code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCamelCase = ''' Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` ''' def UpperCamelCase_( _A :Optional[int] , _A :Optional[int] , _A :Optional[Any]=8 )-> Tuple: UpperCamelCase__ = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 UpperCamelCase__ = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , ): '''simple docstring''' super().__init__() self.register_modules( text_encoder=lowercase__ , tokenizer=lowercase__ , unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) UpperCamelCase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' if latents is None: UpperCamelCase__ = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__ ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) UpperCamelCase__ = latents.to(lowercase__ ) UpperCamelCase__ = latents * scheduler.init_noise_sigma return latents def snake_case__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case=None , ): '''simple docstring''' UpperCamelCase__ = len(lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else 1 # get prompt text embeddings UpperCamelCase__ = self.tokenizer( lowercase__ , padding="max_length" , truncation=lowercase__ , max_length=77 , return_attention_mask=lowercase__ , add_special_tokens=lowercase__ , return_tensors="pt" , ) UpperCamelCase__ = text_inputs.input_ids UpperCamelCase__ = self.tokenizer(lowercase__ , padding="longest" , return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowercase__ , lowercase__ ): UpperCamelCase__ = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase__ = text_input_ids.to(lowercase__ ) UpperCamelCase__ = text_inputs.attention_mask.to(lowercase__ ) UpperCamelCase__, UpperCamelCase__ = self.text_encoder( input_ids=lowercase__ , attention_mask=lowercase__ ) UpperCamelCase__ = prompt_embeds.repeat_interleave(lowercase__ , dim=0 ) UpperCamelCase__ = text_encoder_hidden_states.repeat_interleave(lowercase__ , dim=0 ) UpperCamelCase__ = text_mask.repeat_interleave(lowercase__ , dim=0 ) if do_classifier_free_guidance: UpperCamelCase__ = 42 if negative_prompt is None: UpperCamelCase__ = [""] * batch_size elif type(lowercase__ ) is not type(lowercase__ ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(lowercase__ )} !=''' F''' {type(lowercase__ )}.''' ) elif isinstance(lowercase__ , lowercase__ ): UpperCamelCase__ = [negative_prompt] elif batch_size != len(lowercase__ ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(lowercase__ )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`." ) else: UpperCamelCase__ = negative_prompt UpperCamelCase__ = self.tokenizer( lowercase__ , padding="max_length" , max_length=77 , truncation=lowercase__ , return_attention_mask=lowercase__ , add_special_tokens=lowercase__ , return_tensors="pt" , ) UpperCamelCase__ = uncond_input.input_ids.to(lowercase__ ) UpperCamelCase__ = uncond_input.attention_mask.to(lowercase__ ) UpperCamelCase__, UpperCamelCase__ = self.text_encoder( input_ids=lowercase__ , attention_mask=lowercase__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ = negative_prompt_embeds.shape[1] UpperCamelCase__ = negative_prompt_embeds.repeat(1 , lowercase__ ) UpperCamelCase__ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowercase__ ) UpperCamelCase__ = uncond_text_encoder_hidden_states.shape[1] UpperCamelCase__ = uncond_text_encoder_hidden_states.repeat(1 , lowercase__ , 1 ) UpperCamelCase__ = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , lowercase__ , -1 ) UpperCamelCase__ = uncond_text_mask.repeat_interleave(lowercase__ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase__ = torch.cat([negative_prompt_embeds, prompt_embeds] ) UpperCamelCase__ = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) UpperCamelCase__ = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def snake_case__ ( self , snake_case=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCamelCase__ = torch.device(F'''cuda:{gpu_id}''' ) UpperCamelCase__ = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__ ) def snake_case__ ( self , snake_case=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCamelCase__ = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCamelCase__ = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: UpperCamelCase__, UpperCamelCase__ = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__ ) if self.safety_checker is not None: UpperCamelCase__, UpperCamelCase__ = cpu_offload_with_hook(self.safety_checker , lowercase__ , prev_module_hook=lowercase__ ) # We'll offload the last model manually. UpperCamelCase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case__ ( self ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase__ ) def __call__( self , snake_case , snake_case , snake_case , snake_case = None , snake_case = 512 , snake_case = 512 , snake_case = 100 , snake_case = 4.0 , snake_case = 1 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , ): '''simple docstring''' if isinstance(lowercase__ , lowercase__ ): UpperCamelCase__ = 1 elif isinstance(lowercase__ , lowercase__ ): UpperCamelCase__ = len(lowercase__ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(lowercase__ )}''' ) UpperCamelCase__ = self._execution_device UpperCamelCase__ = batch_size * num_images_per_prompt UpperCamelCase__ = guidance_scale > 1.0 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = self._encode_prompt( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if isinstance(lowercase__ , lowercase__ ): UpperCamelCase__ = torch.cat(lowercase__ , dim=0 ) if isinstance(lowercase__ , lowercase__ ): UpperCamelCase__ = torch.cat(lowercase__ , dim=0 ) if do_classifier_free_guidance: UpperCamelCase__ = image_embeds.repeat_interleave(lowercase__ , dim=0 ) UpperCamelCase__ = negative_image_embeds.repeat_interleave(lowercase__ , dim=0 ) UpperCamelCase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=lowercase__ ) self.scheduler.set_timesteps(lowercase__ , device=lowercase__ ) UpperCamelCase__ = self.scheduler.timesteps UpperCamelCase__ = self.unet.config.in_channels UpperCamelCase__, UpperCamelCase__ = get_new_h_w(lowercase__ , lowercase__ , self.movq_scale_factor ) # create initial latent UpperCamelCase__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase__ = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} UpperCamelCase__ = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: UpperCamelCase__, UpperCamelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) UpperCamelCase__, UpperCamelCase__ = noise_pred.chunk(2 ) UpperCamelCase__, UpperCamelCase__ = variance_pred.chunk(2 ) UpperCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCamelCase__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCamelCase__, UpperCamelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , ).prev_sample # post-processing UpperCamelCase__ = self.movq.decode(lowercase__ , force_not_quantize=lowercase__ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: UpperCamelCase__ = image * 0.5 + 0.5 UpperCamelCase__ = image.clamp(0 , 1 ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(lowercase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__ )
551
import argparse from collections import defaultdict import yaml _lowercase: List[Any] = '''docs/source/en/_toctree.yml''' def _lowerCamelCase ( snake_case ): _lowerCAmelCase = defaultdict(snake_case ) _lowerCAmelCase = [] _lowerCAmelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(snake_case ) _lowerCAmelCase = new_doc_list _lowerCAmelCase = [key for key, value in counts.items() if value > 1] _lowerCAmelCase = [] for duplicate_key in duplicates: _lowerCAmelCase = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(snake_case ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) _lowerCAmelCase = sorted(snake_case , key=lambda snake_case : s["title"].lower() ) # "overview" gets special treatment and is always first if len(snake_case ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(snake_case ) # Sort return overview_doc def _lowerCamelCase ( snake_case=False ): with open(snake_case , encoding='utf-8' ) as f: _lowerCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase = content[api_idx]['sections'] # Then to the model doc _lowerCAmelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowerCAmelCase = api_doc[scheduler_idx]['sections'] _lowerCAmelCase = clean_doc_toc(snake_case ) _lowerCAmelCase = False if new_scheduler_doc != scheduler_doc: _lowerCAmelCase = True if overwrite: _lowerCAmelCase = new_scheduler_doc if diff: if overwrite: _lowerCAmelCase = api_doc with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(snake_case , allow_unicode=snake_case ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def _lowerCamelCase ( snake_case=False ): with open(snake_case , encoding='utf-8' ) as f: _lowerCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase = content[api_idx]['sections'] # Then to the model doc _lowerCAmelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowerCAmelCase = False _lowerCAmelCase = api_doc[pipeline_idx]['sections'] _lowerCAmelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowerCAmelCase = pipeline_doc['section'] _lowerCAmelCase = clean_doc_toc(snake_case ) if overwrite: _lowerCAmelCase = new_sub_pipeline_doc new_pipeline_docs.append(snake_case ) # sort overall pipeline doc _lowerCAmelCase = clean_doc_toc(snake_case ) if new_pipeline_docs != pipeline_docs: _lowerCAmelCase = True if overwrite: _lowerCAmelCase = new_pipeline_docs if diff: if overwrite: _lowerCAmelCase = api_doc with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(snake_case , allow_unicode=snake_case ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": _lowercase: Tuple = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowercase: Optional[Any] = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
192
0
def SCREAMING_SNAKE_CASE ( snake_case__ = 10 , snake_case__ = 22 ) -> int: __UpperCAmelCase =range(1 , snake_case__ ) __UpperCAmelCase =range(1 , snake_case__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'{solution(1_0, 2_2) = }')
142
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version UpperCamelCase_ = { '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[str]: if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(snake_case__ ) , version.parse(snake_case__ ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ = None ) -> None: __UpperCAmelCase =f"""\n{hint}""" if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , snake_case__ ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =requirement, None, None else: __UpperCAmelCase =re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , snake_case__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f""" got {requirement}""" ) __UpperCAmelCase , __UpperCAmelCase =match[0] __UpperCAmelCase =want_full.split(''',''' ) # there could be multiple requirements __UpperCAmelCase ={} for w in want_range: __UpperCAmelCase =re.findall(r'''^([\s!=<>]{1,2})(.+)''' , snake_case__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f""" but got {requirement}""" ) __UpperCAmelCase , __UpperCAmelCase =match[0] __UpperCAmelCase =want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": __UpperCAmelCase ='''.'''.join([str(snake_case__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return # check if any version is installed try: __UpperCAmelCase =importlib.metadata.version(snake_case__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Union[str, Any]: __UpperCAmelCase ='''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(snake_case__ , snake_case__ )
142
1
"""simple docstring""" a = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def _snake_case ( _snake_case : float ) -> str: '''simple docstring''' assert type(_snake_case ) in (int, float) and decimal == int(_snake_case ) _A = int(_snake_case ) _A = '' _A = False if decimal < 0: _A = True decimal *= -1 while decimal > 0: _A , _A = divmod(_snake_case , 16 ) _A = values[remainder] + hexadecimal _A = '0x' + hexadecimal if negative: _A = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
7
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase__ = 65_536 , lowerCamelCase__ = None , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 0 , lowerCamelCase__ = "fourier" , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = 0.0 , lowerCamelCase__ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase__ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase__ = "UNetMidBlock1D" , lowerCamelCase__ = None , lowerCamelCase__ = (32, 32, 64) , lowerCamelCase__ = None , lowerCamelCase__ = 8 , lowerCamelCase__ = 1 , lowerCamelCase__ = False , ) -> Dict: '''simple docstring''' super().__init__() __lowerCamelCase = sample_size # time if time_embedding_type == "fourier": __lowerCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase__ , log=lowerCamelCase__ , flip_sin_to_cos=lowerCamelCase__ ) __lowerCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": __lowerCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase__ , downscale_freq_shift=lowerCamelCase__ ) __lowerCamelCase = block_out_channels[0] if use_timestep_embedding: __lowerCamelCase = block_out_channels[0] * 4 __lowerCamelCase = TimestepEmbedding( in_channels=lowerCamelCase__ , time_embed_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ , out_dim=block_out_channels[0] , ) __lowerCamelCase = nn.ModuleList([] ) __lowerCamelCase = None __lowerCamelCase = nn.ModuleList([] ) __lowerCamelCase = None # down __lowerCamelCase = in_channels for i, down_block_type in enumerate(lowerCamelCase__ ): __lowerCamelCase = output_channel __lowerCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels __lowerCamelCase = i == len(lowerCamelCase__ ) - 1 __lowerCamelCase = get_down_block( lowerCamelCase__ , num_layers=lowerCamelCase__ , in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase__ ) # mid __lowerCamelCase = get_mid_block( lowerCamelCase__ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase__ , add_downsample=lowerCamelCase__ , ) # up __lowerCamelCase = list(reversed(lowerCamelCase__ ) ) __lowerCamelCase = reversed_block_out_channels[0] if out_block_type is None: __lowerCamelCase = out_channels else: __lowerCamelCase = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase__ ): __lowerCamelCase = output_channel __lowerCamelCase = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase__ ) - 1 else final_upsample_channels ) __lowerCamelCase = i == len(lowerCamelCase__ ) - 1 __lowerCamelCase = get_up_block( lowerCamelCase__ , num_layers=lowerCamelCase__ , in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase__ ) __lowerCamelCase = output_channel # out __lowerCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) __lowerCamelCase = get_out_block( out_block_type=lowerCamelCase__ , num_groups_out=lowerCamelCase__ , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase__ , act_fn=lowerCamelCase__ , fc_dim=block_out_channels[-1] // 4 , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , ) -> Union[UNetaDOutput, Tuple]: '''simple docstring''' __lowerCamelCase = timestep if not torch.is_tensor(lowerCamelCase__ ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(sample.device ) __lowerCamelCase = self.time_proj(lowerCamelCase__ ) if self.config.use_timestep_embedding: __lowerCamelCase = self.time_mlp(lowerCamelCase__ ) else: __lowerCamelCase = timestep_embed[..., None] __lowerCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) __lowerCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down __lowerCamelCase = () for downsample_block in self.down_blocks: __lowerCamelCase , __lowerCamelCase = downsample_block(hidden_states=lowerCamelCase__ , temb=lowerCamelCase__ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: __lowerCamelCase = self.mid_block(lowerCamelCase__ , lowerCamelCase__ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): __lowerCamelCase = down_block_res_samples[-1:] __lowerCamelCase = down_block_res_samples[:-1] __lowerCamelCase = upsample_block(lowerCamelCase__ , res_hidden_states_tuple=lowerCamelCase__ , temb=lowerCamelCase__ ) # 5. post-process if self.out_block: __lowerCamelCase = self.out_block(lowerCamelCase__ , lowerCamelCase__ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase__ )
469
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): snake_case__ : Dict = "swinv2" snake_case__ : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : str , SCREAMING_SNAKE_CASE__ : int=2_2_4 , SCREAMING_SNAKE_CASE__ : Dict=4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : Any=9_6 , SCREAMING_SNAKE_CASE__ : Tuple=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__ : int=[3, 6, 1_2, 2_4] , SCREAMING_SNAKE_CASE__ : Dict=7 , SCREAMING_SNAKE_CASE__ : Optional[int]=4.0 , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : int="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[int]=1E-5 , SCREAMING_SNAKE_CASE__ : List[str]=3_2 , **SCREAMING_SNAKE_CASE__ : Any , ) -> Union[str, Any]: super().__init__(**A_ ) a_ : str = image_size a_ : List[str] = patch_size a_ : List[str] = num_channels a_ : List[Any] = embed_dim a_ : Tuple = depths a_ : str = len(A_ ) a_ : List[str] = num_heads a_ : int = window_size a_ : List[str] = mlp_ratio a_ : Tuple = qkv_bias a_ : Optional[Any] = hidden_dropout_prob a_ : List[Any] = attention_probs_dropout_prob a_ : Any = drop_path_rate a_ : Optional[int] = hidden_act a_ : Union[str, Any] = use_absolute_embeddings a_ : Optional[Any] = layer_norm_eps a_ : List[Any] = initializer_range a_ : Tuple = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a_ : Optional[int] = int(embed_dim * 2 ** (len(A_ ) - 1) ) a_ : Tuple = (0, 0, 0, 0)
703
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets UpperCAmelCase_ : int = datasets.logging.get_logger(__name__) UpperCAmelCase_ : Dict = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' UpperCAmelCase_ : Tuple = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' UpperCAmelCase_ : Optional[Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def SCREAMING_SNAKE_CASE_ ( __A : List[str] , __A : Any , __A : List[Any]=False , __A : Tuple=False , __A : Any=True , __A : Any=False , __A : Any="dummy_doc" ) -> List[str]: """simple docstring""" a_ : List[str] = {doc: key_lines} a_ : Optional[Any] = {doc: sys_lines} a_ : List[Any] = {} a_ : Tuple = 0 a_ : List[str] = 0 a_ : Union[str, Any] = 0 a_ : List[Any] = 0 a_ : List[str] = 0 a_ : Union[str, Any] = 0 a_ , a_ : List[Any] = reader.get_doc_mentions(__A , key_doc_lines[doc] , __A ) key_singletons_num += singletons_num if NP_only or min_span: a_ : Union[str, Any] = reader.set_annotated_parse_trees(__A , key_doc_lines[doc] , __A , __A ) a_ , a_ : Union[str, Any] = reader.get_doc_mentions(__A , sys_doc_lines[doc] , __A ) sys_singletons_num += singletons_num if NP_only or min_span: a_ : Dict = reader.set_annotated_parse_trees(__A , key_doc_lines[doc] , __A , __A ) if remove_nested: a_ , a_ : Optional[Any] = reader.remove_nested_coref_mentions(__A , __A ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters a_ , a_ : Optional[Any] = reader.remove_nested_coref_mentions(__A , __A ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters a_ : int = reader.get_mention_assignments(__A , __A ) a_ : List[Any] = reader.get_mention_assignments(__A , __A ) a_ : List[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def SCREAMING_SNAKE_CASE_ ( __A : str , __A : Optional[int] , __A : Optional[Any] , __A : Optional[int] , __A : Tuple , __A : Dict , __A : Optional[int] ) -> List[Any]: """simple docstring""" a_ : int = get_coref_infos(__A , __A , __A , __A , __A , __A ) a_ : List[Any] = {} a_ : int = 0 a_ : Optional[int] = 0 for name, metric in metrics: a_ , a_ , a_ : Tuple = evaluator.evaluate_documents(__A , __A , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , F"""Recall: {recall * 1_00:.2f}""" , F""" Precision: {precision * 1_00:.2f}""" , F""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: a_ : List[str] = (conll / 3) * 1_00 logger.info(F"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def SCREAMING_SNAKE_CASE_ ( __A : int ) -> Dict: """simple docstring""" a_ : List[Any] = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: a_ : List[Any] = line.split()[5] if not parse_col == "-": a_ : List[Any] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : int=False ) -> Tuple: a_ : List[str] = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: a_ : Union[str, Any] = util.check_gold_parse_annotation(SCREAMING_SNAKE_CASE__ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" a_ : List[Any] = evaluate( key_lines=SCREAMING_SNAKE_CASE__ , sys_lines=SCREAMING_SNAKE_CASE__ , metrics=SCREAMING_SNAKE_CASE__ , NP_only=SCREAMING_SNAKE_CASE__ , remove_nested=SCREAMING_SNAKE_CASE__ , keep_singletons=SCREAMING_SNAKE_CASE__ , min_span=SCREAMING_SNAKE_CASE__ , ) return score
443
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } _SCREAMING_SNAKE_CASE = { """YituTech/conv-bert-base""": 512, """YituTech/conv-bert-medium-small""": 512, """YituTech/conv-bert-small""": 512, } _SCREAMING_SNAKE_CASE = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class __magic_name__ ( lowercase__ ): _SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : int = ConvBertTokenizer def __init__( self : Any , snake_case_ : Union[str, Any]=None , snake_case_ : List[str]=None , snake_case_ : Any=True , snake_case_ : str="[UNK]" , snake_case_ : Optional[Any]="[SEP]" , snake_case_ : Union[str, Any]="[PAD]" , snake_case_ : Any="[CLS]" , snake_case_ : Union[str, Any]="[MASK]" , snake_case_ : Dict=True , snake_case_ : Union[str, Any]=None , **snake_case_ : Optional[int] , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , snake_case_ ) != do_lower_case or normalizer_state.get("strip_accents" , snake_case_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , snake_case_ ) != tokenize_chinese_chars ): __snake_case = getattr(snake_case_ , normalizer_state.pop("type" ) ) __snake_case = do_lower_case __snake_case = strip_accents __snake_case = tokenize_chinese_chars __snake_case = normalizer_class(**snake_case_ ) __snake_case = do_lower_case def lowerCAmelCase ( self : Union[str, Any] , snake_case_ : Dict , snake_case_ : Optional[int]=None ): __snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase ( self : Optional[Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[str] = None ): __snake_case = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
163
"""simple docstring""" from __future__ import annotations def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> tuple[str, float]: """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
163
1
def a__ ( lowerCAmelCase__ ) -> bool: UpperCAmelCase__ : str = [int(lowerCAmelCase__ ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(lowerCAmelCase__ ) == 4 and all(0 <= int(lowerCAmelCase__ ) <= 2_54 for octet in octets ) if __name__ == "__main__": UpperCamelCase__ = input().strip() UpperCamelCase__ = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
709
'''simple docstring''' from __future__ import annotations UpperCamelCase__ = 8.9_88e9 # units = N * m^s * C^-2 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> dict[str, float]: UpperCAmelCase__ : List[str] = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: UpperCAmelCase__ : Optional[int] = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: UpperCAmelCase__ : List[Any] = abs(lowerCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: UpperCAmelCase__ : List[Any] = abs(lowerCAmelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: UpperCAmelCase__ : List[Any] = (COULOMBS_CONSTANT * charge_product / abs(lowerCAmelCase__ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = { "7B": 11008, "13B": 13824, "30B": 17920, "65B": 22016, "70B": 28672, } _SCREAMING_SNAKE_CASE = { "7B": 1, "7Bf": 1, "13B": 2, "13Bf": 2, "30B": 4, "65B": 8, "70B": 8, "70Bf": 8, } def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any]=1 , __lowerCAmelCase : Optional[int]=2_56 ) -> Optional[int]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Optional[Any]: with open(__lowerCAmelCase , """r""" ) as f: return json.load(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : str ) -> Optional[Any]: with open(__lowerCAmelCase , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any]=True ) -> Union[str, Any]: os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) snake_case = os.path.join(__lowerCAmelCase , """tmp""" ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) snake_case = read_json(os.path.join(__lowerCAmelCase , """params.json""" ) ) snake_case = NUM_SHARDS[model_size] snake_case = params["""n_layers"""] snake_case = params["""n_heads"""] snake_case = n_heads // num_shards snake_case = params["""dim"""] snake_case = dim // n_heads snake_case = 1_0000.0 snake_case = 1.0 / (base ** (torch.arange(0 , __lowerCAmelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: snake_case = params["""n_kv_heads"""] # for GQA / MQA snake_case = n_heads_per_shard // num_key_value_heads snake_case = dim // num_key_value_heads else: # compatibility with other checkpoints snake_case = n_heads snake_case = n_heads_per_shard snake_case = dim # permute for sliced rotary def permute(__lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=n_heads , __lowerCAmelCase : str=dim , __lowerCAmelCase : Dict=dim ): return w.view(__lowerCAmelCase , dima // n_heads // 2 , 2 , __lowerCAmelCase ).transpose(1 , 2 ).reshape(__lowerCAmelCase , __lowerCAmelCase ) print(F'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) snake_case = torch.load(os.path.join(__lowerCAmelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded snake_case = [ torch.load(os.path.join(__lowerCAmelCase , F'''consolidated.{i:02d}.pth''' ) , map_location="""cpu""" ) for i in range(__lowerCAmelCase ) ] snake_case = 0 snake_case = {"""weight_map""": {}} for layer_i in range(__lowerCAmelCase ): snake_case = F'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case = { F'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wq.weight'''] ), F'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wk.weight'''] ), F'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[F'''layers.{layer_i}.attention.wv.weight'''], F'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[F'''layers.{layer_i}.attention.wo.weight'''], F'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w1.weight'''], F'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w2.weight'''], F'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w3.weight'''], F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[F'''layers.{layer_i}.attention_norm.weight'''], F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[F'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. snake_case = { F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.attention_norm.weight''' ].clone(), F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } snake_case = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wq.weight'''].view(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for i in range(__lowerCAmelCase ) ] , dim=0 , ).reshape(__lowerCAmelCase , __lowerCAmelCase ) ) snake_case = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wk.weight'''].view( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for i in range(__lowerCAmelCase ) ] , dim=0 , ).reshape(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) snake_case = torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wv.weight'''].view( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for i in range(__lowerCAmelCase ) ] , dim=0 , ).reshape(__lowerCAmelCase , __lowerCAmelCase ) snake_case = torch.cat( [loaded[i][F'''layers.{layer_i}.attention.wo.weight'''] for i in range(__lowerCAmelCase )] , dim=1 ) snake_case = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(__lowerCAmelCase )] , dim=0 ) snake_case = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(__lowerCAmelCase )] , dim=1 ) snake_case = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(__lowerCAmelCase )] , dim=0 ) snake_case = inv_freq for k, v in state_dict.items(): snake_case = filename param_count += v.numel() torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) snake_case = F'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: snake_case = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__lowerCAmelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__lowerCAmelCase )] , dim=0 ), } for k, v in state_dict.items(): snake_case = filename param_count += v.numel() torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) # Write configs snake_case = {"""total_size""": param_count * 2} write_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , """pytorch_model.bin.index.json""" ) ) snake_case = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 snake_case = params["""multiple_of"""] if """multiple_of""" in params else 2_56 snake_case = LlamaConfig( hidden_size=__lowerCAmelCase , intermediate_size=compute_intermediate_size(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__lowerCAmelCase , ) config.save_pretrained(__lowerCAmelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) snake_case = LlamaForCausalLM.from_pretrained(__lowerCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__lowerCAmelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__lowerCAmelCase , safe_serialization=__lowerCAmelCase ) shutil.rmtree(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ) -> List[str]: # Initialize the tokenizer based on the `spm` model snake_case = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) snake_case = tokenizer_class(__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) def __lowerCamelCase ( ) -> str: snake_case = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__lowerCAmelCase , help="""Whether or not to save using `safetensors`.""" ) snake_case = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) snake_case = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __lowerCAmelCase ) if __name__ == "__main__": main()
369
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "trajectory_transformer" snake_case_ = ["past_key_values"] snake_case_ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , __snake_case : int=1_00 , __snake_case : List[str]=5 , __snake_case : str=1 , __snake_case : Union[str, Any]=1 , __snake_case : Union[str, Any]=2_49 , __snake_case : List[Any]=6 , __snake_case : Optional[int]=17 , __snake_case : Optional[Any]=25 , __snake_case : Union[str, Any]=4 , __snake_case : List[Any]=4 , __snake_case : Optional[int]=1_28 , __snake_case : Optional[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=0.00_06 , __snake_case : Tuple=5_12 , __snake_case : int=0.02 , __snake_case : Any=1e-12 , __snake_case : Optional[Any]=1 , __snake_case : List[Any]=True , __snake_case : Dict=1 , __snake_case : Dict=5_02_56 , __snake_case : Union[str, Any]=5_02_56 , **__snake_case : Tuple , )-> Optional[int]: snake_case = vocab_size snake_case = action_weight snake_case = reward_weight snake_case = value_weight snake_case = max_position_embeddings snake_case = block_size snake_case = action_dim snake_case = observation_dim snake_case = transition_dim snake_case = learning_rate snake_case = n_layer snake_case = n_head snake_case = n_embd snake_case = embd_pdrop snake_case = attn_pdrop snake_case = resid_pdrop snake_case = initializer_range snake_case = layer_norm_eps snake_case = kaiming_initializer_range snake_case = use_cache super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
369
1
import numpy as np class _snake_case : '''simple docstring''' def __init__( self: Tuple ) -> Optional[int]: UpperCAmelCase_ : List[str] = (0, 0) UpperCAmelCase_ : int = None UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : int = 0 UpperCAmelCase_ : str = 0 def __eq__( self: Any ,lowerCamelCase_: str ) -> Optional[int]: return self.position == cell.position def A__ ( self: str ) -> Union[str, Any]: print(self.position ) class _snake_case : '''simple docstring''' def __init__( self: Optional[Any] ,lowerCamelCase_: Dict=(5, 5) ) -> int: UpperCAmelCase_ : str = np.zeros(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = world_size[0] UpperCAmelCase_ : Tuple = world_size[1] def A__ ( self: Optional[int] ) -> Optional[Any]: print(self.w ) def A__ ( self: int ,lowerCamelCase_: Any ) -> Any: UpperCAmelCase_ : str = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase_ : int = cell.position[0] UpperCAmelCase_ : List[Any] = cell.position[1] UpperCAmelCase_ : Optional[int] = [] for n in neughbour_cord: UpperCAmelCase_ : Optional[Any] = current_x + n[0] UpperCAmelCase_ : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase_ : Dict = Cell() UpperCAmelCase_ : Optional[Any] = (x, y) UpperCAmelCase_ : List[str] = cell neighbours.append(lowerCamelCase_ ) return neighbours def lowerCamelCase_ ( _a : Any , _a : int , _a : Any ): '''simple docstring''' UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Optional[int] = [] _open.append(_a ) while _open: UpperCAmelCase_ : Dict = np.argmin([n.f for n in _open] ) UpperCAmelCase_ : Optional[int] = _open[min_f] _closed.append(_open.pop(_a ) ) if current == goal: break for n in world.get_neigbours(_a ): for c in _closed: if c == n: continue UpperCAmelCase_ : Dict = current.g + 1 UpperCAmelCase_ , UpperCAmelCase_ : str = n.position UpperCAmelCase_ , UpperCAmelCase_ : Tuple = goal.position UpperCAmelCase_ : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase_ : Union[str, Any] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_a ) UpperCAmelCase_ : Any = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase_ : int = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": UpperCamelCase_ = Gridworld() # Start position and goal UpperCamelCase_ = Cell() UpperCamelCase_ = (0, 0) UpperCamelCase_ = Cell() UpperCamelCase_ = (4, 4) print(F"path from {start.position} to {goal.position}") UpperCamelCase_ = astar(world, start, goal) # Just for visual reasons. for i in s: UpperCamelCase_ = 1 print(world.w)
322
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration UpperCamelCase_ = 50000 UpperCamelCase_ = 5000 UpperCamelCase_ ,UpperCamelCase_ = os.path.split(__file__) UpperCamelCase_ = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def lowerCamelCase_ ( _a : datasets.Dataset , _a : int ): '''simple docstring''' for i in range(_a ): UpperCAmelCase_ : List[str] = dataset[i] @get_duration def lowerCamelCase_ ( _a : datasets.Dataset , _a : Union[str, Any] , _a : int ): '''simple docstring''' for i in range(0 , len(_a ) , _a ): UpperCAmelCase_ : Any = dataset[i : i + batch_size] @get_duration def lowerCamelCase_ ( _a : datasets.Dataset , _a : Union[str, Any] , _a : str ): '''simple docstring''' with dataset.formatted_as(type=_a ): for i in range(_a ): UpperCAmelCase_ : int = dataset[i] @get_duration def lowerCamelCase_ ( _a : datasets.Dataset , _a : Optional[Any] , _a : Tuple , _a : Optional[Any] ): '''simple docstring''' with dataset.formatted_as(type=_a ): for i in range(0 , _a , _a ): UpperCAmelCase_ : Any = dataset[i : i + batch_size] def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : List[Any] = {"""num examples""": SPEED_TEST_N_EXAMPLES} UpperCAmelCase_ : List[str] = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] UpperCAmelCase_ : List[Any] = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) UpperCAmelCase_ : Optional[Any] = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) UpperCAmelCase_ : Optional[Any] = generate_example_dataset( os.path.join(_a , """dataset.arrow""" ) , _a , num_examples=_a , seq_shapes={"""list""": (100,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(_a ) ) UpperCAmelCase_ : str = func(_a , **_a ) print("""shuffling dataset""" ) UpperCAmelCase_ : int = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(_a ) ) UpperCAmelCase_ : Any = func( _a , **_a ) with open(_a , """wb""" ) as f: f.write(json.dumps(_a ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
322
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class _UpperCamelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCAmelCase__ = Features({"""text""": Value("""string""" )} ) lowerCAmelCase__ = Features({"""labels""": ClassLabel} ) lowerCAmelCase__ = """text""" lowerCAmelCase__ = """labels""" def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : Optional[int]): '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , SCREAMING_SNAKE_CASE_): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""") __lowercase =copy.deepcopy(self) __lowercase =self.label_schema.copy() __lowercase =features[self.label_column] __lowercase =label_schema return task_template @property def __lowerCamelCase ( self : Tuple): '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
474
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } A_ = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } A_ = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = RealmTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[Any]: '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('type' ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = do_lower_case def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = PaddingStrategy.MAX_LENGTH lowerCamelCase_ = text lowerCamelCase_ = kwargs.pop('text_pair' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = kwargs.pop('return_tensors' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(SCREAMING_SNAKE_CASE_ ): if batch_text_pair is not None: lowerCamelCase_ = batch_text_pair[idx] else: lowerCamelCase_ = None lowerCamelCase_ = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = encoded_candidates.get('input_ids' ) lowerCamelCase_ = encoded_candidates.get('attention_mask' ) lowerCamelCase_ = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(SCREAMING_SNAKE_CASE_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(SCREAMING_SNAKE_CASE_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = {key: item for key, item in output_data.items() if len(SCREAMING_SNAKE_CASE_ ) != 0} return BatchEncoding(SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' lowerCamelCase_ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
42
0
from torch import nn def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'Unsupported activation function: {act_fn}' )
701
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str]=2 , __lowerCamelCase: List[Any]=3 , __lowerCamelCase: Optional[int]=16 , __lowerCamelCase: int = 10 , __lowerCamelCase: int = 2 ): '''simple docstring''' def get_dataset(__lowerCamelCase: List[Any] ): lowercase_ = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__lowerCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) lowercase_ = get_dataset(__lowerCamelCase ) lowercase_ = get_dataset(__lowerCamelCase ) lowercase_ = DataLoader(__lowerCamelCase , shuffle=__lowerCamelCase , batch_size=__lowerCamelCase , num_workers=4 ) lowercase_ = DataLoader(__lowerCamelCase , shuffle=__lowerCamelCase , batch_size=__lowerCamelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str=None ): '''simple docstring''' lowercase_ = [] for epoch in range(__lowerCamelCase ): # Train quickly model.train() for batch in dataloader: lowercase_ , lowercase_ = batch lowercase_ = model(__lowerCamelCase ) lowercase_ = torch.nn.functional.mse_loss(__lowerCamelCase , __lowerCamelCase ) accelerator.backward(__lowerCamelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' super().__init__() lowercase_ = nn.Parameter(torch.randn(1 ) ) lowercase_ = nn.Parameter(torch.randn(1 ) ) def A__ ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' return x * self.a + self.b class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ , lowercase_ = dummy_dataloaders() lowercase_ = ProjectConfiguration(total_limit=1 , project_dir=UpperCAmelCase , automatic_checkpoint_naming=UpperCAmelCase ) # Train baseline lowercase_ = Accelerator(project_config=UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ , lowercase_ = dummy_dataloaders() # Train baseline lowercase_ = Accelerator() lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save initial lowercase_ = os.path.join(UpperCAmelCase , "initial" ) accelerator.save_state(UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() lowercase_ = train(3 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() # Train partially set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ , lowercase_ = dummy_dataloaders() lowercase_ = Accelerator() lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) accelerator.load_state(UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) lowercase_ = train(2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save everything lowercase_ = os.path.join(UpperCAmelCase , "checkpoint" ) accelerator.save_state(UpperCAmelCase ) # Load everything back in and make sure all states work accelerator.load_state(UpperCAmelCase ) test_rands += train(1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ , lowercase_ = dummy_dataloaders() lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=UpperCAmelCase ) # Train baseline lowercase_ = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save initial accelerator.save_state() ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() lowercase_ = train(3 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() # Train partially set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ , lowercase_ = dummy_dataloaders() lowercase_ = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=UpperCAmelCase ) lowercase_ = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) accelerator.load_state(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_0" ) ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) lowercase_ = train(2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_1" ) ) test_rands += train(1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = torch.tensor([1, 2, 3] ) lowercase_ = torch.tensor([2, 3, 4] ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(net.parameters() ) lowercase_ = Accelerator() with self.assertRaises(UpperCAmelCase ) as ve: accelerator.register_for_checkpointing(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = str(ve.exception ) self.assertTrue("Item at index 0" in message ) self.assertTrue("Item at index 1" in message ) self.assertFalse("Item at index 2" in message ) self.assertFalse("Item at index 3" in message ) def A__ ( self ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ = torch.optim.lr_scheduler.StepLR(UpperCAmelCase , step_size=1 , gamma=0.99 ) lowercase_ , lowercase_ = dummy_dataloaders() lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=UpperCAmelCase ) # Train baseline lowercase_ = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save initial accelerator.save_state() lowercase_ = scheduler.state_dict() train(3 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.assertNotEqual(UpperCAmelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_0" ) ) self.assertEqual(UpperCAmelCase , scheduler.state_dict() ) def A__ ( self ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=UpperCAmelCase , total_limit=2 ) # Train baseline lowercase_ = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase ) lowercase_ = accelerator.prepare(UpperCAmelCase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_9" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_10" ) ) ) @require_cuda def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = ["torchrun", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = """/tmp/accelerate/state_checkpointing""" SCREAMING_SNAKE_CASE__ = DummyModel() SCREAMING_SNAKE_CASE__ = torch.optim.Adam(params=model.parameters(), lr=1E-3) SCREAMING_SNAKE_CASE__ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = dummy_dataloaders() SCREAMING_SNAKE_CASE__ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline SCREAMING_SNAKE_CASE__ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: SCREAMING_SNAKE_CASE__ = group["""params"""][0].device break assert param_device.type == accelerator.device.type SCREAMING_SNAKE_CASE__ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: SCREAMING_SNAKE_CASE__ = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: SCREAMING_SNAKE_CASE__ = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
