str] = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) __SCREAMING_SNAKE_CASE : int = Path(self.tmpdirname ) save_json(UpperCamelCase , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(UpperCamelCase , save_dir / VOCAB_FILES_NAMES["spm_file"] ) __SCREAMING_SNAKE_CASE : Any = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : Optional[int] , **UpperCamelCase : Any )->Dict: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def __snake_case ( self : Dict , UpperCamelCase : List[str] )->int: return ( "This is a test", "This is a test", ) def __snake_case ( self : str )->Tuple: __SCREAMING_SNAKE_CASE : List[Any] = "</s>" __SCREAMING_SNAKE_CASE : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def __snake_case ( self : Tuple )->Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(UpperCamelCase ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __snake_case ( self : Dict )->Dict: pass def __snake_case ( self : Union[str, Any] )->Union[str, Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [2, 3, 4, 5, 6] , ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) __SCREAMING_SNAKE_CASE : Any = tokenizer.convert_tokens_to_string(UpperCamelCase ) self.assertEqual(UpperCamelCase , "This is a test" ) @slow def __snake_case ( self : Any )->Union[str, Any]: # fmt: off __SCREAMING_SNAKE_CASE : Tuple = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE (unittest.TestCase ): lowerCAmelCase = """facebook/m2m100_418M""" lowerCAmelCase = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] lowerCAmelCase = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off lowerCAmelCase = [EN_CODE, 593, 1949, 11_5781, 4, 7_1586, 4234, 6_0633, 12_6233, 432, 12_3808, 1_5592, 1197, 11_7132, 12_0618, 5, 2] @classmethod def __snake_case ( cls : List[Any] )->Union[str, Any]: __SCREAMING_SNAKE_CASE : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) __SCREAMING_SNAKE_CASE : Optional[Any] = 1 return cls def __snake_case ( self : Dict )->Any: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 1_2_8_0_6_3 ) def __snake_case ( self : Any )->Union[str, Any]: __SCREAMING_SNAKE_CASE : str = self.tokenizer.get_vocab() self.assertEqual(len(UpperCamelCase ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , UpperCamelCase ) def __snake_case ( self : List[Any] )->str: __SCREAMING_SNAKE_CASE : Union[str, Any] = "en" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase ) def __snake_case ( self : Union[str, Any] )->List[Any]: self.assertIn(UpperCamelCase , self.tokenizer.all_special_ids ) # fmt: off __SCREAMING_SNAKE_CASE : Dict = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on __SCREAMING_SNAKE_CASE : int = self.tokenizer.decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase ) def __snake_case ( self : Any )->List[Any]: __SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(UpperCamelCase ) __SCREAMING_SNAKE_CASE : Any = MaMaaaTokenizer.from_pretrained(UpperCamelCase ) self.assertDictEqual(new_tok.lang_token_to_id , UpperCamelCase ) @require_torch def __snake_case ( self : Any )->int: __SCREAMING_SNAKE_CASE : List[str] = "en" __SCREAMING_SNAKE_CASE : Dict = "fr" __SCREAMING_SNAKE_CASE : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase , return_tensors="pt" ) __SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __SCREAMING_SNAKE_CASE : Union[str, Any] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __snake_case ( self : str )->int: __SCREAMING_SNAKE_CASE : Optional[Any] = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __SCREAMING_SNAKE_CASE : Optional[int] = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __snake_case ( self : Optional[Any] )->List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __SCREAMING_SNAKE_CASE : Optional[int] = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __snake_case ( self : Tuple )->Optional[int]: __SCREAMING_SNAKE_CASE : Any = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(UpperCamelCase ) , { # en_XX, A, test, EOS "input_ids": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 1_2_8_0_0_6, } , )
447
1
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 SCREAMING_SNAKE_CASE_ = 0b101_100_111_110_110_010_010_000_011_110_111_011_000_110_011_110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 SCREAMING_SNAKE_CASE_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class a : def __init__( self ): '''simple docstring''' _UpperCAmelCase : Dict = WATERMARK_BITS _UpperCAmelCase : List[str] = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' if images.shape[-1] < 256: return images _UpperCAmelCase : List[str] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _UpperCAmelCase : int = [self.encoder.encode(A_ , "dwtDct" ) for image in images] _UpperCAmelCase : str = torch.from_numpy(np.array(A_ ) ).permute(0 , 3 , 1 , 2 ) _UpperCAmelCase : Union[str, Any] = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
300
from __future__ import annotations SCREAMING_SNAKE_CASE_ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] SCREAMING_SNAKE_CASE_ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list[float] ) -> list[float]: _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Any = len(lowerCAmelCase ) for i in range(lowerCAmelCase ): _UpperCAmelCase : float = -1 for j in range(i + 1 , lowerCAmelCase ): if arr[i] < arr[j]: _UpperCAmelCase : Any = arr[j] break result.append(lowerCAmelCase ) return result def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list[float] ) -> list[float]: _UpperCAmelCase : Any = [] for i, outer in enumerate(lowerCAmelCase ): _UpperCAmelCase : float = -1 for inner in arr[i + 1 :]: if outer < inner: _UpperCAmelCase : List[str] = inner break result.append(lowerCAmelCase ) return result def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list[float] ) -> list[float]: _UpperCAmelCase : Tuple = len(lowerCAmelCase ) _UpperCAmelCase : list[float] = [] _UpperCAmelCase : list[float] = [-1] * arr_size for index in reversed(range(lowerCAmelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _UpperCAmelCase : Dict = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) SCREAMING_SNAKE_CASE_ = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
300
1
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : int ): # A mock response for an HTTP head request to emulate server down UpperCamelCase :List[str] = mock.Mock() UpperCamelCase :List[Any] = 500 UpperCamelCase :List[Any] = {} UpperCamelCase :Tuple = HTTPError UpperCamelCase :Union[str, Any] = {} # Download this model to make sure it's in the cache. UpperCamelCase :Union[str, Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=__lowerCamelCase ) as mock_head: UpperCamelCase :List[str] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _A ( self : Union[str, Any] ): # A mock response for an HTTP head request to emulate server down UpperCamelCase :Union[str, Any] = mock.Mock() UpperCamelCase :Any = 500 UpperCamelCase :Optional[Any] = {} UpperCamelCase :Optional[int] = HTTPError UpperCamelCase :List[Any] = {} # Download this model to make sure it's in the cache. UpperCamelCase :Any = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=__lowerCamelCase ) as mock_head: UpperCamelCase :List[str] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def _A ( self : Optional[Any] ): # This test is for deprecated behavior and can be removed in v5 try: UpperCamelCase :List[Any] = tempfile.mktemp() with open(__lowerCamelCase , """wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = AlbertTokenizer.from_pretrained(__lowerCamelCase ) finally: os.remove(__lowerCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" , """wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" , __lowerCamelCase ) UpperCamelCase :Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def _A ( self : Dict ): # This test is for deprecated behavior and can be removed in v5 UpperCamelCase :Optional[int] = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case__ : Union[str, Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def _A ( cls : Optional[Any] ): UpperCamelCase :Optional[int] = TOKEN HfFolder.save_token(__lowerCamelCase ) @classmethod def _A ( cls : Tuple ): try: delete_repo(token=cls._token , repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def _A ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase :List[str] = os.path.join(__lowerCamelCase , """vocab.txt""" ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCamelCase :Any = BertTokenizer(__lowerCamelCase ) tokenizer.push_to_hub("""test-tokenizer""" , use_auth_token=self._token ) UpperCamelCase :Optional[int] = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase , repo_id="""test-tokenizer""" , push_to_hub=__lowerCamelCase , use_auth_token=self._token ) UpperCamelCase :Optional[int] = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def _A ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase :List[Any] = os.path.join(__lowerCamelCase , """vocab.txt""" ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCamelCase :Optional[Any] = BertTokenizer(__lowerCamelCase ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" , use_auth_token=self._token ) UpperCamelCase :Optional[int] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( __lowerCamelCase , repo_id="""valid_org/test-tokenizer-org""" , push_to_hub=__lowerCamelCase , use_auth_token=self._token ) UpperCamelCase :int = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def _A ( self : Tuple ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase :Optional[int] = os.path.join(__lowerCamelCase , """vocab.txt""" ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCamelCase :Tuple = CustomTokenizer(__lowerCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) UpperCamelCase :List[str] = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=__lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase :Dict = os.path.join(__lowerCamelCase , """vocab.txt""" ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCamelCase :Dict = BertTokenizerFast.from_pretrained(__lowerCamelCase ) bert_tokenizer.save_pretrained(__lowerCamelCase ) UpperCamelCase :List[str] = CustomTokenizerFast.from_pretrained(__lowerCamelCase ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) UpperCamelCase :List[Any] = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=__lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizerFast""" ) UpperCamelCase :List[str] = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" , use_fast=__lowerCamelCase , trust_remote_code=__lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : int ): UpperCamelCase :Any = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def _A ( self : List[str] ): UpperCamelCase :List[Any] = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS]""", """ This is a """, """extra_id_100"""] ) def _A ( self : List[str] ): UpperCamelCase :int = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) , ["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) , ["""BC""", """A"""] ) def _A ( self : List[Any] ): UpperCamelCase :int = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def _A ( self : Tuple ): UpperCamelCase :Dict = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def _A ( self : str ): UpperCamelCase :Dict = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) , ["""AB""", """C"""] ) def _A ( self : List[str] ): UpperCamelCase :Tuple = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) , ["""ABC""", """D"""] ) def _A ( self : Tuple ): # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCamelCase :List[Any] = Trie() UpperCamelCase :Dict = trie.cut_text("""ABC""" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(__lowerCamelCase , ["""AB""", """C"""] )
590
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : str ) -> str: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCamelCase :List[str] = tmp_path / """cache""" UpperCamelCase :str = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase :List[str] = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__magic_name__ , keep_in_memory=__magic_name__ ).read() _check_sql_dataset(__magic_name__ , __magic_name__ ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" UpperCamelCase :Union[str, Any] = tmp_path / """cache""" UpperCamelCase :Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} UpperCamelCase :Optional[int] = features.copy() if features else default_expected_features UpperCamelCase :List[Any] = ( Features({feature: Value(__magic_name__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase :Optional[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=__magic_name__ , cache_dir=__magic_name__ ).read() _check_sql_dataset(__magic_name__ , __magic_name__ ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] ) -> List[Any]: """simple docstring""" with contextlib.closing(sqlitea.connect(__magic_name__ ) ) as con: UpperCamelCase :Optional[int] = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCamelCase :Any = tmp_path / """cache""" UpperCamelCase :int = os.path.join(__magic_name__ , """tmp.sql""" ) UpperCamelCase :Tuple = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__magic_name__ ).read() SqlDatasetWriter(__magic_name__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() UpperCamelCase :List[str] = iter_sql_file(__magic_name__ ) UpperCamelCase :Optional[int] = iter_sql_file(__magic_name__ ) for rowa, rowa in zip(__magic_name__ , __magic_name__ ): assert rowa == rowa @require_sqlalchemy def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase :List[Any] = tmp_path / """cache""" UpperCamelCase :Optional[Any] = os.path.join(__magic_name__ , """tmp.sql""" ) UpperCamelCase :List[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__magic_name__ ).read() SqlDatasetWriter(__magic_name__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() UpperCamelCase :List[str] = iter_sql_file(__magic_name__ ) UpperCamelCase :Any = iter_sql_file(__magic_name__ ) for rowa, rowa in zip(__magic_name__ , __magic_name__ ): assert rowa == rowa @require_sqlalchemy def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : str ) -> Union[str, Any]: """simple docstring""" UpperCamelCase :int = tmp_path / """cache""" UpperCamelCase :Dict = os.path.join(__magic_name__ , """tmp.sql""" ) UpperCamelCase :List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__magic_name__ ).read() with pytest.raises(__magic_name__ ): SqlDatasetWriter(__magic_name__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
590
1
def A__ ( lowercase: Optional[Any] ) -> tuple[int, int]: try: A : int =float(lowerCamelCase_ ) except ValueError: raise ValueError('Please enter a valid number' ) A : Optional[int] =decimal - int(lowerCamelCase_ ) if fractional_part == 0: return int(lowerCamelCase_ ), 1 else: A : Dict =len(str(lowerCamelCase_ ).split('.' )[1] ) A : Any =int(decimal * (10**number_of_frac_digits) ) A : Tuple =10**number_of_frac_digits A : Tuple =denominator, numerator while True: A : List[Any] =dividend % divisor if remainder == 0: break A : Optional[int] =divisor, remainder A : Optional[Any] =numerator / divisor, denominator / divisor return int(lowerCamelCase_ ), int(lowerCamelCase_ ) if __name__ == "__main__": print(f'''{decimal_to_fraction(2) = }''') print(f'''{decimal_to_fraction(8_9.0) = }''') print(f'''{decimal_to_fraction('67') = }''') print(f'''{decimal_to_fraction('45.0') = }''') print(f'''{decimal_to_fraction(1.5) = }''') print(f'''{decimal_to_fraction('6.25') = }''') print(f'''{decimal_to_fraction('78td') = }''')
305
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE : str = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
348
"""simple docstring""" import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def UpperCamelCase ( _A ) -> Any: # picklable for multiprocessing return x.sum() def UpperCamelCase ( _A ) -> Tuple: # picklable for multiprocessing return i + 1 @dataclass class UpperCamelCase : _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : str class UpperCamelCase (__snake_case ): def __snake_case ( self :List[str] ) ->Optional[int]: lowercase : Optional[Any] = {} lowercase : List[str] = [] lowercase : List[str] = 1 lowercase : Any = [1, 2] lowercase : str = {"""a""": 1, """b""": 2} lowercase : List[str] = {"""a""": [1, 2], """b""": [3, 4]} lowercase : Union[str, Any] = {"""a""": {"""1""": 1}, """b""": 2} lowercase : List[str] = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} lowercase : List[Any] = {} lowercase : Union[str, Any] = [] lowercase : List[str] = 2 lowercase : Tuple = [2, 3] lowercase : Dict = {"""a""": 2, """b""": 3} lowercase : Dict = {"""a""": [2, 3], """b""": [4, 5]} lowercase : Optional[int] = {"""a""": {"""1""": 2}, """b""": 3} lowercase : str = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase : int = 2 self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) lowercase : Dict = {"""a""": np.eye(2 ), """b""": np.zeros(3 ), """c""": np.ones(2 )} lowercase : int = {"""a""": 2, """b""": 0, """c""": 2} lowercase : str = { """a""": np.eye(2 ).astype(__magic_name__ ), """b""": np.zeros(3 ).astype(__magic_name__ ), """c""": np.ones(2 ).astype(__magic_name__ ), } self.assertEqual(map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ ) , __magic_name__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ , num_proc=__magic_name__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(__magic_name__ ): # can't pickle a local lambda map_nested(lambda __magic_name__ : x + 1 , __magic_name__ , num_proc=__magic_name__ ) def __snake_case ( self :Optional[Any] ) ->Optional[int]: lowercase : Union[str, Any] = {"""a""": 1, """b""": 2} lowercase : int = {"""a""": 3, """b""": 4} lowercase : Optional[Any] = {"""a""": 5, """b""": 6} lowercase : List[str] = sorted([("""a""", (1, 3, 5)), ("""b""", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(__magic_name__ , __magic_name__ , __magic_name__ ) ) , __magic_name__ ) def __snake_case ( self :Tuple ) ->Union[str, Any]: class UpperCamelCase : _SCREAMING_SNAKE_CASE : str = """bar""" lowercase : Tuple = Foo() self.assertEqual(foo.my_attr , """bar""" ) with temporary_assignment(__magic_name__ , """my_attr""" , """BAR""" ): self.assertEqual(foo.my_attr , """BAR""" ) self.assertEqual(foo.my_attr , """bar""" ) @pytest.mark.parametrize( """iterable_length, num_proc, expected_num_proc""" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def UpperCamelCase ( _A , _A , _A ) -> int: with patch("""datasets.utils.py_utils._single_map_nested""" ) as mock_single_map_nested, patch( """datasets.parallel.parallel.Pool""" ) as mock_multiprocessing_pool: lowercase : Union[str, Any] = {F"""{i}""": i for i in range(_A )} lowercase : List[str] = map_nested(lambda _A : x + 10 , _A , num_proc=_A , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class UpperCamelCase (__snake_case ): @require_tf def __snake_case ( self :str ) ->Dict: import tensorflow as tf from tensorflow.keras import layers lowercase : Any = layers.Dense(2 ) def gen_random_output(): lowercase : Tuple = tf.random.uniform((1, 3) ) return model(__magic_name__ ).numpy() with temp_seed(42 , set_tensorflow=__magic_name__ ): lowercase : Tuple = gen_random_output() with temp_seed(42 , set_tensorflow=__magic_name__ ): lowercase : Optional[int] = gen_random_output() lowercase : Any = gen_random_output() np.testing.assert_equal(__magic_name__ , __magic_name__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __snake_case ( self :Union[str, Any] ) ->str: import torch def gen_random_output(): lowercase : List[str] = torch.nn.Linear(3 , 2 ) lowercase : List[Any] = torch.rand(1 , 3 ) return model(__magic_name__ ).detach().numpy() with temp_seed(42 , set_pytorch=__magic_name__ ): lowercase : Tuple = gen_random_output() with temp_seed(42 , set_pytorch=__magic_name__ ): lowercase : int = gen_random_output() lowercase : List[str] = gen_random_output() np.testing.assert_equal(__magic_name__ , __magic_name__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __snake_case ( self :Dict ) ->int: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): lowercase : str = gen_random_output() with temp_seed(42 ): lowercase : Tuple = gen_random_output() lowercase : Any = gen_random_output() np.testing.assert_equal(__magic_name__ , __magic_name__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("""input_data""" , [{}] ) def UpperCamelCase ( _A ) -> List[Any]: lowercase : Optional[int] = NestedDataStructure(_A ).data assert output_data == input_data @pytest.mark.parametrize( """data, expected_output""" , [ ({}, []), ([], []), ("""foo""", ["""foo"""]), (["""foo""", """bar"""], ["""foo""", """bar"""]), ([["""foo""", """bar"""]], ["""foo""", """bar"""]), ([[["""foo"""], ["""bar"""]]], ["""foo""", """bar"""]), ([[["""foo"""], """bar"""]], ["""foo""", """bar"""]), ({"""a""": 1, """b""": 2}, [1, 2]), ({"""a""": [1, 2], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[[3], [4]]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, [4]]}, [1, 2, 3, 4]), ({"""a""": {"""1""": 1}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": [2]}, [1, 2]), ] , ) def UpperCamelCase ( _A , _A ) -> Any: lowercase : int = NestedDataStructure(_A ).flatten() assert output == expected_output def UpperCamelCase ( ) -> Tuple: lowercase : str = A(x=1 , y="""foobar""" ) lowercase : Optional[int] = {"""x""": 1, """y""": """foobar"""} assert asdict(_A ) == expected_output lowercase : Dict = {"""a""": {"""b""": A(x=10 , y="""foo""" )}, """c""": [A(x=20 , y="""bar""" )]} lowercase : Optional[Any] = {"""a""": {"""b""": {"""x""": 10, """y""": """foo"""}}, """c""": [{"""x""": 20, """y""": """bar"""}]} assert asdict(_A ) == expected_output with pytest.raises(_A ): asdict([1, A(x=10 , y="""foo""" )] ) def UpperCamelCase ( _A ) -> int: return text.split() def UpperCamelCase ( _A ) -> Any: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def UpperCamelCase ( ) -> Optional[int]: with Pool(2 ) as pool: lowercase : int = list(iflatmap_unordered(_A , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(_A ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: lowercase : Union[str, Any] = list(iflatmap_unordered(_A , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(_A ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: lowercase : int = [] for yield_time, content in iflatmap_unordered( _A , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"""content""": """a"""}, {"""content""": """b"""}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(_A ) assert out.count("""a""" ) == 2 assert out.count("""b""" ) == 2 assert len(_A ) == 4
348
1
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __magic_name__ : def __init__( self , snake_case_ , ): lowercase =parent lowercase =13 lowercase =7 lowercase =30 lowercase =self.seq_length + self.mem_len lowercase =15 lowercase =True lowercase =True lowercase =99 lowercase =[10, 50, 80] lowercase =32 lowercase =32 lowercase =4 lowercase =8 lowercase =1_28 lowercase =2 lowercase =2 lowercase =None lowercase =1 lowercase =0 lowercase =3 lowercase =self.vocab_size - 1 lowercase =0.01 def _A( self ): lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase =None if self.use_labels: lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase =TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def _A( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): lowercase =TFTransfoXLModel(__lowerCamelCase ) lowercase , lowercase =model(__lowerCamelCase ).to_tuple() lowercase ={'''input_ids''': input_ids_a, '''mems''': mems_a} lowercase , lowercase =model(__lowerCamelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): lowercase =TFTransfoXLLMHeadModel(__lowerCamelCase ) lowercase , lowercase =model(__lowerCamelCase ).to_tuple() lowercase ={'''input_ids''': input_ids_a, '''labels''': lm_labels} lowercase , lowercase =model(__lowerCamelCase ).to_tuple() lowercase , lowercase =model([input_ids_a, mems_a] ).to_tuple() lowercase ={'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} lowercase , lowercase =model(__lowerCamelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): lowercase =TFTransfoXLForSequenceClassification(__lowerCamelCase ) lowercase =model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A( self ): lowercase =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase)) =config_and_inputs lowercase ={'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class __magic_name__ ( __snake_case , __snake_case , unittest.TestCase ): UpperCamelCase__ = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) UpperCamelCase__ = () if is_tf_available() else () UpperCamelCase__ = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _A( self ): lowercase =TFTransfoXLModelTester(self ) lowercase =ConfigTester(self , config_class=__lowerCamelCase , d_embed=37 ) def _A( self ): self.config_tester.run_common_tests() def _A( self ): self.model_tester.set_seed() lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*__lowerCamelCase ) def _A( self ): self.model_tester.set_seed() lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*__lowerCamelCase ) def _A( self ): lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*__lowerCamelCase ) def _A( self ): lowercase , lowercase =self.model_tester.prepare_config_and_inputs_for_common() lowercase =[TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowercase =model_class(__lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: lowercase =model.get_output_embeddings() assert isinstance(__lowerCamelCase , tf.keras.layers.Layer ) lowercase =model.get_bias() assert name is None else: lowercase =model.get_output_embeddings() assert x is None lowercase =model.get_bias() assert name is None def _A( self ): pass @slow def _A( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase =TFTransfoXLModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def _A( self ): pass @require_tf class __magic_name__ ( unittest.TestCase ): @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def _A( self ): lowercase =TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off lowercase =tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowercase =[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowercase =model.generate(__lowerCamelCase , max_length=2_00 , do_sample=__lowerCamelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , __lowerCamelCase )
72
from __future__ import annotations def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Optional[int]: # Checks if the entire collection has been sorted if len(lowerCAmelCase_ ) <= 1 or n <= 1: return insert_next(lowerCAmelCase_ , n - 1 ) rec_insertion_sort(lowerCAmelCase_ , n - 1 ) def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Dict: # Checks order between adjacent elements if index >= len(lowerCAmelCase_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order UpperCAmelCase , UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(lowerCAmelCase_ , index + 1 ) if __name__ == "__main__": __a = input("""Enter integers separated by spaces: """) __a = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
377
0
'''simple docstring''' def _lowerCAmelCase ( _lowerCAmelCase = 10_00 )-> int: __UpperCAmelCase , __UpperCAmelCase = 1, 1 __UpperCAmelCase = [] for i in range(1 , n + 1 ): __UpperCAmelCase = prev_numerator + 2 * prev_denominator __UpperCAmelCase = prev_numerator + prev_denominator if len(str(_lowerCAmelCase ) ) > len(str(_lowerCAmelCase ) ): result.append(_lowerCAmelCase ) __UpperCAmelCase = numerator __UpperCAmelCase = denominator return len(_lowerCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
617
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _lowerCAmelCase ( _lowerCAmelCase = 3 )-> qiskit.result.counts.Counts: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(_lowerCAmelCase ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) __UpperCAmelCase = QuantumRegister(_lowerCAmelCase , 'qr' ) __UpperCAmelCase = ClassicalRegister(_lowerCAmelCase , 'cr' ) __UpperCAmelCase = QuantumCircuit(_lowerCAmelCase , _lowerCAmelCase ) __UpperCAmelCase = number_of_qubits for i in range(_lowerCAmelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_lowerCAmelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _lowerCAmelCase , _lowerCAmelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_lowerCAmelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_lowerCAmelCase , _lowerCAmelCase ) # simulate with 10000 shots __UpperCAmelCase = Aer.get_backend('qasm_simulator' ) __UpperCAmelCase = execute(_lowerCAmelCase , _lowerCAmelCase , shots=1_00_00 ) return job.result().get_counts(_lowerCAmelCase ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
617
1
def SCREAMING_SNAKE_CASE__ ( snake_case_ = 1_0_0 ) -> str: """simple docstring""" a = set() a = 0 a = n + 1 # maximum limit for a in range(2, lowerCamelCase__ ): for b in range(2, lowerCamelCase__ ): a = a**b # calculates the current power collect_powers.add(lowerCamelCase__ ) # adds the result to the set return len(lowerCamelCase__ ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
387
import random from typing import Any def __lowerCamelCase ( lowerCamelCase__ : list ): '''simple docstring''' for _ in range(len(lowerCamelCase__ ) ): lowerCamelCase = random.randint(0 , len(lowerCamelCase__ ) - 1 ) lowerCamelCase = random.randint(0 , len(lowerCamelCase__ ) - 1 ) lowerCamelCase , lowerCamelCase = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase : str = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase : Union[str, Any] = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
457
0