601
0
'''simple docstring''' SCREAMING_SNAKE_CASE__ = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_02_17_66_34E-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.35_58_18, } def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCamelCase = ( F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" F"Valid values are: {', '.join(__UpperCamelCase )}" ) raise ValueError(__UpperCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
301
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a_ ( lowerCamelCase ): lowercase = ["""image_processor""", """tokenizer"""] lowercase = """ViltImageProcessor""" lowercase = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _SCREAMING_SNAKE_CASE , ) UpperCamelCase = kwargs.pop("""feature_extractor""" ) UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self.image_processor def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> BatchEncoding: """simple docstring""" UpperCamelCase = self.tokenizer( text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_overflowing_tokens=_SCREAMING_SNAKE_CASE , return_special_tokens_mask=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , return_length=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # add pixel_values + pixel_mask UpperCamelCase = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) encoding.update(_SCREAMING_SNAKE_CASE ) return encoding def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def A__ ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.tokenizer.model_input_names UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A__ ( self ) -> List[Any]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def A__ ( self ) -> Union[str, Any]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _SCREAMING_SNAKE_CASE , ) return self.image_processor
301
1
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) _lowercase : Union[str, Any] =logging.getLogger(__name__) def __UpperCAmelCase ( ) -> Optional[int]: snake_case__ : Optional[int] = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=UpperCamelCase__ , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=UpperCamelCase__ , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=UpperCamelCase__ , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=UpperCamelCase__ , default='''data/dump''' , help='''The dump file prefix.''' ) snake_case__ : int = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": snake_case__ : List[str] = BertTokenizer.from_pretrained(args.tokenizer_name ) snake_case__ : List[str] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` snake_case__ : List[str] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": snake_case__ : Optional[int] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) snake_case__ : Any = tokenizer.special_tokens_map['''cls_token'''] # `<s>` snake_case__ : Union[str, Any] = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": snake_case__ : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) snake_case__ : Union[str, Any] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` snake_case__ : Dict = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: snake_case__ : str = fp.readlines() logger.info('''Start encoding''' ) logger.info(F'''{len(UpperCamelCase__ )} examples to process.''' ) snake_case__ : Tuple = [] snake_case__ : Dict = 0 snake_case__ : int = 1_0000 snake_case__ : str = time.time() for text in data: snake_case__ : Union[str, Any] = F'''{bos} {text.strip()} {sep}''' snake_case__ : str = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) rslt.append(UpperCamelCase__ ) iter += 1 if iter % interval == 0: snake_case__ : Tuple = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) snake_case__ : Optional[Any] = time.time() logger.info('''Finished binarization''' ) logger.info(F'''{len(UpperCamelCase__ )} examples processed.''' ) snake_case__ : Any = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' snake_case__ : Optional[int] = tokenizer.vocab_size if vocab_size < (1 << 16): snake_case__ : str = [np.uintaa(UpperCamelCase__ ) for d in rslt] else: snake_case__ : List[str] = [np.intaa(UpperCamelCase__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(UpperCamelCase__ , '''wb''' ) as handle: pickle.dump(rslt_ , UpperCamelCase__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
706
'''simple docstring''' import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap _lowercase : Any ="Usage of script: script_name <size_of_canvas:int>" _lowercase : Optional[Any] =[0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCAmelCase ( UpperCamelCase__ :int ) -> list[list[bool]]: snake_case__ : List[str] = [[False for i in range(UpperCamelCase__ )] for j in range(UpperCamelCase__ )] return canvas def __UpperCAmelCase ( UpperCamelCase__ :list[list[bool]] ) -> None: for i, row in enumerate(UpperCamelCase__ ): for j, _ in enumerate(UpperCamelCase__ ): snake_case__ : Optional[Any] = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( UpperCamelCase__ :list[list[bool]] ) -> list[list[bool]]: snake_case__ : Any = np.array(UpperCamelCase__ ) snake_case__ : Union[str, Any] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(UpperCamelCase__ ): for c, pt in enumerate(UpperCamelCase__ ): snake_case__ : List[str] = __judge_point( UpperCamelCase__ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) snake_case__ : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. snake_case__ : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( UpperCamelCase__ :bool , UpperCamelCase__ :list[list[bool]] ) -> bool: snake_case__ : int = 0 snake_case__ : List[str] = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. snake_case__ : int = pt if pt: if alive < 2: snake_case__ : int = False elif alive == 2 or alive == 3: snake_case__ : Dict = True elif alive > 3: snake_case__ : Optional[Any] = False else: if alive == 3: snake_case__ : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) _lowercase : int =int(sys.argv[1]) # main working structure of this module. _lowercase : Union[str, Any] =create_canvas(canvas_size) seed(c) _lowercase , _lowercase : Tuple =plt.subplots() fig.show() _lowercase : List[Any] =ListedColormap(["w", "k"]) try: while True: _lowercase : Optional[int] =run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
574
0
'''simple docstring''' import math import qiskit def A_( A : int = 1 , A : int = 1 , A : int = 1): if ( isinstance(A , A) or isinstance(A , A) or isinstance(A , A) ): raise TypeError('inputs must be integers.') if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.') if ( (math.floor(A) != input_a) or (math.floor(A) != input_a) or (math.floor(A) != carry_in) ): raise ValueError('inputs must be exact integers.') if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.') # build registers UpperCamelCase = qiskit.QuantumRegister(4 , 'qr') UpperCamelCase = qiskit.ClassicalRegister(2 , 'cr') # list the entries UpperCamelCase = [input_a, input_a, carry_in] UpperCamelCase = qiskit.QuantumCircuit(A , A) for i in range(0 , 3): if entry[i] == 2: quantum_circuit.h(A) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(A) # for 1 entries elif entry[i] == 0: quantum_circuit.i(A) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3) # ccx = toffoli gate quantum_circuit.cx(0 , 1) quantum_circuit.ccx(1 , 2 , 3) quantum_circuit.cx(1 , 2) quantum_circuit.cx(0 , 1) quantum_circuit.measure([2, 3] , A) # measure the last two qbits UpperCamelCase = qiskit.Aer.get_backend('aer_simulator') UpperCamelCase = qiskit.execute(A , A , shots=1000) return job.result().get_counts(A) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
3
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
1
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : str = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
UpperCAmelCase_ : int = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] UpperCAmelCase_ : Optional[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] UpperCAmelCase_ : int = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] UpperCAmelCase_ : Dict = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] UpperCAmelCase_ : int = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] UpperCAmelCase_ : str = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] UpperCAmelCase_ : Any = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] UpperCAmelCase_ : Any = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
367
0
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowercase_ (lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" @register_to_config def __init__( self : List[Any] ,lowercase__ : int = 1_2_8 ,lowercase__ : int = 2_5_6 ,lowercase__ : float = 2_0_0_0.0 ,lowercase__ : int = 7_6_8 ,lowercase__ : int = 1_2 ,lowercase__ : int = 1_2 ,lowercase__ : int = 6_4 ,lowercase__ : int = 2_0_4_8 ,lowercase__ : float = 0.1 ,): super().__init__() __lowercase = nn.Sequential( nn.Linear(lowercase__ ,d_model * 4 ,bias=lowercase__ ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=lowercase__ ) ,nn.SiLU() ,) __lowercase = nn.Embedding(lowercase__ ,lowercase__ ) __lowercase = False __lowercase = nn.Linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) __lowercase = nn.Dropout(p=lowercase__ ) __lowercase = nn.ModuleList() for lyr_num in range(lowercase__ ): # FiLM conditional T5 decoder __lowercase = DecoderLayer(d_model=lowercase__ ,d_kv=lowercase__ ,num_heads=lowercase__ ,d_ff=lowercase__ ,dropout_rate=lowercase__ ) self.decoders.append(lowercase__ ) __lowercase = TaLayerNorm(lowercase__ ) __lowercase = nn.Dropout(p=lowercase__ ) __lowercase = nn.Linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ): __lowercase = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ): __lowercase , __lowercase , __lowercase = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __lowercase = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) __lowercase = self.conditioning_emb(lowercase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __lowercase = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __lowercase = torch.broadcast_to( torch.arange(lowercase__ ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) __lowercase = self.position_encoding(lowercase__ ) __lowercase = self.continuous_inputs_projection(lowercase__ ) inputs += position_encodings __lowercase = self.dropout(lowercase__ ) # decoder: No padding present. __lowercase = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. __lowercase = [(x, self.encoder_decoder_mask(lowercase__ ,lowercase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings __lowercase = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) __lowercase = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: __lowercase = lyr( lowercase__ ,conditioning_emb=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,)[0] __lowercase = self.decoder_norm(lowercase__ ) __lowercase = self.post_dropout(lowercase__ ) __lowercase = self.spec_out(lowercase__ ) return spec_out class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : str ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : str ,lowercase__ : Optional[int] ,lowercase__ : int ,lowercase__ : List[Any]=1e-6 ): super().__init__() __lowercase = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowercase__ ,d_kv=lowercase__ ,num_heads=lowercase__ ,dropout_rate=lowercase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowercase__ ,d_kv=lowercase__ ,num_heads=lowercase__ ,dropout_rate=lowercase__ ,layer_norm_epsilon=lowercase__ ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowercase__ ,d_ff=lowercase__ ,dropout_rate=lowercase__ ,layer_norm_epsilon=lowercase__ ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : Tuple=None ,lowercase__ : List[Any]=None ,lowercase__ : Any=None ,lowercase__ : Tuple=None ,lowercase__ : Tuple=None ,): __lowercase = self.layer[0]( lowercase__ ,conditioning_emb=lowercase__ ,attention_mask=lowercase__ ,) if encoder_hidden_states is not None: __lowercase = torch.where(encoder_attention_mask > 0 ,0 ,-1e1_0 ).to( encoder_hidden_states.dtype ) __lowercase = self.layer[1]( lowercase__ ,key_value_states=lowercase__ ,attention_mask=lowercase__ ,) # Apply Film Conditional Feed Forward layer __lowercase = self.layer[-1](lowercase__ ,lowercase__ ) return (hidden_states,) class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Any ,lowercase__ : Optional[int] ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Optional[Any] ): super().__init__() __lowercase = TaLayerNorm(lowercase__ ) __lowercase = TaFiLMLayer(in_features=d_model * 4 ,out_features=lowercase__ ) __lowercase = Attention(query_dim=lowercase__ ,heads=lowercase__ ,dim_head=lowercase__ ,out_bias=lowercase__ ,scale_qk=lowercase__ ) __lowercase = nn.Dropout(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : int=None ,lowercase__ : List[Any]=None ,): # pre_self_attention_layer_norm __lowercase = self.layer_norm(lowercase__ ) if conditioning_emb is not None: __lowercase = self.FiLMLayer(lowercase__ ,lowercase__ ) # Self-attention block __lowercase = self.attention(lowercase__ ) __lowercase = hidden_states + self.dropout(lowercase__ ) return hidden_states class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Any ): super().__init__() __lowercase = Attention(query_dim=lowercase__ ,heads=lowercase__ ,dim_head=lowercase__ ,out_bias=lowercase__ ,scale_qk=lowercase__ ) __lowercase = TaLayerNorm(lowercase__ ,eps=lowercase__ ) __lowercase = nn.Dropout(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Any ,lowercase__ : Dict=None ,lowercase__ : Any=None ,): __lowercase = self.layer_norm(lowercase__ ) __lowercase = self.attention( lowercase__ ,encoder_hidden_states=lowercase__ ,attention_mask=attention_mask.squeeze(1 ) ,) __lowercase = hidden_states + self.dropout(lowercase__ ) return layer_output class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : List[str] ,lowercase__ : str ,lowercase__ : List[Any] ,lowercase__ : int ,lowercase__ : int ): super().__init__() __lowercase = TaDenseGatedActDense(d_model=lowercase__ ,d_ff=lowercase__ ,dropout_rate=lowercase__ ) __lowercase = TaFiLMLayer(in_features=d_model * 4 ,out_features=lowercase__ ) __lowercase = TaLayerNorm(lowercase__ ,eps=lowercase__ ) __lowercase = nn.Dropout(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Tuple ,lowercase__ : Tuple=None ): __lowercase = self.layer_norm(lowercase__ ) if conditioning_emb is not None: __lowercase = self.film(lowercase__ ,lowercase__ ) __lowercase = self.DenseReluDense(lowercase__ ) __lowercase = hidden_states + self.dropout(lowercase__ ) return hidden_states class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[Any] ,lowercase__ : List[str] ): super().__init__() __lowercase = nn.Linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) __lowercase = nn.Linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) __lowercase = nn.Linear(lowercase__ ,lowercase__ ,bias=lowercase__ ) __lowercase = nn.Dropout(lowercase__ ) __lowercase = NewGELUActivation() def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : List[str] ): __lowercase = self.act(self.wi_a(lowercase__ ) ) __lowercase = self.wi_a(lowercase__ ) __lowercase = hidden_gelu * hidden_linear __lowercase = self.dropout(lowercase__ ) __lowercase = self.wo(lowercase__ ) return hidden_states class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Any ,lowercase__ : str=1e-6 ): super().__init__() __lowercase = nn.Parameter(torch.ones(lowercase__ ) ) __lowercase = eps def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 __lowercase = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=lowercase__ ) __lowercase = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __lowercase = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowercase_ (nn.Module ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(lowercase__ ,3.0 )) )) class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Dict ,lowercase__ : Optional[Any] ,lowercase__ : Union[str, Any] ): super().__init__() __lowercase = nn.Linear(lowercase__ ,out_features * 2 ,bias=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : Tuple ): __lowercase = self.scale_bias(lowercase__ ) __lowercase , __lowercase = torch.chunk(lowercase__ ,2 ,-1 ) __lowercase = x * (1 + scale) + shift return x
41
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
1
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE = ['the', 'be', 'to', 'of', 'and', 'in', 'that', 'have'] def _lowerCamelCase ( __A : Tuple , __A : int ) -> str | None: _UpperCAmelCase : str = "" _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for keychar, cipherchar in zip(cycle(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase : Dict = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(SCREAMING_SNAKE_CASE_ ) return decoded def _lowerCamelCase ( __A : Tuple ) -> list[str]: _UpperCAmelCase : list[str] = [] for key in product(SCREAMING_SNAKE_CASE_ , repeat=3 ): _UpperCAmelCase : Tuple = try_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if encoded is not None: possibles.append(SCREAMING_SNAKE_CASE_ ) return possibles def _lowerCamelCase ( __A : Optional[Any] , __A : Dict ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def _lowerCamelCase ( __A : int = "p059_cipher.txt" ) -> int: _UpperCAmelCase : list[int] _UpperCAmelCase : list[str] _UpperCAmelCase : str _UpperCAmelCase : str _UpperCAmelCase : str = Path(SCREAMING_SNAKE_CASE_ ).parent.joinpath(SCREAMING_SNAKE_CASE_ ).read_text(encoding='''utf-8''' ) _UpperCAmelCase : int = [int(SCREAMING_SNAKE_CASE_ ) for number in data.strip().split(''',''' )] _UpperCAmelCase : str = filter_valid_chars(SCREAMING_SNAKE_CASE_ ) for common_word in COMMON_WORDS: _UpperCAmelCase : Union[str, Any] = filter_common_word(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) == 1: break _UpperCAmelCase : List[str] = possibles[0] return sum(ord(SCREAMING_SNAKE_CASE_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
703
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () SCREAMING_SNAKE_CASE = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). SCREAMING_SNAKE_CASE = [0, 25, 50] SCREAMING_SNAKE_CASE = [25, 50, 75] SCREAMING_SNAKE_CASE = fuzz.membership.trimf(X, abca) SCREAMING_SNAKE_CASE = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. SCREAMING_SNAKE_CASE = np.ones(75) SCREAMING_SNAKE_CASE = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) SCREAMING_SNAKE_CASE = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) SCREAMING_SNAKE_CASE = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) SCREAMING_SNAKE_CASE = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) SCREAMING_SNAKE_CASE = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] SCREAMING_SNAKE_CASE = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) SCREAMING_SNAKE_CASE = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] SCREAMING_SNAKE_CASE = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] SCREAMING_SNAKE_CASE = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
186
0
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = [] create_all_state(1 , UpperCamelCase_ , UpperCamelCase_ , [] , UpperCamelCase_ ) return result def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(UpperCamelCase_ , total_number - level + 2 ): current_list.append(UpperCamelCase_ ) create_all_state(i + 1 , UpperCamelCase_ , level - 1 , UpperCamelCase_ , UpperCamelCase_ ) current_list.pop() def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' for i in total_list: print(*UpperCamelCase_ ) if __name__ == "__main__": lowerCAmelCase_ : Optional[Any] = 4 lowerCAmelCase_ : Optional[int] = 2 lowerCAmelCase_ : Optional[int] = generate_all_combinations(n, k) print_all_state(total_list)
673
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def _lowerCAmelCase ( UpperCamelCase_ ): if hor == 128: __SCREAMING_SNAKE_CASE = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") __SCREAMING_SNAKE_CASE = (32, 128, 256) __SCREAMING_SNAKE_CASE = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: __SCREAMING_SNAKE_CASE = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") __SCREAMING_SNAKE_CASE = (32, 64, 128, 256) __SCREAMING_SNAKE_CASE = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") __SCREAMING_SNAKE_CASE = torch.load(f"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" ) __SCREAMING_SNAKE_CASE = model.state_dict() __SCREAMING_SNAKE_CASE = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_5536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } __SCREAMING_SNAKE_CASE = UNetaDModel(**UpperCamelCase_ ) print(f"length of state dict: {len(state_dict.keys() )}" ) print(f"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) __SCREAMING_SNAKE_CASE = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __SCREAMING_SNAKE_CASE = state_dict.pop(UpperCamelCase_ ) hf_value_function.load_state_dict(UpperCamelCase_ ) torch.save(hf_value_function.state_dict() , f"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" ) with open(f"hub/hopper-medium-v2/unet/hor{hor}/config.json" , """w""" ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_5536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } __SCREAMING_SNAKE_CASE = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) __SCREAMING_SNAKE_CASE = model __SCREAMING_SNAKE_CASE = UNetaDModel(**UpperCamelCase_ ) print(f"length of state dict: {len(state_dict.keys() )}" ) print(f"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) __SCREAMING_SNAKE_CASE = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __SCREAMING_SNAKE_CASE = state_dict.pop(UpperCamelCase_ ) hf_value_function.load_state_dict(UpperCamelCase_ ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
155
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a ( unittest.TestCase ): def __init__( self :Optional[Any] ,__lowercase :Any ,__lowercase :Dict=1_3 ,__lowercase :int=3 ,__lowercase :List[Any]=2_2_4 ,__lowercase :Optional[int]=3_0 ,__lowercase :List[Any]=4_0_0 ,__lowercase :Union[str, Any]=True ,__lowercase :List[str]=None ,__lowercase :List[Any]=True ,__lowercase :Optional[Any]=[0.5, 0.5, 0.5] ,__lowercase :Any=[0.5, 0.5, 0.5] ,): snake_case__ : List[Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} snake_case__ : Any = parent snake_case__ : Optional[int] = batch_size snake_case__ : str = num_channels snake_case__ : str = image_size snake_case__ : Optional[Any] = min_resolution snake_case__ : List[Any] = max_resolution snake_case__ : Optional[int] = do_resize snake_case__ : Union[str, Any] = size snake_case__ : List[Any] = do_normalize snake_case__ : Tuple = image_mean snake_case__ : List[str] = image_std def __lowerCamelCase ( self :Any ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : List[str] = ViTImageProcessor if is_vision_available() else None def __lowerCamelCase ( self :Dict ): snake_case__ : Optional[int] = EfficientFormerImageProcessorTester(self ) @property def __lowerCamelCase ( self :Optional[int] ): return self.image_proc_tester.prepare_image_processor_dict() def __lowerCamelCase ( self :List[Any] ): snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase ,'''image_mean''' ) ) self.assertTrue(hasattr(__lowercase ,'''image_std''' ) ) self.assertTrue(hasattr(__lowercase ,'''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase ,'''do_resize''' ) ) self.assertTrue(hasattr(__lowercase ,'''size''' ) ) def __lowerCamelCase ( self :Optional[int] ): pass def __lowerCamelCase ( self :Any ): # Initialize image_processor snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : List[str] = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,Image.Image ) # Test not batched input snake_case__ : List[str] = image_processor(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) ,) # Test batched snake_case__ : Union[str, Any] = image_processor(__lowercase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) ,) def __lowerCamelCase ( self :Optional[Any] ): # Initialize image_processor snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Dict = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__lowercase ,numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,np.ndarray ) # Test not batched input snake_case__ : Optional[int] = image_processor(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) ,) # Test batched snake_case__ : Tuple = image_processor(__lowercase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) ,) def __lowerCamelCase ( self :Optional[Any] ): # Initialize image_processor snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[Any] = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__lowercase ,torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase ,torch.Tensor ) # Test not batched input snake_case__ : str = image_processor(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) ,) # Test batched snake_case__ : List[Any] = image_processor(__lowercase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) ,)
219
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A__ = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def _lowerCAmelCase ( __lowerCAmelCase=None ) -> Optional[Any]: """simple docstring""" if subparsers is not None: snake_case__ : Any = subparsers.add_parser('''tpu-config''' , description=_description ) else: snake_case__ : int = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments snake_case__ : Tuple = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=__lowerCAmelCase , default=__lowerCAmelCase , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=__lowerCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=__lowerCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) snake_case__ : str = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=__lowerCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=__lowerCAmelCase ) return parser def _lowerCAmelCase ( __lowerCAmelCase ) -> Dict: """simple docstring""" snake_case__ : Optional[int] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__lowerCAmelCase ): snake_case__ : Optional[int] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: snake_case__ : Optional[int] = defaults.command_file if not args.command and defaults.commands is not None: snake_case__ : int = defaults.commands if not args.tpu_name: snake_case__ : List[Any] = defaults.tpu_name if not args.tpu_zone: snake_case__ : Optional[Any] = defaults.tpu_zone if args.accelerate_version == "dev": snake_case__ : Tuple = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": snake_case__ : Union[str, Any] = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , __lowerCAmelCase ): snake_case__ : List[str] = f"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: snake_case__ : Any = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __lowerCAmelCase ): snake_case__ : Union[str, Any] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate snake_case__ : List[str] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f"""pip install {args.accelerate_version}"""] new_cmd += args.command snake_case__ : Dict = '''; '''.join(__lowerCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess snake_case__ : Optional[int] = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"""Running {' '.join(__lowerCAmelCase )}""" ) return subprocess.run(__lowerCAmelCase ) print('''Successfully setup pod.''' ) def _lowerCAmelCase ( ) -> int: """simple docstring""" snake_case__ : Optional[Any] = tpu_command_parser() snake_case__ : int = parser.parse_args() tpu_command_launcher(__lowerCAmelCase )
219
1
from functools import reduce _a = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCAmelCase__(__snake_case = N ) -> Any: '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda __snake_case ,__snake_case : str(int(a_ ) * int(a_ ) ) ,n[i : i + 13] ) ) for i in range(len(a_ ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
481
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase = random.Random() if is_torch_available(): import torch def __UpperCAmelCase ( a_ , a_=1.0 , a_=None , a_=None): if rng is None: snake_case_ = global_rng snake_case_ = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , a , a=7 , a=4_00 , a=20_00 , a=1 , a=0.0 , a=1_60_00 , a=True , a=True , ) -> Tuple: snake_case_ = parent snake_case_ = batch_size snake_case_ = min_seq_length snake_case_ = max_seq_length snake_case_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ = feature_size snake_case_ = padding_value snake_case_ = sampling_rate snake_case_ = return_attention_mask snake_case_ = do_normalize def _UpperCamelCase ( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _UpperCamelCase ( self , a=False , a=False ) -> Optional[int]: def _flatten(a ): return list(itertools.chain(*a ) ) if equal_length: snake_case_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ = [np.asarray(a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = ASTFeatureExtractor def _UpperCamelCase ( self ) -> Optional[int]: snake_case_ = ASTFeatureExtractionTester(self ) def _UpperCamelCase ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case_ = [np.asarray(a ) for speech_input in speech_inputs] # Test not batched input snake_case_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values snake_case_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) # Test batched snake_case_ = feat_extract(a , padding=a , return_tensors='np' ).input_values snake_case_ = feat_extract(a , padding=a , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(a , a ): self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case_ = np.asarray(a ) snake_case_ = feat_extract(a , return_tensors='np' ).input_values snake_case_ = feat_extract(a , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(a , a ): self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) @require_torch def _UpperCamelCase ( self ) -> List[str]: import torch snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = np.random.rand(1_00 ).astype(np.floataa ) snake_case_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _UpperCamelCase ( self , a ) -> Tuple: from datasets import load_dataset snake_case_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech snake_case_ = ds.sort('id' ).select(range(a ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def _UpperCamelCase ( self ) -> Optional[int]: # fmt: off snake_case_ = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on snake_case_ = self._load_datasamples(1 ) snake_case_ = ASTFeatureExtractor() snake_case_ = feature_extractor(a , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 10_24, 1_28) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , a , atol=1E-4 ) )
198
0
from math import log from scipy.constants import Boltzmann, physical_constants a__ : Union[str, Any] = 3_0_0 # TEMPERATURE (unit = K) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): '''simple docstring''' if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
700
"""simple docstring""" from math import asin, atan, cos, radians, sin, sqrt, tan a__ : List[str] = 6_37_81_37.0 a__ : Tuple = 6_35_67_52.31_42_45 a__ : str = 6_3_7_8_1_3_7 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (AXIS_A - AXIS_B) / AXIS_A __SCREAMING_SNAKE_CASE = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) __SCREAMING_SNAKE_CASE = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) __SCREAMING_SNAKE_CASE = radians(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = radians(lowerCAmelCase_ ) # Equation __SCREAMING_SNAKE_CASE = sin((phi_a - phi_a) / 2 ) __SCREAMING_SNAKE_CASE = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __SCREAMING_SNAKE_CASE = sqrt(sin_sq_phi + (cos(lowerCAmelCase_ ) * cos(lowerCAmelCase_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
553
0
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: Optional[int] , SCREAMING_SNAKE_CASE: Optional[int] ): """simple docstring""" while a != 0: _lowerCAmelCase = b % a, a return b def __snake_case ( SCREAMING_SNAKE_CASE: Dict , SCREAMING_SNAKE_CASE: Any ): """simple docstring""" if gcd(lowercase__ , lowercase__ ) != 1: _lowerCAmelCase = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(lowercase__ ) _lowerCAmelCase = 1, 0, a _lowerCAmelCase = 0, 1, m while va != 0: _lowerCAmelCase = ua // va _lowerCAmelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
580
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _UpperCamelCase = get_tests_dir("""fixtures""") _UpperCamelCase = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _UpperCamelCase = get_tests_dir("""fixtures/dummy-config.json""") class __a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[int] = 0 def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[int] = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(snake_case , snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Tuple = AutoFeatureExtractor.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : int = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally lowerCAmelCase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained(snake_case ).to_dict() config_dict.pop("feature_extractor_type" ) lowerCAmelCase__ : Any = WavaVecaFeatureExtractor(**snake_case ) # save in new folder model_config.save_pretrained(snake_case ) config.save_pretrained(snake_case ) lowerCAmelCase__ : List[str] = AutoFeatureExtractor.from_pretrained(snake_case ) # make sure private variable is not incorrectly saved lowerCAmelCase__ : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(snake_case , snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = AutoFeatureExtractor.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" with self.assertRaisesRegex( snake_case , "bert-base is not a local folder and is not a valid model identifier" ): lowerCAmelCase__ : Optional[int] = AutoFeatureExtractor.from_pretrained("bert-base" ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" with self.assertRaisesRegex( snake_case , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowerCAmelCase__ : Optional[Any] = AutoFeatureExtractor.from_pretrained(snake_case , revision="aaaaaa" ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" with self.assertRaisesRegex( snake_case , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): lowerCAmelCase__ : Dict = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" with self.assertRaises(snake_case ): lowerCAmelCase__ : Tuple = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case ): lowerCAmelCase__ : str = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=snake_case ) lowerCAmelCase__ : Optional[int] = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=snake_case ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(snake_case ) lowerCAmelCase__ : Optional[Any] = AutoFeatureExtractor.from_pretrained(snake_case , trust_remote_code=snake_case ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" try: AutoConfig.register("custom" , snake_case ) AutoFeatureExtractor.register(snake_case , snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case ): AutoFeatureExtractor.register(snake_case , snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase__ : List[Any] = CustomFeatureExtractor.from_pretrained(snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(snake_case ) lowerCAmelCase__ : Any = AutoFeatureExtractor.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" class __a ( __magic_name__ ): """simple docstring""" __UpperCamelCase : Optional[int] = True try: AutoConfig.register("custom" , snake_case ) AutoFeatureExtractor.register(snake_case , snake_case ) # If remote code is not set, the default is to use local lowerCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase__ : Dict = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=snake_case ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase__ : Tuple = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=snake_case ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(snake_case , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
453
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self: Tuple , __A: int , __A: Any=13 , __A: Optional[int]=7 , __A: List[str]=True , __A: str=True , __A: List[Any]=True , __A: Union[str, Any]=True , __A: Optional[int]=99 , __A: List[str]=[1, 1, 2] , __A: str=1 , __A: List[str]=32 , __A: List[str]=4 , __A: Dict=8 , __A: str=37 , __A: Union[str, Any]="gelu_new" , __A: Tuple=0.1 , __A: str=0.1 , __A: Any=0.0 , __A: Union[str, Any]=512 , __A: List[str]=3 , __A: Tuple=0.0_2 , __A: int=3 , __A: int=4 , __A: Dict=None , __A: Tuple=False , ): '''simple docstring''' a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_input_mask a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = block_sizes a__ = num_decoder_layers a__ = d_model a__ = n_head a__ = d_head a__ = d_inner a__ = hidden_act a__ = hidden_dropout a__ = attention_dropout a__ = activation_dropout a__ = max_position_embeddings a__ = type_vocab_size a__ = 2 a__ = num_labels a__ = num_choices a__ = scope a__ = initializer_std # Used in the tests to check the size of the first attention layer a__ = n_head # Used in the tests to check the size of the first hidden state a__ = self.d_model # Used in the tests to check the number of output hidden states/attentions a__ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: a__ = self.num_hidden_layers + 2 def lowercase ( self: List[str] ): '''simple docstring''' a__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ = ids_tensor([self.batch_size] , self.num_choices ) a__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowercase ( self: List[Any] , __A: Tuple , __A: Dict , __A: Union[str, Any] , __A: str , __A: Tuple , __A: Union[str, Any] , __A: str , ): '''simple docstring''' a__ = TFFunnelModel(config=__A ) a__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} a__ = model(__A ) a__ = [input_ids, input_mask] a__ = model(__A ) a__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) a__ = False a__ = TFFunnelModel(config=__A ) a__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) a__ = False a__ = TFFunnelModel(config=__A ) a__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowercase ( self: str , __A: Dict , __A: List[str] , __A: List[str] , __A: int , __A: str , __A: int , __A: Any , ): '''simple docstring''' a__ = TFFunnelBaseModel(config=__A ) a__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} a__ = model(__A ) a__ = [input_ids, input_mask] a__ = model(__A ) a__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) a__ = False a__ = TFFunnelBaseModel(config=__A ) a__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) a__ = False a__ = TFFunnelBaseModel(config=__A ) a__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowercase ( self: Any , __A: Any , __A: Tuple , __A: int , __A: Optional[int] , __A: int , __A: List[Any] , __A: List[str] , ): '''simple docstring''' a__ = TFFunnelForPreTraining(config=__A ) a__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} a__ = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self: Tuple , __A: List[Any] , __A: Union[str, Any] , __A: int , __A: str , __A: Tuple , __A: Optional[Any] , __A: int , ): '''simple docstring''' a__ = TFFunnelForMaskedLM(config=__A ) a__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} a__ = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self: str , __A: Union[str, Any] , __A: Optional[int] , __A: Tuple , __A: int , __A: Union[str, Any] , __A: str , __A: Optional[Any] , ): '''simple docstring''' a__ = self.num_labels a__ = TFFunnelForSequenceClassification(config=__A ) a__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} a__ = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self: List[Any] , __A: Union[str, Any] , __A: Any , __A: Dict , __A: Tuple , __A: int , __A: Optional[Any] , __A: int , ): '''simple docstring''' a__ = self.num_choices a__ = TFFunnelForMultipleChoice(config=__A ) a__ = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) a__ = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) a__ = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) a__ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } a__ = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self: List[Any] , __A: Optional[Any] , __A: Union[str, Any] , __A: Tuple , __A: int , __A: int , __A: List[str] , __A: int , ): '''simple docstring''' a__ = self.num_labels a__ = TFFunnelForTokenClassification(config=__A ) a__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} a__ = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self: Any , __A: Union[str, Any] , __A: Dict , __A: Tuple , __A: List[str] , __A: int , __A: Optional[Any] , __A: Optional[int] , ): '''simple docstring''' a__ = TFFunnelForQuestionAnswering(config=__A ) a__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} a__ = model(__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self: Union[str, Any] ): '''simple docstring''' a__ = self.prepare_config_and_inputs() ( ( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) , ) = config_and_inputs a__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE =( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE =( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False def lowercase ( self: str ): '''simple docstring''' a__ = TFFunnelModelTester(self ) a__ = ConfigTester(self , config_class=__A ) def lowercase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase ( self: Dict ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowercase ( self: str ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def lowercase ( self: int ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def lowercase ( self: int ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) def lowercase ( self: Tuple ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) @require_tf class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE =( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False def lowercase ( self: List[Any] ): '''simple docstring''' a__ = TFFunnelModelTester(self , base=__A ) a__ = ConfigTester(self , config_class=__A ) def lowercase ( self: int ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase ( self: Any ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__A ) def lowercase ( self: Optional[int] ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def lowercase ( self: Optional[Any] ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A )