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : int ): """simple docstring""" __UpperCamelCase =0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def lowerCAmelCase (__UpperCamelCase : int = 1_0_0 ): """simple docstring""" __UpperCamelCase =1 __UpperCamelCase =2 for i in range(2 , max_n + 1 ): __UpperCamelCase =pre_numerator __UpperCamelCase =2 * i // 3 if i % 3 == 0 else 1 __UpperCamelCase =cur_numerator __UpperCamelCase =e_cont * pre_numerator + temp return sum_digits(__UpperCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
296
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class _lowercase ( __a ): """simple docstring""" lowercase__ = '''vit''' def __init__( self : Optional[Any] , UpperCamelCase__ : Tuple=768 , UpperCamelCase__ : Dict=12 , UpperCamelCase__ : Dict=12 , UpperCamelCase__ : Union[str, Any]=3072 , UpperCamelCase__ : List[Any]="gelu" , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : List[str]=0.0 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : Union[str, Any]=1E-12 , UpperCamelCase__ : Union[str, Any]=224 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Optional[int]=16 , **UpperCamelCase__ : Optional[int] , ) -> Tuple: '''simple docstring''' super().__init__(**UpperCamelCase__ ) __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =qkv_bias __UpperCamelCase =encoder_stride class _lowercase ( __a ): """simple docstring""" lowercase__ = version.parse('''1.11''' ) @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase_ ( self : str ) -> float: '''simple docstring''' return 1E-4
296
1
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase): __lowercase : Tuple = FunnelTokenizer __lowercase : int = FunnelTokenizerFast __lowercase : Optional[int] = True __lowercase : Union[str, Any] = True def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' super().setUp() __snake_case = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowerCAmelCase ( self , **__SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self , **__SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' __snake_case = '''UNwant\u00E9d,running''' __snake_case = '''unwanted, running''' return input_text, output_text def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = self.tokenizer_class(self.vocab_file ) __snake_case = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [7, 4, 5, 10, 8, 9] ) def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = self.get_tokenizers(do_lower_case=__SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: __snake_case = tokenizer('''UNwant\u00E9d,running''' ) __snake_case = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) __snake_case = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
24
'''simple docstring''' def _UpperCamelCase (_lowerCamelCase : int )-> int: '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 __snake_case = 1 __snake_case = 1 while repunit: __snake_case = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _UpperCamelCase (_lowerCamelCase : int = 1_00_00_00 )-> int: '''simple docstring''' __snake_case = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_lowerCamelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
24
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} __UpperCamelCase : Optional[int] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } __UpperCamelCase : Optional[Any] = { """facebook/nllb-large-en-ro""": 1024, """facebook/nllb-200-distilled-600M""": 1024, } # fmt: off __UpperCamelCase : Optional[Any] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = ["input_ids", "attention_mask"] _UpperCAmelCase = NllbTokenizer _UpperCAmelCase = [] _UpperCAmelCase = [] def __init__( self: List[Any] , UpperCamelCase: Dict=None , UpperCamelCase: List[Any]=None , UpperCamelCase: str="<s>" , UpperCamelCase: int="</s>" , UpperCamelCase: List[str]="</s>" , UpperCamelCase: Optional[int]="<s>" , UpperCamelCase: Union[str, Any]="<unk>" , UpperCamelCase: int="<pad>" , UpperCamelCase: List[str]="<mask>" , UpperCamelCase: Tuple=None , UpperCamelCase: Union[str, Any]=None , UpperCamelCase: Optional[Any]=None , UpperCamelCase: List[str]=False , **UpperCamelCase: Optional[int] , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it snake_case__ = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token snake_case__ = legacy_behaviour super().__init__( vocab_file=UpperCamelCase , tokenizer_file=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , src_lang=UpperCamelCase , tgt_lang=UpperCamelCase , additional_special_tokens=UpperCamelCase , legacy_behaviour=UpperCamelCase , **UpperCamelCase , ) snake_case__ = vocab_file snake_case__ = False if not self.vocab_file else True snake_case__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) snake_case__ = { lang_code: self.convert_tokens_to_ids(UpperCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case__ = src_lang if src_lang is not None else 'eng_Latn' snake_case__ = self.convert_tokens_to_ids(self._src_lang ) snake_case__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCAmelCase_ ( self: int ) -> str: return self._src_lang @src_lang.setter def lowerCAmelCase_ ( self: Dict , UpperCamelCase: str ) -> None: snake_case__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase_ ( self: str , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = [self.sep_token_id] snake_case__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: str , UpperCamelCase: Optional[str] , UpperCamelCase: Optional[str] , **UpperCamelCase: Dict ) -> Tuple: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) snake_case__ = src_lang snake_case__ = self(UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) snake_case__ = self.convert_tokens_to_ids(UpperCamelCase ) snake_case__ = tgt_lang_id return inputs def lowerCAmelCase_ ( self: Any , UpperCamelCase: List[str] , UpperCamelCase: str = "eng_Latn" , UpperCamelCase: Optional[List[str]] = None , UpperCamelCase: str = "fra_Latn" , **UpperCamelCase: Dict , ) -> BatchEncoding: snake_case__ = src_lang snake_case__ = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase , UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase_ ( self: List[Any] ) -> int: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: List[str] ) -> None: snake_case__ = self.convert_tokens_to_ids(UpperCamelCase ) if self.legacy_behaviour: snake_case__ = [] snake_case__ = [self.eos_token_id, self.cur_lang_code] else: snake_case__ = [self.cur_lang_code] snake_case__ = [self.eos_token_id] snake_case__ = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case__ = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: str ) -> None: snake_case__ = self.convert_tokens_to_ids(UpperCamelCase ) if self.legacy_behaviour: snake_case__ = [] snake_case__ = [self.eos_token_id, self.cur_lang_code] else: snake_case__ = [self.cur_lang_code] snake_case__ = [self.eos_token_id] snake_case__ = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case__ = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: str , UpperCamelCase: Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return snake_case__ = os.path.join( UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) return (out_vocab_file,)
372
__UpperCamelCase : List[str] = 256 # Modulus to hash a string __UpperCamelCase : int = 1000003 def a_ ( _A , _A ) -> bool: """simple docstring""" snake_case__ = len(_A ) snake_case__ = len(_A ) if p_len > t_len: return False snake_case__ = 0 snake_case__ = 0 snake_case__ = 1 # Calculating the hash of pattern and substring of text for i in range(_A ): snake_case__ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case__ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case__ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case__ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def a_ ( ) -> None: """simple docstring""" snake_case__ = 'abc1abc12' snake_case__ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case__ = 'alskfjaldsk23adsfabcabc' assert rabin_karp(_A , _A ) and not rabin_karp(_A , _A ) # Test 2) snake_case__ = 'ABABX' snake_case__ = 'ABABZABABYABABX' assert rabin_karp(_A , _A ) # Test 3) snake_case__ = 'AAAB' snake_case__ = 'ABAAAAAB' assert rabin_karp(_A , _A ) # Test 4) snake_case__ = 'abcdabcy' snake_case__ = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(_A , _A ) # Test 5) snake_case__ = 'Lü' snake_case__ = 'Lüsai' assert rabin_karp(_A , _A ) snake_case__ = 'Lue' assert not rabin_karp(_A , _A ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
372
1
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> Dict: """simple docstring""" lowerCAmelCase__ = k_size // 2 lowerCAmelCase__ , lowerCAmelCase__ = mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowerCAmelCase__ = 1 / (2 * pi * sigma) * exp(-(square(snake_case__ ) + square(snake_case__ )) / (2 * square(snake_case__ )) ) return g def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ) -> str: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = image.shape[0], image.shape[1] # dst image height and width lowerCAmelCase__ = height - k_size + 1 lowerCAmelCase__ = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowerCAmelCase__ = zeros((dst_height * dst_width, k_size * k_size) ) lowerCAmelCase__ = 0 for i, j in product(range(snake_case__ ) , range(snake_case__ ) ): lowerCAmelCase__ = ravel(image[i : i + k_size, j : j + k_size] ) lowerCAmelCase__ = window row += 1 # turn the kernel into shape(k*k, 1) lowerCAmelCase__ = gen_gaussian_kernel(snake_case__ , snake_case__ ) lowerCAmelCase__ = ravel(snake_case__ ) # reshape and get the dst image lowerCAmelCase__ = dot(snake_case__ , snake_case__ ).reshape(snake_case__ , snake_case__ ).astype(snake_case__ ) return dst if __name__ == "__main__": # read original image _lowerCAmelCase : List[str] = imread(R"../image_data/lena.jpg") # turn image in gray scale value _lowerCAmelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _lowerCAmelCase : Optional[int] = gaussian_filter(gray, 3, sigma=1) _lowerCAmelCase : Tuple = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
193
from typing import Dict from .base import GenericTensor, Pipeline class __snake_case ( SCREAMING_SNAKE_CASE ): def SCREAMING_SNAKE_CASE_ ( self ,a_=None ,a_=None ,a_=None ,**a_ ): """simple docstring""" if tokenize_kwargs is None: lowerCAmelCase__ = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) lowerCAmelCase__ = truncation lowerCAmelCase__ = tokenize_kwargs lowerCAmelCase__ = {} if return_tensors is not None: lowerCAmelCase__ = return_tensors return preprocess_params, {}, postprocess_params def SCREAMING_SNAKE_CASE_ ( self ,a_ ,**a_ ): """simple docstring""" lowerCAmelCase__ = self.framework lowerCAmelCase__ = self.tokenizer(a_ ,return_tensors=a_ ,**a_ ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = self.model(**a_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_=False ): """simple docstring""" # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self ,*a_ ,**a_ ): """simple docstring""" return super().__call__(*a_ ,**a_ )
193
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def lowercase_ ( self :Optional[int] ) -> Union[str, Any]: lowerCamelCase__ : Any = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) lowerCamelCase__ : Tuple = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] ,dtype=tf.intaa ,) # J'aime le camembert !" lowerCamelCase__ : Tuple = model(__UpperCAmelCase )['''last_hidden_state'''] lowerCamelCase__ : str = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape ,__UpperCAmelCase ) # compare the actual values for a slice. lowerCamelCase__ : List[Any] = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] ,dtype=tf.floataa ,) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
707
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): def lowercase_ ( self :int ) -> List[str]: """simple docstring""" lowerCamelCase__ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase ,'''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase ,'''num_attention_heads''' ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase ,'''num_encoder_blocks''' ) ) class __SCREAMING_SNAKE_CASE : def __init__( self :Union[str, Any] ,__UpperCAmelCase :str ,__UpperCAmelCase :Optional[int]=13 ,__UpperCAmelCase :Any=64 ,__UpperCAmelCase :List[Any]=3 ,__UpperCAmelCase :str=4 ,__UpperCAmelCase :Any=[2, 2, 2, 2] ,__UpperCAmelCase :List[Any]=[8, 4, 2, 1] ,__UpperCAmelCase :Dict=[16, 32, 64, 1_28] ,__UpperCAmelCase :Any=[1, 4, 8, 16] ,__UpperCAmelCase :int=[1, 2, 4, 8] ,__UpperCAmelCase :Union[str, Any]=True ,__UpperCAmelCase :Dict=True ,__UpperCAmelCase :Optional[int]="gelu" ,__UpperCAmelCase :Tuple=0.1 ,__UpperCAmelCase :List[Any]=0.1 ,__UpperCAmelCase :List[Any]=0.02 ,__UpperCAmelCase :str=3 ,__UpperCAmelCase :Tuple=None ,) -> int: """simple docstring""" lowerCamelCase__ : List[Any] = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Any = image_size lowerCamelCase__ : Tuple = num_channels lowerCamelCase__ : Union[str, Any] = num_encoder_blocks lowerCamelCase__ : Union[str, Any] = sr_ratios lowerCamelCase__ : int = depths lowerCamelCase__ : Optional[Any] = hidden_sizes lowerCamelCase__ : List[Any] = downsampling_rates lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Tuple = is_training lowerCamelCase__ : Union[str, Any] = use_labels lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : Optional[Any] = num_labels lowerCamelCase__ : Any = scope def lowercase_ ( self :Dict ) -> str: """simple docstring""" lowerCamelCase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[Any] = None if self.use_labels: lowerCamelCase__ : str = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) lowerCamelCase__ : Any = self.get_config() return config, pixel_values, labels def lowercase_ ( self :Tuple ) -> Any: """simple docstring""" return SegformerConfig( image_size=self.image_size ,num_channels=self.num_channels ,num_encoder_blocks=self.num_encoder_blocks ,depths=self.depths ,hidden_sizes=self.hidden_sizes ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def lowercase_ ( self :Any ,__UpperCAmelCase :Tuple ,__UpperCAmelCase :Union[str, Any] ,__UpperCAmelCase :Any ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : Optional[int] = SegformerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCamelCase__ : str = model(__UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def lowercase_ ( self :Union[str, Any] ,__UpperCAmelCase :str ,__UpperCAmelCase :Tuple ,__UpperCAmelCase :Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Dict = SegformerForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCamelCase__ : Tuple = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) lowerCamelCase__ : List[Any] = model(__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss ,0.0 ) def lowercase_ ( self :str ,__UpperCAmelCase :Dict ,__UpperCAmelCase :Union[str, Any] ,__UpperCAmelCase :Tuple ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : Dict = 1 lowerCamelCase__ : Union[str, Any] = SegformerForSemanticSegmentation(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCamelCase__ : str = torch.randint(0 ,1 ,(self.batch_size, self.image_size, self.image_size) ).to(__UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = model(__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertGreater(result.loss ,0.0 ) def lowercase_ ( self :Union[str, Any] ) -> int: """simple docstring""" lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = config_and_inputs lowerCamelCase__ : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCAmelCase = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) UpperCAmelCase = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def lowercase_ ( self :int ) -> Dict: """simple docstring""" lowerCamelCase__ : Union[str, Any] = SegformerModelTester(self ) lowerCamelCase__ : int = SegformerConfigTester(self ,config_class=__UpperCAmelCase ) def lowercase_ ( self :Tuple ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowercase_ ( self :Dict ) -> Tuple: """simple docstring""" lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowercase_ ( self :Optional[int] ) -> str: """simple docstring""" lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__UpperCAmelCase ) def lowercase_ ( self :Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__UpperCAmelCase ) @unittest.skip('''SegFormer does not use inputs_embeds''' ) def lowercase_ ( self :int ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' ) def lowercase_ ( self :Optional[int] ) -> List[str]: """simple docstring""" pass def lowercase_ ( self :Any ) -> str: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[str] = model_class(__UpperCAmelCase ) lowerCamelCase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Union[str, Any] = [*signature.parameters.keys()] lowerCamelCase__ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,__UpperCAmelCase ) def lowercase_ ( self :List[str] ) -> int: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : int = True for model_class in self.all_model_classes: lowerCamelCase__ : List[Any] = True lowerCamelCase__ : List[str] = False lowerCamelCase__ : Tuple = True lowerCamelCase__ : List[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Union[str, Any] = model(**self._prepare_for_class(__UpperCAmelCase ,__UpperCAmelCase ) ) lowerCamelCase__ : Union[str, Any] = outputs.attentions lowerCamelCase__ : int = sum(self.model_tester.depths ) self.assertEqual(len(__UpperCAmelCase ) ,__UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase__ : List[Any] = True lowerCamelCase__ : List[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Any = model(**self._prepare_for_class(__UpperCAmelCase ,__UpperCAmelCase ) ) lowerCamelCase__ : Dict = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) ,__UpperCAmelCase ) # verify the first attentions (first block, first layer) lowerCamelCase__ : Union[str, Any] = (self.model_tester.image_size // 4) ** 2 lowerCamelCase__ : List[str] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,) # verify the last attentions (last block, last layer) lowerCamelCase__ : Dict = (self.model_tester.image_size // 32) ** 2 lowerCamelCase__ : Optional[Any] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) ,[self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] ,) lowerCamelCase__ : Union[str, Any] = len(__UpperCAmelCase ) # Check attention is always last and order is fine lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Any = True lowerCamelCase__ : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Any = model(**self._prepare_for_class(__UpperCAmelCase ,__UpperCAmelCase ) ) self.assertEqual(out_len + 1 ,len(__UpperCAmelCase ) ) lowerCamelCase__ : Any = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) ,__UpperCAmelCase ) # verify the first attentions (first block, first layer) lowerCamelCase__ : Tuple = (self.model_tester.image_size // 4) ** 2 lowerCamelCase__ : str = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,) def lowercase_ ( self :int ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(__UpperCAmelCase :Union[str, Any] ,__UpperCAmelCase :Any ,__UpperCAmelCase :Optional[Any] ): lowerCamelCase__ : List[str] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : str = model(**self._prepare_for_class(__UpperCAmelCase ,__UpperCAmelCase ) ) lowerCamelCase__ : Any = outputs.hidden_states lowerCamelCase__ : Optional[int] = self.model_tester.num_encoder_blocks self.assertEqual(len(__UpperCAmelCase ) ,__UpperCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) ,[ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] ,) lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Any = True check_hidden_states_output(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : Optional[Any] = True check_hidden_states_output(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) def lowercase_ ( self :Union[str, Any] ) -> List[str]: """simple docstring""" if not self.model_tester.is_training: return lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(__UpperCAmelCase ): continue lowerCamelCase__ : Union[str, Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() lowerCamelCase__ : str = self._prepare_for_class(__UpperCAmelCase ,__UpperCAmelCase ,return_labels=__UpperCAmelCase ) lowerCamelCase__ : List[str] = model(**__UpperCAmelCase ).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase_ ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" pass @slow def lowercase_ ( self :Tuple ) -> Tuple: """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[Any] = SegformerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __a ( ): """simple docstring""" lowerCamelCase__ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def lowercase_ ( self :Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : Union[str, Any] = SegformerImageProcessor( image_scale=(5_12, 5_12) ,keep_ratio=__UpperCAmelCase ,align=__UpperCAmelCase ,do_random_crop=__UpperCAmelCase ) lowerCamelCase__ : List[Any] = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( __UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=__UpperCAmelCase ,return_tensors='''pt''' ) lowerCamelCase__ : Optional[Any] = encoded_inputs.pixel_values.to(__UpperCAmelCase ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(__UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape ,__UpperCAmelCase ) lowerCamelCase__ : Dict = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,__UpperCAmelCase ,atol=1E-4 ) ) @slow def lowercase_ ( self :List[Any] ) -> Dict: """simple docstring""" lowerCamelCase__ : str = SegformerImageProcessor( image_scale=(5_12, 5_12) ,keep_ratio=__UpperCAmelCase ,align=__UpperCAmelCase ,do_random_crop=__UpperCAmelCase ) lowerCamelCase__ : Dict = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(__UpperCAmelCase ) lowerCamelCase__ : int = prepare_img() lowerCamelCase__ : Any = image_processor(images=__UpperCAmelCase ,return_tensors='''pt''' ) lowerCamelCase__ : Dict = encoded_inputs.pixel_values.to(__UpperCAmelCase ) with torch.no_grad(): lowerCamelCase__ : Optional[int] = model(__UpperCAmelCase ) lowerCamelCase__ : Dict = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape ,__UpperCAmelCase ) lowerCamelCase__ : List[str] = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,__UpperCAmelCase ,atol=1E-1 ) ) @slow def lowercase_ ( self :int ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : Optional[Any] = SegformerImageProcessor( image_scale=(5_12, 5_12) ,keep_ratio=__UpperCAmelCase ,align=__UpperCAmelCase ,do_random_crop=__UpperCAmelCase ) lowerCamelCase__ : Tuple = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( __UpperCAmelCase ) lowerCamelCase__ : List[str] = prepare_img() lowerCamelCase__ : Optional[Any] = image_processor(images=__UpperCAmelCase ,return_tensors='''pt''' ) lowerCamelCase__ : int = encoded_inputs.pixel_values.to(__UpperCAmelCase ) with torch.no_grad(): lowerCamelCase__ : int = model(__UpperCAmelCase ) lowerCamelCase__ : Dict = outputs.logits.detach().cpu() lowerCamelCase__ : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ,target_sizes=[(5_00, 3_00)] ) lowerCamelCase__ : Optional[int] = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape ,__UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) lowerCamelCase__ : Optional[int] = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape ,__UpperCAmelCase )
121
0
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE: Tuple = parse(importlib.metadata.version('''torch''')) def _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )-> Optional[int]: if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) SCREAMING_SNAKE_CASE_ = STR_OPERATION_TO_FUNC[operation] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ = parse(importlib.metadata.version(UpperCamelCase__ ) ) return operation(UpperCamelCase__ , parse(UpperCamelCase__ ) ) def _a ( lowerCAmelCase , lowerCAmelCase )-> List[str]: return compare_versions(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
360
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
0
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowercase_ ( lowercase__ ) ->tuple: return (data["data"], data["target"]) def lowercase_ ( lowercase__ , lowercase__ , lowercase__ ) ->np.ndarray: _snake_case: int = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowercase__ , lowercase__ ) # Predict target for test data _snake_case: Tuple = xgb.predict(lowercase__ ) _snake_case: Union[str, Any] = predictions.reshape(len(lowercase__ ) , 1 ) return predictions def lowercase_ ( ) ->None: _snake_case: List[str] = fetch_california_housing() _snake_case: Optional[Any] = data_handling(lowercase__ ) _snake_case: Tuple = train_test_split( lowercase__ , lowercase__ , test_size=0.2_5 , random_state=1 ) _snake_case: Union[str, Any] = xgboost(lowercase__ , lowercase__ , lowercase__ ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(lowercase__ , lowercase__ )}''' ) print(F'''Mean Square Error : {mean_squared_error(lowercase__ , lowercase__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
710
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A : Tuple = ['bert-base-uncased', 'bert-base-cased'] A : str = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class lowerCamelCase ( tf.keras.Model ): def __init__( self : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' super().__init__() _snake_case: List[Any] = tokenizer _snake_case: str = AutoConfig.from_pretrained(__snake_case ) _snake_case: List[Any] = TFAutoModel.from_config(__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : str , __snake_case : List[str] ): '''simple docstring''' _snake_case: Optional[int] = self.tokenizer(__snake_case ) _snake_case: Tuple = self.bert(**__snake_case ) return out["pooler_output"] @require_tf @require_tensorflow_text class lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case: List[Any] = [ BertTokenizer.from_pretrained(__snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false _snake_case: List[Any] = [TFBertTokenizer.from_pretrained(__snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__snake_case , use_fast_bert_tokenizer=__snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case: int = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case: str = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): _snake_case: List[Any] = tokenizer(__snake_case , return_tensors='tf' , padding='longest' ) _snake_case: Optional[Any] = tf_tokenizer(__snake_case ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case: str = tf_tokenizer(self.paired_sentences ) _snake_case: Any = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case: List[str] = tf.function(__snake_case ) for test_inputs in (self.test_sentences, self.paired_sentences): _snake_case: Union[str, Any] = tf.constant(__snake_case ) _snake_case: Any = compiled_tokenizer(__snake_case ) _snake_case: Union[str, Any] = tf_tokenizer(__snake_case ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case: Optional[Any] = ModelToSave(tokenizer=__snake_case ) _snake_case: Tuple = tf.convert_to_tensor(self.test_sentences ) _snake_case: List[str] = model(__snake_case ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case: List[str] = Path(__snake_case ) / 'saved.model' model.save(__snake_case ) _snake_case: int = tf.keras.models.load_model(__snake_case ) _snake_case: int = loaded_model(__snake_case ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
273