200
"""simple docstring""" __a : List[Any] = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) __a : Union[str, Any] = frozenset(['prompt', 'negative_prompt']) __a : Any = frozenset([]) __a : Union[str, Any] = frozenset(['image']) __a : Dict = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) __a : Dict = frozenset(['image']) __a : Dict = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) __a : Optional[Any] = frozenset(['prompt', 'image', 'negative_prompt']) __a : List[Any] = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) __a : Union[str, Any] = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) __a : Optional[Any] = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) __a : int = frozenset(['image', 'mask_image']) __a : Tuple = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) __a : Optional[Any] = frozenset(['example_image', 'image', 'mask_image']) __a : Optional[Any] = frozenset(['class_labels']) __a : Tuple = frozenset(['class_labels']) __a : int = frozenset(['batch_size']) __a : int = frozenset([]) __a : Union[str, Any] = frozenset(['batch_size']) __a : Tuple = frozenset([]) __a : Dict = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) __a : Dict = frozenset(['prompt', 'negative_prompt']) __a : Optional[int] = frozenset(['input_tokens']) __a : str = frozenset(['input_tokens'])
200
1
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase ( _A , _A , unittest.TestCase ): snake_case_ = IFPipeline snake_case_ = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} snake_case_ = TEXT_TO_IMAGE_BATCH_PARAMS snake_case_ = PipelineTesterMixin.required_optional_params - {"latents"} def _lowerCamelCase ( self ): return self._get_dummy_components() def _lowerCamelCase ( self , a_ , a_=0 ): if str(a_ ).startswith("mps" ): lowerCAmelCase : Any = torch.manual_seed(a_ ) else: lowerCAmelCase : Optional[Any] = torch.Generator(device=a_ ).manual_seed(a_ ) lowerCAmelCase : List[str] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _lowerCamelCase ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _lowerCamelCase ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowerCamelCase ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowerCamelCase ( self ): self._test_save_load_local() def _lowerCamelCase ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowerCamelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): # if lowerCAmelCase : str = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) lowerCAmelCase : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=a_ , tokenizer=a_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) lowerCAmelCase , lowerCAmelCase : Optional[int] = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[int] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(a_ , a_ , a_ , a_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowerCAmelCase : str = IFImgaImgPipeline(**pipe_a.components ) lowerCAmelCase : List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(a_ , a_ , a_ , a_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowerCAmelCase : Optional[Any] = IFInpaintingPipeline(**pipe_a.components ) lowerCAmelCase : Tuple = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(a_ , a_ , a_ , a_ ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_ ): # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase : Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase : int = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , num_inference_steps=2 , generator=a_ , output_type="np" , ) lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) lowerCAmelCase : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 lowerCAmelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(a_ , a_ ) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a_ ) lowerCAmelCase : str = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , image=a_ , generator=a_ , num_inference_steps=2 , output_type="np" , ) lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) lowerCAmelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowerCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(a_ , a_ ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_ ): # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a_ ) lowerCAmelCase : str = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase : Dict = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , image=a_ , num_inference_steps=2 , generator=a_ , output_type="np" , ) lowerCAmelCase : int = output.images[0] assert image.shape == (64, 64, 3) lowerCAmelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowerCAmelCase : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(a_ , a_ ) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase : Any = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(a_ ) lowerCAmelCase : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a_ ) lowerCAmelCase : Dict = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , image=a_ , original_image=a_ , generator=a_ , num_inference_steps=2 , output_type="np" , ) lowerCAmelCase : int = output.images[0] assert image.shape == (256, 256, 3) lowerCAmelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowerCAmelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(a_ , a_ ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_ ): # pipeline 1 _start_torch_memory_measurement() lowerCAmelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a_ ) lowerCAmelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(a_ ) lowerCAmelCase : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase : Union[str, Any] = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , image=a_ , mask_image=a_ , num_inference_steps=2 , generator=a_ , output_type="np" , ) lowerCAmelCase : Optional[Any] = output.images[0] assert image.shape == (64, 64, 3) lowerCAmelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowerCAmelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(a_ , a_ ) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a_ ) lowerCAmelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(a_ ) lowerCAmelCase : Any = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(a_ ) lowerCAmelCase : Tuple = pipe_a( prompt_embeds=a_ , negative_prompt_embeds=a_ , image=a_ , mask_image=a_ , original_image=a_ , generator=a_ , num_inference_steps=2 , output_type="np" , ) lowerCAmelCase : List[str] = output.images[0] assert image.shape == (256, 256, 3) lowerCAmelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowerCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(a_ , a_ ) def __A ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
525
'''simple docstring''' def __A ( a_ : list[list[float]] ): lowerCAmelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(a_ ): if len(a_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a_ ) ) return data_lists def __A ( a_ : list[list[float]] ,a_ : list[int] ): lowerCAmelCase : list[list[float]] = [] for dlist, weight in zip(a_ ,a_ ): lowerCAmelCase : Optional[Any] = min(a_ ) lowerCAmelCase : List[str] = max(a_ ) lowerCAmelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowerCAmelCase : List[Any] = f'''Invalid weight of {weight:f} provided''' raise ValueError(a_ ) score_lists.append(a_ ) return score_lists def __A ( a_ : list[list[float]] ): lowerCAmelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a_ ): lowerCAmelCase : Optional[Any] = final_scores[j] + ele return final_scores def __A ( a_ : list[list[float]] ,a_ : list[int] ): lowerCAmelCase : Union[str, Any] = get_data(a_ ) lowerCAmelCase : List[Any] = calculate_each_score(a_ ,a_ ) lowerCAmelCase : Optional[Any] = generate_final_scores(a_ ) # append scores to source data for i, ele in enumerate(a_ ): source_data[i].append(a_ ) return source_data
525
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __snake_case = (720, 1280) # Height, Width __snake_case = (0.4, 0.6) # if height or width lower than this scale, drop it. __snake_case = 1 / 100 __snake_case = '' __snake_case = '' __snake_case = '' __snake_case = 250 def _lowerCamelCase ( ): lowercase__ , lowercase__ : int = get_dataset(__A , __A ) for index in range(__A ): lowercase__ : str = random.sample(range(len(__A ) ) , 4 ) lowercase__ , lowercase__ , lowercase__ : Dict = update_image_and_anno( __A , __A , __A , __A , __A , filter_scale=__A , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase__ : List[str] = random_chars(32 ) lowercase__ : Tuple = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] lowercase__ : Dict = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(f'''{file_root}.jpg''' , __A , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) lowercase__ : Tuple = [] for anno in new_annos: lowercase__ : Tuple = anno[3] - anno[1] lowercase__ : str = anno[4] - anno[2] lowercase__ : Tuple = anno[1] + width / 2 lowercase__ : Dict = anno[2] + height / 2 lowercase__ : Optional[Any] = f'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(__A ) with open(f'''{file_root}.txt''' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def _lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str ): lowercase__ : List[str] = [] lowercase__ : Optional[Any] = [] for label_file in glob.glob(os.path.join(__A , """*.txt""" ) ): lowercase__ : Dict = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(__A ) as in_file: lowercase__ : Union[str, Any] = in_file.readlines() lowercase__ : int = os.path.join(__A , f'''{label_name}.jpg''' ) lowercase__ : List[Any] = [] for obj_list in obj_lists: lowercase__ : Optional[int] = obj_list.rstrip("""\n""" ).split(""" """ ) lowercase__ : Tuple = float(obj[1] ) - float(obj[3] ) / 2 lowercase__ : Union[str, Any] = float(obj[2] ) - float(obj[4] ) / 2 lowercase__ : int = float(obj[1] ) + float(obj[3] ) / 2 lowercase__ : Union[str, Any] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__A ) labels.append(__A ) return img_paths, labels def _lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple = 0.0 , ): lowercase__ : Optional[Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowercase__ : Optional[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase__ : int = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase__ : Optional[Any] = int(scale_x * output_size[1] ) lowercase__ : Any = int(scale_y * output_size[0] ) lowercase__ : List[str] = [] lowercase__ : Tuple = [] for i, index in enumerate(__A ): lowercase__ : str = all_img_list[index] path_list.append(__A ) lowercase__ : List[str] = all_annos[index] lowercase__ : List[Any] = cva.imread(__A ) if i == 0: # top-left lowercase__ : int = cva.resize(__A , (divid_point_x, divid_point_y) ) lowercase__ : int = img for bbox in img_annos: lowercase__ : List[Any] = bbox[1] * scale_x lowercase__ : Optional[int] = bbox[2] * scale_y lowercase__ : Optional[int] = bbox[3] * scale_x lowercase__ : Dict = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowercase__ : List[Any] = cva.resize(__A , (output_size[1] - divid_point_x, divid_point_y) ) lowercase__ : List[str] = img for bbox in img_annos: lowercase__ : Optional[Any] = scale_x + bbox[1] * (1 - scale_x) lowercase__ : Union[str, Any] = bbox[2] * scale_y lowercase__ : Tuple = scale_x + bbox[3] * (1 - scale_x) lowercase__ : List[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowercase__ : List[str] = cva.resize(__A , (divid_point_x, output_size[0] - divid_point_y) ) lowercase__ : Union[str, Any] = img for bbox in img_annos: lowercase__ : List[str] = bbox[1] * scale_x lowercase__ : Any = scale_y + bbox[2] * (1 - scale_y) lowercase__ : List[str] = bbox[3] * scale_x lowercase__ : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowercase__ : Dict = cva.resize( __A , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowercase__ : int = img for bbox in img_annos: lowercase__ : List[str] = scale_x + bbox[1] * (1 - scale_x) lowercase__ : Tuple = scale_y + bbox[2] * (1 - scale_y) lowercase__ : Dict = scale_x + bbox[3] * (1 - scale_x) lowercase__ : Dict = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowercase__ : str = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _lowerCamelCase ( lowerCamelCase__ : int ): assert number_char > 1, "The number of character should greater than 1" lowercase__ : str = ascii_lowercase + digits return "".join(random.choice(__A ) for _ in range(__A ) ) if __name__ == "__main__": main() print('DONE ✅')
701
"""simple docstring""" import heapq def _lowerCamelCase ( lowerCamelCase__ : dict ): lowercase__ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase__ , [-1 * len(lowerCamelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices lowercase__ : Any = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowercase__ : Optional[Any] = heapq.heappop(lowerCamelCase__ )[1][0] chosen_vertices.add(lowerCamelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowercase__ : List[Any] = elem[1][1].index(lowerCamelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __snake_case = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}")
128
0
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class _a (TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): '''simple docstring''' def __init__( self ,__a=None ,**__a ) -> Any: super().__init__(features=__a ) snake_case : int = torch_tensor_kwargs import torch # noqa import torch at initialization def snake_case_ ( self ,__a ) -> Any: import torch if isinstance(__a ,__a ) and column: if all( isinstance(__a ,torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(__a ) return column def snake_case_ ( self ,__a ) -> Tuple: import torch if isinstance(__a ,(str, bytes, type(__a )) ): return value elif isinstance(__a ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() snake_case : List[str] = {} if isinstance(__a ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): snake_case : Union[str, Any] = {"""dtype""": torch.intaa} elif isinstance(__a ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): snake_case : List[str] = {"""dtype""": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__a ,PIL.Image.Image ): snake_case : Any = np.asarray(__a ) return torch.tensor(__a ,**{**default_dtype, **self.torch_tensor_kwargs} ) def snake_case_ ( self ,__a ) -> Tuple: import torch # support for torch, tf, jax etc. if hasattr(__a ,"""__array__""" ) and not isinstance(__a ,torch.Tensor ): snake_case : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__a ,np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__a ) for substruct in data_struct] ) elif isinstance(__a ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(__a ) for substruct in data_struct] ) return self._tensorize(__a ) def snake_case_ ( self ,__a ) -> Optional[Any]: return map_nested(self._recursive_tensorize ,__a ,map_list=__a ) def snake_case_ ( self ,__a ) -> Mapping: snake_case : Any = self.numpy_arrow_extractor().extract_row(__a ) snake_case : Optional[int] = self.python_features_decoder.decode_row(__a ) return self.recursive_tensorize(__a ) def snake_case_ ( self ,__a ) -> "torch.Tensor": snake_case : Any = self.numpy_arrow_extractor().extract_column(__a ) snake_case : Any = self.python_features_decoder.decode_column(__a ,pa_table.column_names[0] ) snake_case : List[str] = self.recursive_tensorize(__a ) snake_case : Optional[Any] = self._consolidate(__a ) return column def snake_case_ ( self ,__a ) -> Mapping: snake_case : Tuple = self.numpy_arrow_extractor().extract_batch(__a ) snake_case : str = self.python_features_decoder.decode_batch(__a ) snake_case : Optional[Any] = self.recursive_tensorize(__a ) for column_name in batch: snake_case : Optional[int] = self._consolidate(batch[column_name] ) return batch
116
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowercase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase : Dict = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowercase : List[Any] = { """unc-nlp/lxmert-base-uncased""": 512, } lowercase : Tuple = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _a (a__ ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Optional[int] = LxmertTokenizer def __init__( self ,__a=None ,__a=None ,__a=True ,__a="[UNK]" ,__a="[SEP]" ,__a="[PAD]" ,__a="[CLS]" ,__a="[MASK]" ,__a=True ,__a=None ,**__a ,) -> str: super().__init__( __a ,tokenizer_file=__a ,do_lower_case=__a ,unk_token=__a ,sep_token=__a ,pad_token=__a ,cls_token=__a ,mask_token=__a ,tokenize_chinese_chars=__a ,strip_accents=__a ,**__a ,) snake_case : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,__a ) != do_lower_case or normalizer_state.get("""strip_accents""" ,__a ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,__a ) != tokenize_chinese_chars ): snake_case : Union[str, Any] = getattr(__a ,normalizer_state.pop("""type""" ) ) snake_case : Optional[int] = do_lower_case snake_case : Optional[int] = strip_accents snake_case : List[Any] = tokenize_chinese_chars snake_case : Union[str, Any] = normalizer_class(**__a ) snake_case : str = do_lower_case def snake_case_ ( self ,__a ,__a=None ) -> Optional[int]: snake_case : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self ,__a ,__a = None ) -> List[int]: snake_case : int = [self.sep_token_id] snake_case : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self ,__a ,__a = None ) -> Tuple[str]: snake_case : Optional[int] = self._tokenizer.model.save(__a ,name=__a ) return tuple(__a )
116
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: List[str] ) -> str: '''simple docstring''' A__ = "" for i in table: res += inp[i - 1] return res def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: Tuple ) -> List[Any]: '''simple docstring''' A__ = "" for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: List[Any] ) -> List[Any]: '''simple docstring''' A__ = int("0b" + data[0] + data[-1] , 2 ) A__ = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: Any ) -> Union[str, Any]: '''simple docstring''' A__ = message[:4] A__ = message[4:] A__ = apply_table(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A__ = xor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A__ = apply_sbox(SCREAMING_SNAKE_CASE_ , temp[:4] ) # noqa: E741 A__ = apply_sbox(SCREAMING_SNAKE_CASE_ , temp[4:] ) A__ = "0" * (2 - len(SCREAMING_SNAKE_CASE_ )) + l # noqa: E741 A__ = "0" * (2 - len(SCREAMING_SNAKE_CASE_ )) + r A__ = apply_table(l + r , SCREAMING_SNAKE_CASE_ ) A__ = xor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return temp + right if __name__ == "__main__": lowerCAmelCase__ = input("""Enter 10 bit key: """) lowerCAmelCase__ = input("""Enter 8 bit message: """) lowerCAmelCase__ = [6, 3, 7, 4, 8, 5, 1_0, 9] lowerCAmelCase__ = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] lowerCAmelCase__ = [2, 4, 3, 1] lowerCAmelCase__ = [2, 6, 3, 1, 4, 8, 5, 7] lowerCAmelCase__ = [4, 1, 3, 5, 7, 2, 8, 6] lowerCAmelCase__ = [4, 1, 2, 3, 2, 3, 4, 1] lowerCAmelCase__ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowerCAmelCase__ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowerCAmelCase__ = apply_table(key, paa_table) lowerCAmelCase__ = temp[:5] lowerCAmelCase__ = temp[5:] lowerCAmelCase__ = left_shift(left) lowerCAmelCase__ = left_shift(right) lowerCAmelCase__ = apply_table(left + right, pa_table) lowerCAmelCase__ = left_shift(left) lowerCAmelCase__ = left_shift(right) lowerCAmelCase__ = left_shift(left) lowerCAmelCase__ = left_shift(right) lowerCAmelCase__ = apply_table(left + right, pa_table) # encryption lowerCAmelCase__ = apply_table(message, IP) lowerCAmelCase__ = function(expansion, sa, sa, keya, temp) lowerCAmelCase__ = temp[4:] + temp[:4] lowerCAmelCase__ = function(expansion, sa, sa, keya, temp) lowerCAmelCase__ = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption lowerCAmelCase__ = apply_table(CT, IP) lowerCAmelCase__ = function(expansion, sa, sa, keya, temp) lowerCAmelCase__ = temp[4:] + temp[:4] lowerCAmelCase__ = function(expansion, sa, sa, keya, temp) lowerCAmelCase__ = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
710
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class a__ ( snake_case ): """simple docstring""" def __init__( self , *lowercase , **lowercase ) -> None: '''simple docstring''' warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , lowercase , ) super().__init__(*lowercase , **lowercase )
626
0
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( a_ , a_): snake_case_ = old_name if "patch_embed" in old_name: snake_case_ , snake_case_ , snake_case_ = old_name.split('.') if layer == "0": snake_case_ = old_name.replace('0' , 'convolution1') elif layer == "1": snake_case_ = old_name.replace('1' , 'batchnorm_before') elif layer == "3": snake_case_ = old_name.replace('3' , 'convolution2') else: snake_case_ = old_name.replace('4' , 'batchnorm_after') if "network" in old_name and re.search(R'\d\.\d' , a_): snake_case_ = R'\b\d{2}\b' if bool(re.search(a_ , a_)): snake_case_ = re.search(R'\d\.\d\d.' , a_).group() else: snake_case_ = re.search(R'\d\.\d.' , a_).group() if int(match[0]) < 6: snake_case_ = old_name.replace(a_ , '') snake_case_ = trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1]) snake_case_ = 'intermediate_stages.' + trimmed_name else: snake_case_ = old_name.replace(a_ , '') if int(match[2]) < num_meta4D_last_stage: snake_case_ = trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2]) else: snake_case_ = str(int(match[2]) - num_meta4D_last_stage) snake_case_ = trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index) if "norm1" in old_name: snake_case_ = trimmed_name.replace('norm1' , 'layernorm1') elif "norm2" in old_name: snake_case_ = trimmed_name.replace('norm2' , 'layernorm2') elif "fc1" in old_name: snake_case_ = trimmed_name.replace('fc1' , 'linear_in') elif "fc2" in old_name: snake_case_ = trimmed_name.replace('fc2' , 'linear_out') snake_case_ = 'last_stage.' + trimmed_name elif "network" in old_name and re.search(R'.\d.' , a_): snake_case_ = old_name.replace('network' , 'intermediate_stages') if "fc" in new_name: snake_case_ = new_name.replace('fc' , 'convolution') elif ("norm1" in new_name) and ("layernorm1" not in new_name): snake_case_ = new_name.replace('norm1' , 'batchnorm_before') elif ("norm2" in new_name) and ("layernorm2" not in new_name): snake_case_ = new_name.replace('norm2' , 'batchnorm_after') if "proj" in new_name: snake_case_ = new_name.replace('proj' , 'projection') if "dist_head" in new_name: snake_case_ = new_name.replace('dist_head' , 'distillation_classifier') elif "head" in new_name: snake_case_ = new_name.replace('head' , 'classifier') elif "patch_embed" in new_name: snake_case_ = 'efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": snake_case_ = new_name.replace('norm' , 'layernorm') snake_case_ = 'efficientformer.' + new_name else: snake_case_ = 'efficientformer.encoder.' + new_name return new_name def __UpperCAmelCase ( a_ , a_): for key in checkpoint.copy().keys(): snake_case_ = checkpoint.pop(a_) snake_case_ = val return checkpoint def __UpperCAmelCase ( ): snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(a_ , stream=a_).raw) return image def __UpperCAmelCase ( a_ , a_ , a_ , a_): snake_case_ = torch.load(a_ , map_location='cpu')['model'] snake_case_ = EfficientFormerConfig.from_json_file(a_) snake_case_ = EfficientFormerForImageClassificationWithTeacher(a_) snake_case_ = '_'.join(checkpoint_path.split('/')[-1].split('.')[0].split('_')[:-1]) snake_case_ = config.depths[-1] - config.num_metaad_blocks + 1 snake_case_ = convert_torch_checkpoint(a_ , a_) model.load_state_dict(a_) model.eval() snake_case_ = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image snake_case_ = prepare_img() snake_case_ = 2_56 snake_case_ = 2_24 snake_case_ = EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) snake_case_ = processor(images=a_ , return_tensors='pt').pixel_values # original processing pipeline snake_case_ = Compose( [ Resize(a_ , interpolation=pillow_resamplings['bicubic']), CenterCrop(a_), ToTensor(), Normalize(a_ , a_), ]) snake_case_ = image_transforms(a_).unsqueeze(0) assert torch.allclose(a_ , a_) snake_case_ = model(a_) snake_case_ = outputs.logits snake_case_ = (1, 10_00) if "l1" in model_name: snake_case_ = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28]) assert torch.allclose(logits[0, :10] , a_ , atol=1E-3) assert logits.shape == expected_shape elif "l3" in model_name: snake_case_ = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27]) assert torch.allclose(logits[0, :10] , a_ , atol=1E-3) assert logits.shape == expected_shape elif "l7" in model_name: snake_case_ = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78]) assert logits.shape == expected_shape else: raise ValueError( f'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''') # Save Checkpoints Path(a_).mkdir(exist_ok=a_) model.save_pretrained(a_) print(f'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''') processor.save_pretrained(a_) print(f'''Processor successfuly saved at {pytorch_dump_path}''') if push_to_hub: print('Pushing model to the hub...') model.push_to_hub( repo_id=f'''Bearnardd/{pytorch_dump_path}''' , commit_message='Add model' , use_temp_dir=a_ , ) processor.push_to_hub( repo_id=f'''Bearnardd/{pytorch_dump_path}''' , commit_message='Add image processor' , use_temp_dir=a_ , ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) lowercase = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
198
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowercase = 4 lowercase = 3 class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' pass def __UpperCAmelCase ( a_): for shard in shards: for i in range(a_): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ): snake_case_ = int(os.environ['RANK']) snake_case_ = int(os.environ['WORLD_SIZE']) snake_case_ = ArgumentParser() parser.add_argument('--streaming' , type=a_) parser.add_argument('--local_rank' , type=a_) parser.add_argument('--num_workers' , type=a_ , default=0) snake_case_ = parser.parse_args() snake_case_ = args.streaming snake_case_ = args.num_workers snake_case_ = {'shards': [f'''shard_{shard_idx}''' for shard_idx in range(a_)]} snake_case_ = IterableDataset.from_generator(a_ , gen_kwargs=a_) if not streaming: snake_case_ = Dataset.from_list(list(a_)) snake_case_ = split_dataset_by_node(a_ , rank=a_ , world_size=a_) snake_case_ = torch.utils.data.DataLoader(a_ , num_workers=a_) snake_case_ = NUM_SHARDS * NUM_ITEMS_PER_SHARD snake_case_ = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) snake_case_ = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
198
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig A__ : Union[str, Any] = logging.get_logger(__name__) # General docstring A__ : Tuple = """RegNetConfig""" # Base docstring A__ : List[Any] = """facebook/regnet-y-040""" A__ : Union[str, Any] = [1, 1_088, 7, 7] # Image classification docstring A__ : List[Any] = """facebook/regnet-y-040""" A__ : List[str] = """tabby, tabby cat""" A__ : List[Any] = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 3 , __UpperCamelCase = 1 , __UpperCamelCase = 1 , __UpperCamelCase = "relu" , )-> Any: super().__init__() UpperCAmelCase__ : Union[str, Any] = nn.Convad( __UpperCamelCase , __UpperCamelCase , kernel_size=__UpperCamelCase , stride=__UpperCamelCase , padding=kernel_size // 2 , groups=__UpperCamelCase , bias=__UpperCamelCase , ) UpperCAmelCase__ : Optional[Any] = nn.BatchNormad(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCAmelCase__ ( self , __UpperCamelCase )-> Any: UpperCAmelCase__ : List[str] = self.convolution(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = self.normalization(__UpperCamelCase ) UpperCAmelCase__ : Any = self.activation(__UpperCamelCase ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCamelCase )-> str: super().__init__() UpperCAmelCase__ : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) UpperCAmelCase__ : Optional[int] = config.num_channels def lowerCAmelCase__ ( self , __UpperCamelCase )-> Any: UpperCAmelCase__ : Dict = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) UpperCAmelCase__ : Optional[Any] = self.embedder(__UpperCamelCase ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 2 )-> Union[str, Any]: super().__init__() UpperCAmelCase__ : Optional[Any] = nn.Convad(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , stride=__UpperCamelCase , bias=__UpperCamelCase ) UpperCAmelCase__ : int = nn.BatchNormad(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Tensor: UpperCAmelCase__ : List[str] = self.convolution(__UpperCamelCase ) UpperCAmelCase__ : str = self.normalization(__UpperCamelCase ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase )-> Optional[int]: super().__init__() UpperCAmelCase__ : Union[str, Any] = nn.AdaptiveAvgPoolad((1, 1) ) UpperCAmelCase__ : Union[str, Any] = nn.Sequential( nn.Convad(__UpperCamelCase , __UpperCamelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(__UpperCamelCase , __UpperCamelCase , kernel_size=1 ) , nn.Sigmoid() , ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: # b c h w -> b c 1 1 UpperCAmelCase__ : Union[str, Any] = self.pooler(__UpperCamelCase ) UpperCAmelCase__ : Any = self.attention(__UpperCamelCase ) UpperCAmelCase__ : List[str] = hidden_state * attention return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 )-> List[str]: super().__init__() UpperCAmelCase__ : Tuple = in_channels != out_channels or stride != 1 UpperCAmelCase__ : List[str] = max(1 , out_channels // config.groups_width ) UpperCAmelCase__ : str = ( RegNetShortCut(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase__ : List[Any] = nn.Sequential( RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase , groups=__UpperCamelCase , activation=config.hidden_act ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=__UpperCamelCase ) , ) UpperCAmelCase__ : str = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self , __UpperCamelCase )-> Dict: UpperCAmelCase__ : Optional[Any] = hidden_state UpperCAmelCase__ : Dict = self.layer(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = self.shortcut(__UpperCamelCase ) hidden_state += residual UpperCAmelCase__ : Tuple = self.activation(__UpperCamelCase ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 )-> str: super().__init__() UpperCAmelCase__ : Any = in_channels != out_channels or stride != 1 UpperCAmelCase__ : str = max(1 , out_channels // config.groups_width ) UpperCAmelCase__ : Union[str, Any] = ( RegNetShortCut(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase__ : List[str] = nn.Sequential( RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase , groups=__UpperCamelCase , activation=config.hidden_act ) , RegNetSELayer(__UpperCamelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=__UpperCamelCase ) , ) UpperCAmelCase__ : List[str] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self , __UpperCamelCase )-> Tuple: UpperCAmelCase__ : Any = hidden_state UpperCAmelCase__ : Optional[Any] = self.layer(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = self.shortcut(__UpperCamelCase ) hidden_state += residual UpperCAmelCase__ : str = self.activation(__UpperCamelCase ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 2 , __UpperCamelCase = 2 , )-> str: super().__init__() UpperCAmelCase__ : Optional[int] = RegNetXLayer if config.layer_type == "x" else RegNetYLayer UpperCAmelCase__ : Any = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase , ) , *[layer(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for _ in range(depth - 1 )] , ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Optional[int]: UpperCAmelCase__ : List[Any] = self.layers(__UpperCamelCase ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCamelCase )-> Tuple: super().__init__() UpperCAmelCase__ : int = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( __UpperCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCAmelCase__ : int = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__UpperCamelCase , config.depths[1:] ): self.stages.append(RegNetStage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , depth=__UpperCamelCase ) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = True )-> BaseModelOutputWithNoAttention: UpperCAmelCase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase__ : Tuple = hidden_states + (hidden_state,) UpperCAmelCase__ : Optional[Any] = stage_module(__UpperCamelCase ) if output_hidden_states: UpperCAmelCase__ : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__UpperCamelCase , hidden_states=__UpperCamelCase ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = RegNetConfig _A = 'regnet' _A = 'pixel_values' _A = True def lowerCAmelCase__ ( self , __UpperCamelCase )-> str: if isinstance(__UpperCamelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(__UpperCamelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=False )-> str: if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : str = value A__ : Union[str, Any] = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ A__ : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , lowerCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self , __UpperCamelCase )-> Tuple: super().__init__(__UpperCamelCase ) UpperCAmelCase__ : List[str] = config UpperCAmelCase__ : Dict = RegNetEmbeddings(__UpperCamelCase ) UpperCAmelCase__ : List[str] = RegNetEncoder(__UpperCamelCase ) UpperCAmelCase__ : List[str] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCamelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None )-> BaseModelOutputWithPoolingAndNoAttention: UpperCAmelCase__ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ : Optional[Any] = self.embedder(__UpperCamelCase ) UpperCAmelCase__ : Any = self.encoder( __UpperCamelCase , output_hidden_states=__UpperCamelCase , return_dict=__UpperCamelCase ) UpperCAmelCase__ : Dict = encoder_outputs[0] UpperCAmelCase__ : Tuple = self.pooler(__UpperCamelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCamelCase , pooler_output=__UpperCamelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , lowerCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self , __UpperCamelCase )-> List[Any]: super().__init__(__UpperCamelCase ) UpperCAmelCase__ : str = config.num_labels UpperCAmelCase__ : List[Any] = RegNetModel(__UpperCamelCase ) # classification head UpperCAmelCase__ : Any = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , )-> ImageClassifierOutputWithNoAttention: UpperCAmelCase__ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ : Any = self.regnet(__UpperCamelCase , output_hidden_states=__UpperCamelCase , return_dict=__UpperCamelCase ) UpperCAmelCase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase__ : Optional[Any] = self.classifier(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase__ : Optional[int] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase__ : str = "single_label_classification" else: UpperCAmelCase__ : Tuple = "multi_label_classification" if self.config.problem_type == "regression": UpperCAmelCase__ : Tuple = MSELoss() if self.num_labels == 1: UpperCAmelCase__ : Dict = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase__ : int = loss_fct(__UpperCamelCase , __UpperCamelCase ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase__ : Optional[int] = CrossEntropyLoss() UpperCAmelCase__ : List[str] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase__ : Optional[Any] = BCEWithLogitsLoss() UpperCAmelCase__ : Dict = loss_fct(__UpperCamelCase , __UpperCamelCase ) if not return_dict: UpperCAmelCase__ : Any = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__UpperCamelCase , logits=__UpperCamelCase , hidden_states=outputs.hidden_states )
714
"""simple docstring""" from math import isqrt def a__ ( lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : List[Any] = False return [i for i in range(2 , lowerCAmelCase ) if is_prime[i]] def a__ ( lowerCAmelCase : int = 10**8 ): '''simple docstring''' UpperCAmelCase__ : Dict = calculate_prime_numbers(max_number // 2 ) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Tuple = len(lowerCAmelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
660
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Dict = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) lowercase__ : Any = size if size is not None else {"""shortest_edge""": 2_56} lowercase__ : str = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} lowercase__ : Any = get_size_dict(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = do_resize lowercase__ : str = size lowercase__ : Any = resample lowercase__ : Dict = do_center_crop lowercase__ : Optional[int] = crop_size lowercase__ : Optional[Any] = do_rescale lowercase__ : List[Any] = rescale_factor lowercase__ : Optional[int] = do_normalize lowercase__ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}') lowercase__ : str = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size["""shortest_edge"""] , default_to_square=SCREAMING_SNAKE_CASE_) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Any = get_size_dict(SCREAMING_SNAKE_CASE_) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size["""height"""], size["""width"""]) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : int = do_resize if do_resize is not None else self.do_resize lowercase__ : Dict = size if size is not None else self.size lowercase__ : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_) lowercase__ : str = resample if resample is not None else self.resample lowercase__ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : List[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : int = get_size_dict(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : str = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : Optional[int] = image_std if image_std is not None else self.image_std lowercase__ : Union[str, Any] = make_list_of_images(SCREAMING_SNAKE_CASE_) if not valid_images(SCREAMING_SNAKE_CASE_): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images] if do_resize: lowercase__ : Tuple = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_) for image in images] if do_center_crop: lowercase__ : Any = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images] if do_rescale: lowercase__ : Tuple = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images] if do_normalize: lowercase__ : Tuple = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Dict = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
12
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _UpperCamelCase : int = logging.get_logger(__name__) def __UpperCAmelCase ( A : Union[tf.Tensor, np.ndarray] ) -> List[int]: if isinstance(A , np.ndarray ): return list(tensor.shape ) UpperCAmelCase_ : str = tf.shape(A ) if tensor.shape == tf.TensorShape(A ): return dynamic UpperCAmelCase_ : Any = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(A )] def __UpperCAmelCase ( A : tf.Tensor , A : Optional[int] = None , A : Optional[str] = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=A , name=A ) def __UpperCAmelCase ( A : List[str] , A : Union[str, Any] , A : List[str] , A : str=1e-5 , A : Dict=-1 ) -> List[Any]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(A , A ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized UpperCAmelCase_ , UpperCAmelCase_ : int = tf.nn.moments(A , axes=[axis] , keepdims=A ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis UpperCAmelCase_ : Tuple = [1] * inputs.shape.rank UpperCAmelCase_ : int = shape_list(A )[axis] UpperCAmelCase_ : Dict = tf.reshape(A , A ) UpperCAmelCase_ : Optional[Any] = tf.reshape(A , A ) # Compute layer normalization using the batch_normalization # function. UpperCAmelCase_ : Dict = tf.nn.batch_normalization( A , A , A , offset=A , scale=A , variance_epsilon=A , ) return outputs def __UpperCAmelCase ( A : Dict , A : int=0 , A : Optional[int]=-1 ) -> str: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input UpperCAmelCase_ : Any = tf.shape(A ) UpperCAmelCase_ : Dict = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) UpperCAmelCase_ : Optional[int] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(A , A ) def __UpperCAmelCase ( A : tf.Tensor ) -> tf.Tensor: if not isinstance(A , tf.Tensor ): UpperCAmelCase_ : Optional[Any] = tf.convert_to_tensor(A ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: UpperCAmelCase_ : Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: UpperCAmelCase_ : Tuple = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) UpperCAmelCase_ : int = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __UpperCAmelCase ( A : tf.Tensor , A : int , A : str = "input_ids" ) -> None: tf.debugging.assert_less( A , tf.cast(A , dtype=tensor.dtype ) , message=( F"The maximum value of {tensor_name} ({tf.math.reduce_max(A )}) must be smaller than the embedding " F"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def __UpperCAmelCase ( A : Dict , A : Tuple , A : List[str] ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. UpperCAmelCase_ : Tuple = [x for x in data if len(A ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " F"bytes: {bad_attributes}" ) UpperCAmelCase_ : Union[str, Any] = np.asarray(A ) UpperCAmelCase_ : Optional[int] = 1 UpperCAmelCase_ : str = np.array_split(A , A ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 UpperCAmelCase_ : Dict = np.array_split(A , A ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(A ): UpperCAmelCase_ : int = chunk_data else: UpperCAmelCase_ : List[Any] = data def __UpperCAmelCase ( A : int , A : Optional[Any] ) -> Tuple: if name in group.attrs: UpperCAmelCase_ : Optional[int] = [n.decode('''utf8''' ) if hasattr(A , '''decode''' ) else n for n in group.attrs[name]] else: UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(A , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def __UpperCAmelCase ( A : Tuple ) -> str: def _expand_single_ad_tensor(A : int ): if isinstance(A , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(A , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , A )