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __snake_case : List[Any] = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class A__(a_, unittest.TestCase ): """simple docstring""" _A : Tuple = DebertaVaTokenizer _A : Dict = DebertaVaTokenizerFast _A : Optional[int] = True _A : Optional[Any] = True def UpperCamelCase__ ( self ) -> Optional[int]: super().setUp() # We have a SentencePiece fixture for testing a_ : str = DebertaVaTokenizer(_lowercase , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self , _lowercase ) -> Union[str, Any]: a_ : Optional[Any] = """this is a test""" a_ : str = """this is a test""" return input_text, output_text def UpperCamelCase__ ( self ) -> str: a_ : Dict = """<pad>""" a_ : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def UpperCamelCase__ ( self ) -> List[str]: a_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(_lowercase ) , 30_001 ) def UpperCamelCase__ ( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def UpperCamelCase__ ( self ) -> Optional[Any]: # fmt: off a_ : Tuple = """ \tHeLLo!how \n Are yoU? """ a_ : Tuple = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on a_ : Optional[Any] = DebertaVaTokenizer(_lowercase , do_lower_case=_lowercase ) a_ : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) self.assertListEqual(_lowercase , _lowercase ) a_ : Any = DebertaVaTokenizerFast(_lowercase , do_lower_case=_lowercase ) a_ : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) self.assertListEqual(_lowercase , _lowercase ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def UpperCamelCase__ ( self ) -> Tuple: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def UpperCamelCase__ ( self ) -> Optional[Any]: pass def UpperCamelCase__ ( self ) -> Optional[int]: # fmt: off a_ : Dict = """I was born in 92000, and this is falsé.""" a_ : Union[str, Any] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on a_ : Dict = DebertaVaTokenizer(_lowercase , split_by_punct=_lowercase ) a_ : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) self.assertListEqual(_lowercase , _lowercase ) a_ : str = DebertaVaTokenizerFast(_lowercase , split_by_punct=_lowercase ) a_ : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) self.assertListEqual(_lowercase , _lowercase ) def UpperCamelCase__ ( self ) -> Any: # fmt: off a_ : Union[str, Any] = """I was born in 92000, and this is falsé.""" a_ : Optional[int] = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on a_ : Any = DebertaVaTokenizer(_lowercase , do_lower_case=_lowercase , split_by_punct=_lowercase ) a_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) self.assertListEqual(_lowercase , _lowercase ) a_ : str = DebertaVaTokenizerFast(_lowercase , do_lower_case=_lowercase , split_by_punct=_lowercase ) a_ : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) self.assertListEqual(_lowercase , _lowercase ) def UpperCamelCase__ ( self ) -> str: # fmt: off a_ : List[str] = """I was born in 92000, and this is falsé.""" a_ : Any = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on a_ : int = DebertaVaTokenizer(_lowercase , do_lower_case=_lowercase , split_by_punct=_lowercase ) a_ : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) self.assertListEqual(_lowercase , _lowercase ) a_ : Tuple = DebertaVaTokenizerFast(_lowercase , do_lower_case=_lowercase , split_by_punct=_lowercase ) a_ : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) self.assertListEqual(_lowercase , _lowercase ) def UpperCamelCase__ ( self ) -> Optional[Any]: # fmt: off a_ : Tuple = """I was born in 92000, and this is falsé.""" a_ : Any = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on a_ : List[Any] = DebertaVaTokenizer(_lowercase , do_lower_case=_lowercase , split_by_punct=_lowercase ) a_ : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) self.assertListEqual(_lowercase , _lowercase ) a_ : Union[str, Any] = DebertaVaTokenizerFast(_lowercase , do_lower_case=_lowercase , split_by_punct=_lowercase ) a_ : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) self.assertListEqual(_lowercase , _lowercase ) def UpperCamelCase__ ( self ) -> Any: # fmt: off a_ : List[Any] = """ \tHeLLo!how \n Are yoU? """ a_ : Tuple = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on a_ : Any = DebertaVaTokenizer(_lowercase , do_lower_case=_lowercase , split_by_punct=_lowercase ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) self.assertListEqual(_lowercase , _lowercase ) a_ : Dict = DebertaVaTokenizerFast(_lowercase , do_lower_case=_lowercase , split_by_punct=_lowercase ) a_ : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) self.assertListEqual(_lowercase , _lowercase ) def UpperCamelCase__ ( self ) -> Optional[int]: a_ : Tuple = self.get_tokenizer() a_ : Optional[int] = self.get_rust_tokenizer() a_ : str = """I was born in 92000, and this is falsé.""" a_ : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) a_ : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) self.assertListEqual(_lowercase , _lowercase ) a_ : Tuple = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) a_ : str = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) a_ : Optional[Any] = self.get_rust_tokenizer() a_ : Optional[Any] = tokenizer.encode(_lowercase ) a_ : Optional[int] = rust_tokenizer.encode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def UpperCamelCase__ ( self ) -> int: a_ : Union[str, Any] = """This is a test""" a_ : List[Any] = [13, 1, 4_398, 25, 21, 1_289] a_ : str = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] a_ : Union[str, Any] = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] a_ : int = DebertaVaTokenizer(_lowercase , keep_accents=_lowercase ) a_ : Union[str, Any] = DebertaVaTokenizerFast(_lowercase , keep_accents=_lowercase ) a_ : int = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) a_ : Tuple = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) a_ : Optional[Any] = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) a_ : Optional[Any] = rust_tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) a_ : Any = rust_tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) # fmt: off a_ : List[Any] = """I was born in 92000, and this is falsé.""" a_ : int = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] a_ : Tuple = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] a_ : str = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on a_ : Any = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) a_ : Union[str, Any] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) a_ : Tuple = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) a_ : Tuple = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) a_ : int = rust_tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) a_ : Any = rust_tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def UpperCamelCase__ ( self ) -> Any: a_ : Any = DebertaVaTokenizer(_lowercase ) a_ : Optional[Any] = tokenizer.encode("""sequence builders""" ) a_ : int = tokenizer.encode("""multi-sequence build""" ) a_ : Dict = tokenizer.build_inputs_with_special_tokens(_lowercase ) a_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _lowercase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _lowercase , ) @slow def UpperCamelCase__ ( self ) -> int: # fmt: off a_ : Union[str, Any] = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
540
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A__(a_, a_, unittest.TestCase ): """simple docstring""" _A : Optional[Any] = StableDiffusionSAGPipeline _A : Any = TEXT_TO_IMAGE_PARAMS _A : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _A : int = TEXT_TO_IMAGE_IMAGE_PARAMS _A : Optional[int] = False def UpperCamelCase__ ( self ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) a_ : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) a_ : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) a_ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) a_ : Union[str, Any] = CLIPTextModel(_lowercase ) a_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) a_ : Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase__ ( self , _lowercase , _lowercase=0 ) -> Dict: if str(_lowercase ).startswith("""mps""" ): a_ : Optional[int] = torch.manual_seed(_lowercase ) else: a_ : str = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) a_ : Tuple = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[int]: a_ : Tuple = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) a_ : List[str] = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) a_ : Optional[int] = """.""" a_ : int = torch.manual_seed(0 ) a_ : Any = sag_pipe( [prompt] , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) a_ : Any = output.images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a_ : str = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def UpperCamelCase__ ( self ) -> List[Any]: a_ : Optional[int] = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) a_ : List[str] = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) a_ : int = """.""" a_ : Dict = torch.manual_seed(0 ) a_ : Union[str, Any] = sag_pipe( [prompt] , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) a_ : Optional[Any] = output.images a_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a_ : Dict = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def UpperCamelCase__ ( self ) -> Any: a_ : int = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) a_ : Optional[Any] = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) a_ : List[Any] = """.""" a_ : str = torch.manual_seed(0 ) a_ : int = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) a_ : Any = output.images assert image.shape == (1, 512, 768, 3)
540
1
'''simple docstring''' from __future__ import annotations from typing import TypedDict class SCREAMING_SNAKE_CASE__ ( __snake_case ): _A = 42 _A = 42 def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str ) -> int: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(_lowerCamelCase ) )] def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str ) -> Dict: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) SCREAMING_SNAKE_CASE_ : int = all_rotations(_lowerCamelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_ : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(_lowerCamelCase ), } return response def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ) -> Any: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: SCREAMING_SNAKE_CASE_ : int = int(_lowerCamelCase ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(_lowerCamelCase ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) SCREAMING_SNAKE_CASE_ : Tuple = [""""""] * len(_lowerCamelCase ) for _ in range(len(_lowerCamelCase ) ): for i in range(len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE_ : Optional[Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": snake_case_ : Optional[int] = 'Provide a string that I will generate its BWT transform: ' snake_case_ : List[str] = input(entry_msg).strip() snake_case_ : Union[str, Any] = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result["bwt_string"]}\'''' ) snake_case_ : str = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( F'''Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ''' F'''we get original string \'{original_string}\'''' )
719
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_ : Any = DisjunctiveConstraint(lowercase__ ) self.assertTrue(isinstance(dc.token_ids , lowercase__ ) ) with self.assertRaises(lowercase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowercase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowercase__ ): DisjunctiveConstraint(lowercase__ ) # fails here def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_ : Optional[Any] = DisjunctiveConstraint(lowercase__ ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = dc.update(1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(lowercase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Tuple = dc.update(2 ) SCREAMING_SNAKE_CASE_ : Tuple = stepped is True and completed is False and reset is False self.assertTrue(lowercase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Any = dc.update(3 ) SCREAMING_SNAKE_CASE_ : Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowercase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_ : Dict = DisjunctiveConstraint(lowercase__ ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Tuple = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : str = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : str = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
68
0
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) __SCREAMING_SNAKE_CASE : Tuple = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(lowerCAmelCase__ ) from datasets import load_dataset __SCREAMING_SNAKE_CASE : str = load_dataset("""nielsr/rvlcdip-demo""" ) __SCREAMING_SNAKE_CASE : Tuple = dataset["""train"""][0]["""image"""].convert("""RGB""" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : List[Any] = model(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits __SCREAMING_SNAKE_CASE : Optional[int] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=lowerCAmelCase__ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
578
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: PreTrainedTokenizer , _lowerCamelCase: int , _lowerCamelCase: Optional[int] = None , ): __SCREAMING_SNAKE_CASE : Union[str, Any] = {} if train_file is not None: __SCREAMING_SNAKE_CASE : Any = [train_file] if eval_file is not None: __SCREAMING_SNAKE_CASE : Any = [eval_file] if test_file is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = [test_file] __SCREAMING_SNAKE_CASE : Optional[Any] = datasets.load_dataset("""csv""" , data_files=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = list(ds[list(files.keys() )[0]].features.keys() ) __SCREAMING_SNAKE_CASE : Dict = features_name.pop(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = list(set(ds[list(files.keys() )[0]][label_name] ) ) __SCREAMING_SNAKE_CASE : str = {label: i for i, label in enumerate(_lowerCamelCase )} __SCREAMING_SNAKE_CASE : Any = tokenizer.model_input_names __SCREAMING_SNAKE_CASE : Any = {} if len(_lowerCamelCase ) == 1: for k in files.keys(): __SCREAMING_SNAKE_CASE : Optional[int] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): __SCREAMING_SNAKE_CASE : int = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __SCREAMING_SNAKE_CASE : int = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __SCREAMING_SNAKE_CASE : str = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE : int = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __SCREAMING_SNAKE_CASE : Optional[int] = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE : str = labelaid[ex[label_name]] yield (d, label) __SCREAMING_SNAKE_CASE : Tuple = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __SCREAMING_SNAKE_CASE : Dict = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __SCREAMING_SNAKE_CASE : Any = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __SCREAMING_SNAKE_CASE : Optional[int] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCamelCase__ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' _A : int = field(metadata={'''help''': '''Which column contains the label'''} ) _A : str = field(default=lowerCamelCase__ , metadata={'''help''': '''The path of the training file'''} ) _A : Optional[str] = field(default=lowerCamelCase__ , metadata={'''help''': '''The path of the development file'''} ) _A : Optional[str] = field(default=lowerCamelCase__ , metadata={'''help''': '''The path of the test file'''} ) _A : int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _A : bool = field( default=lowerCamelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class _UpperCamelCase : '''simple docstring''' _A : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _A : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _A : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _A : bool = field(default=lowerCamelCase__ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _A : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __SCREAMING_SNAKE_CASE : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( F"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " F"16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowerCamelCase: EvalPrediction ) -> Dict: __SCREAMING_SNAKE_CASE : List[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __SCREAMING_SNAKE_CASE : List[Any] = TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __SCREAMING_SNAKE_CASE : Dict = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = trainer.evaluate() __SCREAMING_SNAKE_CASE : List[str] = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(_lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
578
1
from string import ascii_uppercase lowerCamelCase__ = {str(ord(c) - 55): c for c in ascii_uppercase} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) lowerCAmelCase__ : Union[str, Any] = '' lowerCAmelCase__ : Dict = 0 lowerCAmelCase__ : int = 0 while div != 1: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = divmod(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if base >= 11 and 9 < mod < 36: lowerCAmelCase__ : Optional[Any] = ALPHABET_VALUES[str(SCREAMING_SNAKE_CASE_ )] else: lowerCAmelCase__ : List[str] = str(SCREAMING_SNAKE_CASE_ ) new_value += actual_value lowerCAmelCase__ : List[str] = num // base lowerCAmelCase__ : Optional[int] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(SCREAMING_SNAKE_CASE_ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
69
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class A__ ( __magic_name__ ): lowercase = (DDPMParallelScheduler,) def _lowerCamelCase ( self : str , **a : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : str = { 'num_train_timesteps': 1_000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**a ) return config def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=a ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' self.check_over_configs(thresholding=a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=a , prediction_type=a , sample_max_value=a , ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : List[str] = scheduler_class(**a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Any = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : int = scheduler_class(**a ) lowerCAmelCase__ : str = len(a ) lowerCAmelCase__ : Tuple = self.dummy_model() lowerCAmelCase__ : Optional[Any] = self.dummy_sample_deter lowerCAmelCase__ : int = self.dummy_sample_deter + 0.1 lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter - 0.1 lowerCAmelCase__ : Tuple = samplea.shape[0] lowerCAmelCase__ : List[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) lowerCAmelCase__ : Optional[Any] = torch.arange(a )[0:3, None].repeat(1 , a ) lowerCAmelCase__ : List[str] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowerCAmelCase__ : Tuple = scheduler.batch_step_no_noise(a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) lowerCAmelCase__ : str = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1E-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1E-3 def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : str = self.scheduler_classes[0] lowerCAmelCase__ : List[Any] = self.get_scheduler_config() lowerCAmelCase__ : Dict = scheduler_class(**a ) lowerCAmelCase__ : str = len(a ) lowerCAmelCase__ : Any = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter lowerCAmelCase__ : Tuple = torch.manual_seed(0 ) for t in reversed(range(a ) ): # 1. predict noise residual lowerCAmelCase__ : Optional[Any] = model(a , a ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase__ : int = scheduler.step(a , a , a , generator=a ).prev_sample lowerCAmelCase__ : List[str] = pred_prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Optional[Any] = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : str = self.scheduler_classes[0] lowerCAmelCase__ : Dict = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ : int = scheduler_class(**a ) lowerCAmelCase__ : str = len(a ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : List[str] = self.dummy_sample_deter lowerCAmelCase__ : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(a ) ): # 1. predict noise residual lowerCAmelCase__ : List[Any] = model(a , a ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase__ : Optional[int] = scheduler.step(a , a , a , generator=a ).prev_sample lowerCAmelCase__ : str = pred_prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : Optional[int] = scheduler_class(**a ) lowerCAmelCase__ : Optional[Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=a ) lowerCAmelCase__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(a ): if i == len(a ) - 1: lowerCAmelCase__ : Tuple = -1 else: lowerCAmelCase__ : Dict = timesteps[i + 1] lowerCAmelCase__ : str = scheduler.previous_timestep(a ) lowerCAmelCase__ : int = prev_t.item() self.assertEqual(a , a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : Optional[Any] = scheduler_class(**a ) lowerCAmelCase__ : str = [100, 87, 50, 51, 0] with self.assertRaises(a , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=a ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase__ : str = self.get_scheduler_config() lowerCAmelCase__ : Optional[int] = scheduler_class(**a ) lowerCAmelCase__ : str = [100, 87, 50, 1, 0] lowerCAmelCase__ : int = len(a ) with self.assertRaises(a , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=a , timesteps=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : Dict = self.get_scheduler_config() lowerCAmelCase__ : Optional[int] = scheduler_class(**a ) lowerCAmelCase__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( a , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=a )
69
1
"""simple docstring""" def lowerCamelCase_ ( UpperCAmelCase_ = 10_00 ) ->int: """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
522
'''simple docstring''' def lowerCamelCase ( __lowerCamelCase : str ) ->bool: return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def lowerCamelCase ( __lowerCamelCase : str ) ->bool: _SCREAMING_SNAKE_CASE = credit_card_number _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) - 2 for i in range(__lowerCamelCase , -1 , -2 ): # double the value of every second digit _SCREAMING_SNAKE_CASE = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _SCREAMING_SNAKE_CASE = cc_number[:i] + str(__lowerCamelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__lowerCamelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowerCamelCase ( __lowerCamelCase : str ) ->bool: _SCREAMING_SNAKE_CASE = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(__lowerCamelCase ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(__lowerCamelCase ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(__lowerCamelCase ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
314
0
import math def lowercase__( A , A ): if ( not isinstance(A , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def lowercase__( A , A ): if ( not isinstance(A , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
705
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) lowerCamelCase : str = 2_9_9_7_9_2_4_5_8 # Symbols lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Union[str, Any] = symbols('ct x y z') def lowercase__( A ): if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def lowercase__( A ): return 1 / sqrt(1 - beta(A ) ** 2 ) def lowercase__( A ): return np.array( [ [gamma(A ), -gamma(A ) * beta(A ), 0, 0], [-gamma(A ) * beta(A ), gamma(A ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowercase__( A , A = None ): # Ensure event is not empty if event is None: snake_case__ : Union[str, Any] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(A ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: lowerCamelCase : Dict = transform(2_9_9_7_9_2_4_5) print('Example of four vector: ') print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values lowerCamelCase : List[Any] = {ct: c, x: 1, y: 1, z: 1} lowerCamelCase : Dict = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
303
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: Optional[Any] , UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = FlaxAutoModelForSeqaSeqLM.from_config(config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = checkpoints.load_tax_checkpoint(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""] if config.model_type == "t5": SCREAMING_SNAKE_CASE__ = """SelfAttention""" if config.model_type == "longt5" and config.encoder_attention_type == "local": SCREAMING_SNAKE_CASE__ = """LocalSelfAttention""" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": SCREAMING_SNAKE_CASE__ = """TransientGlobalSelfAttention""" else: raise ValueError( """Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`""" """ attribute with a value from ['local', 'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): SCREAMING_SNAKE_CASE__ = f'''layers_{str(UpperCamelCase__ )}''' # Self-Attention SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""] # Layer Normalization SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""] if split_mlp_wi: SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning SCREAMING_SNAKE_CASE__ = flax_model.params["""encoder"""]["""block"""][str(UpperCamelCase__ )]["""layer"""] SCREAMING_SNAKE_CASE__ = tax_attention_key SCREAMING_SNAKE_CASE__ = tax_attention_out SCREAMING_SNAKE_CASE__ = tax_attention_query SCREAMING_SNAKE_CASE__ = tax_attention_value SCREAMING_SNAKE_CASE__ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": SCREAMING_SNAKE_CASE__ = tax_global_layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE__ = tax_mlp_wi_a SCREAMING_SNAKE_CASE__ = tax_mlp_wi_a else: SCREAMING_SNAKE_CASE__ = tax_mlp_wi SCREAMING_SNAKE_CASE__ = tax_mlp_wo SCREAMING_SNAKE_CASE__ = tax_mlp_layer_norm SCREAMING_SNAKE_CASE__ = flax_model_encoder_layer_block # Only for layer 0: SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T SCREAMING_SNAKE_CASE__ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T SCREAMING_SNAKE_CASE__ = tax_encoder_global_rel_embedding # Assigning SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""] SCREAMING_SNAKE_CASE__ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): SCREAMING_SNAKE_CASE__ = f'''layers_{str(UpperCamelCase__ )}''' # Self-Attention SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""] # Layer Normalization SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][ """scale""" ] # Encoder-Decoder-Attention SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""] SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_module["""key"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_module["""out"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_module["""query"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_module["""value"""]["""kernel"""] # Layer Normalization SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""] # MLP if split_mlp_wi: SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning SCREAMING_SNAKE_CASE__ = flax_model.params["""decoder"""]["""block"""][str(UpperCamelCase__ )]["""layer"""] SCREAMING_SNAKE_CASE__ = tax_attention_key SCREAMING_SNAKE_CASE__ = tax_attention_out SCREAMING_SNAKE_CASE__ = tax_attention_query SCREAMING_SNAKE_CASE__ = tax_attention_value SCREAMING_SNAKE_CASE__ = tax_pre_attention_layer_norm SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_key SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_out SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_query SCREAMING_SNAKE_CASE__ = tax_enc_dec_attention_value SCREAMING_SNAKE_CASE__ = tax_cross_layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE__ = tax_mlp_wi_a SCREAMING_SNAKE_CASE__ = tax_mlp_wi_a else: SCREAMING_SNAKE_CASE__ = tax_mlp_wi SCREAMING_SNAKE_CASE__ = tax_mlp_wo SCREAMING_SNAKE_CASE__ = txa_mlp_layer_norm SCREAMING_SNAKE_CASE__ = flax_model_decoder_layer_block # Decoder Normalization SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""] SCREAMING_SNAKE_CASE__ = txa_decoder_norm # Only for layer 0: SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T SCREAMING_SNAKE_CASE__ = tax_decoder_rel_embedding # Token Embeddings SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""token_embedder"""]["""embedding"""] SCREAMING_SNAKE_CASE__ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: SCREAMING_SNAKE_CASE__ = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""] flax_model.save_pretrained(UpperCamelCase__ ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) _lowerCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
6
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _lowerCamelCase = logging.get_logger(__name__) def a__ ( _SCREAMING_SNAKE_CASE : Tuple ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class _snake_case (__SCREAMING_SNAKE_CASE): __A : Tuple =["pixel_values"] def __init__( self ,_snake_case = True ,_snake_case = None ,_snake_case = PILImageResampling.BILINEAR ,_snake_case = True ,_snake_case = None ,_snake_case = True ,_snake_case = 1 / 2_55 ,_snake_case = True ,_snake_case = True ,_snake_case = None ,_snake_case = None ,**_snake_case ,): super().__init__(**_snake_case ) UpperCAmelCase_ : Optional[Any] = size if size is not None else {"shortest_edge": 2_56} UpperCAmelCase_ : List[str] = get_size_dict(_snake_case ,default_to_square=_snake_case ) UpperCAmelCase_ : str = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} UpperCAmelCase_ : Optional[Any] = get_size_dict(_snake_case ,param_name="crop_size" ) UpperCAmelCase_ : int = do_resize UpperCAmelCase_ : List[str] = size UpperCAmelCase_ : Dict = do_center_crop UpperCAmelCase_ : Optional[Any] = crop_size UpperCAmelCase_ : Optional[Any] = resample UpperCAmelCase_ : int = do_rescale UpperCAmelCase_ : Optional[int] = rescale_factor UpperCAmelCase_ : Dict = offset UpperCAmelCase_ : Optional[Any] = do_normalize UpperCAmelCase_ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case = PILImageResampling.BILINEAR ,_snake_case = None ,**_snake_case ,): UpperCAmelCase_ : Any = get_size_dict(_snake_case ,default_to_square=_snake_case ) if "shortest_edge" in size: UpperCAmelCase_ : Optional[Any] = get_resize_output_image_size(_snake_case ,size["shortest_edge"] ,default_to_square=_snake_case ) elif "height" in size and "width" in size: UpperCAmelCase_ : Optional[Any] = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case = None ,**_snake_case ,): UpperCAmelCase_ : Dict = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_snake_case ,size=(size["height"], size["width"]) ,data_format=_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case = True ,_snake_case = None ,**_snake_case ,): UpperCAmelCase_ : int = image.astype(np.floataa ) if offset: UpperCAmelCase_ : Any = image - (scale / 2) return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case = None ,**_snake_case ,): return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = ChannelDimension.FIRST ,): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. UpperCAmelCase_ : Optional[int] = to_numpy_array(_snake_case ) if do_resize: UpperCAmelCase_ : Dict = self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) if do_center_crop: UpperCAmelCase_ : Optional[Any] = self.center_crop(_snake_case ,size=_snake_case ) if do_rescale: UpperCAmelCase_ : Union[str, Any] = self.rescale(image=_snake_case ,scale=_snake_case ,offset=_snake_case ) if do_normalize: UpperCAmelCase_ : Any = self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) UpperCAmelCase_ : Any = to_channel_dimension_format(_snake_case ,_snake_case ) return image def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = ChannelDimension.FIRST ,**_snake_case ,): UpperCAmelCase_ : Tuple = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : str = resample if resample is not None else self.resample UpperCAmelCase_ : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : Tuple = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : List[Any] = offset if offset is not None else self.offset UpperCAmelCase_ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : int = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : int = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Dict = size if size is not None else self.size UpperCAmelCase_ : int = get_size_dict(_snake_case ,default_to_square=_snake_case ) UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : int = get_size_dict(_snake_case ,param_name="crop_size" ) if not valid_images(_snake_case ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ : Any = make_batched(_snake_case ) UpperCAmelCase_ : Dict = [ [ self._preprocess_image( image=_snake_case ,do_resize=_snake_case ,size=_snake_case ,resample=_snake_case ,do_center_crop=_snake_case ,crop_size=_snake_case ,do_rescale=_snake_case ,rescale_factor=_snake_case ,offset=_snake_case ,do_normalize=_snake_case ,image_mean=_snake_case ,image_std=_snake_case ,data_format=_snake_case ,) for img in video ] for video in videos ] UpperCAmelCase_ : List[str] = {"pixel_values": videos} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