541
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off __lowerCamelCase : List[Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __lowerCamelCase : str = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class a__ ( A__ ): A = 'whisper' A = ['past_key_values'] A = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Dict,_A : Any=5_1865,_A : Union[str, Any]=80,_A : Union[str, Any]=6,_A : Tuple=4,_A : int=6,_A : Any=4,_A : List[Any]=1536,_A : Tuple=1536,_A : Dict=0.0,_A : Optional[Any]=0.0,_A : str=5_0257,_A : List[str]=True,_A : Union[str, Any]=True,_A : Any="gelu",_A : List[str]=256,_A : Any=0.0,_A : List[str]=0.0,_A : Optional[int]=0.0,_A : Any=0.02,_A : Optional[Any]=False,_A : Any=1500,_A : Any=448,_A : str=5_0256,_A : List[Any]=5_0256,_A : Optional[Any]=5_0256,_A : Dict=None,_A : Any=[220, 5_0256],_A : str=False,_A : Optional[int]=256,_A : Any=False,_A : Tuple=0.05,_A : Union[str, Any]=10,_A : List[Any]=2,_A : Tuple=0.0,_A : int=10,_A : Optional[Any]=0,_A : Union[str, Any]=7,**_A : int,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE_ : int = num_mel_bins SCREAMING_SNAKE_CASE_ : Union[str, Any] = d_model SCREAMING_SNAKE_CASE_ : str = encoder_layers SCREAMING_SNAKE_CASE_ : Union[str, Any] = encoder_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = decoder_layers SCREAMING_SNAKE_CASE_ : str = decoder_attention_heads SCREAMING_SNAKE_CASE_ : int = decoder_ffn_dim SCREAMING_SNAKE_CASE_ : Dict = encoder_ffn_dim SCREAMING_SNAKE_CASE_ : str = dropout SCREAMING_SNAKE_CASE_ : Any = attention_dropout SCREAMING_SNAKE_CASE_ : Tuple = activation_dropout SCREAMING_SNAKE_CASE_ : List[str] = activation_function SCREAMING_SNAKE_CASE_ : Tuple = init_std SCREAMING_SNAKE_CASE_ : List[str] = encoder_layerdrop SCREAMING_SNAKE_CASE_ : List[str] = decoder_layerdrop SCREAMING_SNAKE_CASE_ : Tuple = use_cache SCREAMING_SNAKE_CASE_ : int = encoder_layers SCREAMING_SNAKE_CASE_ : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE_ : int = max_source_positions SCREAMING_SNAKE_CASE_ : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ : List[Any] = classifier_proj_size SCREAMING_SNAKE_CASE_ : int = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE_ : Tuple = apply_spec_augment SCREAMING_SNAKE_CASE_ : List[str] = mask_time_prob SCREAMING_SNAKE_CASE_ : Dict = mask_time_length SCREAMING_SNAKE_CASE_ : Optional[int] = mask_time_min_masks SCREAMING_SNAKE_CASE_ : Optional[int] = mask_feature_prob SCREAMING_SNAKE_CASE_ : str = mask_feature_length SCREAMING_SNAKE_CASE_ : Any = mask_feature_min_masks SCREAMING_SNAKE_CASE_ : Dict = median_filter_width super().__init__( pad_token_id=_A,bos_token_id=_A,eos_token_id=_A,is_encoder_decoder=_A,decoder_start_token_id=_A,suppress_tokens=_A,begin_suppress_tokens=_A,**_A,) class a__ ( A__ ): @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ : Dict = {0: "batch"} else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_A,direction="inputs" ) return common_inputs def __UpperCamelCase ( self : str,_A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],_A : int = -1,_A : int = -1,_A : bool = False,_A : Optional["TensorType"] = None,_A : int = 2_2050,_A : float = 5.0,_A : int = 220,): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = OrderedDict() SCREAMING_SNAKE_CASE_ : Dict = OnnxConfig.generate_dummy_inputs( self,preprocessor=preprocessor.feature_extractor,batch_size=_A,framework=_A,sampling_rate=_A,time_duration=_A,frequency=_A,) SCREAMING_SNAKE_CASE_ : List[Any] = encoder_inputs["input_features"].shape[2] SCREAMING_SNAKE_CASE_ : Optional[int] = encoder_sequence_length // 2 if self.use_past else seq_length SCREAMING_SNAKE_CASE_ : int = super().generate_dummy_inputs( preprocessor.tokenizer,_A,_A,_A,_A ) SCREAMING_SNAKE_CASE_ : int = encoder_inputs.pop("input_features" ) SCREAMING_SNAKE_CASE_ : List[str] = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: SCREAMING_SNAKE_CASE_ : int = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" return 1E-3
316
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( A__ , unittest.TestCase ): A = BioGptTokenizer A = False def __UpperCamelCase ( self : str ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE_ : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] SCREAMING_SNAKE_CASE_ : List[Any] = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""] SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : str = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w" ) as fp: fp.write(json.dumps(_A ) ) with open(self.merges_file,"w" ) as fp: fp.write("\n".join(_A ) ) def __UpperCamelCase ( self : List[str],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = "lower newer" SCREAMING_SNAKE_CASE_ : Optional[int] = "lower newer" return input_text, output_text def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = BioGptTokenizer(self.vocab_file,self.merges_file ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = "lower" SCREAMING_SNAKE_CASE_ : int = ["low", "er</w>"] SCREAMING_SNAKE_CASE_ : int = tokenizer.tokenize(_A ) self.assertListEqual(_A,_A ) SCREAMING_SNAKE_CASE_ : int = tokens + ["<unk>"] SCREAMING_SNAKE_CASE_ : int = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ),_A ) @slow def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.encode("sequence builders",add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.encode("multi-sequence build",add_special_tokens=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_A ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.build_inputs_with_special_tokens(_A,_A ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
316
1
"""simple docstring""" _lowerCAmelCase : int = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowerCAmelCase : Optional[int] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowerCAmelCase : Optional[Any] = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' assert len(str(__UpperCamelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _UpperCAmelCase : Union[str, Any] = year // 100 _UpperCAmelCase : Union[str, Any] = (5 * (century % 4) + 2) % 7 _UpperCAmelCase : int = year % 100 _UpperCAmelCase : Optional[int] = centurian % 12 _UpperCAmelCase : str = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _UpperCAmelCase : List[Any] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) _UpperCAmelCase : int = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
289
"""simple docstring""" import os import sys a_ = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) a_ = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def __UpperCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): return AutoConfig.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __UpperCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): return AutoTokenizer.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModel.__doc__ ) def __UpperCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): return AutoModel.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __UpperCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): return AutoModelForCausalLM.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __UpperCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): return AutoModelForMaskedLM.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __UpperCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): return AutoModelForSequenceClassification.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __UpperCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): return AutoModelForQuestionAnswering.from_pretrained(*__UpperCamelCase , **__UpperCamelCase )
76
0
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency snake_case__ : List[Any] = { """E""": 1_2.7_0, """T""": 9.0_6, """A""": 8.1_7, """O""": 7.5_1, """I""": 6.9_7, """N""": 6.7_5, """S""": 6.3_3, """H""": 6.0_9, """R""": 5.9_9, """D""": 4.2_5, """L""": 4.0_3, """C""": 2.7_8, """U""": 2.7_6, """M""": 2.4_1, """W""": 2.3_6, """F""": 2.2_3, """G""": 2.0_2, """Y""": 1.9_7, """P""": 1.9_3, """B""": 1.2_9, """V""": 0.9_8, """K""": 0.7_7, """J""": 0.1_5, """X""": 0.1_5, """Q""": 0.1_0, """Z""": 0.0_7, } snake_case__ : str = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" snake_case__ : Optional[int] = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def snake_case_ ( _SCREAMING_SNAKE_CASE ): return x[0] def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = get_letter_count(_SCREAMING_SNAKE_CASE ) __lowercase = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_SCREAMING_SNAKE_CASE ) __lowercase = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_SCREAMING_SNAKE_CASE ) __lowercase = "".join(freq_to_letter[freq] ) __lowercase = list(freq_to_letter_str.items() ) freq_pairs.sort(key=_SCREAMING_SNAKE_CASE , reverse=_SCREAMING_SNAKE_CASE ) __lowercase = [freq_pair[1] for freq_pair in freq_pairs] return "".join(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = get_frequency_order(_SCREAMING_SNAKE_CASE ) __lowercase = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
655
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
1
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : List[str] =logging.get_logger(__name__) def a__ ( A__ ): print('Loading config file...' ) def flatten_yaml_as_dict(A__, A__="", A__="." ): SCREAMING_SNAKE_CASE_ : List[str] = [] for k, v in d.items(): SCREAMING_SNAKE_CASE_ : Tuple = parent_key + sep + k if parent_key else k if isinstance(A__, collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(A__, A__, sep=A__ ).items() ) else: items.append((new_key, v) ) return dict(A__ ) SCREAMING_SNAKE_CASE_ : Dict = argparse.Namespace() with open(A__, 'r' ) as yaml_file: try: SCREAMING_SNAKE_CASE_ : Optional[Any] = yaml.load(A__, Loader=yaml.FullLoader ) SCREAMING_SNAKE_CASE_ : List[str] = flatten_yaml_as_dict(A__ ) for k, v in flat_cfg.items(): setattr(A__, A__, A__ ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(A__, str(A__ ) ) ) return config def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = MobileViTVaConfig() SCREAMING_SNAKE_CASE_ : Optional[Any] = False # dataset if task_name.startswith('imagenet1k_' ): SCREAMING_SNAKE_CASE_ : Optional[int] = 1_0_0_0 if int(task_name.strip().split('_' )[-1] ) == 3_8_4: SCREAMING_SNAKE_CASE_ : List[str] = 3_8_4 else: SCREAMING_SNAKE_CASE_ : Optional[Any] = 2_5_6 SCREAMING_SNAKE_CASE_ : List[Any] = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): SCREAMING_SNAKE_CASE_ : str = 2_1_0_0_0 if int(task_name.strip().split('_' )[-1] ) == 3_8_4: SCREAMING_SNAKE_CASE_ : List[Any] = 3_8_4 else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2_5_6 SCREAMING_SNAKE_CASE_ : str = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): SCREAMING_SNAKE_CASE_ : str = 1_5_1 SCREAMING_SNAKE_CASE_ : List[str] = 5_1_2 SCREAMING_SNAKE_CASE_ : Optional[int] = 'ade20k-id2label.json' SCREAMING_SNAKE_CASE_ : Any = True elif task_name.startswith('voc_' ): SCREAMING_SNAKE_CASE_ : Optional[int] = 2_1 SCREAMING_SNAKE_CASE_ : Any = 5_1_2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'pascal-voc-id2label.json' SCREAMING_SNAKE_CASE_ : int = True # orig_config SCREAMING_SNAKE_CASE_ : Dict = load_orig_config_file(A__ ) assert getattr(A__, 'model.classification.name', -1 ) == "mobilevit_v2", "Invalid model" SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(A__, 'model.classification.mitv2.width_multiplier', 1.0 ) assert ( getattr(A__, 'model.classification.mitv2.attn_norm_layer', -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" SCREAMING_SNAKE_CASE_ : int = getattr(A__, 'model.classification.activation.name', 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: SCREAMING_SNAKE_CASE_ : str = getattr(A__, 'model.segmentation.output_stride', 1_6 ) if "_deeplabv3" in task_name: SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(A__, 'model.segmentation.deeplabv3.aspp_rates', [1_2, 2_4, 3_6] ) SCREAMING_SNAKE_CASE_ : List[Any] = getattr(A__, 'model.segmentation.deeplabv3.aspp_out_channels', 5_1_2 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(A__, 'model.segmentation.deeplabv3.aspp_dropout', 0.1 ) # id2label SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'huggingface/label-files' SCREAMING_SNAKE_CASE_ : Tuple = json.load(open(hf_hub_download(A__, A__, repo_type='dataset' ), 'r' ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {int(A__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : Any = idalabel SCREAMING_SNAKE_CASE_ : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def a__ ( A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : Dict = dct.pop(A__ ) SCREAMING_SNAKE_CASE_ : List[Any] = val def a__ ( A__, A__=False ): if base_model: SCREAMING_SNAKE_CASE_ : Optional[Any] = '' else: SCREAMING_SNAKE_CASE_ : Optional[int] = 'mobilevitv2.' SCREAMING_SNAKE_CASE_ : Any = [] for k in state_dict.keys(): if k[:8] == "encoder.": SCREAMING_SNAKE_CASE_ : str = k[8:] else: SCREAMING_SNAKE_CASE_ : Dict = k if ".block." in k: SCREAMING_SNAKE_CASE_ : Tuple = k_new.replace('.block.', '.' ) if ".conv." in k: SCREAMING_SNAKE_CASE_ : Any = k_new.replace('.conv.', '.convolution.' ) if ".norm." in k: SCREAMING_SNAKE_CASE_ : Dict = k_new.replace('.norm.', '.normalization.' ) if "conv_1." in k: SCREAMING_SNAKE_CASE_ : Union[str, Any] = k_new.replace('conv_1.', F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: SCREAMING_SNAKE_CASE_ : Any = k_new.replace(F'''layer_{i}.''', F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: SCREAMING_SNAKE_CASE_ : int = k_new.replace('.exp_1x1.', '.expand_1x1.' ) if ".red_1x1." in k: SCREAMING_SNAKE_CASE_ : Tuple = k_new.replace('.red_1x1.', '.reduce_1x1.' ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: SCREAMING_SNAKE_CASE_ : int = k_new.replace(F'''layer_{i}.0.''', F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: SCREAMING_SNAKE_CASE_ : Union[str, Any] = k_new.replace(F'''layer_{i}.1.local_rep.0.''', F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: SCREAMING_SNAKE_CASE_ : Dict = k_new.replace(F'''layer_{i}.1.local_rep.1.''', F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [0, 1] elif i == 4: SCREAMING_SNAKE_CASE_ : Any = [0, 1, 2, 3] elif i == 5: SCREAMING_SNAKE_CASE_ : Any = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: SCREAMING_SNAKE_CASE_ : str = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''', F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: SCREAMING_SNAKE_CASE_ : int = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''', F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: SCREAMING_SNAKE_CASE_ : List[str] = k_new.replace(F'''layer_{i}.1.conv_proj.''', F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: SCREAMING_SNAKE_CASE_ : List[str] = k_new.replace('pre_norm_attn.0.', 'layernorm_before.' ) if "pre_norm_attn.1." in k: SCREAMING_SNAKE_CASE_ : Union[str, Any] = k_new.replace('pre_norm_attn.1.', 'attention.' ) if "pre_norm_ffn.0." in k: SCREAMING_SNAKE_CASE_ : str = k_new.replace('pre_norm_ffn.0.', 'layernorm_after.' ) if "pre_norm_ffn.1." in k: SCREAMING_SNAKE_CASE_ : Optional[int] = k_new.replace('pre_norm_ffn.1.', 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: SCREAMING_SNAKE_CASE_ : List[Any] = k_new.replace('pre_norm_ffn.3.', 'ffn.conv2.' ) if "classifier.1." in k: SCREAMING_SNAKE_CASE_ : int = k_new.replace('classifier.1.', 'classifier.' ) if "seg_head." in k: SCREAMING_SNAKE_CASE_ : str = k_new.replace('seg_head.', 'segmentation_head.' ) if ".aspp_layer." in k: SCREAMING_SNAKE_CASE_ : List[str] = k_new.replace('.aspp_layer.', '.' ) if ".aspp_pool." in k: SCREAMING_SNAKE_CASE_ : List[Any] = k_new.replace('.aspp_pool.', '.' ) rename_keys.append((k, k_new) ) return rename_keys def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(A__ ) for k in keys_to_ignore: state_dict.pop(A__, A__ ) def a__ ( ): SCREAMING_SNAKE_CASE_ : str = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" SCREAMING_SNAKE_CASE_ : Dict = Image.open(requests.get(A__, stream=A__ ).raw ) return im @torch.no_grad() def a__ ( A__, A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : List[str] = get_mobilevitva_config(A__, A__ ) # load original state_dict SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.load(A__, map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = MobileViTVaForSemanticSegmentation(A__ ).eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = False else: SCREAMING_SNAKE_CASE_ : Optional[int] = MobileViTVaForImageClassification(A__ ).eval() SCREAMING_SNAKE_CASE_ : str = False # remove and rename some keys of load the original model SCREAMING_SNAKE_CASE_ : Dict = checkpoint remove_unused_keys(A__ ) SCREAMING_SNAKE_CASE_ : List[str] = create_rename_keys(A__, base_model=A__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(A__, A__, A__ ) # load modified state_dict model.load_state_dict(A__ ) # Check outputs on an image, prepared by MobileViTImageProcessor SCREAMING_SNAKE_CASE_ : List[str] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 3_2 ) SCREAMING_SNAKE_CASE_ : Dict = image_processor(images=prepare_img(), return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : List[Any] = model(**A__ ) # verify classification model if task_name.startswith('imagenet' ): SCREAMING_SNAKE_CASE_ : Any = outputs.logits SCREAMING_SNAKE_CASE_ : Union[str, Any] = logits.argmax(-1 ).item() print('Predicted class:', model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3], A__, atol=1E-4 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : int =argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase__ : Any =parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
101
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[str] = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
602
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __magic_name__ ( _snake_case , unittest.TestCase ): UpperCAmelCase = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Optional[int]=0 ) -> Dict: UpperCAmelCase = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(lowerCAmelCase__ ) ) UpperCAmelCase = np.random.RandomState(lowerCAmelCase__ ) UpperCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _UpperCamelCase ( self : List[str] ) -> int: UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = self.get_dummy_inputs() UpperCAmelCase = pipe(**lowerCAmelCase__ ).images UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) UpperCAmelCase = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _UpperCamelCase ( self : str ) -> List[str]: UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = self.get_dummy_inputs() UpperCAmelCase = pipe(**lowerCAmelCase__ ).images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) UpperCAmelCase = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCamelCase ( self : Tuple ) -> Dict: UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) # warmup pass to apply optimizations UpperCAmelCase = pipe(**self.get_dummy_inputs() ) UpperCAmelCase = self.get_dummy_inputs() UpperCAmelCase = pipe(**lowerCAmelCase__ ).images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) UpperCAmelCase = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = self.get_dummy_inputs() UpperCAmelCase = pipe(**lowerCAmelCase__ ).images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) UpperCAmelCase = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCamelCase ( self : Dict ) -> Union[str, Any]: UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = self.get_dummy_inputs() UpperCAmelCase = pipe(**lowerCAmelCase__ ).images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) UpperCAmelCase = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = self.get_dummy_inputs() UpperCAmelCase = pipe(**lowerCAmelCase__ ).images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) UpperCAmelCase = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __magic_name__ ( unittest.TestCase ): @property def _UpperCamelCase ( self : Any ) -> str: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCamelCase ( self : Dict ) -> Tuple: UpperCAmelCase = ort.SessionOptions() UpperCAmelCase = False return options def _UpperCamelCase ( self : Dict ) -> Any: UpperCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) UpperCAmelCase = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = "A fantasy landscape, trending on artstation" UpperCAmelCase = np.random.RandomState(0 ) UpperCAmelCase = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=lowerCAmelCase__ , output_type="np" , ) UpperCAmelCase = output.images UpperCAmelCase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) UpperCAmelCase = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) UpperCAmelCase = init_image.resize((7_6_8, 5_1_2) ) UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase = "A fantasy landscape, trending on artstation" UpperCAmelCase = np.random.RandomState(0 ) UpperCAmelCase = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=lowerCAmelCase__ , output_type="np" , ) UpperCAmelCase = output.images UpperCAmelCase = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) UpperCAmelCase = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
1
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __magic_name__ : def __init__( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase = "" UpperCAmelCase = "" UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = 2_5_6 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> List[str]: UpperCAmelCase = cva.imread(lowerCAmelCase__ , 0 ) UpperCAmelCase = copy.deepcopy(self.img ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="x" ) UpperCAmelCase = np.sum(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase = x[i] / self.k self.sk += prk UpperCAmelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase = int(last % last ) UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCAmelCase__ ) UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def _UpperCamelCase ( self : str ) -> int: plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def _UpperCamelCase ( self : Dict ) -> Optional[Any]: cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg") lowerCAmelCase__ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
1
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _lowerCamelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCamelCase : Dict = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class lowerCAmelCase__ ( _UpperCamelCase ): '''simple docstring''' lowercase_ = 4_2 class lowerCAmelCase__ ( _UpperCamelCase ): '''simple docstring''' def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): '''simple docstring''' super().__init__() self.register_modules( prior=lowerCamelCase_ , image_encoder=lowerCamelCase_ , image_processor=lowerCamelCase_ , scheduler=lowerCamelCase_ , renderer=lowerCamelCase_ , ) def __UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if latents is None: __A =randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=lowerCamelCase_ , dtype=lowerCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) __A =latents.to(lowerCamelCase_ ) __A =latents * scheduler.init_noise_sigma return latents def __UpperCamelCase ( self , lowercase__=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __A =torch.device(f'''cuda:{gpu_id}''' ) __A =[self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase_ , lowerCamelCase_ ) @property def __UpperCamelCase ( self ): '''simple docstring''' if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowerCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(image[0] , torch.Tensor ): __A =torch.cat(lowerCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(lowerCamelCase_ , axis=0 ) if not isinstance(lowerCamelCase_ , torch.Tensor ): __A =self.image_processor(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) __A =image.to(dtype=self.image_encoder.dtype , device=lowerCamelCase_ ) __A =self.image_encoder(lowerCamelCase_ )['last_hidden_state'] __A =image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 __A =image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 ) if do_classifier_free_guidance: __A =torch.zeros_like(lowerCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __A =torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowerCamelCase_ ) def __call__( self , lowercase__ , lowercase__ = 1 , lowercase__ = 2_5 , lowercase__ = None , lowercase__ = None , lowercase__ = 4.0 , lowercase__ = 6_4 , lowercase__ = "pil" , lowercase__ = True , ): '''simple docstring''' if isinstance(lowerCamelCase_ , PIL.Image.Image ): __A =1 elif isinstance(lowerCamelCase_ , torch.Tensor ): __A =image.shape[0] elif isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): __A =len(lowerCamelCase_ ) else: raise ValueError( f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowerCamelCase_ )}''' ) __A =self._execution_device __A =batch_size * num_images_per_prompt __A =guidance_scale > 1.0 __A =self._encode_image(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # prior self.scheduler.set_timesteps(lowerCamelCase_ , device=lowerCamelCase_ ) __A =self.scheduler.timesteps __A =self.prior.config.num_embeddings __A =self.prior.config.embedding_dim __A =self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim __A =latents.reshape(latents.shape[0] , lowerCamelCase_ , lowerCamelCase_ ) for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ): # expand the latents if we are doing classifier free guidance __A =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __A =self.scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) __A =self.prior( lowerCamelCase_ , timestep=lowerCamelCase_ , proj_embedding=lowerCamelCase_ , ).predicted_image_embedding # remove the variance __A =noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: __A =noise_pred.chunk(2 ) __A =noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) __A =self.scheduler.step( lowerCamelCase_ , timestep=lowerCamelCase_ , sample=lowerCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowerCamelCase_ ) __A =[] for i, latent in enumerate(lowerCamelCase_ ): print() __A =self.renderer.decode( latent[None, :] , lowerCamelCase_ , size=lowerCamelCase_ , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(lowerCamelCase_ ) __A =torch.stack(lowerCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) __A =images.cpu().numpy() if output_type == "pil": __A =[self.numpy_to_pil(lowerCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowerCamelCase_ )
184
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase: List[Any] = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase: Dict = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase: Dict = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __UpperCamelCase: List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
266
0
import math def A ( snake_case__ : list , snake_case__ : int = 0 , snake_case__ : int = 0 ) -> int: '''simple docstring''' __snake_case = end or len(snake_case_ ) for i in range(snake_case_ , snake_case_ ): __snake_case = i __snake_case = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case = array[temp_index - 1] temp_index -= 1 __snake_case = temp_index_value return array def A ( snake_case__ : list , snake_case__ : int , snake_case__ : int ) -> List[Any]: # Max Heap '''simple docstring''' __snake_case = index __snake_case = 2 * index + 1 # Left Node __snake_case = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case = right_index if largest != index: __snake_case = array[largest], array[index] heapify(snake_case_ , snake_case_ , snake_case_ ) def A ( snake_case__ : list ) -> Optional[Any]: '''simple docstring''' __snake_case = len(snake_case_ ) for i in range(n // 2 , -1 , -1 ): heapify(snake_case_ , snake_case_ , snake_case_ ) for i in range(n - 1 , 0 , -1 ): __snake_case = array[0], array[i] heapify(snake_case_ , 0 , snake_case_ ) return array def A ( snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> Optional[Any]: '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def A ( snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> Dict: '''simple docstring''' __snake_case = low __snake_case = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case = array[j], array[i] i += 1 def A ( snake_case__ : list ) -> Dict: '''simple docstring''' if len(snake_case_ ) == 0: return array __snake_case = 2 * math.ceil(math.loga(len(snake_case_ ) ) ) __snake_case = 16 return intro_sort(snake_case_ , 0 , len(snake_case_ ) , snake_case_ , snake_case_ ) def A ( snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> Any: '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(snake_case_ ) max_depth -= 1 __snake_case = median_of_a(snake_case_ , snake_case_ , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case = partition(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) intro_sort(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __snake_case = p return insertion_sort(snake_case_ , snake_case_ , snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : Optional[Any] = input("Enter numbers separated by a comma : ").strip() UpperCAmelCase__ : int = [float(item) for item in user_input.split(",")] print(sort(unsorted))
703
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase__ : Any = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class __lowercase ( unittest.TestCase ): def _a ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = True , ) -> Dict: __snake_case = [file for file in os.listdir(lowercase_) if os.path.isfile(os.path.join(lowercase_ , lowercase_))] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append('__init__.py') __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_) if only_modules: __snake_case = file.split('.')[0] try: __snake_case = getattr(lowercase_ , lowercase_) __snake_case = doctest.DocTestSuite(lowercase_) __snake_case = unittest.TextTestRunner().run(lowercase_) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __snake_case = doctest.testfile(str('..' / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _a ( self) -> str: __snake_case = Path('src/transformers') __snake_case = 'modeling' __snake_case = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_) def _a ( self) -> Optional[Any]: __snake_case = Path('src/transformers') __snake_case = 'tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> List[str]: __snake_case = Path('src/transformers') __snake_case = 'configuration' self.analyze_directory(lowercase_ , identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('src/transformers') __snake_case = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_) def _a ( self) -> Dict: __snake_case = Path('docs/source') __snake_case = ['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_)
676
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase : @staticmethod def UpperCAmelCase ( *_lowercase :Any , **_lowercase :Optional[int] ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class lowerCAmelCase ( unittest.TestCase ): __lowerCamelCase = MODEL_FOR_OBJECT_DETECTION_MAPPING def UpperCAmelCase ( self :Optional[Any] , _lowercase :Union[str, Any] , _lowercase :Any , _lowercase :Optional[Any] ): '''simple docstring''' lowercase__ = ObjectDetectionPipeline(model=_lowercase , image_processor=_lowercase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def UpperCAmelCase ( self :List[Any] , _lowercase :int , _lowercase :Any ): '''simple docstring''' lowercase__ = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(_lowercase ) , 0 ) for detected_object in outputs: self.assertEqual( _lowercase , { "score": ANY(_lowercase ), "label": ANY(_lowercase ), "box": {"xmin": ANY(_lowercase ), "ymin": ANY(_lowercase ), "xmax": ANY(_lowercase ), "ymax": ANY(_lowercase )}, } , ) import datasets lowercase__ = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) lowercase__ = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] lowercase__ = object_detector(_lowercase , threshold=0.0 ) self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for outputs in batch_outputs: self.assertGreater(len(_lowercase ) , 0 ) for detected_object in outputs: self.assertEqual( _lowercase , { "score": ANY(_lowercase ), "label": ANY(_lowercase ), "box": {"xmin": ANY(_lowercase ), "ymin": ANY(_lowercase ), "xmax": ANY(_lowercase ), "ymax": ANY(_lowercase )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' pass @require_torch def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = "hf-internal-testing/tiny-detr-mobilenetsv3" lowercase__ = AutoModelForObjectDetection.from_pretrained(_lowercase ) lowercase__ = AutoFeatureExtractor.from_pretrained(_lowercase ) lowercase__ = ObjectDetectionPipeline(model=_lowercase , feature_extractor=_lowercase ) lowercase__ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ] , ) lowercase__ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ], ] , ) @require_torch @slow def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = "facebook/detr-resnet-50" lowercase__ = AutoModelForObjectDetection.from_pretrained(_lowercase ) lowercase__ = AutoFeatureExtractor.from_pretrained(_lowercase ) lowercase__ = ObjectDetectionPipeline(model=_lowercase , feature_extractor=_lowercase ) lowercase__ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) lowercase__ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], ] , ) @require_torch @slow def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = "facebook/detr-resnet-50" lowercase__ = pipeline("object-detection" , model=_lowercase ) lowercase__ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) lowercase__ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], ] , ) @require_torch @slow def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' lowercase__ = 0.9985 lowercase__ = "facebook/detr-resnet-50" lowercase__ = pipeline("object-detection" , model=_lowercase ) lowercase__ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=_lowercase ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) @require_torch @require_pytesseract @slow def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = "Narsil/layoutlmv3-finetuned-funsd" lowercase__ = 0.9993 lowercase__ = pipeline("object-detection" , model=_lowercase , threshold=_lowercase ) lowercase__ = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(_lowercase , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}}, ] , )
655
_snake_case = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def _A ( __magic_name__ ): # Make sure the supplied data is a bytes-like object if not isinstance(__magic_name__ , __magic_name__ ): lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(__magic_name__ ) lowercase__ = "".join(bin(__magic_name__ )[2:].zfill(8 ) for byte in data ) lowercase__ = len(__magic_name__ ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ = B"=" * ((6 - len(__magic_name__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(__magic_name__ ) % 6) else: lowercase__ = B"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(__magic_name__ ) , 6 ) ).encode() + padding ) def _A ( __magic_name__ ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(__magic_name__ , __magic_name__ ) and not isinstance(__magic_name__ , __magic_name__ ): lowercase__ = ( "argument should be a bytes-like object or ASCII string, " f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(__magic_name__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(__magic_name__ , __magic_name__ ): try: lowercase__ = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowercase__ = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(__magic_name__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ = encoded_data[:-padding] lowercase__ = "".join( bin(B64_CHARSET.index(__magic_name__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ = "".join( bin(B64_CHARSET.index(__magic_name__ ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(__magic_name__ ) , 8 ) ] return bytes(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
655
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 'audio-spectrogram-transformer' def __init__( self , A_=7_68 , A_=12 , A_=12 , A_=30_72 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1E-1_2 , A_=16 , A_=True , A_=10 , A_=10 , A_=10_24 , A_=1_28 , **A_ , ) -> Optional[Any]: """simple docstring""" super().__init__(**A_ ) _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps _lowerCamelCase = patch_size _lowerCamelCase = qkv_bias _lowerCamelCase = frequency_stride _lowerCamelCase = time_stride _lowerCamelCase = max_length _lowerCamelCase = num_mel_bins
714
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
638
0
import math def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = [True] * n lowercase = False lowercase = False lowercase = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): lowercase = i * 2 while index < n: lowercase = False lowercase = index + i lowercase = [2] for i in range(3 , __SCREAMING_SNAKE_CASE , 2 ): if is_prime[i]: primes.append(__SCREAMING_SNAKE_CASE ) return primes def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE = 9999_6666_3333 ): lowercase = math.floor(math.sqrt(__SCREAMING_SNAKE_CASE ) ) + 100 lowercase = prime_sieve(__SCREAMING_SNAKE_CASE ) lowercase = 0 lowercase = 0 lowercase = primes[prime_index] while (last_prime**2) <= limit: lowercase = primes[prime_index + 1] lowercase = last_prime**2 lowercase = next_prime**2 # Get numbers divisible by lps(current) lowercase = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowercase = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowercase = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowercase = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
84
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class A_ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=99 , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , ): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = scope lowercase = self.vocab_size - 1 def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = ids_tensor([self.batch_size] , self.num_choices ) lowercase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowercase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , *snake_case ): lowercase = OpenAIGPTModel(config=snake_case ) model.to(snake_case ) model.eval() lowercase = model(snake_case , token_type_ids=snake_case , head_mask=snake_case ) lowercase = model(snake_case , token_type_ids=snake_case ) lowercase = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , *snake_case ): lowercase = OpenAIGPTLMHeadModel(snake_case ) model.to(snake_case ) model.eval() lowercase = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , *snake_case ): lowercase = OpenAIGPTDoubleHeadsModel(snake_case ) model.to(snake_case ) model.eval() lowercase = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , *snake_case ): lowercase = self.num_labels lowercase = OpenAIGPTForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class A_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : Optional[Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _UpperCamelCase : Tuple = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _UpperCamelCase : str = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case=False ): lowercase = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=snake_case , ) lowercase = inputs_dict['labels'] lowercase = inputs_dict['labels'] lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=snake_case , ) lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self ): lowercase = OpenAIGPTModelTester(self ) lowercase = ConfigTester(self , config_class=snake_case , n_embd=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = OpenAIGPTModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(snake_case ) lowercase = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=snake_case ) # the president is lowercase = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowercase = model.generate(snake_case , do_sample=snake_case ) self.assertListEqual(output_ids[0].tolist() , snake_case )
84
1
from __future__ import annotations from collections.abc import Callable def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1_0_0 , ): lowerCamelCase_ = x_start lowerCamelCase_ = fnc(lowerCamelCase__ ) lowerCamelCase_ = 0.0 for _ in range(lowerCamelCase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area lowerCamelCase_ = (x_end - x_start) / steps + xa lowerCamelCase_ = fnc(lowerCamelCase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step lowerCamelCase_ = xa lowerCamelCase_ = fxa return area if __name__ == "__main__": def lowerCamelCase_ ( lowerCamelCase__ ): return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') __A =1_0 while i <= 1_0_0_0_0_0: print(F"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
700
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'vit' def __init__( self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0_2 , lowercase=1e-12 , lowercase=224 , lowercase=16 , lowercase=3 , lowercase=True , lowercase=16 , **lowercase , ) -> int: super().__init__(**lowercase ) lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = qkv_bias lowerCamelCase_ = encoder_stride class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE_( self ) -> float: return 1e-4
313
0
import numpy as np def _lowerCamelCase ( lowerCamelCase_: np.ndarray ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def _lowerCamelCase ( lowerCamelCase_: np.ndarray ): '''simple docstring''' return vector * sigmoid(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
256
from statistics import mean import numpy as np def _lowerCamelCase ( lowerCamelCase_: list , lowerCamelCase_: list , lowerCamelCase_: list , lowerCamelCase_: int ): '''simple docstring''' A : Tuple = 0 # Number of processes finished A : List[Any] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. A : int = [0] * no_of_process # List to include calculation results A : List[Any] = [0] * no_of_process # Sort by arrival time. A : int = [burst_time[i] for i in np.argsort(lowerCamelCase_ )] A : int = [process_name[i] for i in np.argsort(lowerCamelCase_ )] arrival_time.sort() while no_of_process > finished_process_count: A : List[str] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: A : Optional[int] = arrival_time[i] A : Tuple = 0 # Index showing the location of the process being performed A : List[Any] = 0 # Saves the current response ratio. A : Any = 0 for i in range(0 , lowerCamelCase_ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: A : str = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: A : List[str] = temp A : Dict = i # Calculate the turn around time A : int = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. A : str = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def _lowerCamelCase ( lowerCamelCase_: list , lowerCamelCase_: list , lowerCamelCase_: list , lowerCamelCase_: int ): '''simple docstring''' A : List[Any] = [0] * no_of_process for i in range(0 , lowerCamelCase_ ): A : Tuple = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": UpperCamelCase_ = 5 UpperCamelCase_ = ["A", "B", "C", "D", "E"] UpperCamelCase_ = [1, 2, 3, 4, 5] UpperCamelCase_ = [1, 2, 3, 4, 5] UpperCamelCase_ = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) UpperCamelCase_ = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