71
0
UpperCAmelCase_ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} UpperCAmelCase_ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def lowerCamelCase__ ( UpperCamelCase__ : dict[int, list[int]] , UpperCamelCase__ : int , UpperCamelCase__ : list[bool] ) -> list[int]: '''simple docstring''' _snake_case = True _snake_case = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) order.append(UpperCamelCase__ ) return order def lowerCamelCase__ ( UpperCamelCase__ : dict[int, list[int]] , UpperCamelCase__ : int , UpperCamelCase__ : list[bool] ) -> list[int]: '''simple docstring''' _snake_case = True _snake_case = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return component def lowerCamelCase__ ( UpperCamelCase__ : dict[int, list[int]] ) -> list[list[int]]: '''simple docstring''' _snake_case = len(UpperCamelCase__ ) * [False] _snake_case = {vert: [] for vert in range(len(UpperCamelCase__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(UpperCamelCase__ ) _snake_case = [] for i, was_visited in enumerate(UpperCamelCase__ ): if not was_visited: order += topology_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _snake_case = [] _snake_case = len(UpperCamelCase__ ) * [False] for i in range(len(UpperCamelCase__ ) ): _snake_case = order[len(UpperCamelCase__ ) - i - 1] if not visited[vert]: _snake_case = find_components(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) components_list.append(UpperCamelCase__ ) return components_list
541
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase_ = logging.getLogger(__name__) def lowerCamelCase__ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Tuple: '''simple docstring''' if os.path.exists(UpperCamelCase__ ): if os.path.exists(os.path.join(UpperCamelCase__ , 'config.json' ) ) and os.path.isfile( os.path.join(UpperCamelCase__ , 'config.json' ) ): os.remove(os.path.join(UpperCamelCase__ , 'config.json' ) ) if os.path.exists(os.path.join(UpperCamelCase__ , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(UpperCamelCase__ , 'pytorch_model.bin' ) ): os.remove(os.path.join(UpperCamelCase__ , 'pytorch_model.bin' ) ) else: os.makedirs(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict=False ) -> str: '''simple docstring''' _snake_case = 2 if unlogit: _snake_case = torch.pow(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = p * torch.log(UpperCamelCase__ ) _snake_case = 0 return -plogp.sum(dim=-1 ) def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(UpperCamelCase__ ) ) ) ) for row in range(len(UpperCamelCase__ ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[int]=False ) -> Any: '''simple docstring''' _snake_case , _snake_case = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case = torch.zeros(UpperCamelCase__ , UpperCamelCase__ ).to(args.device ) _snake_case = torch.zeros(UpperCamelCase__ , UpperCamelCase__ ).to(args.device ) if head_mask is None: _snake_case = torch.ones(UpperCamelCase__ , UpperCamelCase__ ).to(args.device ) head_mask.requires_grad_(requires_grad=UpperCamelCase__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case = None _snake_case = 0.0 _snake_case = 0.0 for step, inputs in enumerate(tqdm(UpperCamelCase__ , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case = model(UpperCamelCase__ , labels=UpperCamelCase__ , head_mask=UpperCamelCase__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(UpperCamelCase__ ): _snake_case = entropy(attn.detach() , UpperCamelCase__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(UpperCamelCase__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case = 2 _snake_case = torch.pow(torch.pow(UpperCamelCase__ , UpperCamelCase__ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: _snake_case = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(UpperCamelCase__ ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(UpperCamelCase__ ) logger.info('Head ranked by importance scores' ) _snake_case = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case = torch.arange( head_importance.numel() , device=args.device ) _snake_case = head_ranks.view_as(UpperCamelCase__ ) print_ad_tensor(UpperCamelCase__ ) return attn_entropy, head_importance, total_loss def lowerCamelCase__ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' _snake_case , _snake_case , _snake_case = compute_heads_importance(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , compute_entropy=UpperCamelCase__ ) _snake_case = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , UpperCamelCase__ , original_score * args.masking_threshold ) _snake_case = torch.ones_like(UpperCamelCase__ ) _snake_case = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case = original_score while current_score >= original_score * args.masking_threshold: _snake_case = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case = float('Inf' ) _snake_case = head_importance.view(-1 ).sort()[1] if len(UpperCamelCase__ ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case = new_head_mask.view(-1 ) _snake_case = 0.0 _snake_case = new_head_mask.view_as(UpperCamelCase__ ) _snake_case = new_head_mask.clone().detach() print_ad_tensor(UpperCamelCase__ ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case = compute_heads_importance( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , compute_entropy=UpperCamelCase__ , head_mask=UpperCamelCase__ ) _snake_case = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , UpperCamelCase__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('Final head mask' ) print_ad_tensor(UpperCamelCase__ ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : int ) -> List[Any]: '''simple docstring''' _snake_case = datetime.now() _snake_case , _snake_case , _snake_case = compute_heads_importance( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , compute_entropy=UpperCamelCase__ , compute_importance=UpperCamelCase__ , head_mask=UpperCamelCase__ ) _snake_case = 1 / loss _snake_case = datetime.now() - before_time _snake_case = sum(p.numel() for p in model.parameters() ) _snake_case = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(UpperCamelCase__ ) ) } for k, v in heads_to_prune.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): _snake_case = [ v, ] assert sum(len(UpperCamelCase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(UpperCamelCase__ ) _snake_case = sum(p.numel() for p in model.parameters() ) _snake_case = datetime.now() _snake_case , _snake_case , _snake_case = compute_heads_importance( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , compute_entropy=UpperCamelCase__ , compute_importance=UpperCamelCase__ , head_mask=UpperCamelCase__ , actually_pruned=UpperCamelCase__ , ) _snake_case = 1 / loss _snake_case = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , UpperCamelCase__ , UpperCamelCase__ , pruned_num_params / original_num_params * 100 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , UpperCamelCase__ , UpperCamelCase__ ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 100 ) save_model(UpperCamelCase__ , args.output_dir ) def lowerCamelCase__ ( ) -> str: '''simple docstring''' _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=UpperCamelCase__ , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=UpperCamelCase__ , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=UpperCamelCase__ , type=UpperCamelCase__ , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=UpperCamelCase__ , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=UpperCamelCase__ , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=UpperCamelCase__ , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=UpperCamelCase__ , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=128 , type=UpperCamelCase__ , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=UpperCamelCase__ , help='Batch size.' ) parser.add_argument('--seed' , type=UpperCamelCase__ , default=42 ) parser.add_argument('--local_rank' , type=UpperCamelCase__ , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=UpperCamelCase__ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=UpperCamelCase__ , default='' , help='Can be used for distant debugging.' ) _snake_case = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCamelCase__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case = torch.device('cuda' , args.local_rank ) _snake_case = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case = nn.parallel.DistributedDataParallel( UpperCamelCase__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=UpperCamelCase__ ) elif args.n_gpu > 1: _snake_case = nn.DataParallel(UpperCamelCase__ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) torch.save(UpperCamelCase__ , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , UpperCamelCase__ ) # Prepare dataset _snake_case = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case = (torch.from_numpy(UpperCamelCase__ ),) _snake_case = TensorDataset(*UpperCamelCase__ ) _snake_case = RandomSampler(UpperCamelCase__ ) _snake_case = DataLoader(UpperCamelCase__ , sampler=UpperCamelCase__ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case = mask_heads(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) prune_heads(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
541
1
from random import shuffle import tensorflow as tf from numpy import array def UpperCamelCase ( _A : Dict , _A : str )-> Tuple: """simple docstring""" A__ = int(UpperCAmelCase__ ) assert noofclusters < len(UpperCAmelCase__ ) # Find out the dimensionality A__ = len(vectors[0] ) # Will help select random centroids from among the available vectors A__ = list(range(len(UpperCAmelCase__ ) ) ) shuffle(UpperCAmelCase__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. A__ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION A__ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points A__ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(UpperCAmelCase__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values A__ = tf.placeholder("float64" , [dim] ) A__ = [] for centroid in centroids: cent_assigns.append(tf.assign(UpperCAmelCase__ , UpperCAmelCase__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) A__ = [tf.Variable(0 ) for i in range(len(UpperCAmelCase__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value A__ = tf.placeholder("int32" ) A__ = [] for assignment in assignments: cluster_assigns.append(tf.assign(UpperCAmelCase__ , UpperCAmelCase__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input A__ = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors A__ = tf.reduce_mean(UpperCAmelCase__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input A__ = tf.placeholder("float" , [dim] ) A__ = tf.placeholder("float" , [dim] ) A__ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(UpperCAmelCase__ , UpperCAmelCase__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input A__ = tf.placeholder("float" , [noofclusters] ) A__ = tf.argmin(UpperCAmelCase__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. A__ = tf.initialize_all_variables() # Initialize all variables sess.run(UpperCAmelCase__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. A__ = 100 for _ in range(UpperCAmelCase__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(UpperCAmelCase__ ) ): A__ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. A__ = [ sess.run(UpperCAmelCase__ , feed_dict={va: vect, va: sess.run(UpperCAmelCase__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input A__ = sess.run( UpperCAmelCase__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(UpperCAmelCase__ ): # Collect all the vectors assigned to this cluster A__ = [ vectors[i] for i in range(len(UpperCAmelCase__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location A__ = sess.run( UpperCAmelCase__ , feed_dict={mean_input: array(UpperCAmelCase__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments A__ = sess.run(UpperCAmelCase__ ) A__ = sess.run(UpperCAmelCase__ ) return centroids, assignments
491
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger() @dataclass class _SCREAMING_SNAKE_CASE: A_ : nn.Module A_ : List[nn.Module] = field(default_factory=_SCREAMING_SNAKE_CASE ) A_ : list = field(default_factory=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tensor , UpperCamelCase_ : Tensor ) -> Optional[int]: SCREAMING_SNAKE_CASE__ :Optional[Any] = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase_ , nn.Convad ) or isinstance(UpperCamelCase_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCamelCase_ ) def __call__( self : Tuple , UpperCamelCase_ : Tensor ) -> int: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCamelCase_ ) [x.remove() for x in self.handles] return self @property def __lowerCamelCase ( self : Tuple ) -> str: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCamelCase_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _SCREAMING_SNAKE_CASE: A_ : nn.Module A_ : nn.Module A_ : int = 0 A_ : List = field(default_factory=_SCREAMING_SNAKE_CASE ) A_ : List = field(default_factory=_SCREAMING_SNAKE_CASE ) def __call__( self : List[Any] , UpperCamelCase_ : Tensor ) -> int: SCREAMING_SNAKE_CASE__ :List[str] = Tracker(self.dest )(UpperCamelCase_ ).parametrized SCREAMING_SNAKE_CASE__ :Any = Tracker(self.src )(UpperCamelCase_ ).parametrized SCREAMING_SNAKE_CASE__ :Dict = list(filter(lambda UpperCamelCase_ : type(UpperCamelCase_ ) not in self.src_skip , UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ :str = list(filter(lambda UpperCamelCase_ : type(UpperCamelCase_ ) not in self.dest_skip , UpperCamelCase_ ) ) if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise Exception( f'''Numbers of operations are different. Source module has {len(UpperCamelCase_ )} operations while''' f''' destination module has {len(UpperCamelCase_ )}.''' ) for dest_m, src_m in zip(UpperCamelCase_ , UpperCamelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : ResNetConfig , UpperCAmelCase__ : Path , UpperCAmelCase__ : bool = True ) -> Union[str, Any]: '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ :str = timm.create_model(UpperCAmelCase__ , pretrained=UpperCAmelCase__ ).eval() SCREAMING_SNAKE_CASE__ :List[str] = ResNetForImageClassification(UpperCAmelCase__ ).eval() SCREAMING_SNAKE_CASE__ :Dict = ModuleTransfer(src=UpperCAmelCase__ , dest=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :List[Any] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(UpperCAmelCase__ ) assert torch.allclose(from_model(UpperCAmelCase__ ) , our_model(UpperCAmelCase__ ).logits ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE__ :List[str] = F'''resnet{"-".join(name.split("resnet" ) )}''' print(UpperCAmelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=UpperCAmelCase__ , ) # we can use the convnext one SCREAMING_SNAKE_CASE__ :int = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=UpperCAmelCase__ , ) print(F'''Pushed {checkpoint_name}''' ) def lowerCamelCase ( UpperCAmelCase__ : Path , UpperCAmelCase__ : str = None , UpperCAmelCase__ : bool = True ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE__ :Any = 1_0_0_0 SCREAMING_SNAKE_CASE__ :List[Any] = (1, num_labels) SCREAMING_SNAKE_CASE__ :List[str] = 'huggingface/label-files' SCREAMING_SNAKE_CASE__ :Union[str, Any] = num_labels SCREAMING_SNAKE_CASE__ :Tuple = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE__ :int = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ :str = idalabel SCREAMING_SNAKE_CASE__ :Any = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ :Optional[Any] = partial(UpperCAmelCase__ , num_labels=UpperCAmelCase__ , idalabel=UpperCAmelCase__ , labelaid=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :List[str] = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(UpperCAmelCase__ , names_to_config[model_name] , UpperCAmelCase__ , UpperCAmelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, expected_shape if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
209
0
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
709
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='gptj' lowerCamelCase__ ={ 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Dict , a : Optional[Any]=5_0400 , a : List[str]=2048 , a : List[Any]=4096 , a : int=28 , a : Union[str, Any]=16 , a : List[Any]=64 , a : int=None , a : Optional[int]="gelu_new" , a : Optional[Any]=0.0 , a : Any=0.0 , a : Union[str, Any]=0.0 , a : Union[str, Any]=1e-5 , a : Any=0.02 , a : Optional[int]=True , a : Tuple=5_0256 , a : Union[str, Any]=5_0256 , a : List[Any]=False , **a : str , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = n_positions SCREAMING_SNAKE_CASE : Tuple = n_embd SCREAMING_SNAKE_CASE : Tuple = n_layer SCREAMING_SNAKE_CASE : List[Any] = n_head SCREAMING_SNAKE_CASE : Tuple = n_inner SCREAMING_SNAKE_CASE : Any = rotary_dim SCREAMING_SNAKE_CASE : str = activation_function SCREAMING_SNAKE_CASE : int = resid_pdrop SCREAMING_SNAKE_CASE : Optional[int] = embd_pdrop SCREAMING_SNAKE_CASE : Tuple = attn_pdrop SCREAMING_SNAKE_CASE : List[str] = layer_norm_epsilon SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = bos_token_id SCREAMING_SNAKE_CASE : List[Any] = eos_token_id super().__init__( bos_token_id=a , eos_token_id=a , tie_word_embeddings=a , **a ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Optional[int] , a : PretrainedConfig , a : str = "default" , a : List[PatchingSpec] = None , a : bool = False , ) -> Any: """simple docstring""" super().__init__(a , task=a , patching_specs=a , use_past=a ) if not getattr(self._config , "pad_token_id" , a ): # TODO: how to do that better? SCREAMING_SNAKE_CASE : Dict = 0 @property def __UpperCamelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(a , direction="inputs" ) SCREAMING_SNAKE_CASE : int = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE : Any = {0: "batch", 1: "sequence"} return common_inputs @property def __UpperCamelCase ( self : Any ) -> int: """simple docstring""" return self._config.n_layer @property def __UpperCamelCase ( self : str ) -> int: """simple docstring""" return self._config.n_head def __UpperCamelCase ( self : str , a : PreTrainedTokenizer , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = super(a , self ).generate_dummy_inputs( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE : Tuple = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE : Any = seqlen + 2 SCREAMING_SNAKE_CASE : Dict = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE : str = [ (torch.zeros(a ), torch.zeros(a )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE : Optional[int] = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE : List[str] = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE : Any = torch.cat( [ordered_inputs["attention_mask"], torch.ones(a , a , dtype=a )] , dim=1 ) return ordered_inputs @property def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" return 13
193
0
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowerCamelCase : str = logging.get_logger(__name__) class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = ["input_values", "padding_mask"] def __init__( self , lowercase__ = 1 , lowercase__ = 2_4_0_0_0 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = None , **lowercase__ , ): '''simple docstring''' super().__init__(feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , **UpperCamelCase_ ) __A =chunk_length_s __A =overlap @property def __UpperCamelCase ( self ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __UpperCamelCase ( self ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , lowercase__ , lowercase__ = None , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = None , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs __A =True __A =bool( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: __A =[np.asarray(UpperCamelCase_ , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): __A =np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): __A =raw_audio.astype(np.floataa ) # always return batch if not is_batched: __A =[np.asarray(UpperCamelCase_ ).T] # verify inputs are valid for idx, example in enumerate(UpperCamelCase_ ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) __A =None __A =BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: __A =min(array.shape[0] for array in raw_audio ) __A =int(np.floor(max_length / self.chunk_stride ) ) __A =(nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: __A =max(array.shape[0] for array in raw_audio ) __A =int(np.ceil(max_length / self.chunk_stride ) ) __A =(nb_step - 1) * self.chunk_stride + self.chunk_length __A ='''max_length''' else: __A =input_values # normal padding on batch if padded_inputs is None: __A =self.pad( UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , padding=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) if padding: __A =padded_inputs.pop('''attention_mask''' ) __A =[] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: __A =example[..., None] input_values.append(example.T ) __A =input_values if return_tensors is not None: __A =padded_inputs.convert_to_tensors(UpperCamelCase_ ) return padded_inputs
184
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) A_ = logging.getLogger(__name__) class __lowerCAmelCase ( UpperCAmelCase ): '''simple docstring''' def UpperCamelCase__ ( self: Optional[int] , UpperCamelCase_: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: Dict=None , UpperCamelCase_: Dict=None ): UpperCamelCase_ =self.layer[current_layer](UpperCamelCase_ , UpperCamelCase_ , head_mask[current_layer] ) UpperCamelCase_ =layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCAmelCase , ) class __lowerCAmelCase ( UpperCAmelCase ): '''simple docstring''' def __init__( self: int , UpperCamelCase_: Optional[Any] ): super().__init__(UpperCamelCase_ ) UpperCamelCase_ =BertEncoderWithPabee(UpperCamelCase_ ) self.init_weights() UpperCamelCase_ =0 UpperCamelCase_ =0 UpperCamelCase_ =0 UpperCamelCase_ =0 def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[Any] ): UpperCamelCase_ =threshold def UpperCamelCase__ ( self: Any , UpperCamelCase_: Optional[Any] ): UpperCamelCase_ =patience def UpperCamelCase__ ( self: Tuple ): UpperCamelCase_ =0 UpperCamelCase_ =0 def UpperCamelCase__ ( self: str ): UpperCamelCase_ =self.inference_layers_num / self.inference_instances_num UpperCamelCase_ =( f"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" f""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(UpperCamelCase_ ) @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: str=None , UpperCamelCase_: Dict=None , UpperCamelCase_: List[str]=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: int=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: int=None , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: Dict=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: UpperCamelCase_ =input_ids.size() elif inputs_embeds is not None: UpperCamelCase_ =inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) UpperCamelCase_ =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCamelCase_ =torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if token_type_ids is None: UpperCamelCase_ =torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCamelCase_ =self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ =encoder_hidden_states.size() UpperCamelCase_ =(encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: UpperCamelCase_ =torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) UpperCamelCase_ =self.invert_attention_mask(UpperCamelCase_ ) else: UpperCamelCase_ =None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCamelCase_ =self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers ) UpperCamelCase_ =self.embeddings( input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ ) UpperCamelCase_ =embedding_output if self.training: UpperCamelCase_ =[] for i in range(self.config.num_hidden_layers ): UpperCamelCase_ =self.encoder.adaptive_forward( UpperCamelCase_ , current_layer=UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ ) UpperCamelCase_ =self.pooler(UpperCamelCase_ ) UpperCamelCase_ =output_layers[i](output_dropout(UpperCamelCase_ ) ) res.append(UpperCamelCase_ ) elif self.patience == 0: # Use all layers for inference UpperCamelCase_ =self.encoder( UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) UpperCamelCase_ =self.pooler(encoder_outputs[0] ) UpperCamelCase_ =[output_layers[self.config.num_hidden_layers - 1](UpperCamelCase_ )] else: UpperCamelCase_ =0 UpperCamelCase_ =None UpperCamelCase_ =0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 UpperCamelCase_ =self.encoder.adaptive_forward( UpperCamelCase_ , current_layer=UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ ) UpperCamelCase_ =self.pooler(UpperCamelCase_ ) UpperCamelCase_ =output_layers[i](UpperCamelCase_ ) if regression: UpperCamelCase_ =logits.detach() if patient_result is not None: UpperCamelCase_ =patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: UpperCamelCase_ =0 else: UpperCamelCase_ =logits.detach().argmax(dim=1 ) if patient_result is not None: UpperCamelCase_ =patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCamelCase_ ) ): patient_counter += 1 else: UpperCamelCase_ =0 UpperCamelCase_ =logits if patient_counter == self.patience: break UpperCamelCase_ =[patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCAmelCase , ) class __lowerCAmelCase ( UpperCAmelCase ): '''simple docstring''' def __init__( self: int , UpperCamelCase_: Tuple ): super().__init__(UpperCamelCase_ ) UpperCamelCase_ =config.num_labels UpperCamelCase_ =BertModelWithPabee(UpperCamelCase_ ) UpperCamelCase_ =nn.Dropout(config.hidden_dropout_prob ) UpperCamelCase_ =nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: int=None , UpperCamelCase_: Dict=None , UpperCamelCase_: str=None , UpperCamelCase_: str=None , UpperCamelCase_: Dict=None , UpperCamelCase_: Dict=None , UpperCamelCase_: int=None , ): UpperCamelCase_ =self.bert( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) UpperCamelCase_ =(logits[-1],) if labels is not None: UpperCamelCase_ =None UpperCamelCase_ =0 for ix, logits_item in enumerate(UpperCamelCase_ ): if self.num_labels == 1: # We are doing regression UpperCamelCase_ =MSELoss() UpperCamelCase_ =loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: UpperCamelCase_ =CrossEntropyLoss() UpperCamelCase_ =loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: UpperCamelCase_ =loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 UpperCamelCase_ =(total_loss / total_weights,) + outputs return outputs
391
0
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): try: __UpperCamelCase : List[str] = float(snake_case__ ) except ValueError: raise ValueError("Please enter a valid number" ) __UpperCamelCase : Tuple = decimal - int(snake_case__ ) if fractional_part == 0: return int(snake_case__ ), 1 else: __UpperCamelCase : Any = len(str(snake_case__ ).split("." )[1] ) __UpperCamelCase : List[str] = int(decimal * (10**number_of_frac_digits) ) __UpperCamelCase : Union[str, Any] = 10**number_of_frac_digits __UpperCamelCase , __UpperCamelCase : List[str] = denominator, numerator while True: __UpperCamelCase : int = dividend % divisor if remainder == 0: break __UpperCamelCase , __UpperCamelCase : List[Any] = divisor, remainder __UpperCamelCase , __UpperCamelCase : Optional[int] = numerator / divisor, denominator / divisor return int(snake_case__ ), int(snake_case__ ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
399
'''simple docstring''' from collections import deque from .hash_table import HashTable class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[str]: super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: __UpperCamelCase : str = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = self.values[key] def a_ (self ) -> Any: return ( sum(self.charge_factor - len(_UpperCAmelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase=None ) -> Tuple: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCAmelCase ) == 0 ): return key return super()._collision_resolution(_UpperCAmelCase , _UpperCAmelCase )
399