256
1
'''simple docstring''' import re from filelock import FileLock try: import nltk _lowerCAmelCase = True except (ImportError, ModuleNotFoundError): _lowerCAmelCase = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" re.sub("""<n>""" , """""" , UpperCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase ) )
160
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=2 ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase=10 ,__UpperCAmelCase=3 ,__UpperCAmelCase=32 * 4 ,__UpperCAmelCase=32 * 6 ,__UpperCAmelCase=4 ,__UpperCAmelCase=32 ,) -> Optional[Any]: lowerCAmelCase__ : int = parent lowerCAmelCase__ : Any = batch_size lowerCAmelCase__ : Optional[int] = is_training lowerCAmelCase__ : Optional[int] = use_auxiliary_loss lowerCAmelCase__ : Optional[Any] = num_queries lowerCAmelCase__ : List[str] = num_channels lowerCAmelCase__ : List[Any] = min_size lowerCAmelCase__ : Dict = max_size lowerCAmelCase__ : Dict = num_labels lowerCAmelCase__ : Any = mask_feature_size def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __UpperCAmelCase ) lowerCAmelCase__ : List[str] = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=__UpperCAmelCase ) > 0.5 ).float() lowerCAmelCase__ : List[str] = (torch.rand((self.batch_size, self.num_labels) ,device=__UpperCAmelCase ) > 0.5).long() lowerCAmelCase__ : List[str] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase_ ( self ) -> Any: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] ,) ,decoder_config=DetrConfig( decoder_ffn_dim=128 ,num_queries=self.num_queries ,decoder_attention_heads=2 ,d_model=self.mask_feature_size ,) ,mask_feature_size=self.mask_feature_size ,fpn_feature_size=self.mask_feature_size ,num_channels=self.num_channels ,num_labels=self.num_labels ,) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Tuple = output.encoder_hidden_states lowerCAmelCase__ : Dict = output.pixel_decoder_hidden_states lowerCAmelCase__ : List[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__UpperCAmelCase ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCAmelCase ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCAmelCase ) ,config.decoder_config.decoder_layers ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> int: with torch.no_grad(): lowerCAmelCase__ : List[str] = MaskFormerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : List[str] = model(pixel_values=__UpperCAmelCase ,pixel_mask=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = model(__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.mask_feature_size) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Optional[Any] = MaskFormerForInstanceSegmentation(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() def comm_check_on_output(__UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(pixel_values=__UpperCAmelCase ,pixel_mask=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = model(__UpperCAmelCase ) comm_check_on_output(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = model( pixel_values=__UpperCAmelCase ,pixel_mask=__UpperCAmelCase ,mask_labels=__UpperCAmelCase ,class_labels=__UpperCAmelCase ) comm_check_on_output(__UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __lowercase : Optional[int] = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __lowercase : List[Any] = False __lowercase : str = False __lowercase : Tuple = False __lowercase : Optional[Any] = False def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : Any = MaskFormerModelTester(self ) lowerCAmelCase__ : int = ConfigTester(self ,config_class=__UpperCAmelCase ,has_text_modality=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__UpperCAmelCase ,**__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__UpperCAmelCase ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> List[str]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def UpperCAmelCase_ ( self ) -> Any: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def UpperCAmelCase_ ( self ) -> int: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase_ ( self ) -> Tuple: pass def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : List[Any] = [*signature.parameters.keys()] lowerCAmelCase__ : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,__UpperCAmelCase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in ["facebook/maskformer-swin-small-coco"]: lowerCAmelCase__ : Dict = MaskFormerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : Any = (self.model_tester.min_size,) * 2 lowerCAmelCase__ : Union[str, Any] = { """pixel_values""": torch.randn((2, 3, *size) ,device=__UpperCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) ,device=__UpperCAmelCase ), """class_labels""": torch.zeros(2 ,10 ,device=__UpperCAmelCase ).long(), } lowerCAmelCase__ : Optional[Any] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = model(**__UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__UpperCAmelCase ,**__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : List[Any] = model_class(__UpperCAmelCase ).to(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = model(**__UpperCAmelCase ,output_attentions=__UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase_ ( self ) -> Any: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase__ : Optional[int] = self.all_model_classes[1] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : str = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() lowerCAmelCase__ : List[Any] = model(__UpperCAmelCase ,mask_labels=__UpperCAmelCase ,class_labels=__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase_ ( self ) -> Tuple: # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase__ : Optional[Any] = self.all_model_classes[1] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Dict = True lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() lowerCAmelCase__ : int = model(__UpperCAmelCase ,mask_labels=__UpperCAmelCase ,class_labels=__UpperCAmelCase ) lowerCAmelCase__ : int = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase__ : Optional[Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowerCAmelCase__ : List[str] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase__ : Tuple = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowerCAmelCase = 1e-4 def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self ) -> Optional[int]: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : str = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = self.default_image_processor lowerCAmelCase__ : Dict = prepare_img() lowerCAmelCase__ : Any = image_processor(__UpperCAmelCase ,return_tensors="""pt""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCAmelCase ,(1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ : Any = model(**__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = torch.tensor( [[-0.0_4_8_2, 0.9_2_2_8, 0.4_9_5_1], [-0.2_5_4_7, 0.8_0_1_7, 0.8_5_2_7], [-0.0_0_6_9, 0.3_3_8_5, -0.0_0_8_9]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) lowerCAmelCase__ : List[Any] = torch.tensor( [[-0.8_4_2_2, -0.8_4_3_4, -0.9_7_1_8], [-1.0_1_4_4, -0.5_5_6_5, -0.4_1_9_5], [-1.0_0_3_8, -0.4_4_8_4, -0.1_9_6_1]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) lowerCAmelCase__ : Tuple = torch.tensor( [[0.2_8_5_2, -0.0_1_5_9, 0.9_7_3_5], [0.6_2_5_4, 0.1_8_5_8, 0.8_5_2_9], [-0.0_6_8_0, -0.4_1_1_6, 1.8_4_1_3]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(__UpperCAmelCase ) .eval() ) lowerCAmelCase__ : int = self.default_image_processor lowerCAmelCase__ : Dict = prepare_img() lowerCAmelCase__ : Union[str, Any] = image_processor(__UpperCAmelCase ,return_tensors="""pt""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCAmelCase ,(1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ : Tuple = model(**__UpperCAmelCase ) # masks_queries_logits lowerCAmelCase__ : Union[str, Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) lowerCAmelCase__ : Optional[int] = [ [-1.3_7_3_7_1_2_4, -1.7_7_2_4_9_3_7, -1.9_3_6_4_2_3_3], [-1.5_9_7_7_2_8_1, -1.9_8_6_7_9_3_9, -2.1_5_2_3_6_9_5], [-1.5_7_9_5_3_9_8, -1.9_2_6_9_8_3_2, -2.0_9_3_9_4_2], ] lowerCAmelCase__ : Dict = torch.tensor(__UpperCAmelCase ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) # class_queries_logits lowerCAmelCase__ : str = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase__ : List[Any] = torch.tensor( [ [1.65_12E00, -5.25_72E00, -3.35_19E00], [3.61_69E-02, -5.90_25E00, -2.93_13E00], [1.07_66E-04, -7.76_30E00, -5.12_63E00], ] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(__UpperCAmelCase ) .eval() ) lowerCAmelCase__ : Dict = self.default_image_processor lowerCAmelCase__ : Optional[int] = prepare_img() lowerCAmelCase__ : List[str] = image_processor(__UpperCAmelCase ,return_tensors="""pt""" ).to(__UpperCAmelCase ) lowerCAmelCase__ : int = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__UpperCAmelCase ,(1, 3, 800, 1088) ) with torch.no_grad(): lowerCAmelCase__ : List[str] = model(**__UpperCAmelCase ) # masks_queries_logits lowerCAmelCase__ : str = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) lowerCAmelCase__ : str = [[-0.9_0_4_6, -2.6_3_6_6, -4.6_0_6_2], [-3.4_1_7_9, -5.7_8_9_0, -8.8_0_5_7], [-4.9_1_7_9, -7.6_5_6_0, -1_0.7_7_1_1]] lowerCAmelCase__ : Union[str, Any] = torch.tensor(__UpperCAmelCase ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) # class_queries_logits lowerCAmelCase__ : Any = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase__ : List[str] = torch.tensor( [[4.7_1_8_8, -3.2_5_8_5, -2.8_8_5_7], [6.6_8_7_1, -2.9_1_8_1, -1.2_4_8_7], [7.2_4_4_9, -2.2_7_6_4, -2.1_8_7_4]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__UpperCAmelCase ,atol=__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(__UpperCAmelCase ) .eval() ) lowerCAmelCase__ : List[str] = self.default_image_processor lowerCAmelCase__ : Tuple = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors="""pt""" ,) lowerCAmelCase__ : Tuple = inputs["""pixel_values"""].to(__UpperCAmelCase ) lowerCAmelCase__ : int = [el.to(__UpperCAmelCase ) for el in inputs["""mask_labels"""]] lowerCAmelCase__ : int = [el.to(__UpperCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(**__UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
160
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for attribute in key.split('''.''' ): A_ : Tuple = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: A_ : int = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: A_ : str = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A_ : Optional[int] = value elif weight_type == "weight_g": A_ : Union[str, Any] = value elif weight_type == "weight_v": A_ : Tuple = value elif weight_type == "bias": A_ : int = value else: A_ : Any = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Optional[Any] = [] A_ : Tuple = fairseq_model.state_dict() A_ : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): A_ : Tuple = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) A_ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): A_ : Dict = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): A_ : Dict = True if "*" in mapped_key: A_ : Any = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] A_ : Optional[Any] = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: A_ : List[str] = '''weight_g''' elif "weight_v" in name: A_ : Any = '''weight_v''' elif "weight" in name: A_ : List[Any] = '''weight''' elif "bias" in name: A_ : Optional[Any] = '''bias''' else: A_ : Dict = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Optional[Any] = full_name.split('''conv_layers.''' )[-1] A_ : Union[str, Any] = name.split('''.''' ) A_ : Optional[int] = int(items[0] ) A_ : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A_ : str = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A_ : Optional[int] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) A_ : Dict = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A_ : str = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ): if config_path is not None: A_ : List[str] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: A_ : List[Any] = HubertConfig() if is_finetuned: if dict_path: A_ : Union[str, Any] = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A_ : Any = target_dict.pad_index A_ : int = target_dict.bos_index A_ : List[Any] = target_dict.eos_index A_ : Union[str, Any] = len(target_dict.symbols ) A_ : Tuple = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) A_ : Optional[int] = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=SCREAMING_SNAKE_CASE , ) A_ : Any = True if config.feat_extract_norm == '''layer''' else False A_ : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) A_ : List[Any] = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) A_ : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE ) else: A_ : Union[str, Any] = HubertModel(SCREAMING_SNAKE_CASE ) if is_finetuned: A_ , A_ , A_ : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: A_ , A_ , A_ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A_ : str = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
590
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->None: '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
590
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor _lowerCamelCase = logging.get_logger(__name__) class __a ( _snake_case ): def __init__( self : Dict , *lowercase__ : Any , **lowercase__ : Tuple) ->None: """simple docstring""" warnings.warn( """The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PerceiverImageProcessor instead.""" , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__)
572
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } _lowerCamelCase = { 'distilbert-base-uncased': 5_1_2, 'distilbert-base-uncased-distilled-squad': 5_1_2, 'distilbert-base-cased': 5_1_2, 'distilbert-base-cased-distilled-squad': 5_1_2, 'distilbert-base-german-cased': 5_1_2, 'distilbert-base-multilingual-cased': 5_1_2, } _lowerCamelCase = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class __a ( _snake_case ): __SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Tuple = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Tuple = DistilBertTokenizer def __init__( self : Tuple , lowercase__ : Tuple=None , lowercase__ : Dict=None , lowercase__ : Dict=True , lowercase__ : Tuple="[UNK]" , lowercase__ : Optional[int]="[SEP]" , lowercase__ : Union[str, Any]="[PAD]" , lowercase__ : Optional[Any]="[CLS]" , lowercase__ : Dict="[MASK]" , lowercase__ : int=True , lowercase__ : List[Any]=None , **lowercase__ : Tuple , ) ->Optional[int]: """simple docstring""" super().__init__( lowercase__ , tokenizer_file=lowercase__ , do_lower_case=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , tokenize_chinese_chars=lowercase__ , strip_accents=lowercase__ , **lowercase__ , ) _lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("""lowercase""" , lowercase__) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase__) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase__) != tokenize_chinese_chars ): _lowercase = getattr(lowercase__ , normalizer_state.pop("""type""")) _lowercase = do_lower_case _lowercase = strip_accents _lowercase = tokenize_chinese_chars _lowercase = normalizer_class(**lowercase__) _lowercase = do_lower_case def _UpperCAmelCase ( self : Dict , lowercase__ : Optional[int] , lowercase__ : List[str]=None) ->Union[str, Any]: """simple docstring""" _lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self : Tuple , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None) ->List[int]: """simple docstring""" _lowercase = [self.sep_token_id] _lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _UpperCAmelCase ( self : Dict , lowercase__ : str , lowercase__ : Optional[str] = None) ->Tuple[str]: """simple docstring""" _lowercase = self._tokenizer.model.save(lowercase__ , name=lowercase__) return tuple(lowercase__)
572
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class __lowercase ( unittest.TestCase ): def __init__( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : int = 3_2 , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 2_5_5 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , __lowerCamelCase : Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , __lowerCamelCase : bool = True , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : List[str]=3_0 , __lowerCamelCase : str=4_0_0 , __lowerCamelCase : Any=3 , ) -> Any: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = do_resize UpperCAmelCase = size if size is not None else {"""shortest_edge""": 2_8_8} UpperCAmelCase = size_divisor UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = do_center_crop UpperCAmelCase = image_mean UpperCAmelCase = image_std UpperCAmelCase = do_pad UpperCAmelCase = batch_size UpperCAmelCase = num_channels UpperCAmelCase = min_resolution UpperCAmelCase = max_resolution def _lowercase ( self : Any ) -> List[Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _lowercase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any]=False ) -> int: """simple docstring""" if not batched: UpperCAmelCase = self.size["""shortest_edge"""] UpperCAmelCase = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): UpperCAmelCase , UpperCAmelCase = image.size else: UpperCAmelCase , UpperCAmelCase = image.shape[1], image.shape[2] UpperCAmelCase = size / min(__lowerCamelCase , __lowerCamelCase ) if h < w: UpperCAmelCase , UpperCAmelCase = size, scale * w else: UpperCAmelCase , UpperCAmelCase = scale * h, size UpperCAmelCase = int((1_3_3_3 / 8_0_0) * size ) if max(__lowerCamelCase , __lowerCamelCase ) > max_size: UpperCAmelCase = max_size / max(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase = newh * scale UpperCAmelCase = neww * scale UpperCAmelCase , UpperCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) UpperCAmelCase , UpperCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase = [] for image in image_inputs: UpperCAmelCase , UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] UpperCAmelCase = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowercase ( __snake_case , unittest.TestCase ): UpperCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def _lowercase ( self : Dict ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _lowercase ( self : Any ) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Union[str, Any] ) -> Dict: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """size_divisor""" ) ) def _lowercase ( self : str ) -> Optional[Any]: """simple docstring""" pass def _lowercase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Dict ) -> Dict: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
377
class __lowercase : def __init__( self : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase = {} def _lowercase ( self : str ) -> None: """simple docstring""" print(self.vertex ) for i in self.vertex: print(__lowerCamelCase , """ -> """ , """ -> """.join([str(__lowerCamelCase ) for j in self.vertex[i]] ) ) def _lowercase ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : int ) -> None: """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(__lowerCamelCase ) else: # else make a new vertex UpperCAmelCase = [to_vertex] def _lowercase ( self : str ) -> None: """simple docstring""" UpperCAmelCase = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__lowerCamelCase , __lowerCamelCase ) def _lowercase ( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : list ) -> None: """simple docstring""" UpperCAmelCase = True print(__lowerCamelCase , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": __a = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
377
1
def _a ( __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" _lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCAmelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCAmelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCAmelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCAmelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
585
import math from numpy import inf from scipy.integrate import quad def _a ( __SCREAMING_SNAKE_CASE : float ): """simple docstring""" if num <= 0: raise ValueError('math domain error' ) return quad(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , args=(__SCREAMING_SNAKE_CASE) )[0] def _a ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): """simple docstring""" return math.pow(__SCREAMING_SNAKE_CASE , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
585
1
import re def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return [char.split() for char in re.split(R'''[^ a-z A-Z 0-9 \s]''' , str_ )] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = split_input(str_ ) return "".join( [''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" try: lowercase__ = split_input(SCREAMING_SNAKE_CASE ) if upper: lowercase__ = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowercase__ = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return to_simple_case(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" try: lowercase__ = to_simple_case(SCREAMING_SNAKE_CASE ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return to_complex_case(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''_''' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return to_complex_case(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''-''' ) if __name__ == "__main__": __import__('doctest').testmod()
43
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case__ : Union[str, Any] = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : str = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys snake_case__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
408
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = data def __iter__( self ) -> Any: '''simple docstring''' for element in self.data: yield element def _UpperCamelCase ( __UpperCamelCase=True ) -> str: lowerCamelCase_ = Accelerator(even_batches=_A ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = False ) -> List[str]: if iterable: lowerCamelCase_ = DummyIterableDataset(torch.as_tensor(range(_A ) ) ) else: lowerCamelCase_ = TensorDataset(torch.as_tensor(range(_A ) ) ) lowerCamelCase_ = DataLoader(_A ,batch_size=_A ) lowerCamelCase_ = accelerator.prepare(_A ) return dl def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Any: lowerCamelCase_ = create_dataloader(accelerator=_A ,dataset_size=_A ,batch_size=_A ) lowerCamelCase_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _UpperCamelCase ( ) -> Any: lowerCamelCase_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( _A ,dataset_size=3 ,batch_size=1 ,process_0_expected_batch_sizes=[1, 1] ,process_1_expected_batch_sizes=[1, 1] ,) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( _A ,dataset_size=7 ,batch_size=2 ,process_0_expected_batch_sizes=[2, 2] ,process_1_expected_batch_sizes=[2, 2] ,) def _UpperCamelCase ( ) -> List[str]: lowerCamelCase_ = create_accelerator(even_batches=_A ) verify_dataloader_batch_sizes( _A ,dataset_size=3 ,batch_size=1 ,process_0_expected_batch_sizes=[1, 1] ,process_1_expected_batch_sizes=[1] ,) verify_dataloader_batch_sizes( _A ,dataset_size=7 ,batch_size=2 ,process_0_expected_batch_sizes=[2, 2] ,process_1_expected_batch_sizes=[2, 1] ,) def _UpperCamelCase ( ) -> Dict: lowerCamelCase_ = create_accelerator(even_batches=_A ) lowerCamelCase_ = torch.nn.Linear(1 ,1 ) lowerCamelCase_ = accelerator.prepare(_A ) lowerCamelCase_ = create_dataloader(_A ,dataset_size=3 ,batch_size=1 ) lowerCamelCase_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(_A ): lowerCamelCase_ = ddp_model(batch[0].float() ) lowerCamelCase_ = output.sum() loss.backward() batch_idxs.append(_A ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _UpperCamelCase ( __UpperCamelCase ) -> Any: with warnings.catch_warnings(record=_A ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category ,_A ) assert "only supported for multi-GPU" in str(w[-1].message ) def _UpperCamelCase ( ) -> Dict: lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = create_accelerator(even_batches=_A ) lowerCamelCase_ = torch.nn.Linear(1 ,1 ) lowerCamelCase_ = accelerator.prepare(_A ) lowerCamelCase_ = create_dataloader(_A ,dataset_size=3 ,batch_size=1 ) lowerCamelCase_ = create_dataloader(_A ,dataset_size=3 ,batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] ,even_batches=_A ): lowerCamelCase_ = train_dl.batch_sampler.even_batches lowerCamelCase_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _UpperCamelCase ( ) -> int: lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = create_accelerator(even_batches=_A ) lowerCamelCase_ = torch.nn.Linear(1 ,1 ) lowerCamelCase_ = accelerator.prepare(_A ) create_dataloader(_A ,dataset_size=3 ,batch_size=1 ,iterable=_A ) lowerCamelCase_ = create_dataloader(_A ,dataset_size=3 ,batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('ignore' ) try: with accelerator.join_uneven_inputs([ddp_model] ,even_batches=_A ): lowerCamelCase_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _UpperCamelCase ( ) -> Any: lowerCamelCase_ = create_accelerator() lowerCamelCase_ = torch.nn.Linear(1 ,1 ) lowerCamelCase_ = accelerator.prepare(_A ) create_dataloader(_A ,dataset_size=3 ,batch_size=1 ,iterable=_A ) with warnings.catch_warnings(record=_A ) as w: with accelerator.join_uneven_inputs([ddp_model] ,even_batches=_A ): pass assert issubclass(w[-1].category ,_A ) assert "only supported for map-style datasets" in str(w[-1].message ) def _UpperCamelCase ( ) -> Optional[int]: lowerCamelCase_ = create_accelerator() accelerator.print('Test that even_batches variable ensures uniform batches across processes' ) test_default_ensures_even_batch_sizes() accelerator.print('Run tests with even_batches disabled' ) test_can_disable_even_batches() accelerator.print('Test joining uneven inputs' ) test_can_join_uneven_inputs() accelerator.print('Test overriding even_batches when joining uneven inputs' ) test_join_can_override_even_batches() accelerator.print('Test overriding even_batches for mixed dataloader types' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('Test overriding even_batches raises a warning for iterable dataloaders' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('Test join with non DDP distributed raises warning' ) lowerCamelCase_ = accelerator.state.distributed_type lowerCamelCase_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(_A ) lowerCamelCase_ = original_state if __name__ == "__main__": main()
709
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class UpperCAmelCase : '''simple docstring''' @staticmethod def UpperCamelCase( *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' pass def _UpperCamelCase ( __UpperCamelCase ) -> str: lowerCamelCase_ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _UpperCamelCase ( __UpperCamelCase ) -> Dict: lowerCamelCase_ = np.array(__UpperCamelCase ) lowerCamelCase_ = npimg.shape return {"hash": hashimage(__UpperCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) SCREAMING_SNAKE_CASE_ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = MaskGenerationPipeline(model=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def UpperCamelCase( self ) -> int: '''simple docstring''' pass @slow @require_torch def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) lowerCamelCase_ = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=256 ) # Shortening by hashing lowerCamelCase_ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_444}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.021}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_132}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_053}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9_967}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.993}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9_909}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9_879}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9_834}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9_716}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9_612}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9_599}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9_552}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9_532}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9_516}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9_499}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9_483}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9_464}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9_408}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9_335}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9_326}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9_262}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8_999}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8_986}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8_984}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8_873}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8_871} ] , ) # fmt: on @require_torch @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = 'facebook/sam-vit-huge' lowerCamelCase_ = pipeline('mask-generation' , model=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing lowerCamelCase_ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_444}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_210}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_132}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_053}, ] , )
384
0
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" if is_torch_version('''<''', '''2.0.0''' ) or not hasattr(__snake_case, '''_dynamo''' ): return False return isinstance(__snake_case, torch._dynamo.eval_frame.OptimizedModule ) def lowerCamelCase__ ( __snake_case, __snake_case = True ) -> List[str]: """simple docstring""" _UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCamelCase = is_compiled_module(__snake_case ) if is_compiled: _UpperCamelCase = model _UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__snake_case, __snake_case ): _UpperCamelCase = model.module if not keep_fpaa_wrapper: _UpperCamelCase = getattr(__snake_case, '''forward''' ) _UpperCamelCase = model.__dict__.pop('''_original_forward''', __snake_case ) if original_forward is not None: while hasattr(__snake_case, '''__wrapped__''' ): _UpperCamelCase = forward.__wrapped__ if forward == original_forward: break _UpperCamelCase = forward if getattr(__snake_case, '''_converted_to_transformer_engine''', __snake_case ): convert_model(__snake_case, to_transformer_engine=__snake_case ) if is_compiled: _UpperCamelCase = model _UpperCamelCase = compiled_model return model def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" PartialState().wait_for_everyone() def lowerCamelCase__ ( __snake_case, __snake_case ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(__snake_case, __snake_case ) elif PartialState().local_process_index == 0: torch.save(__snake_case, __snake_case ) @contextmanager def lowerCamelCase__ ( **__snake_case ) -> Tuple: """simple docstring""" for key, value in kwargs.items(): _UpperCamelCase = str(__snake_case ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if not hasattr(__snake_case, '''__qualname__''' ) and not hasattr(__snake_case, '''__name__''' ): _UpperCamelCase = getattr(__snake_case, '''__class__''', __snake_case ) if hasattr(__snake_case, '''__qualname__''' ): return obj.__qualname__ if hasattr(__snake_case, '''__name__''' ): return obj.__name__ return str(__snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(__snake_case, __snake_case ): _UpperCamelCase = destination.setdefault(__snake_case, {} ) merge_dicts(__snake_case, __snake_case ) else: _UpperCamelCase = value return destination def lowerCamelCase__ ( __snake_case = None ) -> bool: """simple docstring""" if port is None: _UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET, socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
19
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'align_text_model' def __init__( self , __lowerCamelCase=3_0_5_2_2 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-12 , __lowerCamelCase=0 , __lowerCamelCase="absolute" , __lowerCamelCase=True , **__lowerCamelCase , ) -> Optional[int]: super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = vocab_size _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size _SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers _SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Dict = hidden_act _SCREAMING_SNAKE_CASE : Any = intermediate_size _SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings _SCREAMING_SNAKE_CASE : Dict = type_vocab_size _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps _SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type _SCREAMING_SNAKE_CASE : Any = use_cache _SCREAMING_SNAKE_CASE : str = pad_token_id @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": _SCREAMING_SNAKE_CASE : Optional[int] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'align_vision_model' def __init__( self , __lowerCamelCase = 3 , __lowerCamelCase = 6_0_0 , __lowerCamelCase = 2.0 , __lowerCamelCase = 3.1 , __lowerCamelCase = 8 , __lowerCamelCase = [3, 3, 5, 3, 5, 5, 3] , __lowerCamelCase = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __lowerCamelCase = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __lowerCamelCase = [] , __lowerCamelCase = [1, 2, 2, 2, 1, 2, 1] , __lowerCamelCase = [1, 2, 2, 3, 3, 4, 1] , __lowerCamelCase = [1, 6, 6, 6, 6, 6, 6] , __lowerCamelCase = 0.25 , __lowerCamelCase = "swish" , __lowerCamelCase = 2_5_6_0 , __lowerCamelCase = "mean" , __lowerCamelCase = 0.02 , __lowerCamelCase = 0.001 , __lowerCamelCase = 0.99 , __lowerCamelCase = 0.2 , **__lowerCamelCase , ) -> Dict: super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = num_channels _SCREAMING_SNAKE_CASE : Tuple = image_size _SCREAMING_SNAKE_CASE : Tuple = width_coefficient _SCREAMING_SNAKE_CASE : str = depth_coefficient _SCREAMING_SNAKE_CASE : int = depth_divisor _SCREAMING_SNAKE_CASE : Union[str, Any] = kernel_sizes _SCREAMING_SNAKE_CASE : Tuple = in_channels _SCREAMING_SNAKE_CASE : int = out_channels _SCREAMING_SNAKE_CASE : Optional[Any] = depthwise_padding _SCREAMING_SNAKE_CASE : List[str] = strides _SCREAMING_SNAKE_CASE : Any = num_block_repeats _SCREAMING_SNAKE_CASE : List[str] = expand_ratios _SCREAMING_SNAKE_CASE : List[Any] = squeeze_expansion_ratio _SCREAMING_SNAKE_CASE : List[Any] = hidden_act _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dim _SCREAMING_SNAKE_CASE : List[Any] = pooling_type _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : List[str] = batch_norm_eps _SCREAMING_SNAKE_CASE : List[str] = batch_norm_momentum _SCREAMING_SNAKE_CASE : Any = drop_connect_rate _SCREAMING_SNAKE_CASE : Optional[int] = sum(__lowerCamelCase ) * 4 @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": _SCREAMING_SNAKE_CASE : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'align' __snake_case = True def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=6_4_0 , __lowerCamelCase=1.0 , __lowerCamelCase=0.02 , **__lowerCamelCase , ) -> Optional[int]: super().__init__(**__lowerCamelCase ) if text_config is None: _SCREAMING_SNAKE_CASE : List[Any] = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: _SCREAMING_SNAKE_CASE : Optional[Any] = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) _SCREAMING_SNAKE_CASE : Union[str, Any] = AlignTextConfig(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = AlignVisionConfig(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = projection_dim _SCREAMING_SNAKE_CASE : Any = temperature_init_value _SCREAMING_SNAKE_CASE : int = initializer_range @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) -> List[str]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Tuple = copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE : Optional[int] = self.text_config.to_dict() _SCREAMING_SNAKE_CASE : Union[str, Any] = self.vision_config.to_dict() _SCREAMING_SNAKE_CASE : int = self.__class__.model_type return output
249
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __lowerCAmelCase ( _UpperCAmelCase): _a = '''vivit''' def __init__( self: List[str] , _lowerCAmelCase: Optional[Any]=2_24 , _lowerCAmelCase: List[str]=32 , _lowerCAmelCase: Any=[2, 16, 16] , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: List[Any]=7_68 , _lowerCAmelCase: str=12 , _lowerCAmelCase: Union[str, Any]=12 , _lowerCAmelCase: Tuple=30_72 , _lowerCAmelCase: Tuple="gelu_fast" , _lowerCAmelCase: List[str]=0.0 , _lowerCAmelCase: Optional[Any]=0.0 , _lowerCAmelCase: Optional[int]=0.02 , _lowerCAmelCase: int=1e-0_6 , _lowerCAmelCase: Union[str, Any]=True , **_lowerCAmelCase: Optional[int] , ): lowercase :Tuple = hidden_size lowercase :Any = num_hidden_layers lowercase :Any = num_attention_heads lowercase :int = intermediate_size lowercase :Optional[Any] = hidden_act lowercase :Optional[Any] = hidden_dropout_prob lowercase :Optional[Any] = attention_probs_dropout_prob lowercase :Dict = initializer_range lowercase :str = layer_norm_eps lowercase :Union[str, Any] = image_size lowercase :Tuple = num_frames lowercase :Tuple = tubelet_size lowercase :Union[str, Any] = num_channels lowercase :str = qkv_bias super().__init__(**lowercase_ )
708
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def UpperCAmelCase__ ( ): lowercase :List[str] = torch.nn.Linear(2, 4 ) lowercase :List[Any] = torch.optim.AdamW(model.parameters(), lr=1.0 ) lowercase :int = torch.optim.lr_scheduler.OneCycleLR(lowerCamelCase, max_lr=0.01, steps_per_epoch=2, epochs=1 ) lowercase :Optional[int] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) lowercase :List[str] = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def UpperCAmelCase__ ( lowerCamelCase ): return (model.weight.abs().sum() + model.bias.abs().sum()).item() def UpperCAmelCase__ ( lowerCamelCase ): lowercase :Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(lowerCamelCase ) class __lowerCAmelCase ( lowerCAmelCase): @require_cuda def SCREAMING_SNAKE_CASE ( self: str ): lowercase :List[str] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(_lowerCAmelCase ): lowercase :Any = Accelerator(cpu=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Any = Accelerator() lowercase :Dict = GradientState() assert state.num_steps == 1 lowercase :Tuple = 4 assert state.num_steps == 4 assert state.sync_gradients is True lowercase :List[Any] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE ( self: int ): lowercase :str = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase :Any = create_components() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) :Tuple = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Dict = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase :List[str] = create_components() accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE ( self: int ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*_lowerCAmelCase: List[str] , **_lowerCAmelCase: Optional[int] ): pass with patch("torch.cuda.set_device" , _lowerCAmelCase ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): lowercase :List[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def SCREAMING_SNAKE_CASE ( self: int ): lowercase :Tuple = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase :Optional[Any] = create_components() accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase :Tuple = get_signature(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCAmelCase ) # make sure random weights don't match load_random_weights(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) < 1e-3 ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase :Dict = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase :int = create_components() accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase :int = get_signature(_lowerCAmelCase ) # saving hook def save_config(_lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: str , _lowerCAmelCase: List[Any] ): lowercase :Dict = {"class_name": models[0].__class__.__name__} with open(os.path.join(_lowerCAmelCase , "data.json" ) , "w" ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # loading hook def load_config(_lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Union[str, Any] ): with open(os.path.join(_lowerCAmelCase , "data.json" ) , "r" ) as f: lowercase :int = json.load(_lowerCAmelCase ) lowercase :Optional[int] = config["class_name"] lowercase :Optional[Any] = accelerator.register_save_state_pre_hook(_lowerCAmelCase ) lowercase :Tuple = accelerator.register_load_state_pre_hook(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCAmelCase ) # make sure random weights don't match with hooks load_random_weights(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) > 1e-3 ) # random class name to verify correct one is loaded lowercase :Optional[int] = "random" # make sure loaded weights match with hooks accelerator.load_state(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCAmelCase ) # make sure random weights don't match with hooks removed load_random_weights(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) > 1e-3 ) # random class name to verify correct one is loaded lowercase :str = "random" # make sure loaded weights match with hooks removed accelerator.load_state(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase :List[str] = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase :List[Any] = create_components() lowercase :List[str] = None # This should work lowercase , lowercase , lowercase , lowercase , lowercase , lowercase :str = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Union[str, Any] = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase :Union[str, Any] = create_components() lowercase :Union[str, Any] = [1, 2, 3] # This should work lowercase , lowercase , lowercase , lowercase , lowercase , lowercase :List[str] = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): from transformers import AutoModelForCausalLM lowercase :Any = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=_lowerCAmelCase , device_map={"": 0} , ) lowercase :int = Accelerator() # This should work lowercase :Optional[int] = accelerator.prepare(_lowerCAmelCase ) @slow @require_bnb def SCREAMING_SNAKE_CASE ( self: List[str] ): from transformers import AutoModelForCausalLM lowercase :Optional[Any] = Accelerator() with init_empty_weights(): lowercase :Any = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() lowercase :Dict = infer_auto_device_map(_lowerCAmelCase ) lowercase :int = "cpu" lowercase :str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=_lowerCAmelCase , load_in_abit=_lowerCAmelCase , llm_inta_enable_fpaa_cpu_offload=_lowerCAmelCase ) # This should not work and get value error with self.assertRaises(_lowerCAmelCase ): lowercase :Dict = accelerator.prepare(_lowerCAmelCase ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE ( self: Any ): from transformers import AutoModelForCausalLM lowercase :List[str] = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): lowercase :str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() lowercase :Optional[Any] = infer_auto_device_map(_lowerCAmelCase ) lowercase :Any = 1 lowercase :str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=_lowerCAmelCase , device_map=_lowerCAmelCase , ) lowercase :List[str] = Accelerator() # This should not work and get value error with self.assertRaises(_lowerCAmelCase ): lowercase :Optional[Any] = accelerator.prepare(_lowerCAmelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE ( self: List[Any] ): from transformers import AutoModelForCausalLM with init_empty_weights(): lowercase :List[str] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) lowercase :List[Any] = infer_auto_device_map(_lowerCAmelCase ) lowercase :Optional[int] = 1 lowercase :Union[str, Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=_lowerCAmelCase , device_map=_lowerCAmelCase , ) lowercase :Union[str, Any] = Accelerator() # This should work lowercase :List[Any] = accelerator.prepare(_lowerCAmelCase ) @require_cuda def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Optional[int] = torch.nn.Linear(10 , 10 ) lowercase :Optional[int] = torch.optim.SGD(model.parameters() , lr=0.01 ) lowercase :List[Any] = Accelerator(cpu=_lowerCAmelCase ) lowercase :List[str] = accelerator.prepare(_lowerCAmelCase )