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off __magic_name__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] __magic_name__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """whisper""" a_ = ["""past_key_values"""] a_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str ,_a : Tuple=51865 ,_a : Dict=80 ,_a : int=6 ,_a : str=4 ,_a : Union[str, Any]=6 ,_a : Tuple=4 ,_a : str=1536 ,_a : int=1536 ,_a : Dict=0.0 ,_a : List[Any]=0.0 ,_a : List[str]=50257 ,_a : Tuple=True ,_a : Tuple=True ,_a : Tuple="gelu" ,_a : List[Any]=256 ,_a : Optional[int]=0.0 ,_a : List[Any]=0.0 ,_a : Optional[Any]=0.0 ,_a : str=0.02 ,_a : Optional[int]=False ,_a : List[str]=1500 ,_a : Tuple=448 ,_a : List[str]=50256 ,_a : Dict=50256 ,_a : Dict=50256 ,_a : Tuple=None ,_a : Any=[220, 50256] ,_a : Dict=False ,_a : Any=256 ,_a : Optional[int]=False ,_a : Optional[Any]=0.05 ,_a : Union[str, Any]=10 ,_a : List[str]=2 ,_a : str=0.0 ,_a : Dict=10 ,_a : Optional[Any]=0 ,_a : Any=7 ,**_a : Tuple ,): '''simple docstring''' A_ : List[Any] = vocab_size A_ : int = num_mel_bins A_ : Optional[int] = d_model A_ : List[str] = encoder_layers A_ : Optional[Any] = encoder_attention_heads A_ : List[Any] = decoder_layers A_ : Optional[Any] = decoder_attention_heads A_ : List[Any] = decoder_ffn_dim A_ : Union[str, Any] = encoder_ffn_dim A_ : Optional[Any] = dropout A_ : Union[str, Any] = attention_dropout A_ : Any = activation_dropout A_ : Optional[Any] = activation_function A_ : List[str] = init_std A_ : Dict = encoder_layerdrop A_ : Dict = decoder_layerdrop A_ : Any = use_cache A_ : List[Any] = encoder_layers A_ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True A_ : Tuple = max_source_positions A_ : Dict = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. A_ : List[str] = classifier_proj_size A_ : Tuple = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ : Tuple = apply_spec_augment A_ : Union[str, Any] = mask_time_prob A_ : Optional[int] = mask_time_length A_ : int = mask_time_min_masks A_ : Optional[int] = mask_feature_prob A_ : Optional[int] = mask_feature_length A_ : Any = mask_feature_min_masks A_ : Any = median_filter_width super().__init__( pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,is_encoder_decoder=_a ,decoder_start_token_id=_a ,suppress_tokens=_a ,begin_suppress_tokens=_a ,**_a ,) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : List[str] ): '''simple docstring''' A_ : List[str] = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: A_ : Optional[int] = {0: """batch"""} else: A_ : Optional[int] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_a ,direction="""inputs""" ) return common_inputs def _a ( self : List[str] ,_a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional["TensorType"] = None ,_a : int = 22050 ,_a : float = 5.0 ,_a : int = 220 ,): '''simple docstring''' A_ : Tuple = OrderedDict() A_ : List[str] = OnnxConfig.generate_dummy_inputs( self ,preprocessor=preprocessor.feature_extractor ,batch_size=_a ,framework=_a ,sampling_rate=_a ,time_duration=_a ,frequency=_a ,) A_ : List[Any] = encoder_inputs["""input_features"""].shape[2] A_ : Optional[Any] = encoder_sequence_length // 2 if self.use_past else seq_length A_ : Any = super().generate_dummy_inputs( preprocessor.tokenizer ,_a ,_a ,_a ,_a ) A_ : Any = encoder_inputs.pop("""input_features""" ) A_ : Union[str, Any] = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: A_ : Any = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _a ( self : Dict ): '''simple docstring''' return 1e-3
665
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} __magic_name__ = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } __magic_name__ = { 'allenai/longformer-base-4096': 4_096, 'allenai/longformer-large-4096': 4_096, 'allenai/longformer-large-4096-finetuned-triviaqa': 4_096, 'allenai/longformer-base-4096-extra.pos.embd.only': 4_096, 'allenai/longformer-large-4096-extra.pos.embd.only': 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCamelCase ( ): A_ : Union[str, Any] = ( list(range(ord("""!""") , ord("""~""") + 1)) + list(range(ord("""¡""") , ord("""¬""") + 1)) + list(range(ord("""®""") , ord("""ÿ""") + 1)) ) A_ : Optional[Any] = bs[:] A_ : List[str] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase) cs.append(2**8 + n) n += 1 A_ : List[Any] = [chr(lowerCamelCase) for n in cs] return dict(zip(lowerCamelCase , lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : int): A_ : int = set() A_ : int = word[0] for char in word[1:]: pairs.add((prev_char, char)) A_ : List[str] = char return pairs class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] def __init__( self : int ,_a : Tuple ,_a : Union[str, Any] ,_a : Optional[Any]="replace" ,_a : Union[str, Any]="<s>" ,_a : Union[str, Any]="</s>" ,_a : int="</s>" ,_a : List[str]="<s>" ,_a : List[Any]="<unk>" ,_a : Any="<pad>" ,_a : Dict="<mask>" ,_a : Optional[int]=False ,**_a : List[Any] ,): '''simple docstring''' A_ : Dict = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else bos_token A_ : Optional[int] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else eos_token A_ : Optional[Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else sep_token A_ : int = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else cls_token A_ : int = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else unk_token A_ : Optional[Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A_ : Any = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else mask_token super().__init__( errors=_a ,bos_token=_a ,eos_token=_a ,unk_token=_a ,sep_token=_a ,cls_token=_a ,pad_token=_a ,mask_token=_a ,add_prefix_space=_a ,**_a ,) with open(_a ,encoding="""utf-8""" ) as vocab_handle: A_ : str = json.load(_a ) A_ : Optional[int] = {v: k for k, v in self.encoder.items()} A_ : List[str] = errors # how to handle errors in decoding A_ : List[str] = bytes_to_unicode() A_ : str = {v: k for k, v in self.byte_encoder.items()} with open(_a ,encoding="""utf-8""" ) as merges_handle: A_ : Any = merges_handle.read().split("""\n""" )[1:-1] A_ : str = [tuple(merge.split() ) for merge in bpe_merges] A_ : int = dict(zip(_a ,range(len(_a ) ) ) ) A_ : List[Any] = {} A_ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A_ : Optional[Any] = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def _a ( self : Any ): '''simple docstring''' return len(self.encoder ) def _a ( self : str ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def _a ( self : int ,_a : int ): '''simple docstring''' if token in self.cache: return self.cache[token] A_ : Optional[int] = tuple(_a ) A_ : Any = get_pairs(_a ) if not pairs: return token while True: A_ : Optional[Any] = min(_a ,key=lambda _a : self.bpe_ranks.get(_a ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A_ , A_ : Dict = bigram A_ : int = [] A_ : Optional[Any] = 0 while i < len(_a ): try: A_ : List[str] = word.index(_a ,_a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A_ : Tuple = j if word[i] == first and i < len(_a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A_ : str = tuple(_a ) A_ : str = new_word if len(_a ) == 1: break else: A_ : int = get_pairs(_a ) A_ : Optional[int] = """ """.join(_a ) A_ : List[str] = word return word def _a ( self : Dict ,_a : Optional[int] ): '''simple docstring''' A_ : Any = [] for token in re.findall(self.pat ,_a ): A_ : Any = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_a ).split(""" """ ) ) return bpe_tokens def _a ( self : Union[str, Any] ,_a : Optional[int] ): '''simple docstring''' return self.encoder.get(_a ,self.encoder.get(self.unk_token ) ) def _a ( self : int ,_a : Dict ): '''simple docstring''' return self.decoder.get(_a ) def _a ( self : Optional[int] ,_a : List[Any] ): '''simple docstring''' A_ : Optional[int] = """""".join(_a ) A_ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def _a ( self : int ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A_ : int = os.path.join( _a ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A_ : int = os.path.join( _a ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_a ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_a ,ensure_ascii=_a ) + """\n""" ) A_ : int = 0 with open(_a ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _a : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) A_ : Dict = token_index writer.write(""" """.join(_a ) + """\n""" ) index += 1 return vocab_file, merge_file def _a ( self : List[str] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A_ : int = [self.cls_token_id] A_ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self : int ,_a : List[int] ,_a : Optional[List[int]] = None ,_a : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a ,token_ids_a=_a ,already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def _a ( self : Any ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' A_ : Union[str, Any] = [self.sep_token_id] A_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self : str ,_a : Optional[int] ,_a : Union[str, Any]=False ,**_a : Dict ): '''simple docstring''' A_ : Any = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_a ) > 0 and not text[0].isspace()): A_ : Optional[int] = """ """ + text return (text, kwargs)
665
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 50 ): UpperCAmelCase : Optional[int] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
701
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : int = sin(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = cos(UpperCAmelCase_ ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : Tuple = (1 - _cos) / 2 UpperCAmelCase : Dict = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[str] = cos(UpperCAmelCase_ ) UpperCAmelCase : Tuple = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : str = 1 - alpha UpperCAmelCase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : List[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : Optional[Any] = _sin / 2 UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : int = -ba UpperCAmelCase : List[str] = 1 + alpha UpperCAmelCase : int = -2 * _cos UpperCAmelCase : Optional[int] = 1 - alpha UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) ): UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : int = 1 - alpha UpperCAmelCase : Dict = -2 * _cos UpperCAmelCase : Any = 1 + alpha UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(UpperCAmelCase_ ) UpperCAmelCase : Dict = cos(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : List[Any] = 1 - alpha * big_a UpperCAmelCase : Tuple = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : int = 1 - alpha / big_a UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Dict = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : Any = cos(UpperCAmelCase_ ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Dict = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : List[Any] = big_a * (pmc + aaa) UpperCAmelCase : Optional[int] = 2 * big_a * mpc UpperCAmelCase : Optional[int] = big_a * (pmc - aaa) UpperCAmelCase : str = ppmc + aaa UpperCAmelCase : int = -2 * pmpc UpperCAmelCase : int = ppmc - aaa UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1 / sqrt(2 ) , ): UpperCAmelCase : Tuple = tau * frequency / samplerate UpperCAmelCase : List[str] = sin(UpperCAmelCase_ ) UpperCAmelCase : List[Any] = cos(UpperCAmelCase_ ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[Any] = 2 * sqrt(UpperCAmelCase_ ) * alpha UpperCAmelCase : Dict = big_a * (ppmc + aaa) UpperCAmelCase : List[str] = -2 * big_a * pmpc UpperCAmelCase : int = big_a * (ppmc - aaa) UpperCAmelCase : Dict = pmc + aaa UpperCAmelCase : Optional[int] = 2 * mpc UpperCAmelCase : int = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
695
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class UpperCamelCase_ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase_ = """lilt""" def __init__( self , UpperCamelCase=3_05_22 , UpperCamelCase=7_68 , UpperCamelCase=12 , UpperCamelCase=12 , UpperCamelCase=30_72 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=5_12 , UpperCamelCase=2 , UpperCamelCase=0.02 , UpperCamelCase=1E-12 , UpperCamelCase=0 , UpperCamelCase="absolute" , UpperCamelCase=None , UpperCamelCase=4 , UpperCamelCase=10_24 , **UpperCamelCase , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase) UpperCamelCase__ : int = vocab_size UpperCamelCase__ : Dict = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : Optional[Any] = num_attention_heads UpperCamelCase__ : List[Any] = hidden_act UpperCamelCase__ : Optional[int] = intermediate_size UpperCamelCase__ : Dict = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : Union[str, Any] = max_position_embeddings UpperCamelCase__ : str = type_vocab_size UpperCamelCase__ : Dict = initializer_range UpperCamelCase__ : Tuple = layer_norm_eps UpperCamelCase__ : Union[str, Any] = position_embedding_type UpperCamelCase__ : Any = classifier_dropout UpperCamelCase__ : Any = channel_shrink_ratio UpperCamelCase__ : Dict = max_ad_position_embeddings
410
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin UpperCAmelCase__ : Optional[int] = False @skip_mps class UpperCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ = StableDiffusionAttendAndExcitePipeline UpperCamelCase_ = False UpperCamelCase_ = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowerCAmelCase__ ( cls) -> str: super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase) @classmethod def lowerCAmelCase__ ( cls) -> Tuple: super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase) def lowerCAmelCase__ ( self) -> Any: torch.manual_seed(0) UpperCamelCase__ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase , ) UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0) UpperCamelCase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) UpperCamelCase__ : List[Any] = CLIPTextModel(UpperCamelCase) UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') UpperCamelCase__ : Tuple = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase=0) -> str: if str(UpperCamelCase).startswith('mps'): UpperCamelCase__ : Tuple = torch.manual_seed(UpperCamelCase) else: UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCamelCase).manual_seed(UpperCamelCase) UpperCamelCase__ : List[Any] = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def lowerCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : Union[str, Any] = self.get_dummy_components() UpperCamelCase__ : Optional[Any] = self.pipeline_class(**UpperCamelCase) pipe.to(UpperCamelCase) pipe.set_progress_bar_config(disable=UpperCamelCase) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCamelCase) UpperCamelCase__ : Union[str, Any] = pipe(**UpperCamelCase).images UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3)) UpperCamelCase__ : str = np.array( [0.6390_5364, 0.6289_7307, 0.4859_9017, 0.513_3624, 0.555_0048, 0.4576_9516, 0.5032_6973, 0.502_3139, 0.4538_4496]) UpperCamelCase__ : List[str] = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(UpperCamelCase , 1E-3) def lowerCAmelCase__ ( self) -> Dict: super().test_cpu_offload_forward_pass(expected_max_diff=5E-4) def lowerCAmelCase__ ( self) -> str: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def lowerCAmelCase__ ( self) -> List[str]: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4) def lowerCAmelCase__ ( self) -> List[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3) def lowerCAmelCase__ ( self) -> Optional[Any]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4) def lowerCAmelCase__ ( self) -> Dict: super().test_save_load_local(expected_max_difference=5E-4) def lowerCAmelCase__ ( self) -> Dict: super().test_save_load_optional_components(expected_max_difference=4E-4) @require_torch_gpu @slow class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase__ ( cls) -> Optional[int]: super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase) @classmethod def lowerCAmelCase__ ( cls) -> str: super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase) def lowerCAmelCase__ ( self) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self) -> int: UpperCamelCase__ : Dict = torch.manual_seed(51) UpperCamelCase__ : Dict = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=UpperCamelCase , torch_dtype=torch.floataa) pipe.to('cuda') UpperCamelCase__ : Optional[int] = 'a painting of an elephant with glasses' UpperCamelCase__ : Dict = [5, 7] UpperCamelCase__ : Optional[int] = pipe( prompt=UpperCamelCase , token_indices=UpperCamelCase , guidance_scale=7.5 , generator=UpperCamelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] UpperCamelCase__ : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy') assert np.abs((expected_image - image).max()) < 5E-1
410
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : Any ,lowerCamelCase_ : List[str]): '''simple docstring''' lowerCAmelCase__ : str = 1.5 lowerCAmelCase__ : Union[str, Any] = int(factor * num_class_images) lowerCAmelCase__ : Union[str, Any] = ClipClient( url='''https://knn.laion.ai/knn-service''' ,indice_name='''laion_400m''' ,num_images=lowerCamelCase_ ,aesthetic_weight=0.1) os.makedirs(f"""{class_data_dir}/images""" ,exist_ok=lowerCamelCase_) if len(list(Path(f"""{class_data_dir}/images""").iterdir())) >= num_class_images: return while True: lowerCAmelCase__ : Any = client.query(text=lowerCamelCase_) if len(lowerCamelCase_) >= factor * num_class_images or num_images > 1E4: break else: lowerCAmelCase__ : List[Any] = int(factor * num_images) lowerCAmelCase__ : Optional[int] = ClipClient( url='''https://knn.laion.ai/knn-service''' ,indice_name='''laion_400m''' ,num_images=lowerCamelCase_ ,aesthetic_weight=0.1 ,) lowerCAmelCase__ : int = 0 lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : List[str] = tqdm(desc='''downloading real regularization images''' ,total=lowerCamelCase_) with open(f"""{class_data_dir}/caption.txt""" ,'''w''') as fa, open(f"""{class_data_dir}/urls.txt""" ,'''w''') as fa, open( f"""{class_data_dir}/images.txt""" ,'''w''') as fa: while total < num_class_images: lowerCAmelCase__ : List[str] = class_images[count] count += 1 try: lowerCAmelCase__ : List[str] = requests.get(images['''url''']) if img.status_code == 200: lowerCAmelCase__ : List[Any] = Image.open(BytesIO(img.content)) with open(f"""{class_data_dir}/images/{total}.jpg""" ,'''wb''') as f: f.write(img.content) fa.write(images['''caption'''] + '''\n''') fa.write(images['''url'''] + '''\n''') fa.write(f"""{class_data_dir}/images/{total}.jpg""" + '''\n''') total += 1 pbar.update(1) else: continue except Exception: continue return def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = argparse.ArgumentParser('''''' ,add_help=lowerCamelCase_) parser.add_argument('''--class_prompt''' ,help='''text prompt to retrieve images''' ,required=lowerCamelCase_ ,type=lowerCamelCase_) parser.add_argument('''--class_data_dir''' ,help='''path to save images''' ,required=lowerCamelCase_ ,type=lowerCamelCase_) parser.add_argument('''--num_class_images''' ,help='''number of images to download''' ,default=200 ,type=lowerCamelCase_) return parser.parse_args() if __name__ == "__main__": __snake_case : Union[str, Any] =parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
90
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =AltDiffusionPipeline snake_case_ =TEXT_TO_IMAGE_PARAMS snake_case_ =TEXT_TO_IMAGE_BATCH_PARAMS snake_case_ =TEXT_TO_IMAGE_IMAGE_PARAMS snake_case_ =TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ : int = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,) lowerCAmelCase__ : List[str] = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=__lowerCamelCase ,set_alpha_to_one=__lowerCamelCase ,) torch.manual_seed(0 ) lowerCAmelCase__ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) lowerCAmelCase__ : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=50_02 ,) lowerCAmelCase__ : int = CLIPTextModel(__lowerCamelCase ) lowerCAmelCase__ : str = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCAmelCase__ : Union[str, Any] = 77 lowerCAmelCase__ : str = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=0 ) -> Optional[Any]: """simple docstring""" if str(__lowerCamelCase ).startswith('''mps''' ): lowerCAmelCase__ : Tuple = torch.manual_seed(__lowerCamelCase ) else: lowerCAmelCase__ : Any = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase__ (self ) -> str: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : int = self.get_dummy_components() torch.manual_seed(0 ) lowerCAmelCase__ : str = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=50_02 ,) # TODO: remove after fixing the non-deterministic text encoder lowerCAmelCase__ : Any = RobertaSeriesModelWithTransformation(__lowerCamelCase ) lowerCAmelCase__ : List[str] = text_encoder lowerCAmelCase__ : List[Any] = AltDiffusionPipeline(**__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCAmelCase__ : List[str] = self.get_dummy_inputs(__lowerCamelCase ) lowerCAmelCase__ : str = '''A photo of an astronaut''' lowerCAmelCase__ : Any = alt_pipe(**__lowerCamelCase ) lowerCAmelCase__ : int = output.images lowerCAmelCase__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Optional[Any] = np.array( [0.574_8162, 0.6044_7145, 0.4882_1217, 0.5010_0636, 0.543_1185, 0.4576_3683, 0.4965_7696, 0.4813_2733, 0.4757_3093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : str = self.get_dummy_components() lowerCAmelCase__ : Optional[Any] = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) torch.manual_seed(0 ) lowerCAmelCase__ : int = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=50_02 ,) # TODO: remove after fixing the non-deterministic text encoder lowerCAmelCase__ : Tuple = RobertaSeriesModelWithTransformation(__lowerCamelCase ) lowerCAmelCase__ : List[str] = text_encoder lowerCAmelCase__ : List[Any] = AltDiffusionPipeline(**__lowerCamelCase ) lowerCAmelCase__ : str = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = alt_pipe(**__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = output.images lowerCAmelCase__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Union[str, Any] = np.array( [0.5160_5093, 0.570_7241, 0.4736_5507, 0.5057_8886, 0.563_3877, 0.464_2503, 0.518_2081, 0.4876_3484, 0.4908_4237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' ,safety_checker=__lowerCamelCase ) lowerCAmelCase__ : List[Any] = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCAmelCase__ : Any = '''A painting of a squirrel eating a burger''' lowerCAmelCase__ : List[Any] = torch.manual_seed(0 ) lowerCAmelCase__ : str = alt_pipe([prompt] ,generator=__lowerCamelCase ,guidance_scale=6.0 ,num_inference_steps=20 ,output_type='''np''' ) lowerCAmelCase__ : str = output.images lowerCAmelCase__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ : Dict = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : List[Any] = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' ,subfolder='''scheduler''' ) lowerCAmelCase__ : List[str] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' ,scheduler=__lowerCamelCase ,safety_checker=__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCAmelCase__ : List[Any] = '''A painting of a squirrel eating a burger''' lowerCAmelCase__ : Optional[Any] = torch.manual_seed(0 ) lowerCAmelCase__ : List[str] = alt_pipe([prompt] ,generator=__lowerCamelCase ,num_inference_steps=2 ,output_type='''numpy''' ) lowerCAmelCase__ : List[str] = output.images lowerCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ : List[Any] = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
90
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"vocab_file": "spm_char.model"} __lowerCAmelCase = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } __lowerCAmelCase = { "microsoft/speecht5_asr": 1_0_2_4, "microsoft/speecht5_tts": 1_0_2_4, "microsoft/speecht5_vc": 1_0_2_4, } class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ["""input_ids""", """attention_mask"""] def __init__( self : Any , __UpperCamelCase : Any , __UpperCamelCase : Tuple="<s>" , __UpperCamelCase : str="</s>" , __UpperCamelCase : Any="<unk>" , __UpperCamelCase : Dict="<pad>" , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : Optional[int] , ): _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) @property def UpperCAmelCase__ ( self : str ): return self.sp_model.get_piece_size() def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self : Optional[Any] , __UpperCamelCase : List[str] ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : int , __UpperCamelCase : str ): return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Optional[Any] ): return self.sp_model.piece_to_id(__UpperCamelCase ) def UpperCAmelCase__ ( self : Any , __UpperCamelCase : Optional[int] ): _UpperCAmelCase = self.sp_model.IdToPiece(__UpperCamelCase ) return token def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = [] _UpperCAmelCase = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCamelCase ) + token _UpperCAmelCase = [] else: current_sub_tokens.append(__UpperCamelCase ) out_string += self.sp_model.decode(__UpperCamelCase ) return out_string.strip() def UpperCAmelCase__ ( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any]=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) _UpperCAmelCase = [1] if token_ids_a is None: return ([0] * len(__UpperCamelCase )) + suffix_ones return ([0] * len(__UpperCamelCase )) + ([0] * len(__UpperCamelCase )) + suffix_ones def UpperCAmelCase__ ( self : int , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , "wb" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
684
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __lowerCAmelCase = random.Random() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=7 , __UpperCamelCase : Union[str, Any]=400 , __UpperCamelCase : List[Any]=2_000 , __UpperCamelCase : Optional[Any]=10 , __UpperCamelCase : Optional[int]=160 , __UpperCamelCase : Any=8 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Dict=4_000 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Tuple=True , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize _UpperCAmelCase = feature_size _UpperCAmelCase = chunk_length _UpperCAmelCase = hop_length def UpperCAmelCase__ ( self : Optional[Any] ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Tuple=False , __UpperCamelCase : Dict=False ): def _flatten(__UpperCamelCase : Any ): return list(itertools.chain(*__UpperCamelCase ) ) if equal_length: _UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : str = WhisperFeatureExtractor if is_speech_available() else None def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = WhisperFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = feat_extract_first.save_pretrained(__UpperCamelCase )[0] check_json_file_has_correct_format(__UpperCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(__UpperCamelCase , "feat_extract.json" ) feat_extract_first.to_json_file(__UpperCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_json_file(__UpperCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : int ): # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase = feature_extractor(__UpperCamelCase , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test batched _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCAmelCase = np.asarray(__UpperCamelCase ) _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test truncation required _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] _UpperCAmelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs_truncated] _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa ) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Tuple ): _UpperCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _UpperCAmelCase = ds.sort("id" ).select(range(__UpperCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : Tuple ): # fmt: off _UpperCAmelCase = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _UpperCAmelCase = self._load_datasamples(1 ) _UpperCAmelCase = WhisperFeatureExtractor() _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __UpperCamelCase , atol=1e-4 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = self._load_datasamples(1 )[0] _UpperCAmelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue _UpperCAmelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__UpperCamelCase )[0] self.assertTrue(np.all(np.mean(__UpperCamelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCamelCase ) - 1 ) < 1e-3 ) )
684
1
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Union[str, Any] , UpperCAmelCase_ : Optional[NestedDataStructureLike[PathLike]] = None , UpperCAmelCase_ : Optional[NamedSplit] = None , UpperCAmelCase_ : Optional[Features] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : List[Any] , ) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =path_or_paths lowerCamelCase__: List[str] =split if split or isinstance(UpperCAmelCase_ , UpperCAmelCase_) else "train" lowerCamelCase__: Optional[int] =features lowerCamelCase__: Any =cache_dir lowerCamelCase__: Any =keep_in_memory lowerCamelCase__: Optional[Any] =streaming lowerCamelCase__: Tuple =num_proc lowerCamelCase__: Tuple =kwargs @abstractmethod def SCREAMING_SNAKE_CASE_ (self : str) ->Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: '''simple docstring''' pass class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : List[str] , UpperCAmelCase_ : Optional[Features] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =features lowerCamelCase__: Optional[Any] =cache_dir lowerCamelCase__: Optional[Any] =keep_in_memory lowerCamelCase__: List[Any] =streaming lowerCamelCase__: Any =num_proc lowerCamelCase__: str =kwargs @abstractmethod def SCREAMING_SNAKE_CASE_ (self : Dict) ->Union[Dataset, IterableDataset]: '''simple docstring''' pass
717