453
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name _SCREAMING_SNAKE_CASE = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : int=8 ): __lowercase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowercase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _lowerCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any]=5_1_2 , lowerCamelCase_ : int=5_1_2 ): __lowercase = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) __lowercase = np.array(pil_image.convert('''RGB''' ) ) __lowercase = arr.astype(np.floataa ) / 1_27.5 - 1 __lowercase = np.transpose(UpperCamelCase_ , [2, 0, 1] ) __lowercase = torch.from_numpy(UpperCamelCase_ ).unsqueeze(0 ) return image class __lowercase ( snake_case__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> Any: '''simple docstring''' super().__init__() self.register_modules( unet=__snake_case ,scheduler=__snake_case ,movq=__snake_case ,) __lowercase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = min(int(num_inference_steps * strength ) ,__snake_case ) __lowercase = max(num_inference_steps - init_timestep ,0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase=None ) -> Any: '''simple docstring''' if not isinstance(__snake_case ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__snake_case )}" ) __lowercase = image.to(device=__snake_case ,dtype=__snake_case ) __lowercase = batch_size * num_images_per_prompt if image.shape[1] == 4: __lowercase = image else: if isinstance(__snake_case ,__snake_case ) and len(__snake_case ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(__snake_case ,__snake_case ): __lowercase = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__snake_case ) ] __lowercase = torch.cat(__snake_case ,dim=0 ) else: __lowercase = self.movq.encode(__snake_case ).latent_dist.sample(__snake_case ) __lowercase = self.movq.config.scaling_factor * init_latents __lowercase = torch.cat([init_latents] ,dim=0 ) __lowercase = init_latents.shape __lowercase = randn_tensor(__snake_case ,generator=__snake_case ,device=__snake_case ,dtype=__snake_case ) # get latents __lowercase = self.scheduler.add_noise(__snake_case ,__snake_case ,__snake_case ) __lowercase = init_latents return latents def _UpperCAmelCase (self ,_lowerCamelCase=0 ) -> Tuple: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __lowercase = torch.device(f"cuda:{gpu_id}" ) __lowercase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__snake_case ,__snake_case ) def _UpperCAmelCase (self ,_lowerCamelCase=0 ) -> List[str]: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' ,'''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __lowercase = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' ,silence_dtype_warnings=__snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowercase = None for cpu_offloaded_model in [self.unet, self.movq]: __lowercase , __lowercase = cpu_offload_with_hook(__snake_case ,__snake_case ,prev_module_hook=__snake_case ) # We'll offload the last model manually. __lowercase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' if not hasattr(self.unet ,'''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__snake_case ,'''_hf_hook''' ) and hasattr(module._hf_hook ,'''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__snake_case ) def __call__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase = 512 ,_lowerCamelCase = 512 ,_lowerCamelCase = 100 ,_lowerCamelCase = 4.0 ,_lowerCamelCase = 0.3 ,_lowerCamelCase = 1 ,_lowerCamelCase = None ,_lowerCamelCase = "pil" ,_lowerCamelCase = True ,) -> Dict: '''simple docstring''' __lowercase = self._execution_device __lowercase = guidance_scale > 1.0 if isinstance(__snake_case ,__snake_case ): __lowercase = torch.cat(__snake_case ,dim=0 ) __lowercase = image_embeds.shape[0] if isinstance(__snake_case ,__snake_case ): __lowercase = torch.cat(__snake_case ,dim=0 ) if do_classifier_free_guidance: __lowercase = image_embeds.repeat_interleave(__snake_case ,dim=0 ) __lowercase = negative_image_embeds.repeat_interleave(__snake_case ,dim=0 ) __lowercase = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__snake_case ) if not isinstance(__snake_case ,__snake_case ): __lowercase = [image] if not all(isinstance(__snake_case ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(__snake_case ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) __lowercase = torch.cat([prepare_image(__snake_case ,__snake_case ,__snake_case ) for i in image] ,dim=0 ) __lowercase = image.to(dtype=image_embeds.dtype ,device=__snake_case ) __lowercase = self.movq.encode(__snake_case )['''latents'''] __lowercase = latents.repeat_interleave(__snake_case ,dim=0 ) self.scheduler.set_timesteps(__snake_case ,device=__snake_case ) __lowercase , __lowercase = self.get_timesteps(__snake_case ,__snake_case ,__snake_case ) __lowercase = timesteps[:1].repeat(batch_size * num_images_per_prompt ) __lowercase , __lowercase = downscale_height_and_width(__snake_case ,__snake_case ,self.movq_scale_factor ) __lowercase = self.prepare_latents( __snake_case ,__snake_case ,__snake_case ,__snake_case ,image_embeds.dtype ,__snake_case ,__snake_case ) for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = {'''image_embeds''': image_embeds} __lowercase = self.unet( sample=__snake_case ,timestep=__snake_case ,encoder_hidden_states=__snake_case ,added_cond_kwargs=__snake_case ,return_dict=__snake_case ,)[0] if do_classifier_free_guidance: __lowercase , __lowercase = noise_pred.split(latents.shape[1] ,dim=1 ) __lowercase , __lowercase = noise_pred.chunk(2 ) __lowercase , __lowercase = variance_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowercase = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,'''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowercase , __lowercase = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step( __snake_case ,__snake_case ,__snake_case ,generator=__snake_case ,)[0] # post-processing __lowercase = self.movq.decode(__snake_case ,force_not_quantize=__snake_case )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: __lowercase = image * 0.5 + 0.5 __lowercase = image.clamp(0 ,1 ) __lowercase = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
502
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self , __snake_case , __snake_case=1_3 , __snake_case=3_0 , __snake_case=2 , __snake_case=3 , __snake_case=True , __snake_case=True , __snake_case=3_2 , __snake_case=5 , __snake_case=4 , __snake_case=3_7 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=1_0 , __snake_case=0.02 , ): snake_case = parent snake_case = batch_size snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = is_training snake_case = use_labels snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = type_sequence_label_size snake_case = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case = (image_size // patch_size) ** 2 snake_case = num_patches + 1 def a_ ( self ): snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , ) return config, pixel_values def a_ ( self , __snake_case , __snake_case ): snake_case = FlaxViTModel(config=__snake_case ) snake_case = model(__snake_case ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) snake_case = (self.image_size, self.image_size) snake_case = (self.patch_size, self.patch_size) snake_case = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def a_ ( self , __snake_case , __snake_case ): snake_case = self.type_sequence_label_size snake_case = FlaxViTForImageClassification(config=__snake_case ) snake_case = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case = 1 snake_case = FlaxViTForImageClassification(__snake_case ) snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case = model(__snake_case ) def a_ ( self ): snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class A__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def a_ ( self ): snake_case = FlaxViTModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=3_7 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) def a_ ( self ): snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(__snake_case ) snake_case = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case = [*signature.parameters.keys()] snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def a_ ( self ): snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case = self._prepare_for_class(__snake_case , __snake_case ) snake_case = model_class(__snake_case ) @jax.jit def model_jitted(__snake_case , **__snake_case ): return model(pixel_values=__snake_case , **__snake_case ) with self.subTest('''JIT Enabled''' ): snake_case = model_jitted(**__snake_case ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): snake_case = model_jitted(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for jitted_output, output in zip(__snake_case , __snake_case ): self.assertEqual(jitted_output.shape , output.shape ) @slow def a_ ( self ): for model_class_name in self.all_model_classes: snake_case = model_class_name.from_pretrained('''google/vit-base-patch16-224''' ) snake_case = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(__snake_case )
550
0
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase__ = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) lowerCamelCase__ = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) lowerCamelCase__ = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) lowerCamelCase__ = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) lowerCamelCase__ = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) lowerCamelCase__ = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) lowerCamelCase__ = ( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def lowerCAmelCase__ ( ): """simple docstring""" __a , __a = randrange(len(_SCREAMING_SNAKE_CASE ) ), randrange(len(_SCREAMING_SNAKE_CASE ) ) __a = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] __a , __a = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(_SCREAMING_SNAKE_CASE )) @pytest.mark.parametrize("""hand, expected""" , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" assert PokerHand(_SCREAMING_SNAKE_CASE )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" assert PokerHand(_SCREAMING_SNAKE_CASE )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" __a = PokerHand(_SCREAMING_SNAKE_CASE ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" assert PokerHand(_SCREAMING_SNAKE_CASE )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" assert PokerHand(_SCREAMING_SNAKE_CASE )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" assert PokerHand(_SCREAMING_SNAKE_CASE ).compare_with(PokerHand(_SCREAMING_SNAKE_CASE ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" assert PokerHand(_SCREAMING_SNAKE_CASE ).compare_with(PokerHand(_SCREAMING_SNAKE_CASE ) ) == expected def lowerCAmelCase__ ( ): """simple docstring""" __a = [PokerHand(_SCREAMING_SNAKE_CASE ) for hand in SORTED_HANDS] __a = poker_hands.copy() shuffle(_SCREAMING_SNAKE_CASE ) __a = chain(sorted(_SCREAMING_SNAKE_CASE ) ) for index, hand in enumerate(_SCREAMING_SNAKE_CASE ): assert hand == poker_hands[index] def lowerCAmelCase__ ( ): """simple docstring""" __a = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=_SCREAMING_SNAKE_CASE ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCAmelCase__ ( ): """simple docstring""" __a = PokerHand("""2C 4S AS 3D 5C""" ) __a = True __a = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCAmelCase__ ( ): """simple docstring""" __a = 0 __a = os.path.abspath(os.path.dirname(_SCREAMING_SNAKE_CASE ) ) __a = os.path.join(_SCREAMING_SNAKE_CASE , """poker_hands.txt""" ) with open(_SCREAMING_SNAKE_CASE ) as file_hand: for line in file_hand: __a = line[:14].strip() __a = line[15:].strip() __a , __a = PokerHand(_SCREAMING_SNAKE_CASE ), PokerHand(_SCREAMING_SNAKE_CASE ) __a = player.compare_with(_SCREAMING_SNAKE_CASE ) if output == "Win": answer += 1 assert answer == 376
713
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : torch.FloatTensor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self : Tuple , __lowercase : int = 16 , __lowercase : int = 88 , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : int = 1 , __lowercase : float = 0.0 , __lowercase : int = 32 , __lowercase : Optional[int] = None , __lowercase : bool = False , __lowercase : Optional[int] = None , __lowercase : str = "geglu" , __lowercase : bool = True , __lowercase : bool = True , ): '''simple docstring''' super().__init__() __a = num_attention_heads __a = attention_head_dim __a = num_attention_heads * attention_head_dim __a = in_channels __a = torch.nn.GroupNorm(num_groups=__lowercase , num_channels=__lowercase , eps=1E-6 , affine=__lowercase ) __a = nn.Linear(__lowercase , __lowercase ) # 3. Define transformers blocks __a = nn.ModuleList( [ BasicTransformerBlock( __lowercase , __lowercase , __lowercase , dropout=__lowercase , cross_attention_dim=__lowercase , activation_fn=__lowercase , attention_bias=__lowercase , double_self_attention=__lowercase , norm_elementwise_affine=__lowercase , ) for d in range(__lowercase ) ] ) __a = nn.Linear(__lowercase , __lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : Optional[Any] , __lowercase : str=None , __lowercase : List[Any]=None , __lowercase : List[Any]=None , __lowercase : int=1 , __lowercase : Union[str, Any]=None , __lowercase : bool = True , ): '''simple docstring''' __a , __a , __a , __a = hidden_states.shape __a = batch_frames // num_frames __a = hidden_states __a = hidden_states[None, :].reshape(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) __a = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __a = self.norm(__lowercase ) __a = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , __lowercase , __lowercase ) __a = self.proj_in(__lowercase ) # 2. Blocks for block in self.transformer_blocks: __a = block( __lowercase , encoder_hidden_states=__lowercase , timestep=__lowercase , cross_attention_kwargs=__lowercase , class_labels=__lowercase , ) # 3. Output __a = self.proj_out(__lowercase ) __a = ( hidden_states[None, None, :] .reshape(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __a = hidden_states.reshape(__lowercase , __lowercase , __lowercase , __lowercase ) __a = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=__lowercase )
547
0
def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = generate_pascal_triangle(lowerCamelCase__ ) for row_idx in range(lowerCamelCase__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) lowerCamelCase = [] for current_row_idx in range(lowerCamelCase__ ): lowerCamelCase = populate_current_row(lowerCamelCase__ , lowerCamelCase__ ) triangle.append(lowerCamelCase__ ) return triangle def __lowerCamelCase ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase , lowerCamelCase = 1, 1 for current_col_idx in range(1 , lowerCamelCase__ ): calculate_current_element( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return current_row def __lowerCamelCase ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int , lowerCamelCase__ : int , ): '''simple docstring''' lowerCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase = above_to_left_elt + above_to_right_elt def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) lowerCamelCase = [[1]] for row_index in range(1 , lowerCamelCase__ ): lowerCamelCase = [0] + result[-1] + [0] lowerCamelCase = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase = sum(divmod(lowerCamelCase__ , 2 ) ) lowerCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] lowerCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase = row_first_half + row_second_half result.append(lowerCamelCase__ ) return result def __lowerCamelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCamelCase__ : Callable , lowerCamelCase__ : int ) -> None: lowerCamelCase = f'{func.__name__}({value})' lowerCamelCase = timeit(f'__main__.{call}' , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'{call:38} -- {timing:.4f} seconds' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCamelCase__ , lowerCamelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
457
# Lint as: python3 import itertools import os import re UpperCAmelCase : Any = re.compile(r"([A-Z]+)([A-Z][a-z])") UpperCAmelCase : Optional[Any] = re.compile(r"([a-z\d])([A-Z])") UpperCAmelCase : Optional[Any] = re.compile(r"(?<!_)_(?!_)") UpperCAmelCase : Any = re.compile(r"(_{2,})") UpperCAmelCase : List[Any] = r"^\w+(\.\w+)*$" UpperCAmelCase : Any = r"<>:/\|?*" def __lowerCamelCase ( lowerCamelCase__ : Tuple ): '''simple docstring''' lowerCamelCase = _uppercase_uppercase_re.sub(R"""\1_\2""" , lowerCamelCase__ ) lowerCamelCase = _lowercase_uppercase_re.sub(R"""\1_\2""" , lowerCamelCase__ ) return name.lower() def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' lowerCamelCase = _single_underscore_re.split(lowerCamelCase__ ) lowerCamelCase = [_multiple_underscores_re.split(lowerCamelCase__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(lowerCamelCase__ ) if n != """""" ) def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' if os.path.basename(lowerCamelCase__ ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) return camelcase_to_snakecase(lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : int ): '''simple docstring''' if os.path.basename(lowerCamelCase__ ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) if not re.match(_split_re , lowerCamelCase__ ): raise ValueError(f'Split name should match \'{_split_re}\'\' but got \'{split}\'.' ) return f'{filename_prefix_for_name(lowerCamelCase__ )}-{split}' def __lowerCamelCase ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int=None ): '''simple docstring''' lowerCamelCase = filename_prefix_for_split(lowerCamelCase__ , lowerCamelCase__ ) if filetype_suffix: prefix += f'.{filetype_suffix}' lowerCamelCase = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) return f'{filepath}*' def __lowerCamelCase ( lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int=None , lowerCamelCase__ : str=None ): '''simple docstring''' lowerCamelCase = filename_prefix_for_split(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) if shard_lengths: lowerCamelCase = len(lowerCamelCase__ ) lowerCamelCase = [f'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(lowerCamelCase__ )] if filetype_suffix: lowerCamelCase = [filename + f'.{filetype_suffix}' for filename in filenames] return filenames else: lowerCamelCase = prefix if filetype_suffix: filename += f'.{filetype_suffix}' return [filename]
457
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
150
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Union[str, Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[int] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : str = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) def A__ ( *_UpperCAmelCase : str , **_UpperCAmelCase : List[str] ) -> str: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : int , **_UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) def A__ ( *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' requires_backends(_UpperCAmelCase , ["torch"] ) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : str = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : str = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Union[str, Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : str = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Optional[int] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Any = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Dict = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[str] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : List[Any] = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> str: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Any: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : int = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> int: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch"]) class SCREAMING_SNAKE_CASE_ ( metaclass=_lowercase): '''simple docstring''' __magic_name__ : Tuple = ['''torch'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__) -> Tuple: '''simple docstring''' requires_backends(self , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch"]) @classmethod def UpperCAmelCase ( cls , *lowerCamelCase__ , **lowerCamelCase__) -> Dict: '''simple docstring''' requires_backends(cls , ["torch"])
150
1
import math def __A ( _A , _A = 0 , _A = 0 ): """simple docstring""" __a = end or len(_A ) for i in range(_A , _A ): __a = i __a = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __a = array[temp_index - 1] temp_index -= 1 __a = temp_index_value return array def __A ( _A , _A , _A ): # Max Heap """simple docstring""" __a = index __a = 2 * index + 1 # Left Node __a = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __a = left_index if right_index < heap_size and array[largest] < array[right_index]: __a = right_index if largest != index: __a = array[largest], array[index] heapify(_A , _A , _A ) def __A ( _A ): """simple docstring""" __a = len(_A ) for i in range(n // 2 , -1 , -1 ): heapify(_A , _A , _A ) for i in range(n - 1 , 0 , -1 ): __a = array[0], array[i] heapify(_A , 0 , _A ) return array def __A ( _A , _A , _A , _A ): """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __A ( _A , _A , _A , _A ): """simple docstring""" __a = low __a = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __a = array[j], array[i] i += 1 def __A ( _A ): """simple docstring""" if len(_A ) == 0: return array __a = 2 * math.ceil(math.loga(len(_A ) ) ) __a = 16 return intro_sort(_A , 0 , len(_A ) , _A , _A ) def __A ( _A , _A , _A , _A , _A ): """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(_A ) max_depth -= 1 __a = median_of_a(_A , _A , start + ((end - start) // 2) + 1 , end - 1 ) __a = partition(_A , _A , _A , _A ) intro_sort(_A , _A , _A , _A , _A ) __a = p return insertion_sort(_A , _A , _A ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Any = input("""Enter numbers separated by a comma : """).strip() SCREAMING_SNAKE_CASE : List[Any] = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
197
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __lowercase ( snake_case, snake_case ): """simple docstring""" __magic_name__ :str = XCLIPTextConfig() # derive patch size from model name __magic_name__ :Union[str, Any] = model_name.find('''patch''' ) __magic_name__ :Optional[Any] = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) __magic_name__ :int = XCLIPVisionConfig(patch_size=snake_case, num_frames=snake_case ) if "large" in model_name: __magic_name__ :Dict = 7_6_8 __magic_name__ :int = 3_0_7_2 __magic_name__ :List[Any] = 1_2 __magic_name__ :str = 1_0_2_4 __magic_name__ :Any = 4_0_9_6 __magic_name__ :Optional[Any] = 1_6 __magic_name__ :Union[str, Any] = 2_4 __magic_name__ :Union[str, Any] = 7_6_8 __magic_name__ :Tuple = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": __magic_name__ :List[str] = 3_3_6 __magic_name__ :Any = XCLIPConfig.from_text_vision_configs(snake_case, snake_case ) if "large" in model_name: __magic_name__ :str = 7_6_8 return config def __lowercase ( snake_case ): """simple docstring""" if name == "token_embedding.weight": __magic_name__ :Any = name.replace('''token_embedding.weight''', '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": __magic_name__ :Any = name.replace('''positional_embedding''', '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: __magic_name__ :List[str] = name.replace('''ln_1''', '''layer_norm1''' ) if "ln_2" in name: __magic_name__ :str = name.replace('''ln_2''', '''layer_norm2''' ) if "c_fc" in name: __magic_name__ :List[Any] = name.replace('''c_fc''', '''fc1''' ) if "c_proj" in name: __magic_name__ :Any = name.replace('''c_proj''', '''fc2''' ) if name.startswith('''transformer.resblocks''' ): __magic_name__ :Any = name.replace('''transformer.resblocks''', '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: __magic_name__ :Union[str, Any] = name.replace('''attn.out_proj''', '''self_attn.out_proj''' ) if "ln_final" in name: __magic_name__ :Tuple = name.replace('''ln_final''', '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": __magic_name__ :List[Any] = name.replace('''visual.class_embedding''', '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": __magic_name__ :Any = name.replace('''visual.positional_embedding''', '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): __magic_name__ :Union[str, Any] = name.replace('''visual.transformer.resblocks''', '''vision_model.encoder.layers''' ) if "visual.conv1" in name: __magic_name__ :Tuple = name.replace('''visual.conv1''', '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: __magic_name__ :Tuple = name.replace('''visual.ln_pre''', '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: __magic_name__ :Optional[Any] = name.replace('''visual.ln_post''', '''vision_model.post_layernorm''' ) if "visual.proj" in name: __magic_name__ :Tuple = name.replace('''visual.proj''', '''visual_projection.weight''' ) if "text_projection" in name: __magic_name__ :int = name.replace('''text_projection''', '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: __magic_name__ :int = name.replace('''prompts_visual_proj''', '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: __magic_name__ :Dict = name.replace('''prompts_visual_ln''', '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": __magic_name__ :List[Any] = name.replace('''positional''', '''position''' ) if name.startswith('''mit.resblocks''' ): __magic_name__ :Union[str, Any] = name.replace('''mit.resblocks''', '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): __magic_name__ :str = name.replace('''prompts_generator.norm''', '''prompts_generator.layernorm''' ) return name def __lowercase ( snake_case, snake_case ): """simple docstring""" for key in orig_state_dict.copy().keys(): __magic_name__ :Any = orig_state_dict.pop(snake_case ) if "attn.in_proj" in key: __magic_name__ :str = key.split('''.''' ) if key.startswith('''visual''' ): __magic_name__ :List[Any] = key_split[3] __magic_name__ :List[Any] = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __magic_name__ :List[Any] = val[ :dim, : ] __magic_name__ :List[str] = val[ dim : dim * 2, : ] __magic_name__ :List[str] = val[ -dim:, : ] else: __magic_name__ :str = val[ :dim ] __magic_name__ :Optional[int] = val[ dim : dim * 2 ] __magic_name__ :Any = val[ -dim: ] else: if "weight" in key: __magic_name__ :int = val[ :dim, : ] __magic_name__ :Union[str, Any] = val[ dim : dim * 2, : ] __magic_name__ :List[Any] = val[ -dim:, : ] else: __magic_name__ :Union[str, Any] = val[:dim] __magic_name__ :str = val[ dim : dim * 2 ] __magic_name__ :Dict = val[-dim:] elif key.startswith('''mit''' ): __magic_name__ :List[Any] = key_split[2] __magic_name__ :Any = config.vision_config.mit_hidden_size if "weight" in key: __magic_name__ :Union[str, Any] = val[:dim, :] __magic_name__ :Optional[int] = val[dim : dim * 2, :] __magic_name__ :int = val[-dim:, :] else: __magic_name__ :Tuple = val[:dim] __magic_name__ :Optional[int] = val[dim : dim * 2] __magic_name__ :Optional[int] = val[-dim:] else: __magic_name__ :Any = key_split[2] __magic_name__ :List[Any] = config.text_config.hidden_size if "weight" in key: __magic_name__ :Union[str, Any] = val[:dim, :] __magic_name__ :Tuple = val[ dim : dim * 2, : ] __magic_name__ :str = val[-dim:, :] else: __magic_name__ :int = val[:dim] __magic_name__ :Any = val[ dim : dim * 2 ] __magic_name__ :str = val[-dim:] else: __magic_name__ :Tuple = rename_key(snake_case ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __magic_name__ :List[Any] = val.T __magic_name__ :Optional[Any] = val return orig_state_dict def __lowercase ( snake_case ): """simple docstring""" if num_frames == 8: __magic_name__ :Any = '''eating_spaghetti_8_frames.npy''' elif num_frames == 1_6: __magic_name__ :List[Any] = '''eating_spaghetti.npy''' elif num_frames == 3_2: __magic_name__ :Tuple = '''eating_spaghetti_32_frames.npy''' __magic_name__ :str = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename=snake_case, repo_type='''dataset''', ) __magic_name__ :List[Any] = np.load(snake_case ) return list(snake_case ) def __lowercase ( snake_case, snake_case=None, snake_case=False ): """simple docstring""" __magic_name__ :Union[str, Any] = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } __magic_name__ :Optional[int] = model_to_url[model_name] __magic_name__ :List[str] = 8 if "16-frames" in model_name: __magic_name__ :List[Any] = 1_6 elif "shot" in model_name: __magic_name__ :Dict = 3_2 __magic_name__ :str = get_xclip_config(snake_case, snake_case ) __magic_name__ :List[Any] = XCLIPModel(snake_case ) model.eval() if "drive" in checkpoint_url: __magic_name__ :Any = '''pytorch_model.bin''' gdown.cached_download(snake_case, snake_case, quiet=snake_case ) __magic_name__ :Optional[Any] = torch.load(snake_case, map_location='''cpu''' )['''model'''] else: __magic_name__ :Optional[int] = torch.hub.load_state_dict_from_url(snake_case )['''model'''] __magic_name__ :List[str] = convert_state_dict(snake_case, snake_case ) __magic_name__ :List[Any] = XCLIPModel(snake_case ) __magic_name__ , __magic_name__ :Optional[Any] = model.load_state_dict(snake_case, strict=snake_case ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __magic_name__ :str = 3_3_6 if model_name == '''xclip-large-patch14-16-frames''' else 2_2_4 __magic_name__ :Optional[int] = VideoMAEImageProcessor(size=snake_case ) __magic_name__ :Optional[int] = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) __magic_name__ :Tuple = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) __magic_name__ :Optional[int] = XCLIPProcessor(image_processor=snake_case, tokenizer=snake_case ) __magic_name__ :List[Any] = prepare_video(snake_case ) __magic_name__ :str = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''], videos=snake_case, return_tensors='''pt''', padding=snake_case ) print('''Shape of pixel values:''', inputs.pixel_values.shape ) with torch.no_grad(): __magic_name__ :Tuple = model(**snake_case ) # Verify outputs __magic_name__ :Any = outputs.logits_per_video __magic_name__ :str = logits_per_video.softmax(dim=1 ) print('''Probs:''', snake_case ) # kinetics-400 if model_name == "xclip-base-patch32": __magic_name__ :Dict = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": __magic_name__ :str = torch.tensor([[7.0_9_9_9E-0_4, 9.9_8_8_3E-0_1, 4.5_5_8_0E-0_4]] ) elif model_name == "xclip-base-patch16": __magic_name__ :Tuple = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": __magic_name__ :Tuple = torch.tensor([[7.6_9_3_7E-0_4, 9.9_7_2_8E-0_1, 1.9_4_7_3E-0_3]] ) elif model_name == "xclip-large-patch14": __magic_name__ :str = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": __magic_name__ :Optional[int] = torch.tensor([[3.3_8_7_7E-0_4, 9.9_9_3_7E-0_1, 2.8_8_8_8E-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __magic_name__ :Optional[int] = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __magic_name__ :List[str] = torch.tensor([[3.8_5_5_4E-0_4, 9.9_9_2_9E-0_1, 3.2_7_5_4E-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": __magic_name__ :List[str] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __magic_name__ :Tuple = torch.tensor([[7.1_8_9_0E-0_6, 9.9_9_9_4E-0_1, 5.6_5_5_9E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __magic_name__ :List[str] = torch.tensor([[1.0_3_2_0E-0_5, 9.9_9_9_3E-0_1, 6.2_4_3_5E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __magic_name__ :Optional[int] = torch.tensor([[4.1_3_7_7E-0_6, 9.9_9_9_0E-0_1, 9.8_3_8_6E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __magic_name__ :Optional[int] = torch.tensor([[4.1_3_4_7E-0_5, 9.9_9_6_2E-0_1, 3.3_4_1_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __magic_name__ :Union[str, Any] = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __magic_name__ :Union[str, Any] = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __magic_name__ :Optional[int] = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __magic_name__ :Any = torch.tensor([[9.8_2_1_9E-0_4, 9.9_5_9_3E-0_1, 3.0_8_6_3E-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __magic_name__ :Optional[int] = torch.tensor([[3.5_0_8_2E-0_4, 9.9_7_8_5E-0_1, 1.7_9_6_6E-0_3]] ) else: raise ValueError(f'''Model name {model_name} not supported''' ) assert torch.allclose(snake_case, snake_case, atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(snake_case, organization='''nielsr''' ) processor.push_to_hub(snake_case, organization='''nielsr''' ) slow_tokenizer.push_to_hub(snake_case, organization='''nielsr''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
0
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def __lowerCAmelCase ( lowerCamelCase : str ): '''simple docstring''' def decorator(lowerCamelCase : List[Any] ): __lowerCAmelCase = getattr(lowerCamelCase , "handle_key" , [] ) handle += [key] setattr(lowerCamelCase , "handle_key" , lowerCamelCase ) return func return decorator def __lowerCAmelCase ( *lowerCamelCase : List[str] ): '''simple docstring''' def decorator(lowerCamelCase : List[Any] ): __lowerCAmelCase = getattr(lowerCamelCase , "handle_key" , [] ) handle += keys setattr(lowerCamelCase , "handle_key" , lowerCamelCase ) return func return decorator class UpperCAmelCase__ ( UpperCamelCase__ ): def __new__( cls , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[str]: __lowerCAmelCase = super().__new__(cls , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if not hasattr(UpperCamelCase , "key_handler" ): setattr(UpperCamelCase , "key_handler" , {} ) setattr(UpperCamelCase , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): __lowerCAmelCase = getattr(UpperCamelCase , "handle_key" , [] ) for key in handled_keys: __lowerCAmelCase = value return new_cls @staticmethod def UpperCAmelCase_ ( cls ) -> Dict: __lowerCAmelCase = get_character() if char != KEYMAP["undefined"]: __lowerCAmelCase = ord(UpperCamelCase ) __lowerCAmelCase = cls.key_handler.get(UpperCamelCase ) if handler: __lowerCAmelCase = char return handler(cls ) else: return None def __lowerCAmelCase ( cls : List[str] ): '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
719
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def __lowerCAmelCase ( lowerCamelCase : List[str] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCAmelCase__ ( UpperCamelCase__ ): @staticmethod def UpperCAmelCase_ ( UpperCamelCase ) -> Tuple: __lowerCAmelCase = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=UpperCamelCase , default=UpperCamelCase , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=UpperCamelCase , help="Name of the model to download" ) download_parser.set_defaults(func=UpperCamelCase ) def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[str]: __lowerCAmelCase = model __lowerCAmelCase = cache __lowerCAmelCase = force __lowerCAmelCase = trust_remote_code def UpperCAmelCase_ ( self ) -> Any: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
39
0
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __a ( __snake_case , unittest.TestCase ): lowerCamelCase : Any =GPTSanJapaneseTokenizer lowerCamelCase : List[str] =False lowerCamelCase : List[str] ={'do_clean_text': False, 'add_prefix_space': False} def lowerCamelCase_ ( self ): '''simple docstring''' super().setUp() # fmt: off lowerCAmelCase_ = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on lowerCAmelCase_ = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 lowerCAmelCase_ = {'''unk_token''': '''<unk>'''} lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(UpperCAmelCase ) ) def lowerCamelCase_ ( self , **UpperCAmelCase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCamelCase_ ( self , UpperCAmelCase ): '''simple docstring''' lowerCAmelCase_ = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' lowerCAmelCase_ = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def lowerCamelCase_ ( self , UpperCAmelCase ): '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.get_input_output_texts(UpperCAmelCase ) lowerCAmelCase_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCAmelCase_ = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) return text, ids def lowerCamelCase_ ( self ): '''simple docstring''' pass # TODO add if relevant def lowerCamelCase_ ( self ): '''simple docstring''' pass # TODO add if relevant def lowerCamelCase_ ( self ): '''simple docstring''' pass # TODO add if relevant def lowerCamelCase_ ( self ): '''simple docstring''' lowerCAmelCase_ = self.get_tokenizer() # Testing tokenization lowerCAmelCase_ = '''こんにちは、世界。 こんばんは、㔺界。''' lowerCAmelCase_ = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] lowerCAmelCase_ = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Testing conversion to ids without special tokens lowerCAmelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Testing conversion to ids with special tokens lowerCAmelCase_ = tokens + [tokenizer.unk_token] lowerCAmelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase_ ( self ): '''simple docstring''' lowerCAmelCase_ = self.get_tokenizer() # Testing tokenization lowerCAmelCase_ = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' lowerCAmelCase_ = '''こんにちは、、、、世界。こんばんは、、、、世界。''' lowerCAmelCase_ = tokenizer.encode(UpperCAmelCase ) lowerCAmelCase_ = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) @slow def lowerCamelCase_ ( self ): '''simple docstring''' lowerCAmelCase_ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization lowerCAmelCase_ = '''こんにちは、世界。''' lowerCAmelCase_ = '''こんばんは、㔺界。😀''' lowerCAmelCase_ = '''こんにちは、世界。こんばんは、世界。😀''' lowerCAmelCase_ = tokenizer.encode(prefix_text + input_text ) lowerCAmelCase_ = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) lowerCAmelCase_ = tokenizer.encode(UpperCAmelCase , prefix_text=UpperCAmelCase ) lowerCAmelCase_ = tokenizer.decode(UpperCAmelCase ) lowerCAmelCase_ = tokenizer.decode(UpperCAmelCase ) lowerCAmelCase_ = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) @slow def lowerCamelCase_ ( self ): '''simple docstring''' lowerCAmelCase_ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization lowerCAmelCase_ = '''こんにちは、世界。''' lowerCAmelCase_ = '''こんばんは、㔺界。😀''' lowerCAmelCase_ = len(tokenizer.encode(UpperCAmelCase ) ) - 2 lowerCAmelCase_ = len(tokenizer.encode(UpperCAmelCase ) ) - 2 lowerCAmelCase_ = [1] + [0] * (len_prefix + len_text + 1) lowerCAmelCase_ = [1] * (len_prefix + len_text + 1) + [0] lowerCAmelCase_ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowerCAmelCase_ = tokenizer(prefix_text + input_text ).token_type_ids lowerCAmelCase_ = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids lowerCAmelCase_ = tokenizer(UpperCAmelCase , prefix_text=UpperCAmelCase ).token_type_ids self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @slow def lowerCamelCase_ ( self ): '''simple docstring''' lowerCAmelCase_ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) lowerCAmelCase_ = tokenizer.encode('''あンいワ''' ) lowerCAmelCase_ = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) lowerCAmelCase_ = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(UpperCAmelCase ) , tokenizer.decode(UpperCAmelCase ) ) self.assertEqual(tokenizer.decode(UpperCAmelCase ) , tokenizer.decode(UpperCAmelCase ) ) self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase_ ( self ): '''simple docstring''' lowerCAmelCase_ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) lowerCAmelCase_ = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] lowerCAmelCase_ = tokenizer(UpperCAmelCase , padding=UpperCAmelCase ) lowerCAmelCase_ = tokenizer.batch_encode_plus(UpperCAmelCase , padding=UpperCAmelCase ) # fmt: off lowerCAmelCase_ = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowerCAmelCase_ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowerCAmelCase_ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , UpperCAmelCase ) self.assertListEqual(x_token.token_type_ids , UpperCAmelCase ) self.assertListEqual(x_token.attention_mask , UpperCAmelCase ) self.assertListEqual(x_token_a.input_ids , UpperCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , UpperCAmelCase ) self.assertListEqual(x_token_a.attention_mask , UpperCAmelCase ) def lowerCamelCase_ ( self ): '''simple docstring''' pass def lowerCamelCase_ ( self ): '''simple docstring''' pass
552
"""simple docstring""" def UpperCAmelCase ( _lowercase : int = 1_0_0_0 ) -> int: """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = 1, 1 lowerCAmelCase_ = [] for i in range(1 , n + 1 ): lowerCAmelCase_ = prev_numerator + 2 * prev_denominator lowerCAmelCase_ = prev_numerator + prev_denominator if len(str(_lowercase ) ) > len(str(_lowercase ) ): result.append(_lowercase ) lowerCAmelCase_ = numerator lowerCAmelCase_ = denominator return len(_lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