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Dict) ->Tuple: '''simple docstring''' lowerCamelCase__: Dict =self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(UpperCAmelCase_ , "tf_padding")) self.parent.assertTrue(hasattr(UpperCAmelCase_ , "depth_multiplier")) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : Any=0.25 , UpperCAmelCase_ : int=8 , UpperCAmelCase_ : Any=8 , UpperCAmelCase_ : Any=6 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Dict="relu6" , UpperCAmelCase_ : Optional[int]=1_280 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[Any]=10 , UpperCAmelCase_ : Optional[int]=None , ) ->Dict: '''simple docstring''' lowerCamelCase__: Any =parent lowerCamelCase__: Optional[Any] =batch_size lowerCamelCase__: List[str] =num_channels lowerCamelCase__: Dict =image_size lowerCamelCase__: Tuple =depth_multiplier lowerCamelCase__: Tuple =depth_divisible_by lowerCamelCase__: List[str] =min_depth lowerCamelCase__: List[str] =expand_ratio lowerCamelCase__: Union[str, Any] =tf_padding lowerCamelCase__: Optional[Any] =output_stride lowerCamelCase__: Tuple =first_layer_is_expansion lowerCamelCase__: Any =finegrained_output lowerCamelCase__: Union[str, Any] =hidden_act lowerCamelCase__: Union[str, Any] =last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier) lowerCamelCase__: int =classifier_dropout_prob lowerCamelCase__: List[str] =use_labels lowerCamelCase__: Any =is_training lowerCamelCase__: Dict =num_labels lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: List[Any] =scope def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' lowerCamelCase__: Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCamelCase__: Dict =None lowerCamelCase__: int =None if self.use_labels: lowerCamelCase__: List[str] =ids_tensor([self.batch_size] , self.num_labels) lowerCamelCase__: List[Any] =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) lowerCamelCase__: Any =self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[int]: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]) ->int: '''simple docstring''' lowerCamelCase__: List[str] =MobileNetVaModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Dict =model(UpperCAmelCase_) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__: int =self.num_labels lowerCamelCase__: Optional[int] =MobileNetVaForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Tuple =model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.num_labels lowerCamelCase__: List[str] =MobileNetVaForSemanticSegmentation(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Any =model(UpperCAmelCase_) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCamelCase__: List[str] =model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Any =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =config_and_inputs lowerCamelCase__: Tuple ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) lowercase_ = ( { "feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification, "image-segmentation": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =MobileNetVaModelTester(self) lowerCamelCase__: Union[str, Any] =MobileNetVaConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV2 does not use inputs_embeds") def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' pass @unittest.skip(reason="MobileNetV2 does not support input and output embeddings") def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' pass @unittest.skip(reason="MobileNetV2 does not output attentions") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__: Tuple =[*signature.parameters.keys()] lowerCamelCase__: Union[str, Any] =["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Any: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str): lowerCamelCase__: List[str] =model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() with torch.no_grad(): lowerCamelCase__: Any =model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) lowerCamelCase__: Optional[Any] =outputs.hidden_states lowerCamelCase__: List[str] =16 self.assertEqual(len(UpperCAmelCase_) , UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: Union[str, Any] =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__: Optional[int] =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->List[Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' lowerCamelCase__: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Union[str, Any]: '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: Optional[int] =MobileNetVaModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" lowerCamelCase__: List[Any] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[str]: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224") if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224").to(UpperCAmelCase_) lowerCamelCase__: Dict =self.default_image_processor lowerCamelCase__: str =prepare_img() lowerCamelCase__: int =image_processor(images=UpperCAmelCase_ , return_tensors="pt").to(UpperCAmelCase_) # forward pass with torch.no_grad(): lowerCamelCase__: str =model(**UpperCAmelCase_) # verify the logits lowerCamelCase__: Optional[Any] =torch.Size((1, 1_001)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) lowerCamelCase__: List[str] =torch.tensor([0.2445, -1.1993, 0.1905]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4)) @slow def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__: List[Any] =MobileNetVaForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513") lowerCamelCase__: str =model.to(UpperCAmelCase_) lowerCamelCase__: List[Any] =MobileNetVaImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513") lowerCamelCase__: int =prepare_img() lowerCamelCase__: int =image_processor(images=UpperCAmelCase_ , return_tensors="pt").to(UpperCAmelCase_) # forward pass with torch.no_grad(): lowerCamelCase__: str =model(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =outputs.logits # verify the logits lowerCamelCase__: Optional[int] =torch.Size((1, 21, 65, 65)) self.assertEqual(logits.shape , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=UpperCAmelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase_ , atol=1E-4))
437
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case : Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = XGLMTokenizer __UpperCAmelCase : Union[str, Any] = XGLMTokenizerFast __UpperCAmelCase : List[Any] = True __UpperCAmelCase : Optional[Any] = True def __snake_case ( self : str ) -> int: super().setUp() # We have a SentencePiece fixture for testing __snake_case : Optional[int] = XGLMTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : str ) -> List[Any]: __snake_case : Optional[int] = "<pad>" __snake_case : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def __snake_case ( self : int ) -> Any: __snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(lowerCamelCase ) , 1008 ) def __snake_case ( self : str ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def __snake_case ( self : Optional[int] ) -> Any: __snake_case : Any = XGLMTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) __snake_case : Dict = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __snake_case : Dict = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __snake_case : Any = tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __snake_case : Dict = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __snake_case ( self : List[Any] ) -> Optional[int]: return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def __snake_case ( self : Optional[int] ) -> Optional[Any]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase , f.name ) __snake_case : int = XGLMTokenizer(f.name , keep_accents=lowerCamelCase ) __snake_case : List[str] = pickle.dumps(lowerCamelCase ) pickle.loads(lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> List[str]: if not self.test_rust_tokenizer: return __snake_case : Any = self.get_tokenizer() __snake_case : List[str] = self.get_rust_tokenizer() __snake_case : Optional[Any] = "I was born in 92000, and this is falsé." __snake_case : Optional[int] = tokenizer.tokenize(lowerCamelCase ) __snake_case : List[str] = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __snake_case : List[Any] = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __snake_case : Any = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __snake_case : int = self.get_rust_tokenizer() __snake_case : Optional[int] = tokenizer.encode(lowerCamelCase ) __snake_case : List[Any] = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) @slow def __snake_case ( self : Optional[Any] ) -> List[str]: __snake_case : List[str] = "Hello World!" __snake_case : str = [2, 31227, 4447, 35] self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @slow def __snake_case ( self : Any ) -> List[Any]: __snake_case : Optional[int] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off __snake_case : Any = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @slow def __snake_case ( self : str ) -> int: # fmt: off __snake_case : List[str] = { "input_ids": [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="facebook/xglm-564M" , padding=lowerCamelCase , )
81
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : List[str] = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
405
0
"""simple docstring""" __lowerCAmelCase : Union[str, Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Optional[Any] = [False] * len(__UpperCamelCase ) snake_case_ : str = [s] snake_case_ : Tuple = True while queue: snake_case_ : Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__UpperCamelCase ) snake_case_ : Dict = True snake_case_ : Tuple = u return visited[t] def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict ): '''simple docstring''' snake_case_ : Union[str, Any] = [-1] * (len(__UpperCamelCase )) snake_case_ : Any = 0 snake_case_ : Optional[Any] = [] snake_case_ : List[str] = [i[:] for i in graph] # Record original cut, copy. while bfs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): snake_case_ : Dict = float("""Inf""" ) snake_case_ : List[Any] = sink while s != source: # Find the minimum value in select path snake_case_ : Optional[int] = min(__UpperCamelCase , graph[parent[s]][s] ) snake_case_ : Dict = parent[s] max_flow += path_flow snake_case_ : Tuple = sink while v != source: snake_case_ : int = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow snake_case_ : Optional[int] = parent[v] for i in range(len(__UpperCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
21
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any=0 ): '''simple docstring''' if name is None: snake_case_ : Dict = None else: snake_case_ : Dict = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(5_0 - spaces ) + """s}""" snake_case_ : Any = fmt.format(__UpperCamelCase ) # Print and recurse (if needed). if isinstance(__UpperCamelCase , __UpperCamelCase ): if msg is not None: print(__UpperCamelCase ) for k in val.keys(): recursive_print(__UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCamelCase , torch.Tensor ): print(__UpperCamelCase , """:""" , val.size() ) else: print(__UpperCamelCase , """:""" , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : Tuple = param.view(*__UpperCamelCase ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : str = param.view(*__UpperCamelCase ) snake_case_ : Dict = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*__UpperCamelCase ) return param def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = {} # old versions did not store training args snake_case_ : List[str] = input_state_dict.get("""args""" , __UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Tuple = ds_args.padded_vocab_size snake_case_ : Optional[int] = ds_args.max_position_embeddings snake_case_ : Union[str, Any] = ds_args.hidden_size snake_case_ : Union[str, Any] = ds_args.num_layers snake_case_ : str = ds_args.num_attention_heads snake_case_ : str = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : Union[str, Any] = config.n_head # The hidden_size per head. snake_case_ : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Optional[Any] = input_state_dict["""checkpoint_version"""] else: snake_case_ : int = 0.0 # The model. snake_case_ : List[str] = input_state_dict["""model"""] # The language model. snake_case_ : str = model["""language_model"""] # The embeddings. snake_case_ : Tuple = lm["""embedding"""] # The word embeddings. snake_case_ : List[str] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Optional[int] = word_embeddings[: config.vocab_size, :] snake_case_ : Optional[int] = word_embeddings # The position embeddings. snake_case_ : List[Any] = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. snake_case_ : Union[str, Any] = pos_embeddings # The transformer. snake_case_ : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Optional[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : List[str] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : int = layer_re.match(__UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Tuple = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : Union[str, Any] = m.group(3 ) # The name of the layer. snake_case_ : str = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : Optional[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCamelCase , __UpperCamelCase ) snake_case_ : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : str = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : List[Any] = masked_bias snake_case_ : Optional[int] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : str = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : Tuple = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Optional[Any] = fix_query_key_value_ordering(__UpperCamelCase , __UpperCamelCase , 3 , __UpperCamelCase , __UpperCamelCase ) # Store. No change of shape. snake_case_ : List[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : Any = megatron_to_transformers[op_name] snake_case_ : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : List[str] = megatron_to_transformers[op_name] snake_case_ : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : Dict = transformer["""final_layernorm.weight"""] snake_case_ : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : str = parser.parse_args() # Extract the basename. snake_case_ : Optional[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Optional[int] = torch.load(__UpperCamelCase , map_location="""cpu""" ) else: snake_case_ : List[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Any = input_state_dict.get("""args""" , __UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Any = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : Tuple = """gelu_new""" else: snake_case_ : List[str] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : Dict = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__UpperCamelCase , summary_activation=__UpperCamelCase , summary_proj_to_labels=__UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCamelCase , use_cache=__UpperCamelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: snake_case_ : List[Any] = GPTaConfig.from_json_file(args.config_file ) snake_case_ : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Tuple = convert_megatron_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCamelCase , __UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : Optional[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ : List[str] = type(__UpperCamelCase ).__name__ snake_case_ : Optional[int] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__UpperCamelCase ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__UpperCamelCase ) # Store the state_dict to file. snake_case_ : List[Any] = os.path.join(__UpperCamelCase , """pytorch_model.bin""" ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__UpperCamelCase , __UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
21
1
'''simple docstring''' import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a_ : @staticmethod def A__ ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class a_ ( unittest.TestCase ): lowercase = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) UpperCamelCase = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase = vqa_pipeline(_SCREAMING_SNAKE_CASE , top_k=1 ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ [{"""score""": ANY(_SCREAMING_SNAKE_CASE ), """answer""": ANY(_SCREAMING_SNAKE_CASE )}], [{"""score""": ANY(_SCREAMING_SNAKE_CASE ), """answer""": ANY(_SCREAMING_SNAKE_CASE )}], ] , ) @require_torch def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) UpperCamelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" UpperCamelCase = """How many cats are there?""" UpperCamelCase = vqa_pipeline(image=_SCREAMING_SNAKE_CASE , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( _SCREAMING_SNAKE_CASE , [{"""score""": ANY(_SCREAMING_SNAKE_CASE ), """answer""": ANY(_SCREAMING_SNAKE_CASE )}, {"""score""": ANY(_SCREAMING_SNAKE_CASE ), """answer""": ANY(_SCREAMING_SNAKE_CASE )}] ) UpperCamelCase = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( _SCREAMING_SNAKE_CASE , [{"""score""": ANY(_SCREAMING_SNAKE_CASE ), """answer""": ANY(_SCREAMING_SNAKE_CASE )}, {"""score""": ANY(_SCREAMING_SNAKE_CASE ), """answer""": ANY(_SCREAMING_SNAKE_CASE )}] ) @slow @require_torch def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) UpperCamelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" UpperCamelCase = """How many cats are there?""" UpperCamelCase = vqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [{"""score""": 0.8_7_9_9, """answer""": """2"""}, {"""score""": 0.2_9_6, """answer""": """1"""}] ) UpperCamelCase = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [{"""score""": 0.8_7_9_9, """answer""": """2"""}, {"""score""": 0.2_9_6, """answer""": """1"""}] ) UpperCamelCase = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [[{"""score""": 0.8_7_9_9, """answer""": """2"""}, {"""score""": 0.2_9_6, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def A__ ( self ) -> Optional[Any]: """simple docstring""" pass
301
'''simple docstring''' def lowercase__ ( __UpperCamelCase )-> bool: UpperCamelCase = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowercase__ ( __UpperCamelCase = 5000 )-> int: UpperCamelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , __UpperCamelCase )] for i, pentagonal_i in enumerate(__UpperCamelCase ): for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): UpperCamelCase = pentagonal_nums[j] UpperCamelCase = pentagonal_i + pentagonal_j UpperCamelCase = pentagonal_j - pentagonal_i if is_pentagonal(__UpperCamelCase ) and is_pentagonal(__UpperCamelCase ): return b return -1 if __name__ == "__main__": print(f'{solution() = }')
301
1
from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=_a ): '''simple docstring''' lowercase_ = ["""flax"""] def __init__(self : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Dict) ->Dict: '''simple docstring''' requires_backends(self , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Dict , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Dict) ->List[Any]: '''simple docstring''' requires_backends(cls , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : int , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Dict) ->Any: '''simple docstring''' requires_backends(cls , ["flax"]) class _SCREAMING_SNAKE_CASE ( metaclass=_a ): '''simple docstring''' lowercase_ = ["""flax"""] def __init__(self : List[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any]) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[Any]) ->int: '''simple docstring''' requires_backends(cls , ["flax"]) class _SCREAMING_SNAKE_CASE ( metaclass=_a ): '''simple docstring''' lowercase_ = ["""flax"""] def __init__(self : int , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[str]) ->Optional[int]: '''simple docstring''' requires_backends(self , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Dict , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[Any]) ->List[str]: '''simple docstring''' requires_backends(cls , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str) ->int: '''simple docstring''' requires_backends(cls , ["flax"]) class _SCREAMING_SNAKE_CASE ( metaclass=_a ): '''simple docstring''' lowercase_ = ["""flax"""] def __init__(self : Optional[int] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int) ->Optional[Any]: '''simple docstring''' requires_backends(self , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any]) ->List[str]: '''simple docstring''' requires_backends(cls , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any]) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ["flax"]) class _SCREAMING_SNAKE_CASE ( metaclass=_a ): '''simple docstring''' lowercase_ = ["""flax"""] def __init__(self : Union[str, Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any]) ->List[str]: '''simple docstring''' requires_backends(self , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any]) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Any , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any) ->Optional[int]: '''simple docstring''' requires_backends(cls , ["flax"]) class _SCREAMING_SNAKE_CASE ( metaclass=_a ): '''simple docstring''' lowercase_ = ["""flax"""] def __init__(self : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str) ->Optional[Any]: '''simple docstring''' requires_backends(self , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int]) ->Tuple: '''simple docstring''' requires_backends(cls , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Tuple , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Union[str, Any]) ->List[Any]: '''simple docstring''' requires_backends(cls , ["flax"]) class _SCREAMING_SNAKE_CASE ( metaclass=_a ): '''simple docstring''' lowercase_ = ["""flax"""] def __init__(self : str , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple) ->int: '''simple docstring''' requires_backends(self , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : List[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' requires_backends(cls , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Dict , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[str]) ->str: '''simple docstring''' requires_backends(cls , ["flax"]) class _SCREAMING_SNAKE_CASE ( metaclass=_a ): '''simple docstring''' lowercase_ = ["""flax"""] def __init__(self : Union[str, Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[str]) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[str]) ->Any: '''simple docstring''' requires_backends(cls , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any]) ->Tuple: '''simple docstring''' requires_backends(cls , ["flax"]) class _SCREAMING_SNAKE_CASE ( metaclass=_a ): '''simple docstring''' lowercase_ = ["""flax"""] def __init__(self : int , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any) ->Dict: '''simple docstring''' requires_backends(self , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : List[str] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : str) ->str: '''simple docstring''' requires_backends(cls , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : str , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Any) ->Dict: '''simple docstring''' requires_backends(cls , ["flax"]) class _SCREAMING_SNAKE_CASE ( metaclass=_a ): '''simple docstring''' lowercase_ = ["""flax"""] def __init__(self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : List[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict) ->Dict: '''simple docstring''' requires_backends(cls , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' requires_backends(cls , ["flax"]) class _SCREAMING_SNAKE_CASE ( metaclass=_a ): '''simple docstring''' lowercase_ = ["""flax"""] def __init__(self : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' requires_backends(self , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict) ->str: '''simple docstring''' requires_backends(cls , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : str , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[int]) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ["flax"]) class _SCREAMING_SNAKE_CASE ( metaclass=_a ): '''simple docstring''' lowercase_ = ["""flax"""] def __init__(self : int , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' requires_backends(self , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple) ->Dict: '''simple docstring''' requires_backends(cls , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : str , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' requires_backends(cls , ["flax"]) class _SCREAMING_SNAKE_CASE ( metaclass=_a ): '''simple docstring''' lowercase_ = ["""flax"""] def __init__(self : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int]) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any]) ->List[Any]: '''simple docstring''' requires_backends(cls , ["flax"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Dict , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Dict) ->List[Any]: '''simple docstring''' requires_backends(cls , ["flax"])
720
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "blip_2_vision_model" def __init__(self : Union[str, Any] , UpperCAmelCase_ : int=1_408 , UpperCAmelCase_ : List[str]=6_144 , UpperCAmelCase_ : List[Any]=39 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : List[str]=224 , UpperCAmelCase_ : Any=14 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : str=0.0_0001 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : str=1E-1_0 , UpperCAmelCase_ : Any=True , **UpperCAmelCase_ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: Any =hidden_size lowerCamelCase__: Any =intermediate_size lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Optional[Any] =num_attention_heads lowerCamelCase__: Dict =patch_size lowerCamelCase__: List[Any] =image_size lowerCamelCase__: Union[str, Any] =initializer_range lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Union[str, Any] =layer_norm_eps lowerCamelCase__: Dict =hidden_act lowerCamelCase__: Union[str, Any] =qkv_bias @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[int] , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : List[Any]) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: str =cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type") == "blip-2": lowerCamelCase__: Any =config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "blip_2_qformer" def __init__(self : str , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : Union[str, Any]=768 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[int]=3_072 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[Any]=1E-1_2 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Optional[int]="absolute" , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : int=1_408 , **UpperCAmelCase_ : Optional[int] , ) ->List[str]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Tuple =num_hidden_layers lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Optional[Any] =hidden_act lowerCamelCase__: Optional[Any] =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: Any =attention_probs_dropout_prob lowerCamelCase__: Union[str, Any] =max_position_embeddings lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: Tuple =position_embedding_type lowerCamelCase__: List[Any] =cross_attention_frequency lowerCamelCase__: Tuple =encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE_ (cls : Union[str, Any] , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : List[Any]) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: Tuple =cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type") == "blip-2": lowerCamelCase__: Any =config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "blip-2" lowercase_ = True def __init__(self : Any , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : int=32 , **UpperCAmelCase_ : str) ->List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase_) if vision_config is None: lowerCamelCase__: Optional[int] ={} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values.") if qformer_config is None: lowerCamelCase__: str ={} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values.") if text_config is None: lowerCamelCase__: Union[str, Any] ={} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).") lowerCamelCase__: Optional[Any] =BlipaVisionConfig(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =BlipaQFormerConfig(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =text_config["model_type"] if "model_type" in text_config else "opt" lowerCamelCase__: Dict =CONFIG_MAPPING[text_model_type](**UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.text_config.tie_word_embeddings lowerCamelCase__: List[str] =self.text_config.is_encoder_decoder lowerCamelCase__: Dict =num_query_tokens lowerCamelCase__: Optional[Any] =self.vision_config.hidden_size lowerCamelCase__: Tuple =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase__: List[Any] =1.0 lowerCamelCase__: Union[str, Any] =0.02 @classmethod def SCREAMING_SNAKE_CASE_ (cls : Any , UpperCAmelCase_ : BlipaVisionConfig , UpperCAmelCase_ : BlipaQFormerConfig , UpperCAmelCase_ : PretrainedConfig , **UpperCAmelCase_ : int , ) ->Optional[int]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->int: '''simple docstring''' lowerCamelCase__: List[Any] =copy.deepcopy(self.__dict__) lowerCamelCase__: Any =self.vision_config.to_dict() lowerCamelCase__: Any =self.qformer_config.to_dict() lowerCamelCase__: Any =self.text_config.to_dict() lowerCamelCase__: int =self.__class__.model_type return output
437
0
'''simple docstring''' import math import sys def _lowerCAmelCase ( lowercase : int ) ->Optional[Any]: """simple docstring""" if number != int(lowerCamelCase_ ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 lowercase__ = [-1] * (number + 1) lowercase__ = 0 for i in range(1 , number + 1 ): lowercase__ = sys.maxsize lowercase__ = int(math.sqrt(lowerCamelCase_ ) ) for j in range(1 , root + 1 ): lowercase__ = 1 + answers[i - (j**2)] lowercase__ = min(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
161
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem A = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 A = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: str ): """simple docstring""" if "://" in dataset_path: snake_case : List[str] = dataset_path.split("://" )[1] return dataset_path def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: fsspec.AbstractFileSystem ): """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: fsspec.AbstractFileSystem , lowerCamelCase_: str , lowerCamelCase_: str ): """simple docstring""" snake_case : int = not is_remote_filesystem(lowerCamelCase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowerCamelCase_ ) , fs._strip_protocol(lowerCamelCase_ ) ) else: fs.mv(lowerCamelCase_ , lowerCamelCase_ , recursive=lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" if hasattr(fsspec.asyn , "reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: snake_case : Union[str, Any] = None snake_case : Optional[int] = None snake_case : List[str] = threading.Lock()