552
1
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Tuple = len(_lowerCamelCase ) for i in range(length - 1 ): _lowerCamelCase : str = i for k in range(i + 1 , _lowerCamelCase ): if collection[k] < collection[least]: _lowerCamelCase : Optional[Any] = k if least != i: _lowerCamelCase, _lowerCamelCase : List[str] = (collection[i], collection[least]) return collection if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase : Union[str, Any] = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
386
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase = 10 , _lowerCamelCase = 22 ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = range(1 , _lowerCamelCase ) _lowerCamelCase : Tuple = range(1 , _lowerCamelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
386
1
import csv import tweepy # Twitter API credentials _SCREAMING_SNAKE_CASE = """""" _SCREAMING_SNAKE_CASE = """""" _SCREAMING_SNAKE_CASE = """""" _SCREAMING_SNAKE_CASE = """""" def lowercase( UpperCamelCase_ ) -> None: '''simple docstring''' # authorize twitter, initialize tweepy UpperCamelCase = tweepy.OAuthHandler(UpperCamelCase_ , UpperCamelCase_ ) auth.set_access_token(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = tweepy.API(UpperCamelCase_ ) # initialize a list to hold all the tweepy Tweets UpperCamelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCamelCase = api.user_timeline(screen_name=UpperCamelCase_ , count=200 ) # save most recent tweets alltweets.extend(UpperCamelCase_ ) # save the id of the oldest tweet less one UpperCamelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(UpperCamelCase_ ) > 0: print(f"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates UpperCamelCase = api.user_timeline( screen_name=UpperCamelCase_ , count=200 , max_id=UpperCamelCase_ ) # save most recent tweets alltweets.extend(UpperCamelCase_ ) # update the id of the oldest tweet less one UpperCamelCase = alltweets[-1].id - 1 print(f"""...{len(UpperCamelCase_ )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCamelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f"""new_{screen_name}_tweets.csv""" , """w""" ) as f: UpperCamelCase = csv.writer(UpperCamelCase_ ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(UpperCamelCase_ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
537
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = 3 UpperCamelCase = 250 UpperCamelCase = ids_tensor((batch_size, length) , lowerCamelCase_ ) UpperCamelCase = torch.ones((batch_size, length) , device=lowerCamelCase_ , dtype=torch.float ) / length return input_ids, scores def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) UpperCamelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = MaxLengthCriteria(max_length=10 ) UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) UpperCamelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCamelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCamelCase_ ) , 1 )
537
1
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } UpperCamelCase = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } UpperCamelCase = { """jukebox""": 512, } class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_LYRIC_TOKENS_SIZES snake_case = ["input_ids", "attention_mask"] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=["v3", "v2", "v2"] , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE="<|endoftext|>" , **_SCREAMING_SNAKE_CASE , )->Any: '''simple docstring''' A_ : Union[str, Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else unk_token super().__init__( unk_token=_SCREAMING_SNAKE_CASE , n_genres=_SCREAMING_SNAKE_CASE , version=_SCREAMING_SNAKE_CASE , max_n_lyric_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ : List[str] = version A_ : str = max_n_lyric_tokens A_ : Optional[int] = n_genres with open(_SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as vocab_handle: A_ : Any = json.load(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as vocab_handle: A_ : Union[str, Any] = json.load(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as vocab_handle: A_ : Tuple = json.load(_SCREAMING_SNAKE_CASE ) A_ : str = R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: A_ : Any = oov.replace(R'''\-\'''' , R'''\-+\'''' ) A_ : List[Any] = regex.compile(_SCREAMING_SNAKE_CASE ) A_ : Any = {v: k for k, v in self.artists_encoder.items()} A_ : List[Any] = {v: k for k, v in self.genres_encoder.items()} A_ : Tuple = {v: k for k, v in self.lyrics_encoder.items()} @property def _snake_case ( self )->str: '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def _snake_case ( self )->str: '''simple docstring''' return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' A_ : List[str] = [self.artists_encoder.get(_SCREAMING_SNAKE_CASE , 0 ) for artist in list_artists] for genres in range(len(_SCREAMING_SNAKE_CASE ) ): A_ : Any = [self.genres_encoder.get(_SCREAMING_SNAKE_CASE , 0 ) for genre in list_genres[genres]] A_ : Tuple = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) A_ : int = [[self.lyrics_encoder.get(_SCREAMING_SNAKE_CASE , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' return list(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' A_ : int = self.prepare_for_tokenization(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = self._tokenize(_SCREAMING_SNAKE_CASE ) return artist, genre, lyrics def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False )->Tuple[str, str, str, Dict[str, Any]]: '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": A_ : Tuple = artists[idx].lower() A_ : int = [genres[idx].lower()] else: A_ : Tuple = self._normalize(artists[idx] ) + '''.v2''' A_ : int = [ self._normalize(_SCREAMING_SNAKE_CASE ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": A_ : Optional[int] = regex.compile(R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) A_ : Tuple = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' A_ : str = {vocab[index]: index + 1 for index in range(len(_SCREAMING_SNAKE_CASE ) )} A_ : Optional[int] = 0 A_ : Tuple = len(_SCREAMING_SNAKE_CASE ) + 1 A_ : List[Any] = self.vocab A_ : Dict = {v: k for k, v in self.vocab.items()} A_ : Dict = '''''' else: A_ : Optional[Any] = regex.compile(R'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) A_ : List[Any] = self._run_strip_accents(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = lyrics.replace('''\\''' , '''\n''' ) A_ : Dict = self.out_of_vocab.sub('''''' , _SCREAMING_SNAKE_CASE ), [], [] return artists, genres, lyrics def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' A_ : Tuple = unicodedata.normalize('''NFD''' , _SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = [] for char in text: A_ : int = unicodedata.category(_SCREAMING_SNAKE_CASE ) if cat == "Mn": continue output.append(_SCREAMING_SNAKE_CASE ) return "".join(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->str: '''simple docstring''' A_ : int = ( [chr(_SCREAMING_SNAKE_CASE ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(_SCREAMING_SNAKE_CASE ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(_SCREAMING_SNAKE_CASE ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) A_ : Optional[int] = frozenset(_SCREAMING_SNAKE_CASE ) A_ : int = re.compile(R'''_+''' ) A_ : str = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) A_ : str = pattern.sub('''_''' , _SCREAMING_SNAKE_CASE ).strip('''_''' ) return text def _snake_case ( self , _SCREAMING_SNAKE_CASE )->str: '''simple docstring''' return " ".join(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False )->int: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = TensorType(_SCREAMING_SNAKE_CASE ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf A_ : List[Any] = tf.constant A_ : Union[str, Any] = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch A_ : Any = torch.tensor A_ : List[str] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 A_ : List[str] = jnp.array A_ : Optional[int] = _is_jax else: A_ : Optional[Any] = np.asarray A_ : Union[str, Any] = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: A_ : Tuple = [inputs] if not is_tensor(_SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = as_tensor(_SCREAMING_SNAKE_CASE ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="" , _SCREAMING_SNAKE_CASE="pt" )->BatchEncoding: '''simple docstring''' A_ : Dict = [0, 0, 0] A_ : Dict = [artist] * len(self.version ) A_ : str = [genres] * len(self.version ) A_ : Union[str, Any] = self.tokenize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : str = self._convert_token_to_id(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Optional[int] = [-INFINITY] * len(full_tokens[-1] ) A_ : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_SCREAMING_SNAKE_CASE ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->Tuple[str]: '''simple docstring''' if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ : Dict = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_SCREAMING_SNAKE_CASE ) ) A_ : int = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_SCREAMING_SNAKE_CASE ) ) A_ : int = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_SCREAMING_SNAKE_CASE ) ) return (artists_file, genres_file, lyrics_file) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' A_ : Union[str, Any] = self.artists_decoder.get(_SCREAMING_SNAKE_CASE ) A_ : Tuple = [self.genres_decoder.get(_SCREAMING_SNAKE_CASE ) for genre in genres_index] A_ : List[str] = [self.lyrics_decoder.get(_SCREAMING_SNAKE_CASE ) for character in lyric_index] return artist, genres, lyrics
707
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCamelCase = """tiny-wmt19-en-ru""" # Build # borrowed from a test UpperCamelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCamelCase = dict(zip(vocab, range(len(vocab)))) UpperCamelCase = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(tmpdirname) UpperCamelCase = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] UpperCamelCase = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] UpperCamelCase = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) UpperCamelCase = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCamelCase = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCamelCase = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test UpperCamelCase = tokenizer(["""Making tiny model"""], return_tensors="""pt""") UpperCamelCase = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
152
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((a__) , (a__)) : List[Any] = extended_euclid(lowerCAmelCase__ , a % b ) a__ : str = a // b return (y, x - k * y) def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: '''simple docstring''' ((a__) , (a__)) : Tuple = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : List[str] = na * na a__ : Union[str, Any] = ra * x * na + ra * y * na return (n % m + m) % m def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: '''simple docstring''' ((a__) , (a__)) : Optional[Any] = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) if b < 0: a__ : Optional[int] = (b % n + n) % n return b def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: '''simple docstring''' a__ , a__ : List[Any] = invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ), invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Dict = na * na a__ : Any = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
642
"""simple docstring""" import functools def lowercase__ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> int: '''simple docstring''' a__ : Any = len(lowerCAmelCase__ ) a__ : Optional[int] = len(lowerCAmelCase__ ) @functools.cache def min_distance(lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa a__ : List[Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCAmelCase__ ) , 1 + min_distance(lowerCAmelCase__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
642
1
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters lowerCamelCase__ = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE( snake_case_ : Any , snake_case_ : int , snake_case_ : str , snake_case_ : int=None , snake_case_ : Union[str, Any]=None ) ->str: '''simple docstring''' # Recurse if needed if "." in tensor_name: _lowercase : List[Any] = tensor_name.split('''.''' ) for split in splits[:-1]: _lowercase : Any = getattr(snake_case_ , snake_case_ ) if new_module is None: raise ValueError(F"{module} has no attribute {split}." ) _lowercase : int = new_module _lowercase : Tuple = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"{module} does not have a parameter or a buffer named {tensor_name}." ) _lowercase : Any = tensor_name in module._buffers _lowercase : Dict = getattr(snake_case_ , snake_case_ ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(F"{tensor_name} is on the meta device, we need a `value` to put in on {device}." ) _lowercase : List[Any] = False _lowercase : Any = False if is_buffer or not is_bitsandbytes_available(): _lowercase : Optional[Any] = False _lowercase : int = False else: _lowercase : Tuple = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) _lowercase : Dict = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: _lowercase : int = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: _lowercase : Any = old_value.to(snake_case_ ) elif isinstance(snake_case_ , torch.Tensor ): _lowercase : Dict = value.to('''cpu''' ) if value.dtype == torch.inta: _lowercase : Dict = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: _lowercase : Union[str, Any] = torch.tensor(snake_case_ , device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , snake_case_ ) and fpaa_statistics is None: _lowercase : List[str] = new_value.T _lowercase : Union[str, Any] = old_value.__dict__ if is_abit: _lowercase : str = bnb.nn.IntaParams(snake_case_ , requires_grad=snake_case_ , **snake_case_ ).to(snake_case_ ) elif is_abit: _lowercase : Tuple = bnb.nn.Paramsabit(snake_case_ , requires_grad=snake_case_ , **snake_case_ ).to(snake_case_ ) _lowercase : Any = new_value if fpaa_statistics is not None: setattr(module.weight , '''SCB''' , fpaa_statistics.to(snake_case_ ) ) else: if value is None: _lowercase : str = old_value.to(snake_case_ ) elif isinstance(snake_case_ , torch.Tensor ): _lowercase : Any = value.to(snake_case_ ) else: _lowercase : Optional[int] = torch.tensor(snake_case_ , device=snake_case_ ) if is_buffer: _lowercase : Dict = new_value else: _lowercase : List[str] = nn.Parameter(snake_case_ , requires_grad=old_value.requires_grad ) _lowercase : Any = new_value def _SCREAMING_SNAKE_CASE( snake_case_ : List[Any] , snake_case_ : Tuple=None , snake_case_ : Dict=None , snake_case_ : str=None , snake_case_ : List[Any]=False ) ->int: '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: _lowercase : Tuple = [] current_key_name.append(snake_case_ ) if (isinstance(snake_case_ , nn.Linear ) or isinstance(snake_case_ , snake_case_ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(snake_case_ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(snake_case_ , snake_case_ ): _lowercase : Tuple = module.weight.shape else: _lowercase : Any = module.in_features _lowercase : Optional[int] = module.out_features if quantization_config.quantization_method() == "llm_int8": _lowercase : Union[str, Any] = bnb.nn.LinearabitLt( snake_case_ , snake_case_ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) _lowercase : Any = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: _lowercase : str = bnb.nn.Linearabit( snake_case_ , snake_case_ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) _lowercase : Optional[Any] = True # Store the module class in case we need to transpose the weight later _lowercase : Optional[int] = type(snake_case_ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(snake_case_ ) if len(list(module.children() ) ) > 0: _lowercase : Dict = _replace_with_bnb_linear( snake_case_ , snake_case_ , snake_case_ , snake_case_ , has_been_replaced=snake_case_ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _SCREAMING_SNAKE_CASE( snake_case_ : Dict , snake_case_ : List[Any]=None , snake_case_ : Optional[Any]=None , snake_case_ : Any=None ) ->int: '''simple docstring''' _lowercase : Tuple = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert _lowercase : Tuple = _replace_with_bnb_linear( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def _SCREAMING_SNAKE_CASE( *snake_case_ : Union[str, Any] , **snake_case_ : List[str] ) ->Tuple: '''simple docstring''' warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , snake_case_ , ) return replace_with_bnb_linear(*snake_case_ , **snake_case_ ) def _SCREAMING_SNAKE_CASE( *snake_case_ : Optional[Any] , **snake_case_ : Tuple ) ->str: '''simple docstring''' warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , snake_case_ , ) return set_module_quantized_tensor_to_device(*snake_case_ , **snake_case_ ) def _SCREAMING_SNAKE_CASE( snake_case_ : Optional[int] ) ->str: '''simple docstring''' _lowercase : List[Any] = deepcopy(snake_case_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() _lowercase : str = find_tied_parameters(snake_case_ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case_ , snake_case_ ): _lowercase : Any = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _lowercase : Union[str, Any] = sum(snake_case_ , [] ) _lowercase : Tuple = len(snake_case_ ) > 0 # Check if it is a base model _lowercase : List[str] = not hasattr(snake_case_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _lowercase : Dict = list(model.named_children() ) _lowercase : Optional[Any] = [list_modules[-1][0]] # add last module together with tied weights _lowercase : str = set(snake_case_ ) - set(snake_case_ ) _lowercase : Any = list(set(snake_case_ ) ) + list(snake_case_ ) # remove ".weight" from the keys _lowercase : Dict = ['''.weight''', '''.bias'''] _lowercase : str = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _lowercase : int = name.replace(snake_case_ , '''''' ) filtered_module_names.append(snake_case_ ) return filtered_module_names
718
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' snake_case_ = StableDiffusionSAGPipeline snake_case_ = TEXT_TO_IMAGE_PARAMS snake_case_ = TEXT_TO_IMAGE_BATCH_PARAMS snake_case_ = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case_ = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case_ = False def __lowercase ( self : Dict ) -> str: '''simple docstring''' torch.manual_seed(0 ) _lowercase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) _lowercase : int = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) _lowercase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _lowercase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) _lowercase : Dict = CLIPTextModel(UpperCamelCase_ ) _lowercase : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _lowercase : str = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowercase ( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any]=0 ) -> Any: '''simple docstring''' if str(UpperCamelCase_ ).startswith('''mps''' ): _lowercase : Any = torch.manual_seed(UpperCamelCase_ ) else: _lowercase : Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) _lowercase : Union[str, Any] = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowercase ( self : List[Any] ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowercase ( self : Tuple ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : str ) -> List[Any]: '''simple docstring''' _lowercase : Tuple = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) _lowercase : int = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : Union[str, Any] = '''.''' _lowercase : Union[str, Any] = torch.manual_seed(0 ) _lowercase : Tuple = sag_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) _lowercase : int = output.images _lowercase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowercase : List[Any] = np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowercase ( self : List[Any] ) -> int: '''simple docstring''' _lowercase : str = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _lowercase : str = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : int = '''.''' _lowercase : Tuple = torch.manual_seed(0 ) _lowercase : int = sag_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) _lowercase : Union[str, Any] = output.images _lowercase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowercase : List[str] = np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowercase ( self : Union[str, Any] ) -> int: '''simple docstring''' _lowercase : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _lowercase : List[Any] = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : Optional[int] = '''.''' _lowercase : Any = torch.manual_seed(0 ) _lowercase : int = sag_pipe( [prompt] , width=768 , height=512 , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) _lowercase : Dict = output.images assert image.shape == (1, 512, 768, 3)
411
0
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer lowercase : List[str] = '''bart''' lowercase : str = True @st.cache(allow_output_mutation=_a ) def lowerCAmelCase__ ( ): if LOAD_DENSE_INDEX: snake_case_ : int = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) snake_case_ : int = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) snake_case_ : List[str] = qar_model.eval() else: snake_case_ , snake_case_ : Union[str, Any] = (None, None) if MODEL_TYPE == "bart": snake_case_ : List[Any] = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) snake_case_ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) snake_case_ : int = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) snake_case_ : Any = sas_model.eval() else: snake_case_ , snake_case_ : int = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_a ) def lowerCAmelCase__ ( ): if LOAD_DENSE_INDEX: snake_case_ : List[str] = faiss.StandardGpuResources() snake_case_ : str = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"] snake_case_ : List[Any] = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 1_28) , ) snake_case_ : int = faiss.IndexFlatIP(1_28 ) snake_case_ : List[Any] = faiss.index_cpu_to_gpu(_a , 1 , _a ) wikiaab_gpu_index_flat.add(_a ) # TODO fix for larger GPU else: snake_case_ , snake_case_ : Optional[int] = (None, None) snake_case_ : str = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_a ) def lowerCAmelCase__ ( ): snake_case_ : List[str] = datasets.load_dataset("eli5" , name="LFQA_reddit" ) snake_case_ : List[str] = elia["train_eli5"] snake_case_ : Dict = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 1_28) ) snake_case_ : Optional[Any] = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(_a ) return (elia_train, eli5_train_q_index) lowercase ,lowercase ,lowercase : Optional[Any] = load_indexes() lowercase ,lowercase ,lowercase ,lowercase : Union[str, Any] = load_models() lowercase ,lowercase : Optional[Any] = load_train_data() def lowerCAmelCase__ ( _a : int , _a : Dict=10 ): snake_case_ : Any = embed_questions_for_retrieval([question] , _a , _a ) snake_case_ , snake_case_ : Union[str, Any] = eli5_train_q_index.search(_a , _a ) snake_case_ : List[Any] = [elia_train[int(_a )] for i in I[0]] return nn_examples def lowerCAmelCase__ ( _a : int , _a : Optional[Any]="wiki40b" , _a : Any="dense" , _a : List[str]=10 ): if source == "none": snake_case_ , snake_case_ : List[Any] = (" <P> ".join(["" for _ in range(11 )] ).strip(), []) else: if method == "dense": snake_case_ , snake_case_ : Optional[int] = query_qa_dense_index( _a , _a , _a , _a , _a , _a ) else: snake_case_ , snake_case_ : Optional[Any] = query_es_index( _a , _a , index_name="english_wiki40b_snippets_100w" , n_results=_a , ) snake_case_ : int = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] snake_case_ : List[str] = "question: {} context: {}".format(_a , _a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _a : None), } ) def lowerCAmelCase__ ( _a : Optional[int] , _a : str , _a : Union[str, Any] , _a : List[str]=64 , _a : str=2_56 , _a : Union[str, Any]=False , _a : Optional[Any]=2 , _a : Tuple=0.95 , _a : str=0.8 ): with torch.no_grad(): snake_case_ : Tuple = qa_sas_generate( _a , _a , _a , num_answers=1 , num_beams=_a , min_len=_a , max_len=_a , do_sample=_a , temp=_a , top_p=_a , top_k=_a , max_input_length=10_24 , device="cuda:0" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar lowercase : Tuple = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' lowercase : Union[str, Any] = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia lowercase : Tuple = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) lowercase : List[Any] = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] lowercase : List[Any] = st.sidebar.checkbox('''Demo options''') if demo_options: lowercase : Any = st.sidebar.selectbox( '''''', action_list, index=3, ) lowercase : Any = action_list.index(action_st) lowercase : Optional[Any] = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) lowercase : str = show_type == '''Show full text of passages''' else: lowercase : Any = 3 lowercase : Any = True lowercase : Optional[Any] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: lowercase : Tuple = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) lowercase : Optional[int] = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) lowercase : int = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: lowercase : List[Any] = '''wiki40b''' lowercase : Optional[int] = '''dense''' lowercase : Optional[int] = '''beam''' lowercase : Dict = 2 lowercase : Optional[int] = 64 lowercase : str = 2_56 lowercase : Optional[Any] = None lowercase : Union[str, Any] = None lowercase : str = st.sidebar.checkbox('''Generation options''') if generate_options: lowercase : Tuple = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) lowercase : Union[str, Any] = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) lowercase : str = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) lowercase : Optional[Any] = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": lowercase : Dict = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: lowercase : Optional[int] = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) lowercase : str = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) lowercase : Optional[Any] = None # start main text lowercase : Any = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] lowercase : Dict = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": lowercase : Tuple = st.text_input('''Enter your question here:''', '''''') else: lowercase : List[str] = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": lowercase ,lowercase : int = make_support(question, source=wiki_source, method='''dense''', n_results=10) lowercase ,lowercase : List[Any] = make_support(question, source=wiki_source, method='''sparse''', n_results=10) lowercase : Any = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] lowercase : int = support_list[:10] lowercase : str = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: lowercase ,lowercase : Optional[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: lowercase ,lowercase : List[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): lowercase : Optional[int] = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) lowercase : Tuple = res[1].strip() if sec_titles == "": lowercase : str = '''[{}]({})'''.format(res[0], wiki_url) else: lowercase : int = sec_titles.split(''' & ''') lowercase : Dict = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: lowercase : str = find_nearest_training(question) lowercase : List[str] = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) lowercase : Dict = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) lowercase : Tuple = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
568
from itertools import permutations def lowerCAmelCase__ ( _a : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False snake_case_ : List[str] = [7, 11, 13, 17] for i, test in enumerate(_a ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowerCAmelCase__ ( _a : int = 10 ): return sum( int("".join(map(_a , _a ) ) ) for num in permutations(range(_a ) ) if is_substring_divisible(_a ) ) if __name__ == "__main__": print(F"""{solution() = }""")
568
1
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch UpperCamelCase__ : int = logging.get_logger(__name__) class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , lowerCAmelCase__ : str = None , lowerCAmelCase__ : uuid.UUID = None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : int=None ): """simple docstring""" if not conversation_id: __SCREAMING_SNAKE_CASE : int = uuid.uuida() if past_user_inputs is None: __SCREAMING_SNAKE_CASE : Optional[Any] = [] if generated_responses is None: __SCREAMING_SNAKE_CASE : List[str] = [] __SCREAMING_SNAKE_CASE : uuid.UUID = conversation_id __SCREAMING_SNAKE_CASE : List[str] = past_user_inputs __SCREAMING_SNAKE_CASE : List[str] = generated_responses __SCREAMING_SNAKE_CASE : Optional[str] = text def __eq__( self : List[str] , lowerCAmelCase__ : List[str] ): """simple docstring""" if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : bool = False ): """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) __SCREAMING_SNAKE_CASE : Optional[Any] = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: __SCREAMING_SNAKE_CASE : str = text def UpperCamelCase__ ( self : int ): """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __SCREAMING_SNAKE_CASE : str = None def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : str ): """simple docstring""" self.generated_responses.append(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Dict ): """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __SCREAMING_SNAKE_CASE : Union[str, Any] = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( lowerCamelCase__ , R''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : Dict , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : str ): """simple docstring""" super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) if self.tokenizer.pad_token_id is None: __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.eos_token def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Dict=None , **lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = {} __SCREAMING_SNAKE_CASE : Tuple = {} __SCREAMING_SNAKE_CASE : List[str] = {} if min_length_for_response is not None: __SCREAMING_SNAKE_CASE : int = min_length_for_response if minimum_tokens is not None: __SCREAMING_SNAKE_CASE : List[Any] = minimum_tokens if "max_length" in generate_kwargs: __SCREAMING_SNAKE_CASE : Tuple = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __SCREAMING_SNAKE_CASE : str = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowerCAmelCase__ ) return preprocess_params, forward_params, postprocess_params def __call__( self : Union[str, Any] , lowerCAmelCase__ : Union[Conversation, List[Conversation]] , lowerCAmelCase__ : Optional[Any]=0 , **lowerCAmelCase__ : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = super().__call__(lowerCAmelCase__ , num_workers=lowerCAmelCase__ , **lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) == 1: return outputs[0] return outputs def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : Conversation , lowerCAmelCase__ : str=3_2 ): """simple docstring""" if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer._build_conversation_input_ids(lowerCAmelCase__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version __SCREAMING_SNAKE_CASE : Any = self._legacy_parse_and_tokenize(lowerCAmelCase__ ) if self.framework == "pt": __SCREAMING_SNAKE_CASE : Any = torch.LongTensor([input_ids] ) elif self.framework == "tf": __SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple=1_0 , **lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __SCREAMING_SNAKE_CASE : Any = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) __SCREAMING_SNAKE_CASE : Tuple = max_length - minimum_tokens __SCREAMING_SNAKE_CASE : Any = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __SCREAMING_SNAKE_CASE : List[str] = model_inputs["""attention_mask"""][:, -trim:] __SCREAMING_SNAKE_CASE : Optional[int] = model_inputs.pop("""conversation""" ) __SCREAMING_SNAKE_CASE : Optional[int] = max_length __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model.generate(**lowerCAmelCase__ , **lowerCAmelCase__ ) if self.model.config.is_encoder_decoder: __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 else: __SCREAMING_SNAKE_CASE : Tuple = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = model_outputs["""output_ids"""] __SCREAMING_SNAKE_CASE : str = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(lowerCAmelCase__ ) return conversation def UpperCamelCase__ ( self : str , lowerCAmelCase__ : Conversation ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.tokenizer.eos_token_id __SCREAMING_SNAKE_CASE : Any = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) > self.tokenizer.model_max_length: __SCREAMING_SNAKE_CASE : Any = input_ids[-self.tokenizer.model_max_length :] return input_ids
178
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def UpperCamelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , """embed_dim""" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , """num_heads""" ) ) class _UpperCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int=1_3 , lowerCAmelCase__ : Union[str, Any]=6_4 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : str=[1_6, 4_8, 9_6] , lowerCAmelCase__ : Any=[1, 3, 6] , lowerCAmelCase__ : Any=[1, 2, 1_0] , lowerCAmelCase__ : Union[str, Any]=[7, 3, 3] , lowerCAmelCase__ : Tuple=[4, 2, 2] , lowerCAmelCase__ : Union[str, Any]=[2, 1, 1] , lowerCAmelCase__ : Dict=[2, 2, 2] , lowerCAmelCase__ : Optional[int]=[False, False, True] , lowerCAmelCase__ : List[Any]=[0.0, 0.0, 0.0] , lowerCAmelCase__ : List[Any]=0.02 , lowerCAmelCase__ : List[str]=1E-12 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Optional[Any]=2 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = parent __SCREAMING_SNAKE_CASE : Optional[Any] = batch_size __SCREAMING_SNAKE_CASE : List[Any] = image_size __SCREAMING_SNAKE_CASE : Any = patch_sizes __SCREAMING_SNAKE_CASE : List[Any] = patch_stride __SCREAMING_SNAKE_CASE : List[Any] = patch_padding __SCREAMING_SNAKE_CASE : Union[str, Any] = is_training __SCREAMING_SNAKE_CASE : Dict = use_labels __SCREAMING_SNAKE_CASE : int = num_labels __SCREAMING_SNAKE_CASE : Optional[int] = num_channels __SCREAMING_SNAKE_CASE : List[str] = embed_dim __SCREAMING_SNAKE_CASE : Optional[Any] = num_heads __SCREAMING_SNAKE_CASE : Optional[int] = stride_kv __SCREAMING_SNAKE_CASE : Union[str, Any] = depth __SCREAMING_SNAKE_CASE : Optional[Any] = cls_token __SCREAMING_SNAKE_CASE : List[Any] = attention_drop_rate __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: __SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self : str ): """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = CvtModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : int = model(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = (self.image_size, self.image_size) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = image_size[0], image_size[1] for i in range(len(self.depth ) ): __SCREAMING_SNAKE_CASE : Optional[Any] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __SCREAMING_SNAKE_CASE : Any = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def UpperCamelCase__ ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_labels __SCREAMING_SNAKE_CASE : Optional[int] = CvtForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = config_and_inputs __SCREAMING_SNAKE_CASE : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = (CvtModel, CvtForImageClassification) if is_torch_available() else () _A : Optional[Any] = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) _A : Dict = False _A : Union[str, Any] = False _A : str = False _A : List[str] = False _A : Optional[int] = False def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = CvtModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7 ) def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self : Dict ): """simple docstring""" return @unittest.skip(reason="""Cvt does not output attentions""" ) def UpperCamelCase__ ( self : str ): """simple docstring""" pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" pass def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Any = model_class(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def UpperCamelCase__ ( self : Dict ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] ): __SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Dict = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[int] = outputs.hidden_states __SCREAMING_SNAKE_CASE : Optional[Any] = len(self.model_tester.depth ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase__ ( self : Tuple ): """simple docstring""" pass @slow def UpperCamelCase__ ( self : List[str] ): """simple docstring""" for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Optional[Any] = CvtModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = self.default_image_processor __SCREAMING_SNAKE_CASE : List[Any] = prepare_img() __SCREAMING_SNAKE_CASE : int = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[int] = model(**lowerCAmelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE : str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
178
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __magic_name__ : Tuple = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class lowercase__ ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): """simple docstring""" def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = load_tool("""text-question-answering""" ) self.tool.setup() UpperCamelCase : Dict = load_tool("""text-question-answering""" , remote=_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Tuple = self.tool(_A , """What did Hugging Face do in April 2021?""" ) self.assertEqual(_A , """launched the BigScience Research Workshop""" ) def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.remote_tool(_A , """What did Hugging Face do in April 2021?""" ) self.assertEqual(_A , """launched the BigScience Research Workshop""" ) def _a ( self ): '''simple docstring''' UpperCamelCase : List[str] = self.tool(text=_A , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(_A , """launched the BigScience Research Workshop""" ) def _a ( self ): '''simple docstring''' UpperCamelCase : Tuple = self.remote_tool(text=_A , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(_A , """launched the BigScience Research Workshop""" )
102