449
0
"""simple docstring""" def _A ( __lowercase ): """simple docstring""" if len(__lowercase ) <= 1: return lst lowerCamelCase__ = 1 while i < len(__lowercase ): if lst[i - 1] <= lst[i]: i += 1 else: lowerCamelCase__ , lowerCamelCase__ = lst[i], lst[i - 1] i -= 1 if i == 0: lowerCamelCase__ = 1 return lst if __name__ == "__main__": __magic_name__ = input("""Enter numbers separated by a comma:\n""").strip() __magic_name__ = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
258
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _A ( __lowercase ): """simple docstring""" lowerCamelCase__ = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCamelCase__ = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCamelCase__ = 4 lowerCamelCase__ = 48 lowerCamelCase__ = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCamelCase__ = [6, 6, 6, 6] lowerCamelCase__ = 60 lowerCamelCase__ = [6, 6, 6, 6] lowerCamelCase__ = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCamelCase__ = 4 lowerCamelCase__ = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCamelCase__ = 1 lowerCamelCase__ = 1 lowerCamelCase__ = 126 lowerCamelCase__ = 7 lowerCamelCase__ = 2_55.0 lowerCamelCase__ = """""" return config def _A ( __lowercase , __lowercase ): """simple docstring""" if "patch_embed.proj" in name and "layers" not in name: lowerCamelCase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCamelCase__ = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowerCamelCase__ = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowerCamelCase__ = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCamelCase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowerCamelCase__ = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowerCamelCase__ = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowerCamelCase__ = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowerCamelCase__ = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowerCamelCase__ = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowerCamelCase__ = """layernorm.weight""" if name == "norm.bias": lowerCamelCase__ = """layernorm.bias""" if "conv_first" in name: lowerCamelCase__ = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCamelCase__ = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCamelCase__ = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowerCamelCase__ = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowerCamelCase__ = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowerCamelCase__ = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowerCamelCase__ = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowerCamelCase__ = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowerCamelCase__ = """swin2sr.""" + name return name def _A ( __lowercase , __lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__ = orig_state_dict.pop(__lowercase ) if "qkv" in key: lowerCamelCase__ = key.split(""".""" ) lowerCamelCase__ = int(key_split[1] ) lowerCamelCase__ = int(key_split[4] ) lowerCamelCase__ = config.embed_dim if "weight" in key: lowerCamelCase__ = val[:dim, :] lowerCamelCase__ = val[dim : dim * 2, :] lowerCamelCase__ = val[-dim:, :] else: lowerCamelCase__ = val[:dim] lowerCamelCase__ = val[dim : dim * 2] lowerCamelCase__ = val[-dim:] pass else: lowerCamelCase__ = val return orig_state_dict def _A ( __lowercase , __lowercase , __lowercase ): """simple docstring""" lowerCamelCase__ = get_config(__lowercase ) lowerCamelCase__ = SwinaSRForImageSuperResolution(__lowercase ) model.eval() lowerCamelCase__ = torch.hub.load_state_dict_from_url(__lowercase , map_location="""cpu""" ) lowerCamelCase__ = convert_state_dict(__lowercase , __lowercase ) lowerCamelCase__ , lowerCamelCase__ = model.load_state_dict(__lowercase , strict=__lowercase ) if len(__lowercase ) > 0: raise ValueError("""Missing keys when converting: {}""".format(__lowercase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"""Unexpected key {key} in state_dict""" ) # verify values lowerCamelCase__ = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowerCamelCase__ = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert("""RGB""" ) lowerCamelCase__ = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCamelCase__ = 126 if """Jpeg""" in checkpoint_url else 256 lowerCamelCase__ = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) lowerCamelCase__ = transforms(__lowercase ).unsqueeze(0 ) if config.num_channels == 1: lowerCamelCase__ = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCamelCase__ = model(__lowercase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCamelCase__ = torch.Size([1, 3, 512, 512] ) lowerCamelCase__ = torch.tensor( [[-0.70_87, -0.71_38, -0.67_21], [-0.83_40, -0.80_95, -0.72_98], [-0.91_49, -0.84_14, -0.79_40]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCamelCase__ = torch.Size([1, 3, 1024, 1024] ) lowerCamelCase__ = torch.tensor( [[-0.77_75, -0.81_05, -0.89_33], [-0.77_64, -0.83_56, -0.92_25], [-0.79_76, -0.86_86, -0.95_79]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCamelCase__ = torch.Size([1, 3, 1024, 1024] ) lowerCamelCase__ = torch.tensor( [[-0.80_35, -0.75_04, -0.74_91], [-0.85_38, -0.81_24, -0.77_82], [-0.88_04, -0.86_51, -0.84_93]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCamelCase__ = torch.Size([1, 3, 512, 512] ) lowerCamelCase__ = torch.tensor( [[-0.76_69, -0.86_62, -0.87_67], [-0.88_10, -0.99_62, -0.98_20], [-0.93_40, -1.03_22, -1.11_49]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCamelCase__ = torch.Size([1, 3, 1024, 1024] ) lowerCamelCase__ = torch.tensor( [[-0.52_38, -0.55_57, -0.63_21], [-0.60_16, -0.59_03, -0.63_91], [-0.62_44, -0.63_34, -0.68_89]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , __lowercase , atol=1e-3 ) print("""Looks ok!""" ) lowerCamelCase__ = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowerCamelCase__ = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__lowercase ) if push_to_hub: model.push_to_hub(f"""caidas/{model_name}""" ) processor.push_to_hub(f"""caidas/{model_name}""" ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") __magic_name__ = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
258
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
84
from datetime import datetime import matplotlib.pyplot as plt import torch def __a ( __lowerCAmelCase ) -> int: for param in module.parameters(): SCREAMING_SNAKE_CASE : List[Any] = False def __a ( ) -> List[str]: SCREAMING_SNAKE_CASE : List[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): SCREAMING_SNAKE_CASE : List[str] = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def __a ( __lowerCAmelCase ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = plt.imshow(__lowerCAmelCase ) fig.axes.get_xaxis().set_visible(__lowerCAmelCase ) fig.axes.get_yaxis().set_visible(__lowerCAmelCase ) plt.show() def __a ( ) -> Optional[Any]: SCREAMING_SNAKE_CASE : str = datetime.now() SCREAMING_SNAKE_CASE : Optional[int] = current_time.strftime('%H:%M:%S' ) return timestamp
352
0
'''simple docstring''' from numpy import exp, pi, sqrt def UpperCamelCase_ ( A__ , A__ = 0.0 , A__ = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowercase__ =logging.get_logger(__name__) lowercase__ ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowercase__ ={ 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } lowercase__ ={ 'allenai/led-base-16384': 1_63_84, } class a_ ( UpperCamelCase__ ): lowerCamelCase__ : str = VOCAB_FILES_NAMES lowerCamelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Tuple = LEDTokenizer lowerCamelCase__ : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ): super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) a_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase ) != add_prefix_space: a_ = getattr(UpperCAmelCase , pre_tok_state.pop("""type""" ) ) a_ = add_prefix_space a_ = pre_tok_class(**UpperCAmelCase ) a_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a_ = """post_processor""" a_ = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: a_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a_ = tuple(state["""sep"""] ) if "cls" in state: a_ = tuple(state["""cls"""] ) a_ = False if state.get("""add_prefix_space""" , UpperCAmelCase ) != add_prefix_space: a_ = add_prefix_space a_ = True if state.get("""trim_offsets""" , UpperCAmelCase ) != trim_offsets: a_ = trim_offsets a_ = True if changes_to_apply: a_ = getattr(UpperCAmelCase , state.pop("""type""" ) ) a_ = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCAmelCase__ ( self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value a_ = value def lowerCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): a_ = kwargs.get("""is_split_into_words""" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def lowerCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): a_ = kwargs.get("""is_split_into_words""" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): a_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=None ): a_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ): a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase = None , UpperCAmelCase = None , ): a_ = super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: a_ = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a_ = len(encoded_inputs["""global_attention_mask"""] ) != len(UpperCAmelCase ) if needs_to_be_padded: a_ = len(UpperCAmelCase ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a_ = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": a_ = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
511
0
'''simple docstring''' def lowerCamelCase_ ( __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def lowerCamelCase_ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
292
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __a ( unittest.TestCase ): @property def __lowercase ( self : int ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : List[str] = self.dummy_uncond_unet UpperCamelCase__ : List[str] = ScoreSdeVeScheduler() UpperCamelCase__ : Union[str, Any] = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) sde_ve.to(SCREAMING_SNAKE_CASE ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = torch.manual_seed(0 ) UpperCamelCase__ : List[Any] = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=SCREAMING_SNAKE_CASE ).images UpperCamelCase__ : str = torch.manual_seed(0 ) UpperCamelCase__ : Any = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE )[ 0 ] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ : int = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __a ( unittest.TestCase ): def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : List[str] = "google/ncsnpp-church-256" UpperCamelCase__ : Tuple = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) sde_ve.to(SCREAMING_SNAKE_CASE ) sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = torch.manual_seed(0 ) UpperCamelCase__ : Tuple = sde_ve(num_inference_steps=10 , output_type="numpy" , generator=SCREAMING_SNAKE_CASE ).images UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) UpperCamelCase__ : Any = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
228
0
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _a ( unittest.TestCase ): """simple docstring""" def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=400 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=[0.5, 0.5, 0.5] , _snake_case=[0.5, 0.5, 0.5] , ): _UpperCAmelCase =size if size is not None else {"height": 18, "width": 18} _UpperCAmelCase =parent _UpperCAmelCase =batch_size _UpperCAmelCase =num_channels _UpperCAmelCase =image_size _UpperCAmelCase =min_resolution _UpperCAmelCase =max_resolution _UpperCAmelCase =do_resize _UpperCAmelCase =size _UpperCAmelCase =do_normalize _UpperCAmelCase =image_mean _UpperCAmelCase =image_std def SCREAMING_SNAKE_CASE ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _a ( A__ , unittest.TestCase ): """simple docstring""" snake_case =DPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =DPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , "image_mean" ) ) self.assertTrue(hasattr(lowercase_ , "image_std" ) ) self.assertTrue(hasattr(lowercase_ , "do_normalize" ) ) self.assertTrue(hasattr(lowercase_ , "do_resize" ) ) self.assertTrue(hasattr(lowercase_ , "size" ) ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) _UpperCAmelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input _UpperCAmelCase =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _UpperCAmelCase =image_processing(lowercase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input _UpperCAmelCase =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _UpperCAmelCase =image_processing(lowercase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input _UpperCAmelCase =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _UpperCAmelCase =image_processing(lowercase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
716
def lowerCamelCase__ ( _lowerCamelCase = 1000 ) ->int: _UpperCAmelCase =2**power _UpperCAmelCase =str(_lowerCamelCase ) _UpperCAmelCase =list(_lowerCamelCase ) _UpperCAmelCase =0 for i in list_num: sum_of_num += int(_lowerCamelCase ) return sum_of_num if __name__ == "__main__": snake_case__ : List[str] = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) snake_case__ : Union[str, Any] = solution(power) print('Sum of the digits is: ', result)
592
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class _snake_case (unittest.TestCase): def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = tempfile.mkdtemp() # fmt: off UpperCAmelCase_ : List[str] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCAmelCase_ : List[str] = dict(zip(_snake_case ,range(len(_snake_case ) ) ) ) UpperCAmelCase_ : List[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] UpperCAmelCase_ : Dict = {"unk_token": "<unk>"} UpperCAmelCase_ : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(_snake_case ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(_snake_case ) ) UpperCAmelCase_ : Optional[Any] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } UpperCAmelCase_ : str = os.path.join(self.tmpdirname ,_snake_case ) with open(self.image_processor_file ,"w" ,encoding="utf-8" ) as fp: json.dump(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ,**_snake_case ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCamelCase__ ( self ,**_snake_case ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCamelCase__ ( self ,**_snake_case ): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCamelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] UpperCAmelCase_ : Union[str, Any] = [Image.fromarray(np.moveaxis(_snake_case ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : str = self.get_rust_tokenizer() UpperCAmelCase_ : List[str] = self.get_image_processor() UpperCAmelCase_ : Tuple = CLIPProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : int = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=_snake_case ) UpperCAmelCase_ : str = CLIPProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : str = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,_snake_case ) self.assertIsInstance(processor_fast.tokenizer ,_snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,_snake_case ) self.assertIsInstance(processor_fast.image_processor ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) UpperCAmelCase_ : Tuple = self.get_image_processor(do_normalize=_snake_case ,padding_value=1.0 ) UpperCAmelCase_ : int = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=_snake_case ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_snake_case ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = self.get_image_processor() UpperCAmelCase_ : Dict = self.get_tokenizer() UpperCAmelCase_ : Dict = CLIPProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) UpperCAmelCase_ : Any = self.prepare_image_inputs() UpperCAmelCase_ : Optional[int] = image_processor(_snake_case ,return_tensors="np" ) UpperCAmelCase_ : Any = processor(images=_snake_case ,return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = self.get_image_processor() UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase_ : Optional[int] = CLIPProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) UpperCAmelCase_ : Tuple = "lower newer" UpperCAmelCase_ : Any = processor(text=_snake_case ) UpperCAmelCase_ : List[Any] = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase_ : Tuple = CLIPProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) UpperCAmelCase_ : Any = "lower newer" UpperCAmelCase_ : List[str] = self.prepare_image_inputs() UpperCAmelCase_ : str = processor(text=_snake_case ,images=_snake_case ) self.assertListEqual(list(inputs.keys() ) ,["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : Dict = self.get_tokenizer() UpperCAmelCase_ : Optional[int] = CLIPProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) UpperCAmelCase_ : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ : int = processor.batch_decode(_snake_case ) UpperCAmelCase_ : int = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = self.get_image_processor() UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = CLIPProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) UpperCAmelCase_ : Optional[int] = "lower newer" UpperCAmelCase_ : Any = self.prepare_image_inputs() UpperCAmelCase_ : Dict = processor(text=_snake_case ,images=_snake_case ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
71
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _snake_case (nn.Module): def __init__( self ,_snake_case = 16 ,_snake_case = 88 ,_snake_case = None ,_snake_case = 1 ,_snake_case = 0.0 ,_snake_case = 32 ,_snake_case = None ,_snake_case = False ,_snake_case = None ,_snake_case = None ,_snake_case = "geglu" ,_snake_case = None ,): super().__init__() UpperCAmelCase_ : Optional[Any] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_snake_case ,attention_head_dim=_snake_case ,in_channels=_snake_case ,num_layers=_snake_case ,dropout=_snake_case ,norm_num_groups=_snake_case ,cross_attention_dim=_snake_case ,attention_bias=_snake_case ,sample_size=_snake_case ,num_vector_embeds=_snake_case ,activation_fn=_snake_case ,num_embeds_ada_norm=_snake_case ,) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference UpperCAmelCase_ : List[str] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` UpperCAmelCase_ : int = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` UpperCAmelCase_ : List[Any] = [1, 0] def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case = True ,): UpperCAmelCase_ : List[str] = hidden_states UpperCAmelCase_ : str = [] UpperCAmelCase_ : Optional[int] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens UpperCAmelCase_ : Any = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] UpperCAmelCase_ : Any = self.transformer_index_for_condition[i] UpperCAmelCase_ : int = self.transformers[transformer_index]( _snake_case ,encoder_hidden_states=_snake_case ,timestep=_snake_case ,cross_attention_kwargs=_snake_case ,return_dict=_snake_case ,)[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] UpperCAmelCase_ : Dict = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) UpperCAmelCase_ : List[Any] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_snake_case )
71
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = set() # edges = list of graph's edges lowerCAmelCase__ = get_edges(lowerCamelCase__ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCAmelCase__ , lowerCAmelCase__ = edges.pop() chosen_vertices.add(lowerCamelCase__ ) chosen_vertices.add(lowerCamelCase__ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowerCamelCase__ ) return chosen_vertices def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
674
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ = 50 ): """simple docstring""" lowerCAmelCase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"{solution() = }")
674
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ : Optional[int] = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Union[str, Any] = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : str = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[Any] = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[int] = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
414
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Any = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __lowerCAmelCase ( __a ): snake_case : Optional[int] = """visual_bert""" def __init__(self , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-12 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , **lowerCAmelCase__ , ): super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : int = max_position_embeddings _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Tuple = visual_embedding_dim _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Dict = bypass_transformer _UpperCAmelCase : Union[str, Any] = special_visual_initialize
414
1
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __magic_name__ = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def _lowerCAmelCase ( A__: List[Any] , A__: List[Any]=None ): '''simple docstring''' require_version(deps[pkg] , _lowerCamelCase )
717
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __magic_name__ = logging.getLogger(__name__) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""} ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Train language if it is different from the evaluation language."""} ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __SCREAMING_SNAKE_CASE = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , A__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(A__ ) datasets.utils.logging.set_verbosity(A__ ) transformers.utils.logging.set_verbosity(A__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: UpperCAmelCase = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: UpperCAmelCase = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = train_dataset.features['''label'''].names if training_args.do_eval: UpperCAmelCase = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = eval_dataset.features['''label'''].names if training_args.do_predict: UpperCAmelCase = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = predict_dataset.features['''label'''].names # Labels UpperCAmelCase = len(A__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A__ , idalabel={str(A__ ): label for i, label in enumerate(A__ )} , labelaid={label: i for i, label in enumerate(A__ )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: UpperCAmelCase = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch UpperCAmelCase = False def preprocess_function(A__: Dict ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=A__ , max_length=data_args.max_seq_length , truncation=A__ , ) if training_args.do_train: if data_args.max_train_samples is not None: UpperCAmelCase = min(len(A__ ) , data_args.max_train_samples ) UpperCAmelCase = train_dataset.select(range(A__ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): UpperCAmelCase = train_dataset.map( A__ , batched=A__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(A__ ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCAmelCase = min(len(A__ ) , data_args.max_eval_samples ) UpperCAmelCase = eval_dataset.select(range(A__ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): UpperCAmelCase = eval_dataset.map( A__ , batched=A__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: UpperCAmelCase = min(len(A__ ) , data_args.max_predict_samples ) UpperCAmelCase = predict_dataset.select(range(A__ ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): UpperCAmelCase = predict_dataset.map( A__ , batched=A__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function UpperCAmelCase = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(A__: EvalPrediction ): UpperCAmelCase = p.predictions[0] if isinstance(p.predictions , A__ ) else p.predictions UpperCAmelCase = np.argmax(A__ , axis=1 ) return metric.compute(predictions=A__ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: UpperCAmelCase = default_data_collator elif training_args.fpaa: UpperCAmelCase = DataCollatorWithPadding(A__ , pad_to_multiple_of=8 ) else: UpperCAmelCase = None # Initialize our Trainer UpperCAmelCase = Trainer( model=A__ , args=A__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=A__ , tokenizer=A__ , data_collator=A__ , ) # Training if training_args.do_train: UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase = last_checkpoint UpperCAmelCase = trainer.train(resume_from_checkpoint=A__ ) UpperCAmelCase = train_result.metrics UpperCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(A__ ) ) UpperCAmelCase = min(A__ , len(A__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , A__ ) trainer.save_metrics('''train''' , A__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate(eval_dataset=A__ ) UpperCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(A__ ) UpperCAmelCase = min(A__ , len(A__ ) ) trainer.log_metrics('''eval''' , A__ ) trainer.save_metrics('''eval''' , A__ ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = trainer.predict(A__ , metric_key_prefix='''predict''' ) UpperCAmelCase = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(A__ ) ) UpperCAmelCase = min(A__ , len(A__ ) ) trainer.log_metrics('''predict''' , A__ ) trainer.save_metrics('''predict''' , A__ ) UpperCAmelCase = np.argmax(A__ , axis=1 ) UpperCAmelCase = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(A__ , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(A__ ): UpperCAmelCase = label_list[item] writer.write(F"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
391
0
def lowerCamelCase__ ( snake_case_ : List[Any] ) -> Dict: if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) __snake_case = '''''' while len(snake_case_ ) % 3 != 0: __snake_case = '''0''' + bin_string __snake_case = [ bin_string[index : index + 3] for index in range(len(snake_case_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case = 0 for index, val in enumerate(snake_case_ ): oct_val += int(2 ** (2 - index) * int(snake_case_ ) ) oct_string += str(snake_case_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
592
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class lowerCamelCase_ ( lowerCamelCase ): a__ = '''''' a__ = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" super().__init__(self , **__lowerCAmelCase ) __magic_name__ :List[Any] = repo_info __magic_name__ :Dict = token __magic_name__ :Optional[Any] = None def A ( self ): """simple docstring""" if self.dir_cache is None: __magic_name__ :Any = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __magic_name__ :Optional[int] = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(__lowerCAmelCase ): {'''name''': str(__lowerCAmelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def A ( self , __lowerCAmelCase , __lowerCAmelCase = "rb" , **__lowerCAmelCase , ): """simple docstring""" if not isinstance(self.repo_info , __lowerCAmelCase ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) __magic_name__ :Union[str, Any] = hf_hub_url(self.repo_info.id , __lowerCAmelCase , revision=self.repo_info.sha ) return fsspec.open( __lowerCAmelCase , mode=__lowerCAmelCase , headers=get_authentication_headers_for_url(__lowerCAmelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def A ( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" self._get_dirs() __magic_name__ :str = self._strip_protocol(__lowerCAmelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__lowerCAmelCase ) def A ( self , __lowerCAmelCase , __lowerCAmelCase=False , **__lowerCAmelCase ): """simple docstring""" self._get_dirs() __magic_name__ :Union[str, Any] = PurePosixPath(path.strip('''/''' ) ) __magic_name__ :Dict = {} for p, f in self.dir_cache.items(): __magic_name__ :int = PurePosixPath(p.strip('''/''' ) ) __magic_name__ :Tuple = p.parent if root == path: __magic_name__ :Optional[Any] = f __magic_name__ :List[Any] = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
0
0
from ..utils import DummyObject, requires_backends class _a ( metaclass=UpperCAmelCase__ ): """simple docstring""" A_ = ["""flax""", """transformers"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def _UpperCAmelCase ( cls , *_UpperCAmelCase , **_UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def _UpperCAmelCase ( cls , *_UpperCAmelCase , **_UpperCAmelCase ) -> Tuple: requires_backends(cls , ['flax', 'transformers'] ) class _a ( metaclass=UpperCAmelCase__ ): """simple docstring""" A_ = ["""flax""", """transformers"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> int: requires_backends(self , ['flax', 'transformers'] ) @classmethod def _UpperCAmelCase ( cls , *_UpperCAmelCase , **_UpperCAmelCase ) -> Dict: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def _UpperCAmelCase ( cls , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[str]: requires_backends(cls , ['flax', 'transformers'] ) class _a ( metaclass=UpperCAmelCase__ ): """simple docstring""" A_ = ["""flax""", """transformers"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def _UpperCAmelCase ( cls , *_UpperCAmelCase , **_UpperCAmelCase ) -> Tuple: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def _UpperCAmelCase ( cls , *_UpperCAmelCase , **_UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['flax', 'transformers'] ) class _a ( metaclass=UpperCAmelCase__ ): """simple docstring""" A_ = ["""flax""", """transformers"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['flax', 'transformers'] ) @classmethod def _UpperCAmelCase ( cls , *_UpperCAmelCase , **_UpperCAmelCase ) -> Any: requires_backends(cls , ['flax', 'transformers'] ) @classmethod def _UpperCAmelCase ( cls , *_UpperCAmelCase , **_UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['flax', 'transformers'] )
618
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case__ : str = logging.getLogger(__name__) @dataclass(frozen=UpperCAmelCase__ ) class _a : """simple docstring""" A_ = 42 A_ = 42 A_ = None A_ = None A_ = None @dataclass(frozen=UpperCAmelCase__ ) class _a : """simple docstring""" A_ = 42 A_ = None A_ = None A_ = None A_ = None if is_torch_available(): import torch from torch.utils.data import Dataset class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase=False , _UpperCAmelCase = False , ) -> Any: UpperCamelCase_ = hans_processors[task]() UpperCamelCase_ = os.path.join( _UpperCAmelCase , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(_UpperCAmelCase ) , _UpperCAmelCase , ) , ) UpperCamelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase_ , UpperCamelCase_ = label_list[2], label_list[1] UpperCamelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase_ = cached_features_file + '.lock' with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCamelCase_ = torch.load(_UpperCAmelCase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCamelCase_ = ( processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase ) ) logger.info('Training examples: %s' , len(_UpperCAmelCase ) ) UpperCamelCase_ = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) logger.info('Saving features into cached file %s' , _UpperCAmelCase ) torch.save(self.features , _UpperCAmelCase ) def __len__( self ) -> Dict: return len(self.features ) def __getitem__( self , _UpperCAmelCase ) -> InputFeatures: return self.features[i] def _UpperCAmelCase ( self ) -> Dict: return self.label_list if is_tf_available(): import tensorflow as tf class _a : """simple docstring""" A_ = 42 def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 128 , _UpperCAmelCase=False , _UpperCAmelCase = False , ) -> int: UpperCamelCase_ = hans_processors[task]() UpperCamelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase_ , UpperCamelCase_ = label_list[2], label_list[1] UpperCamelCase_ = label_list UpperCamelCase_ = processor.get_dev_examples(_UpperCAmelCase ) if evaluate else processor.get_train_examples(_UpperCAmelCase ) UpperCamelCase_ = hans_convert_examples_to_features(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(_UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCamelCase_ = tf.data.Dataset.from_generator( _UpperCAmelCase , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _UpperCAmelCase ( self ) -> List[str]: return self.dataset def __len__( self ) -> str: return len(self.features ) def __getitem__( self , _UpperCAmelCase ) -> InputFeatures: return self.features[i] def _UpperCAmelCase ( self ) -> int: return self.label_list class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , 'heuristics_train_set.txt' ) ) , 'train' ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: return self._create_examples(self._read_tsv(os.path.join(_UpperCAmelCase , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def _UpperCAmelCase ( self ) -> List[Any]: return ["contradiction", "entailment", "neutral"] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = [] for i, line in enumerate(_UpperCAmelCase ): if i == 0: continue UpperCamelCase_ = '%s-%s' % (set_type, line[0]) UpperCamelCase_ = line[5] UpperCamelCase_ = line[6] UpperCamelCase_ = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCamelCase_ = line[0] examples.append(InputExample(guid=_UpperCAmelCase , text_a=_UpperCAmelCase , text_b=_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) return examples def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , ): UpperCamelCase_ = {label: i for i, label in enumerate(__lowercase)} UpperCamelCase_ = [] for ex_index, example in tqdm.tqdm(enumerate(__lowercase) , desc='convert examples to features'): if ex_index % 10000 == 0: logger.info('Writing example %d' % (ex_index)) UpperCamelCase_ = tokenizer( example.text_a , example.text_b , add_special_tokens=__lowercase , max_length=__lowercase , padding='max_length' , truncation=__lowercase , return_overflowing_tokens=__lowercase , ) UpperCamelCase_ = label_map[example.label] if example.label in label_map else 0 UpperCamelCase_ = int(example.pairID) features.append(InputFeatures(**__lowercase , label=__lowercase , pairID=__lowercase)) for i, example in enumerate(examples[:5]): logger.info('*** Example ***') logger.info(f"""guid: {example}""") logger.info(f"""features: {features[i]}""") return features snake_case__ : List[str] = { """hans""": 3, } snake_case__ : Union[str, Any] = { """hans""": HansProcessor, }
618
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def snake_case_ ( lowercase__ , lowercase__=0.999 , lowercase__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCAmelCase__ : str = [] for i in range(lowercase__ ): UpperCAmelCase__ : Any = i / num_diffusion_timesteps UpperCAmelCase__ : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class UpperCAmelCase_ ( A , A ): '''simple docstring''' lowercase_ : Dict = [e.name for e in KarrasDiffusionSchedulers] lowercase_ : List[str] = 2 @register_to_config def __init__( self : Optional[Any] , snake_case__ : int = 10_00 , snake_case__ : float = 0.00085 , snake_case__ : float = 0.012 , snake_case__ : str = "linear" , snake_case__ : Optional[Union[np.ndarray, List[float]]] = None , snake_case__ : str = "epsilon" , snake_case__ : str = "linspace" , snake_case__ : int = 0 , ): '''simple docstring''' if trained_betas is not None: UpperCAmelCase__ : Dict = torch.tensor(snake_case__ , dtype=torch.floataa ) elif beta_schedule == "linear": UpperCAmelCase__ : Dict = torch.linspace(snake_case__ , snake_case__ , snake_case__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase__ : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase__ : Optional[int] = betas_for_alpha_bar(snake_case__ ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) UpperCAmelCase__ : Optional[Any] = 1.0 - self.betas UpperCAmelCase__ : Union[str, Any] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase ( self : Dict , snake_case__ : Optional[int] , snake_case__ : Tuple=None ): '''simple docstring''' if schedule_timesteps is None: UpperCAmelCase__ : List[str] = self.timesteps UpperCAmelCase__ : List[Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCAmelCase__ : str = 1 if len(snake_case__ ) > 1 else 0 else: UpperCAmelCase__ : List[str] = timestep.cpu().item() if torch.is_tensor(snake_case__ ) else timestep UpperCAmelCase__ : Tuple = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase ( self : Tuple ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase ( self : Union[str, Any] , snake_case__ : torch.FloatTensor , snake_case__ : Union[float, torch.FloatTensor] , ): '''simple docstring''' UpperCAmelCase__ : Dict = self.index_for_timestep(snake_case__ ) if self.state_in_first_order: UpperCAmelCase__ : Dict = self.sigmas[step_index] else: UpperCAmelCase__ : Optional[Any] = self.sigmas_interpol[step_index] UpperCAmelCase__ : Dict = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : Union[str, torch.device] = None , snake_case__ : Optional[int] = None , ): '''simple docstring''' UpperCAmelCase__ : str = num_inference_steps UpperCAmelCase__ : Optional[int] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCAmelCase__ : Tuple = np.linspace(0 , num_train_timesteps - 1 , snake_case__ , dtype=snake_case__ )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCAmelCase__ : Dict = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Tuple = (np.arange(0 , snake_case__ ) * step_ratio).round()[::-1].copy().astype(snake_case__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCAmelCase__ : List[Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : int = (np.arange(snake_case__ , 0 , -step_ratio )).round().copy().astype(snake_case__ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) UpperCAmelCase__ : Optional[Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCAmelCase__ : Optional[Any] = torch.from_numpy(np.log(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase__ : List[Any] = np.interp(snake_case__ , np.arange(0 , len(snake_case__ ) ) , snake_case__ ) UpperCAmelCase__ : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCAmelCase__ : Optional[int] = torch.from_numpy(snake_case__ ).to(device=snake_case__ ) # interpolate sigmas UpperCAmelCase__ : Optional[Any] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() UpperCAmelCase__ : str = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) UpperCAmelCase__ : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(snake_case__ ).startswith("mps" ): # mps does not support float64 UpperCAmelCase__ : Any = torch.from_numpy(snake_case__ ).to(snake_case__ , dtype=torch.floataa ) else: UpperCAmelCase__ : str = torch.from_numpy(snake_case__ ).to(snake_case__ ) # interpolate timesteps UpperCAmelCase__ : Tuple = self.sigma_to_t(snake_case__ ).to(snake_case__ , dtype=timesteps.dtype ) UpperCAmelCase__ : Any = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() UpperCAmelCase__ : List[Any] = torch.cat([timesteps[:1], interleaved_timesteps] ) UpperCAmelCase__ : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCAmelCase__ : List[str] = defaultdict(snake_case__ ) def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = sigma.log() # get distribution UpperCAmelCase__ : List[Any] = log_sigma - self.log_sigmas[:, None] # get sigmas range UpperCAmelCase__ : str = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) UpperCAmelCase__ : List[Any] = low_idx + 1 UpperCAmelCase__ : Optional[Any] = self.log_sigmas[low_idx] UpperCAmelCase__ : Optional[int] = self.log_sigmas[high_idx] # interpolate sigmas UpperCAmelCase__ : Tuple = (low - log_sigma) / (low - high) UpperCAmelCase__ : Tuple = w.clamp(0 , 1 ) # transform interpolation to time range UpperCAmelCase__ : str = (1 - w) * low_idx + w * high_idx UpperCAmelCase__ : Optional[int] = t.view(sigma.shape ) return t @property def UpperCamelCase ( self : int ): '''simple docstring''' return self.sample is None def UpperCamelCase ( self : Any , snake_case__ : Union[torch.FloatTensor, np.ndarray] , snake_case__ : Union[float, torch.FloatTensor] , snake_case__ : Union[torch.FloatTensor, np.ndarray] , snake_case__ : bool = True , ): '''simple docstring''' UpperCAmelCase__ : int = self.index_for_timestep(snake_case__ ) # advance index counter by 1 UpperCAmelCase__ : int = timestep.cpu().item() if torch.is_tensor(snake_case__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCAmelCase__ : List[Any] = self.sigmas[step_index] UpperCAmelCase__ : Tuple = self.sigmas_interpol[step_index + 1] UpperCAmelCase__ : List[Any] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method UpperCAmelCase__ : Optional[int] = self.sigmas[step_index - 1] UpperCAmelCase__ : List[str] = self.sigmas_interpol[step_index] UpperCAmelCase__ : str = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : List[str] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCAmelCase__ : Optional[int] = sigma_hat if self.state_in_first_order else sigma_interpol UpperCAmelCase__ : List[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : Optional[Any] = sigma_hat if self.state_in_first_order else sigma_interpol UpperCAmelCase__ : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCAmelCase__ : Tuple = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCAmelCase__ : Optional[int] = sigma_interpol - sigma_hat # store for 2nd order step UpperCAmelCase__ : Any = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order UpperCAmelCase__ : List[str] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep UpperCAmelCase__ : Optional[int] = sigma_next - sigma_hat UpperCAmelCase__ : Dict = self.sample UpperCAmelCase__ : str = None UpperCAmelCase__ : List[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case__ ): # mps does not support float64 UpperCAmelCase__ : Optional[Any] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) UpperCAmelCase__ : Tuple = timesteps.to(original_samples.device , dtype=torch.floataa ) else: UpperCAmelCase__ : str = self.timesteps.to(original_samples.device ) UpperCAmelCase__ : Union[str, Any] = timesteps.to(original_samples.device ) UpperCAmelCase__ : str = [self.index_for_timestep(snake_case__ , snake_case__ ) for t in timesteps] UpperCAmelCase__ : str = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCAmelCase__ : List[Any] = sigma.unsqueeze(-1 ) UpperCAmelCase__ : Dict = original_samples + noise * sigma return noisy_samples def __len__( self : List[str] ): '''simple docstring''' return self.config.num_train_timesteps
199
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures""") SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy-config.json""") class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Any = 0 def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(snake_case__ , snake_case__ ) def UpperCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoFeatureExtractor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def UpperCamelCase ( self : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ : Optional[Any] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase__ : Any = AutoFeatureExtractor.from_pretrained(snake_case__ ).to_dict() config_dict.pop("feature_extractor_type" ) UpperCAmelCase__ : Union[str, Any] = WavaVecaFeatureExtractor(**snake_case__ ) # save in new folder model_config.save_pretrained(snake_case__ ) config.save_pretrained(snake_case__ ) UpperCAmelCase__ : Tuple = AutoFeatureExtractor.from_pretrained(snake_case__ ) # make sure private variable is not incorrectly saved UpperCAmelCase__ : List[Any] = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(snake_case__ , snake_case__ ) def UpperCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Any = AutoFeatureExtractor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def UpperCamelCase ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( snake_case__ , "bert-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase__ : Optional[int] = AutoFeatureExtractor.from_pretrained("bert-base" ) def UpperCamelCase ( self : Any ): '''simple docstring''' with self.assertRaisesRegex( snake_case__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase__ : List[str] = AutoFeatureExtractor.from_pretrained(snake_case__ , revision="aaaaaa" ) def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' with self.assertRaisesRegex( snake_case__ , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): UpperCAmelCase__ : Optional[Any] = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(snake_case__ ): UpperCAmelCase__ : List[str] = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): UpperCAmelCase__ : Any = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=snake_case__ ) UpperCAmelCase__ : Optional[Any] = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=snake_case__ ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(snake_case__ ) UpperCAmelCase__ : Any = AutoFeatureExtractor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def UpperCamelCase ( self : str ): '''simple docstring''' try: AutoConfig.register("custom" , snake_case__ ) AutoFeatureExtractor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoFeatureExtractor.register(snake_case__ , snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase__ : str = CustomFeatureExtractor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(snake_case__ ) UpperCAmelCase__ : Optional[int] = AutoFeatureExtractor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase ( self : str ): '''simple docstring''' class UpperCAmelCase_ ( A ): '''simple docstring''' lowercase_ : Optional[Any] = True try: AutoConfig.register("custom" , snake_case__ ) AutoFeatureExtractor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local UpperCAmelCase__ : Any = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase__ : Optional[int] = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=snake_case__ ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase__ : int = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=snake_case__ ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(snake_case__ , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
199
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : str = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
714
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def a__ ( a : List[str] , a : Any ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _snake_case : Any = flax_key_tuple[:-1] + ("weight",) _snake_case : str = torch.permute(a , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(a ): # linear layer _snake_case : Optional[int] = flax_key_tuple[:-1] + ("weight",) _snake_case : Any = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _snake_case : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def a__ ( a : List[Any] , a : Union[str, Any] , a : List[str] ): """simple docstring""" if "metadata" in layer: _snake_case : Optional[int] = layer.split("metadata" ) _snake_case : Optional[int] = "".join(split_layer[0] )[:-1] _snake_case : int = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _snake_case : Any = layer.split("kvstore" ) _snake_case : str = "".join(split_layer[0] )[:-1] _snake_case : Any = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _snake_case : List[Any] = layer.split("/" ) _snake_case : Tuple = "/".join(split_layer[:-1] ) _snake_case : int = (split_layer[-1],) if "kvstore/path" in layer: _snake_case : Optional[Any] = f'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _snake_case : Tuple = "file" else: _snake_case : Optional[int] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def a__ ( a : List[Any] , a : List[Any] ): """simple docstring""" _snake_case : Union[str, Any] = rename_keys(a ) _snake_case : int = {} for k, v in current_block.items(): _snake_case : Optional[int] = v _snake_case : Optional[int] = new_current_block torch.save(a , a ) def a__ ( a : Dict , a : Tuple , a : List[str] , a : int , a : str = WEIGHTS_NAME ): """simple docstring""" _snake_case : Any = convert_file_size_to_int(a ) _snake_case : Tuple = [] _snake_case : Optional[int] = {} _snake_case : Tuple = 0 _snake_case : Optional[Any] = 0 os.makedirs(a , exist_ok=a ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _snake_case : Any = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _snake_case : Optional[Any] = flatten_dict(a , sep="/" ) _snake_case : Optional[Any] = {} for layer in checkpoint_info.keys(): _snake_case , _snake_case , _snake_case : int = get_key_and_tensorstore_dict( a , a , a ) if curr_real_layer_name in all_layers: _snake_case : Dict = content else: _snake_case : Tuple = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _snake_case : List[str] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _snake_case : Dict = torch.tensor(a ) _snake_case : Dict = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _snake_case , _snake_case : Optional[int] = rename_base_flax_keys(tuple(key.split("/" ) ) , a ) _snake_case : Optional[Any] = "/".join(a ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _snake_case : Any = os.path.join( a , weights_name.replace(".bin" , f'-{len(a )+1:05d}-of-???.bin' ) ) rename_and_save_block(a , a ) sharded_state_dicts.append(current_block.keys() ) del current_block _snake_case : List[Any] = {} _snake_case : str = 0 _snake_case : List[str] = raw_weights.to(getattr(a , a ) ) current_block_size += weight_size total_size += weight_size # Add the last block _snake_case : int = os.path.join(a , weights_name.replace(".bin" , f'-{len(a )+1:05d}-of-???.bin' ) ) rename_and_save_block(a , a ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(a ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _snake_case : str = {} _snake_case : Any = {} for idx, shard in enumerate(a ): _snake_case : Optional[int] = weights_name.replace( ".bin" , f'-{idx+1:05d}-of-{len(a ):05d}.bin' ) # len(sharded_state_dicts):05d} _snake_case : Dict = os.path.join(a , weights_name.replace(".bin" , f'-{idx+1:05d}-of-???.bin' ) ) os.rename(a , os.path.join(a , a ) ) _snake_case : Dict = shard for key in shard: _snake_case : int = shard_file # Add the metadata _snake_case : List[Any] = {"total_size": total_size} _snake_case : Any = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(a , a ) , "w" , encoding="utf-8" ) as f: _snake_case : Union[str, Any] = json.dumps(a , indent=2 , sort_keys=a ) + "\n" f.write(a ) return metadata, index if __name__ == "__main__": _a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) _a : Optional[int] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def a__ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _snake_case : List[str] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _snake_case : str = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _snake_case : List[Any] = TaTokenizer.from_pretrained("t5-small" ) _snake_case : Optional[Any] = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _snake_case : Dict = tokenizer(a , return_tensors="pt" ).input_ids _snake_case : List[Any] = model.generate(a , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
87
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class _lowercase ( snake_case__ ): _lowercase : int = 'speech_to_text_2' _lowercase : List[Any] = ['past_key_values'] _lowercase : Any = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Tuple , lowerCamelCase__ : Tuple=1_0_0_0_0 , lowerCamelCase__ : Any=6 , lowerCamelCase__ : Optional[Any]=2_0_4_8 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : List[Any]=0.0 , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : str="relu" , lowerCamelCase__ : int=2_5_6 , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Dict=0.0 , lowerCamelCase__ : Optional[Any]=0.0 , lowerCamelCase__ : Optional[int]=0.02 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : str=True , lowerCamelCase__ : str=1 , lowerCamelCase__ : Optional[Any]=0 , lowerCamelCase__ : Dict=2 , lowerCamelCase__ : Union[str, Any]=1_0_2_4 , **lowerCamelCase__ : Dict , ) -> List[Any]: """simple docstring""" A_ = vocab_size A_ = d_model A_ = decoder_ffn_dim A_ = decoder_layers A_ = decoder_attention_heads A_ = dropout A_ = attention_dropout A_ = activation_dropout A_ = activation_function A_ = init_std A_ = decoder_layerdrop A_ = use_cache A_ = decoder_layers A_ = scale_embedding # scale factor will be sqrt(d_model) if True A_ = max_target_positions super().__init__( pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , decoder_start_token_id=_UpperCamelCase , **_UpperCamelCase , )
203
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCamelCase__ = logging.get_logger(__name__) def lowerCamelCase__ ( __A :Optional[int] ,__A :Any ,__A :str ): """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowerCamelCase__ ( __A :np.ndarray ,__A :Optional[str] ,__A :Optional[str] ): """simple docstring""" __snake_case = to_pil_image(__A ) __snake_case , __snake_case = pil_image.size __snake_case = pytesseract.image_to_data(__A ,lang=__A ,output_type="""dict""" ,config=__A ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates __snake_case = [idx for idx, word in enumerate(__A ) if not word.strip()] __snake_case = [word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] __snake_case = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] __snake_case = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] __snake_case = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] __snake_case = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __snake_case = [] for x, y, w, h in zip(__A ,__A ,__A ,__A ): __snake_case = [x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes __snake_case = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__A ,__A ,__A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __snake_case ( snake_case__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = ["pixel_values"] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = True , _UpperCamelCase = 1 / 2_55 , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = "" , **_UpperCamelCase , ) -> None: """simple docstring""" super().__init__(**_UpperCamelCase ) __snake_case = size if size is not None else {"""height""": 2_24, """width""": 2_24} __snake_case = get_size_dict(_UpperCamelCase ) __snake_case = do_resize __snake_case = size __snake_case = resample __snake_case = do_rescale __snake_case = rescale_value __snake_case = do_normalize __snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD __snake_case = apply_ocr __snake_case = ocr_lang __snake_case = tesseract_config def a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: """simple docstring""" __snake_case = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) __snake_case = (size["""height"""], size["""width"""]) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def a ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ) -> PIL.Image.Image: """simple docstring""" __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = size if size is not None else self.size __snake_case = get_size_dict(_UpperCamelCase ) __snake_case = resample if resample is not None else self.resample __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case = do_normalize if do_normalize is not None else self.do_normalize __snake_case = image_mean if image_mean is not None else self.image_mean __snake_case = image_std if image_std is not None else self.image_std __snake_case = apply_ocr if apply_ocr is not None else self.apply_ocr __snake_case = ocr_lang if ocr_lang is not None else self.ocr_lang __snake_case = tesseract_config if tesseract_config is not None else self.tesseract_config __snake_case = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""If do_normalize is True, image_mean and image_std must be specified.""" ) # All transformations expect numpy arrays. __snake_case = [to_numpy_array(_UpperCamelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , """pytesseract""" ) __snake_case = [] __snake_case = [] for image in images: __snake_case , __snake_case = apply_tesseract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) words_batch.append(_UpperCamelCase ) boxes_batch.append(_UpperCamelCase ) if do_resize: __snake_case = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_rescale: __snake_case = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: __snake_case = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] __snake_case = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] __snake_case = BatchFeature(data={"""pixel_values""": images} , tensor_type=_UpperCamelCase ) if apply_ocr: __snake_case = words_batch __snake_case = boxes_batch return data
268
0
from __future__ import annotations from cmath import sqrt def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> tuple[complex, complex]: if a == 0: raise ValueError('''Coefficient \'a\' must not be zero.''' ) snake_case__ = b * b - 4 * a * c snake_case__ = (-b + sqrt(__lowerCAmelCase )) / (2 * a) snake_case__ = (-b - sqrt(__lowerCAmelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: snake_case__ , snake_case__ = quadratic_roots(a=5 , b=6 , c=1 ) print(F"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
208
from jiwer import compute_measures import datasets lowerCamelCase__ : Optional[int] = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ lowerCamelCase__ : Union[str, Any] = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ lowerCamelCase__ : int = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Any ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:Dict=None , _a:Dict=None , _a:Optional[int]=False ): if concatenate_texts: return compute_measures(_a , _a )["wer"] else: snake_case__ = 0 snake_case__ = 0 for prediction, reference in zip(_a , _a ): snake_case__ = compute_measures(_a , _a ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
208
1
import pprint import requests __a : List[Any] = """https://zenquotes.io/api""" def UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def UpperCAmelCase ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": __a : List[str] = random_quotes() pprint.pprint(response)
534
from argparse import ArgumentParser from .env import EnvironmentCommand def UpperCAmelCase ( ): """simple docstring""" __lowercase = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) __lowercase = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(lowercase ) # Let's go __lowercase = parser.parse_args() if not hasattr(lowercase , '''func''' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(lowercase ) service.run() if __name__ == "__main__": main()
534
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : Dict = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[Any] = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
293
"""simple docstring""" def A ( snake_case :int ) -> bool: return str(snake_case ) == str(snake_case )[::-1] def A ( snake_case :int ) -> int: return int(snake_case ) + int(str(snake_case )[::-1] ) def A ( snake_case :int = 1_0_0_0_0 ) -> int: __UpperCamelCase = [] for num in range(1 , snake_case ): __UpperCamelCase = 0 __UpperCamelCase = num while iterations < 5_0: __UpperCamelCase = sum_reverse(snake_case ) iterations += 1 if is_palindrome(snake_case ): break else: lychrel_nums.append(snake_case ) return len(snake_case ) if __name__ == "__main__": print(f'''{solution() = }''')
293
1