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel a_ = logging.getLogger(__name__) def _a( UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' if os.path.exists(UpperCamelCase__ ): if os.path.exists(os.path.join(UpperCamelCase__, '''config.json''' ) ) and os.path.isfile( os.path.join(UpperCamelCase__, '''config.json''' ) ): os.remove(os.path.join(UpperCamelCase__, '''config.json''' ) ) if os.path.exists(os.path.join(UpperCamelCase__, '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(UpperCamelCase__, '''pytorch_model.bin''' ) ): os.remove(os.path.join(UpperCamelCase__, '''pytorch_model.bin''' ) ) else: os.makedirs(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) def _a( UpperCamelCase__ : Dict, UpperCamelCase__ : Optional[int]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =2 if unlogit: SCREAMING_SNAKE_CASE__ : Any =torch.pow(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =p * torch.log(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =0 return -plogp.sum(dim=-1 ) def _a( UpperCamelCase__ : int ): '''simple docstring''' logger.info('''lv, h >\t''' + '''\t'''.join(f"{x + 1}" for x in range(len(UpperCamelCase__ ) ) ) ) for row in range(len(UpperCamelCase__ ) ): if tensor.dtype != torch.long: logger.info(f"layer {row + 1}:\t" + '''\t'''.join(f"{x:.5f}" for x in tensor[row].cpu().data ) ) else: logger.info(f"layer {row + 1}:\t" + '''\t'''.join(f"{x:d}" for x in tensor[row].cpu().data ) ) def _a( UpperCamelCase__ : Tuple, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : str, UpperCamelCase__ : Optional[Any]=True, UpperCamelCase__ : int=True, UpperCamelCase__ : Union[str, Any]=None, UpperCamelCase__ : Optional[int]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str =model.config.num_hidden_layers, model.config.num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.zeros(UpperCamelCase__, UpperCamelCase__ ).to(args.device ) SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.zeros(UpperCamelCase__, UpperCamelCase__ ).to(args.device ) if head_mask is None: SCREAMING_SNAKE_CASE__ : str =torch.ones(UpperCamelCase__, UpperCamelCase__ ).to(args.device ) head_mask.requires_grad_(requires_grad=UpperCamelCase__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: SCREAMING_SNAKE_CASE__ : Optional[Any] =None SCREAMING_SNAKE_CASE__ : Dict =0.0 SCREAMING_SNAKE_CASE__ : Union[str, Any] =0.0 for step, inputs in enumerate(tqdm(UpperCamelCase__, desc='''Iteration''', disable=args.local_rank not in [-1, 0] ) ): SCREAMING_SNAKE_CASE__ : List[str] =tuple(t.to(args.device ) for t in inputs ) ((SCREAMING_SNAKE_CASE__) , ) : List[Any] =inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) SCREAMING_SNAKE_CASE__ : List[Any] =model(UpperCamelCase__, labels=UpperCamelCase__, head_mask=UpperCamelCase__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] =entropy(attn.detach(), UpperCamelCase__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(UpperCamelCase__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: SCREAMING_SNAKE_CASE__ : str =2 SCREAMING_SNAKE_CASE__ : str =torch.pow(torch.pow(UpperCamelCase__, UpperCamelCase__ ).sum(-1 ), 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: SCREAMING_SNAKE_CASE__ : Tuple =(head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(UpperCamelCase__ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(UpperCamelCase__ ) logger.info('''Head ranked by importance scores''' ) SCREAMING_SNAKE_CASE__ : Tuple =torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device ) SCREAMING_SNAKE_CASE__ : str =torch.arange( head_importance.numel(), device=args.device ) SCREAMING_SNAKE_CASE__ : str =head_ranks.view_as(UpperCamelCase__ ) print_ad_tensor(UpperCamelCase__ ) return attn_entropy, head_importance, total_loss def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Dict, UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =compute_heads_importance(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, compute_entropy=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''', UpperCamelCase__, original_score * args.masking_threshold ) SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.ones_like(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =max(1, int(new_head_mask.numel() * args.masking_amount ) ) SCREAMING_SNAKE_CASE__ : str =original_score while current_score >= original_score * args.masking_threshold: SCREAMING_SNAKE_CASE__ : Optional[Any] =new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads SCREAMING_SNAKE_CASE__ : Optional[int] =float('''Inf''' ) SCREAMING_SNAKE_CASE__ : List[str] =head_importance.view(-1 ).sort()[1] if len(UpperCamelCase__ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads SCREAMING_SNAKE_CASE__ : Optional[Any] =current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''', str(current_heads_to_mask.tolist() ) ) SCREAMING_SNAKE_CASE__ : List[str] =new_head_mask.view(-1 ) SCREAMING_SNAKE_CASE__ : Any =0.0 SCREAMING_SNAKE_CASE__ : str =new_head_mask.view_as(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =new_head_mask.clone().detach() print_ad_tensor(UpperCamelCase__ ) # Compute metric and head importance again SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =compute_heads_importance( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, compute_entropy=UpperCamelCase__, head_mask=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''', UpperCamelCase__, new_head_mask.sum(), new_head_mask.sum() / new_head_mask.numel() * 1_0_0, ) logger.info('''Final head mask''' ) print_ad_tensor(UpperCamelCase__ ) np.save(os.path.join(args.output_dir, '''head_mask.npy''' ), head_mask.detach().cpu().numpy() ) return head_mask def _a( UpperCamelCase__ : List[str], UpperCamelCase__ : List[Any], UpperCamelCase__ : Tuple, UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =datetime.now() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =compute_heads_importance( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, compute_entropy=UpperCamelCase__, compute_importance=UpperCamelCase__, head_mask=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =1 / loss SCREAMING_SNAKE_CASE__ : Tuple =datetime.now() - before_time SCREAMING_SNAKE_CASE__ : Optional[Any] =sum(p.numel() for p in model.parameters() ) SCREAMING_SNAKE_CASE__ : Optional[int] ={ layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(UpperCamelCase__ ) ) } for k, v in heads_to_prune.items(): if isinstance(UpperCamelCase__, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] =[ v, ] assert sum(len(UpperCamelCase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =sum(p.numel() for p in model.parameters() ) SCREAMING_SNAKE_CASE__ : Optional[int] =datetime.now() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =compute_heads_importance( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, compute_entropy=UpperCamelCase__, compute_importance=UpperCamelCase__, head_mask=UpperCamelCase__, actually_pruned=UpperCamelCase__, ) SCREAMING_SNAKE_CASE__ : Dict =1 / loss SCREAMING_SNAKE_CASE__ : Union[str, Any] =datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''', UpperCamelCase__, UpperCamelCase__, pruned_num_params / original_num_params * 1_0_0, ) logger.info('''Pruning: score with masking: %f score with pruning: %f''', UpperCamelCase__, UpperCamelCase__ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''', original_time / new_time * 1_0_0 ) save_model(UpperCamelCase__, args.output_dir ) def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''', default=UpperCamelCase__, type=UpperCamelCase__, required=UpperCamelCase__, help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''', ) parser.add_argument( '''--model_name_or_path''', default=UpperCamelCase__, type=UpperCamelCase__, required=UpperCamelCase__, help='''Path to pretrained model or model identifier from huggingface.co/models''', ) parser.add_argument( '''--output_dir''', default=UpperCamelCase__, type=UpperCamelCase__, required=UpperCamelCase__, help='''The output directory where the model predictions and checkpoints will be written.''', ) # Other parameters parser.add_argument( '''--config_name''', default='''''', type=UpperCamelCase__, help='''Pretrained config name or path if not the same as model_name_or_path''', ) parser.add_argument( '''--tokenizer_name''', default='''''', type=UpperCamelCase__, help='''Pretrained tokenizer name or path if not the same as model_name_or_path''', ) parser.add_argument( '''--cache_dir''', default=UpperCamelCase__, type=UpperCamelCase__, help='''Where do you want to store the pre-trained models downloaded from s3''', ) parser.add_argument( '''--data_subset''', type=UpperCamelCase__, default=-1, help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''', action='''store_true''', help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''', action='''store_true''', help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''', action='''store_true''', help='''Don\'t normalize all importance scores between 0 and 1''', ) parser.add_argument( '''--try_masking''', action='''store_true''', help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''', default=0.9, type=UpperCamelCase__, help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''', ) parser.add_argument( '''--masking_amount''', default=0.1, type=UpperCamelCase__, help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''', default='''acc''', type=UpperCamelCase__, help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''', default=1_2_8, type=UpperCamelCase__, help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ), ) parser.add_argument('''--batch_size''', default=1, type=UpperCamelCase__, help='''Batch size.''' ) parser.add_argument('''--seed''', type=UpperCamelCase__, default=4_2 ) parser.add_argument('''--local_rank''', type=UpperCamelCase__, default=-1, help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''', action='''store_true''', help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''', type=UpperCamelCase__, default='''''', help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''', type=UpperCamelCase__, default='''''', help='''Can be used for distant debugging.''' ) SCREAMING_SNAKE_CASE__ : List[str] =parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=UpperCamelCase__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) SCREAMING_SNAKE_CASE__ : List[Any] =0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) SCREAMING_SNAKE_CASE__ : Optional[int] =torch.device('''cuda''', args.local_rank ) SCREAMING_SNAKE_CASE__ : Any =1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device, args.n_gpu, bool(args.local_rank != -1 ) ) ) SCREAMING_SNAKE_CASE__ : Any =GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: SCREAMING_SNAKE_CASE__ : str =nn.parallel.DistributedDataParallel( UpperCamelCase__, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=UpperCamelCase__ ) elif args.n_gpu > 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] =nn.DataParallel(UpperCamelCase__ ) # Print/save training arguments os.makedirs(args.output_dir, exist_ok=UpperCamelCase__ ) torch.save(UpperCamelCase__, os.path.join(args.output_dir, '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''', UpperCamelCase__ ) # Prepare dataset SCREAMING_SNAKE_CASE__ : List[str] =np.concatenate( [ np.loadtxt(args.data_dir, dtype=np.intaa ), ] ) SCREAMING_SNAKE_CASE__ : Dict =(torch.from_numpy(UpperCamelCase__ ),) SCREAMING_SNAKE_CASE__ : Any =TensorDataset(*UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =RandomSampler(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] =DataLoader(UpperCamelCase__, sampler=UpperCamelCase__, batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: SCREAMING_SNAKE_CASE__ : Any =mask_heads(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) prune_heads(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": main()
296
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Union[str, Any] = FlaxAutoModelForSeqaSeqLM.from_config(config=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Tuple = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": __UpperCamelCase :str = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": __UpperCamelCase :Dict = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __UpperCamelCase :Union[str, Any] = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): __UpperCamelCase :List[Any] = f"""layers_{str(SCREAMING_SNAKE_CASE )}""" # Self-Attention __UpperCamelCase :List[Any] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] __UpperCamelCase :Any = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] __UpperCamelCase :Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] __UpperCamelCase :Optional[Any] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __UpperCamelCase :Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization __UpperCamelCase :Tuple = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: __UpperCamelCase :Optional[Any] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] __UpperCamelCase :Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: __UpperCamelCase :Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] __UpperCamelCase :Optional[Any] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization __UpperCamelCase :str = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning __UpperCamelCase :Any = flax_model.params['''encoder''']['''block'''][str(SCREAMING_SNAKE_CASE )]['''layer'''] __UpperCamelCase :Tuple = tax_attention_key __UpperCamelCase :Union[str, Any] = tax_attention_out __UpperCamelCase :Tuple = tax_attention_query __UpperCamelCase :str = tax_attention_value __UpperCamelCase :Tuple = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __UpperCamelCase :Optional[int] = tax_global_layer_norm if split_mlp_wi: __UpperCamelCase :List[str] = tax_mlp_wi_a __UpperCamelCase :str = tax_mlp_wi_a else: __UpperCamelCase :Optional[int] = tax_mlp_wi __UpperCamelCase :Optional[Any] = tax_mlp_wo __UpperCamelCase :Union[str, Any] = tax_mlp_layer_norm __UpperCamelCase :Dict = flax_model_encoder_layer_block # Only for layer 0: __UpperCamelCase :Dict = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T __UpperCamelCase :Any = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __UpperCamelCase :Dict = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T __UpperCamelCase :Tuple = tax_encoder_global_rel_embedding # Assigning __UpperCamelCase :List[Any] = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] __UpperCamelCase :List[Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): __UpperCamelCase :Any = f"""layers_{str(SCREAMING_SNAKE_CASE )}""" # Self-Attention __UpperCamelCase :List[str] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] __UpperCamelCase :Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] __UpperCamelCase :Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] __UpperCamelCase :Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization __UpperCamelCase :str = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention __UpperCamelCase :Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] __UpperCamelCase :Dict = tax_enc_dec_attention_module['''key''']['''kernel'''] __UpperCamelCase :List[str] = tax_enc_dec_attention_module['''out''']['''kernel'''] __UpperCamelCase :Optional[Any] = tax_enc_dec_attention_module['''query''']['''kernel'''] __UpperCamelCase :Optional[Any] = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization __UpperCamelCase :List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: __UpperCamelCase :Tuple = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] __UpperCamelCase :List[str] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: __UpperCamelCase :Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] __UpperCamelCase :Dict = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization __UpperCamelCase :str = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning __UpperCamelCase :int = flax_model.params['''decoder''']['''block'''][str(SCREAMING_SNAKE_CASE )]['''layer'''] __UpperCamelCase :Optional[int] = tax_attention_key __UpperCamelCase :Dict = tax_attention_out __UpperCamelCase :Dict = tax_attention_query __UpperCamelCase :Tuple = tax_attention_value __UpperCamelCase :List[str] = tax_pre_attention_layer_norm __UpperCamelCase :str = tax_enc_dec_attention_key __UpperCamelCase :int = tax_enc_dec_attention_out __UpperCamelCase :Optional[int] = tax_enc_dec_attention_query __UpperCamelCase :Optional[Any] = tax_enc_dec_attention_value __UpperCamelCase :Dict = tax_cross_layer_norm if split_mlp_wi: __UpperCamelCase :str = tax_mlp_wi_a __UpperCamelCase :Dict = tax_mlp_wi_a else: __UpperCamelCase :Dict = tax_mlp_wi __UpperCamelCase :Tuple = tax_mlp_wo __UpperCamelCase :str = txa_mlp_layer_norm __UpperCamelCase :str = flax_model_decoder_layer_block # Decoder Normalization __UpperCamelCase :Optional[int] = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] __UpperCamelCase :Optional[int] = txa_decoder_norm # Only for layer 0: __UpperCamelCase :str = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T __UpperCamelCase :int = tax_decoder_rel_embedding # Token Embeddings __UpperCamelCase :Optional[Any] = tax_model['''target''']['''token_embedder''']['''embedding'''] __UpperCamelCase :str = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: __UpperCamelCase :Optional[Any] = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(SCREAMING_SNAKE_CASE ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) __lowercase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
452
import qiskit def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Dict = qiskit.Aer.get_backend('''aer_simulator''' ) __UpperCamelCase :Tuple = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __UpperCamelCase :Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = half_adder(1, 1) print(F'Half Adder Output Qubit Counts: {counts}')
452
1
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py A : List[Any] = """src/transformers""" A : Optional[Any] = """docs/source/en/tasks""" def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): with open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case : Optional[int] =f.readlines() # Find the start prompt. snake_case : Optional[Any] =0 while not lines[start_index].startswith(lowerCamelCase_ ): start_index += 1 start_index += 1 snake_case : Any =start_index while not lines[end_index].startswith(lowerCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. A : Union[str, Any] = direct_transformers_import(TRANSFORMERS_PATH) A : int = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). A : str = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def _a ( lowerCamelCase_ ): snake_case : List[str] =TASK_GUIDE_TO_MODELS[task_guide] snake_case : Optional[int] =SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(lowerCamelCase_ , set() ) snake_case : List[str] ={ code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def _a ( lowerCamelCase_ , lowerCamelCase_=False ): snake_case , snake_case , snake_case , snake_case : Optional[int] =_find_text_in_file( filename=os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) snake_case : List[Any] =get_model_list_for_task(lowerCamelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' ''' to fix this.''' ) if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A : Optional[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
349
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowerCAmelCase_ ( a_ ): __UpperCAmelCase = 42 __UpperCAmelCase = jnp.floataa __UpperCAmelCase = True def __snake_case ( self : str ): '''simple docstring''' super().setup() snake_case : List[Any] =nn.Dense(5, dtype=self.dtype ) def __call__( self : Optional[int], *_snake_case : str, **_snake_case : Optional[Any] ): '''simple docstring''' snake_case : Optional[int] =super().__call__(*_snake_case, **_snake_case ) snake_case : Optional[int] =self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowerCAmelCase_ ( a_ ): __UpperCAmelCase = FlaxBigBirdForNaturalQuestionsModule def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): def cross_entropy(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None ): snake_case : int =logits.shape[-1] snake_case : Any =(labels[..., None] == jnp.arange(lowerCamelCase_ )[None]).astype('''f4''' ) snake_case : List[str] =jax.nn.log_softmax(lowerCamelCase_ , axis=-1 ) snake_case : List[Any] =-jnp.sum(labels * logits , axis=-1 ) if reduction is not None: snake_case : Optional[Any] =reduction(lowerCamelCase_ ) return loss snake_case : Optional[int] =partial(lowerCamelCase_ , reduction=jnp.mean ) snake_case : Optional[Any] =cross_entropy(lowerCamelCase_ , lowerCamelCase_ ) snake_case : Tuple =cross_entropy(lowerCamelCase_ , lowerCamelCase_ ) snake_case : Any =cross_entropy(lowerCamelCase_ , lowerCamelCase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowerCAmelCase_ : __UpperCAmelCase = "google/bigbird-roberta-base" __UpperCAmelCase = 3000 __UpperCAmelCase = 1_0500 __UpperCAmelCase = 128 __UpperCAmelCase = 3 __UpperCAmelCase = 1 __UpperCAmelCase = 5 # tx_args __UpperCAmelCase = 3e-5 __UpperCAmelCase = 0.0 __UpperCAmelCase = 2_0000 __UpperCAmelCase = 0.0_0_9_5 __UpperCAmelCase = "bigbird-roberta-natural-questions" __UpperCAmelCase = "training-expt" __UpperCAmelCase = "data/nq-training.jsonl" __UpperCAmelCase = "data/nq-validation.jsonl" def __snake_case ( self : Optional[Any] ): '''simple docstring''' os.makedirs(self.base_dir, exist_ok=_snake_case ) snake_case : Dict =os.path.join(self.base_dir, self.save_dir ) snake_case : Union[str, Any] =self.batch_size_per_device * jax.device_count() @dataclass class lowerCAmelCase_ : __UpperCAmelCase = 42 __UpperCAmelCase = 4096 # no dynamic padding on TPUs def __call__( self : List[Any], _snake_case : Union[str, Any] ): '''simple docstring''' snake_case : Tuple =self.collate_fn(_snake_case ) snake_case : Dict =jax.tree_util.tree_map(_snake_case, _snake_case ) return batch def __snake_case ( self : Dict, _snake_case : str ): '''simple docstring''' snake_case , snake_case : Dict =self.fetch_inputs(features['''input_ids'''] ) snake_case : List[str] ={ '''input_ids''': jnp.array(_snake_case, dtype=jnp.intaa ), '''attention_mask''': jnp.array(_snake_case, dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''], dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''], dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''], dtype=jnp.intaa ), } return batch def __snake_case ( self : Optional[Any], _snake_case : list ): '''simple docstring''' snake_case : int =[self._fetch_inputs(_snake_case ) for ids in input_ids] return zip(*_snake_case ) def __snake_case ( self : Optional[Any], _snake_case : list ): '''simple docstring''' snake_case : List[Any] =[1 for _ in range(len(_snake_case ) )] while len(_snake_case ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None ): if seed is not None: snake_case : Union[str, Any] =dataset.shuffle(seed=lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) // batch_size ): snake_case : List[Any] =dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCamelCase_ ) @partial(jax.pmap , axis_name='''batch''' ) def _a ( lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ): def loss_fn(lowerCamelCase_ ): snake_case : Dict =model_inputs.pop('''start_labels''' ) snake_case : Optional[Any] =model_inputs.pop('''end_labels''' ) snake_case : Any =model_inputs.pop('''pooled_labels''' ) snake_case : Dict =state.apply_fn(**lowerCamelCase_ , params=lowerCamelCase_ , dropout_rng=lowerCamelCase_ , train=lowerCamelCase_ ) snake_case , snake_case , snake_case : List[Any] =outputs return state.loss_fn( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) snake_case , snake_case : Any =jax.random.split(lowerCamelCase_ ) snake_case : List[str] =jax.value_and_grad(lowerCamelCase_ ) snake_case , snake_case : str =grad_fn(state.params ) snake_case : Optional[Any] =jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) snake_case : Any =jax.lax.pmean(lowerCamelCase_ , '''batch''' ) snake_case : Optional[int] =state.apply_gradients(grads=lowerCamelCase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def _a ( lowerCamelCase_ , **lowerCamelCase_ ): snake_case : List[Any] =model_inputs.pop('''start_labels''' ) snake_case : int =model_inputs.pop('''end_labels''' ) snake_case : List[str] =model_inputs.pop('''pooled_labels''' ) snake_case : Optional[Any] =state.apply_fn(**lowerCamelCase_ , params=state.params , train=lowerCamelCase_ ) snake_case , snake_case , snake_case : Dict =outputs snake_case : List[Any] =state.loss_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) snake_case : Optional[Any] =jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class lowerCAmelCase_ ( train_state.TrainState ): __UpperCAmelCase = struct.field(pytree_node=a_ ) @dataclass class lowerCAmelCase_ : __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = None def __snake_case ( self : Tuple, _snake_case : int, _snake_case : Any, _snake_case : Tuple, _snake_case : Any=None ): '''simple docstring''' snake_case : int =model.params snake_case : List[str] =TrainState.create( apply_fn=model.__call__, params=_snake_case, tx=_snake_case, loss_fn=_snake_case, ) if ckpt_dir is not None: snake_case , snake_case , snake_case , snake_case , snake_case : Optional[Any] =restore_checkpoint(_snake_case, _snake_case ) snake_case : Tuple ={ '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } snake_case , snake_case : Tuple =build_tx(**_snake_case ) snake_case : Optional[int] =train_state.TrainState( step=_snake_case, apply_fn=model.__call__, params=_snake_case, tx=_snake_case, opt_state=_snake_case, ) snake_case : int =args snake_case : str =data_collator snake_case : Tuple =lr snake_case : Union[str, Any] =params snake_case : Tuple =jax_utils.replicate(_snake_case ) return state def __snake_case ( self : Union[str, Any], _snake_case : int, _snake_case : int, _snake_case : Optional[Any] ): '''simple docstring''' snake_case : Dict =self.args snake_case : Optional[int] =len(_snake_case ) // args.batch_size snake_case : str =jax.random.PRNGKey(0 ) snake_case : Union[str, Any] =jax.random.split(_snake_case, jax.device_count() ) for epoch in range(args.max_epochs ): snake_case : Any =jnp.array(0, dtype=jnp.floataa ) snake_case : Dict =get_batched_dataset(_snake_case, args.batch_size, seed=_snake_case ) snake_case : Optional[Any] =0 for batch in tqdm(_snake_case, total=_snake_case, desc=f'''Running EPOCH-{epoch}''' ): snake_case : Tuple =self.data_collator(_snake_case ) snake_case , snake_case , snake_case : Optional[Any] =self.train_step_fn(_snake_case, _snake_case, **_snake_case ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: snake_case : List[Any] =jax_utils.unreplicate(state.step ) snake_case : List[Any] =running_loss.item() / i snake_case : Tuple =self.scheduler_fn(state_step - 1 ) snake_case : Optional[int] =self.evaluate(_snake_case, _snake_case ) snake_case : Tuple ={ '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(_snake_case ) ) self.logger.log(_snake_case, commit=_snake_case ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''', state=_snake_case ) def __snake_case ( self : Optional[Any], _snake_case : List[str], _snake_case : Dict ): '''simple docstring''' snake_case : Union[str, Any] =get_batched_dataset(_snake_case, self.args.batch_size ) snake_case : Dict =len(_snake_case ) // self.args.batch_size snake_case : List[str] =jnp.array(0, dtype=jnp.floataa ) snake_case : Optional[int] =0 for batch in tqdm(_snake_case, total=_snake_case, desc='''Evaluating ... ''' ): snake_case : Dict =self.data_collator(_snake_case ) snake_case : str =self.val_step_fn(_snake_case, **_snake_case ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def __snake_case ( self : Union[str, Any], _snake_case : Optional[Any], _snake_case : Optional[Any] ): '''simple docstring''' snake_case : Any =jax_utils.unreplicate(_snake_case ) print(f'''SAVING CHECKPOINT IN {save_dir}''', end=''' ... ''' ) self.model_save_fn(_snake_case, params=state.params ) with open(os.path.join(_snake_case, '''opt_state.msgpack''' ), '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args, os.path.join(_snake_case, '''args.joblib''' ) ) joblib.dump(self.data_collator, os.path.join(_snake_case, '''data_collator.joblib''' ) ) with open(os.path.join(_snake_case, '''training_state.json''' ), '''w''' ) as f: json.dump({'''step''': state.step.item()}, _snake_case ) print('''DONE''' ) def _a ( lowerCamelCase_ , lowerCamelCase_ ): print(F'''RESTORING CHECKPOINT FROM {save_dir}''' , end=''' ... ''' ) with open(os.path.join(lowerCamelCase_ , '''flax_model.msgpack''' ) , '''rb''' ) as f: snake_case : Tuple =from_bytes(state.params , f.read() ) with open(os.path.join(lowerCamelCase_ , '''opt_state.msgpack''' ) , '''rb''' ) as f: snake_case : List[Any] =from_bytes(state.opt_state , f.read() ) snake_case : Tuple =joblib.load(os.path.join(lowerCamelCase_ , '''args.joblib''' ) ) snake_case : List[str] =joblib.load(os.path.join(lowerCamelCase_ , '''data_collator.joblib''' ) ) with open(os.path.join(lowerCamelCase_ , '''training_state.json''' ) , '''r''' ) as f: snake_case : Optional[Any] =json.load(lowerCamelCase_ ) snake_case : Optional[int] =training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): snake_case : str =num_train_steps - warmup_steps snake_case : Dict =optax.linear_schedule(init_value=lowerCamelCase_ , end_value=lowerCamelCase_ , transition_steps=lowerCamelCase_ ) snake_case : Tuple =optax.linear_schedule(init_value=lowerCamelCase_ , end_value=1e-7 , transition_steps=lowerCamelCase_ ) snake_case : int =optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): def weight_decay_mask(lowerCamelCase_ ): snake_case : Tuple =traverse_util.flatten_dict(lowerCamelCase_ ) snake_case : List[Any] ={k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCamelCase_ ) snake_case : List[str] =scheduler_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) snake_case : Optional[Any] =optax.adamw(learning_rate=lowerCamelCase_ , weight_decay=lowerCamelCase_ , mask=lowerCamelCase_ ) return tx, lr
349
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : List[Any] = ['image_processor', 'tokenizer'] _snake_case : Optional[Any] = 'CLIPImageProcessor' _snake_case : List[Any] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self : str , A_ : List[str]=None , A_ : List[str]=None , **A_ : int )-> int: __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , A_ , ) __UpperCamelCase = kwargs.pop("feature_extractor" ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(A_ , A_ ) def __call__( self : Optional[int] , A_ : int=None , A_ : Dict=None , A_ : Any=None , **A_ : Optional[int] )-> Dict: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __UpperCamelCase = self.tokenizer(A_ , return_tensors=A_ , **A_ ) if images is not None: __UpperCamelCase = self.image_processor(A_ , return_tensors=A_ , **A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A_ ) , tensor_type=A_ ) def A ( self : Tuple , *A_ : Dict , **A_ : Dict )-> List[str]: return self.tokenizer.batch_decode(*A_ , **A_ ) def A ( self : Tuple , *A_ : List[Any] , **A_ : Dict )-> Optional[int]: return self.tokenizer.decode(*A_ , **A_ ) @property def A ( self : Optional[Any] )-> Union[str, Any]: __UpperCamelCase = self.tokenizer.model_input_names __UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
228
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Union[List[PIL.Image.Image], np.ndarray] _snake_case : Optional[List[bool]] _snake_case : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
228
1
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCamelCase ( A__ ) -> List[Any]: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(__lowerCamelCase , '_dynamo' ): return False return isinstance(__lowerCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCamelCase ( A__ , A__ = True ) -> Optional[int]: """simple docstring""" UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase = is_compiled_module(__lowerCamelCase ) if is_compiled: UpperCamelCase = model UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase = model.module if not keep_fpaa_wrapper: UpperCamelCase = getattr(__lowerCamelCase , 'forward' ) UpperCamelCase = model.__dict__.pop('_original_forward' , __lowerCamelCase ) if original_forward is not None: while hasattr(__lowerCamelCase , '__wrapped__' ): UpperCamelCase = forward.__wrapped__ if forward == original_forward: break UpperCamelCase = forward if getattr(__lowerCamelCase , '_converted_to_transformer_engine' , __lowerCamelCase ): convert_model(__lowerCamelCase , to_transformer_engine=__lowerCamelCase ) if is_compiled: UpperCamelCase = model UpperCamelCase = compiled_model return model def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" PartialState().wait_for_everyone() def __lowerCamelCase ( A__ , A__ ) -> List[Any]: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(__lowerCamelCase , __lowerCamelCase ) elif PartialState().local_process_index == 0: torch.save(__lowerCamelCase , __lowerCamelCase ) @contextmanager def __lowerCamelCase ( **A__ ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): UpperCamelCase = str(__lowerCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCamelCase ( A__ ) -> Dict: """simple docstring""" if not hasattr(__lowerCamelCase , '__qualname__' ) and not hasattr(__lowerCamelCase , '__name__' ): UpperCamelCase = getattr(__lowerCamelCase , '__class__' , __lowerCamelCase ) if hasattr(__lowerCamelCase , '__qualname__' ): return obj.__qualname__ if hasattr(__lowerCamelCase , '__name__' ): return obj.__name__ return str(__lowerCamelCase ) def __lowerCamelCase ( A__ , A__ ) -> Dict: """simple docstring""" for key, value in source.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase = destination.setdefault(__lowerCamelCase , {} ) merge_dicts(__lowerCamelCase , __lowerCamelCase ) else: UpperCamelCase = value return destination def __lowerCamelCase ( A__ = None ) -> bool: """simple docstring""" if port is None: UpperCamelCase = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
430
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class UpperCamelCase__ : a__ : torch.Tensor # [batch_size x 3] a__ : torch.Tensor # [batch_size x 3] a__ : torch.Tensor # [batch_size x 3] a__ : torch.Tensor # [batch_size x 3] a__ : int a__ : int a__ : float a__ : float a__ : Tuple[int] def __lowercase( self : List[Any] ) -> int: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def __lowercase( self : Tuple ) -> Tuple: return torch.from_numpy(np.array([self.width, self.height], dtype=np.floataa ) ) def __lowercase( self : Optional[Any] ) -> List[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov], dtype=np.floataa ) ) def __lowercase( self : List[Any] ) -> torch.Tensor: UpperCamelCase__ : List[Any] = torch.arange(self.height * self.width ) UpperCamelCase__ : int = torch.stack( [ pixel_indices % self.width, torch.div(__lowerCamelCase, self.width, rounding_mode='''trunc''' ), ], axis=1, ) return coords @property def __lowercase( self : Tuple ) -> Optional[int]: UpperCamelCase__ ,*UpperCamelCase__ : Dict = self.shape UpperCamelCase__ : List[Any] = int(np.prod(__lowerCamelCase ) ) UpperCamelCase__ : Optional[int] = self.get_image_coords() UpperCamelCase__ : Dict = torch.broadcast_to(coords.unsqueeze(0 ), [batch_size * inner_batch_size, *coords.shape] ) UpperCamelCase__ : Optional[int] = self.get_camera_rays(__lowerCamelCase ) UpperCamelCase__ : Optional[Any] = rays.view(__lowerCamelCase, inner_batch_size * self.height * self.width, 2, 3 ) return rays def __lowercase( self : Any, __lowerCamelCase : torch.Tensor ) -> torch.Tensor: UpperCamelCase__ ,*UpperCamelCase__ ,UpperCamelCase__ : List[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCamelCase__ : Optional[int] = coords.view(__lowerCamelCase, -1, 2 ) UpperCamelCase__ : List[Any] = self.resolution() UpperCamelCase__ : Dict = self.fov() UpperCamelCase__ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCamelCase__ : int = fracs * torch.tan(fov / 2 ) UpperCamelCase__ : List[Any] = fracs.view(__lowerCamelCase, -1, 2 ) UpperCamelCase__ : Optional[Any] = ( self.z.view(__lowerCamelCase, 1, 3 ) + self.x.view(__lowerCamelCase, 1, 3 ) * fracs[:, :, :1] + self.y.view(__lowerCamelCase, 1, 3 ) * fracs[:, :, 1:] ) UpperCamelCase__ : List[str] = directions / directions.norm(dim=-1, keepdim=__lowerCamelCase ) UpperCamelCase__ : List[Any] = torch.stack( [ torch.broadcast_to(self.origin.view(__lowerCamelCase, 1, 3 ), [batch_size, directions.shape[1], 3] ), directions, ], dim=2, ) return rays.view(__lowerCamelCase, *__lowerCamelCase, 2, 3 ) def __lowercase( self : Union[str, Any], __lowerCamelCase : int, __lowerCamelCase : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin, x=self.x, y=self.y, z=self.z, width=__lowerCamelCase, height=__lowerCamelCase, x_fov=self.x_fov, y_fov=self.y_fov, ) def _lowercase ( __lowerCamelCase : int ) -> DifferentiableProjectiveCamera: '''simple docstring''' UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = [] UpperCamelCase__ : Tuple = [] UpperCamelCase__ : Tuple = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): UpperCamelCase__ : Union[str, Any] = np.array([np.sin(__lowerCamelCase ), np.cos(__lowerCamelCase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCamelCase__ : Optional[int] = -z * 4 UpperCamelCase__ : Tuple = np.array([np.cos(__lowerCamelCase ), -np.sin(__lowerCamelCase ), 0.0] ) UpperCamelCase__ : List[str] = np.cross(__lowerCamelCase ,__lowerCamelCase ) origins.append(__lowerCamelCase ) xs.append(__lowerCamelCase ) ys.append(__lowerCamelCase ) zs.append(__lowerCamelCase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowerCamelCase ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(__lowerCamelCase ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(__lowerCamelCase ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(__lowerCamelCase ,axis=0 ) ).float() ,width=__lowerCamelCase ,height=__lowerCamelCase ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(__lowerCamelCase )) ,)
344
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" def _a (self ): '''simple docstring''' lowerCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , "width_multiplier" ) ) class lowerCamelCase__ : """simple docstring""" def __init__(self , __a , __a=13 , __a=64 , __a=2 , __a=3 , __a="swish" , __a=3 , __a=32 , __a=0.1 , __a=0.02 , __a=True , __a=True , __a=10 , __a=None , __a=0.25 , __a=0.0 , __a=0.0 , ): '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = image_size lowerCamelCase = patch_size lowerCamelCase = num_channels lowerCamelCase = make_divisible(5_12 * width_multiplier , divisor=8 ) lowerCamelCase = hidden_act lowerCamelCase = conv_kernel_size lowerCamelCase = output_stride lowerCamelCase = classifier_dropout_prob lowerCamelCase = use_labels lowerCamelCase = is_training lowerCamelCase = num_labels lowerCamelCase = initializer_range lowerCamelCase = scope lowerCamelCase = width_multiplier lowerCamelCase = ffn_dropout lowerCamelCase = attn_dropout def _a (self ): '''simple docstring''' lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase = None lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def _a (self ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _a (self , __a , __a , __a , __a ): '''simple docstring''' lowerCamelCase = MobileViTVaModel(config=__a ) model.to(__a ) model.eval() lowerCamelCase = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _a (self , __a , __a , __a , __a ): '''simple docstring''' lowerCamelCase = self.num_labels lowerCamelCase = MobileViTVaForImageClassification(__a ) model.to(__a ) model.eval() lowerCamelCase = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a (self , __a , __a , __a , __a ): '''simple docstring''' lowerCamelCase = self.num_labels lowerCamelCase = MobileViTVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() lowerCamelCase = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCamelCase = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _a (self ): '''simple docstring''' lowerCamelCase = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = config_and_inputs lowerCamelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): """simple docstring""" _A = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) _A = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) _A = False _A = False _A = False _A = False def _a (self ): '''simple docstring''' lowerCamelCase = MobileViTVaModelTester(self ) lowerCamelCase = MobileViTVaConfigTester(self , config_class=__a , has_text_modality=__a ) def _a (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def _a (self ): '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def _a (self ): '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def _a (self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def _a (self ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _a (self ): '''simple docstring''' pass def _a (self ): '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(__a ) lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase = [*signature.parameters.keys()] lowerCamelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def _a (self ): '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _a (self ): '''simple docstring''' def check_hidden_states_output(__a , __a , __a ): lowerCamelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): lowerCamelCase = model(**self._prepare_for_class(__a , __a ) ) lowerCamelCase = outputs.hidden_states lowerCamelCase = 5 self.assertEqual(len(__a ) , __a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCamelCase = 2 for i in range(len(__a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase = True check_hidden_states_output(__a , __a , __a ) def _a (self ): '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def _a (self ): '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def _a (self ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = MobileViTVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def __lowercase( ): """simple docstring""" lowerCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @cached_property def _a (self ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def _a (self ): '''simple docstring''' lowerCamelCase = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( __a ) lowerCamelCase = self.default_image_processor lowerCamelCase = prepare_img() lowerCamelCase = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): lowerCamelCase = model(**__a ) # verify the logits lowerCamelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __a ) lowerCamelCase = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def _a (self ): '''simple docstring''' lowerCamelCase = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCamelCase = model.to(__a ) lowerCamelCase = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCamelCase = prepare_img() lowerCamelCase = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): lowerCamelCase = model(**__a ) lowerCamelCase = outputs.logits # verify the logits lowerCamelCase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __a ) lowerCamelCase = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) ) @slow def _a (self ): '''simple docstring''' lowerCamelCase = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCamelCase = model.to(__a ) lowerCamelCase = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCamelCase = prepare_img() lowerCamelCase = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): lowerCamelCase = model(**__a ) lowerCamelCase = outputs.logits.detach().cpu() lowerCamelCase = image_processor.post_process_semantic_segmentation(outputs=__a , target_sizes=[(50, 60)] ) lowerCamelCase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __a ) lowerCamelCase = image_processor.post_process_semantic_segmentation(outputs=__a ) lowerCamelCase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __a )
484
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ : int = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
484
1
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase = 0 ) -> list: """simple docstring""" snake_case_ : Dict = length or len(_UpperCamelCase ) snake_case_ : Any = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: snake_case_ , snake_case_ : Tuple = list_data[i + 1], list_data[i] snake_case_ : Optional[Any] = True return list_data if not swapped else bubble_sort(_UpperCamelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
60
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ = '''hf-internal-testing/tiny-random-bert''' lowercase__ = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self ): snake_case_ = cached_file(UpperCAmelCase_ , UpperCAmelCase_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCAmelCase_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) with open(os.path.join(UpperCAmelCase_ , "refs" , "main" ) ) as f: snake_case_ = f.read() self.assertEqual(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , "snapshots" , UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertTrue(os.path.isfile(UpperCAmelCase_ ) ) # File is cached at the same place the second time. snake_case_ = cached_file(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Using a specific revision to test the full commit hash. snake_case_ = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , revision="9b8c223" ) self.assertEqual(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , "snapshots" , UpperCAmelCase_ , UpperCAmelCase_ ) ) def _lowercase ( self ): with self.assertRaisesRegex(UpperCAmelCase_ , "is not a valid model identifier" ): snake_case_ = cached_file("tiny-random-bert" , UpperCAmelCase_ ) with self.assertRaisesRegex(UpperCAmelCase_ , "is not a valid git identifier" ): snake_case_ = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , revision="aaaa" ) with self.assertRaisesRegex(UpperCAmelCase_ , "does not appear to have a file named" ): snake_case_ = cached_file(UpperCAmelCase_ , "conf" ) def _lowercase ( self ): with self.assertRaisesRegex(UpperCAmelCase_ , "does not appear to have a file named" ): snake_case_ = cached_file(UpperCAmelCase_ , "conf" ) with open(os.path.join(UpperCAmelCase_ , "refs" , "main" ) ) as f: snake_case_ = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase_ , ".no_exist" , UpperCAmelCase_ , "conf" ) ) ) snake_case_ = cached_file(UpperCAmelCase_ , "conf" , _raise_exceptions_for_missing_entries=UpperCAmelCase_ ) self.assertIsNone(UpperCAmelCase_ ) snake_case_ = cached_file(UpperCAmelCase_ , "conf" , local_files_only=UpperCAmelCase_ , _raise_exceptions_for_missing_entries=UpperCAmelCase_ ) self.assertIsNone(UpperCAmelCase_ ) snake_case_ = mock.Mock() snake_case_ = 5_00 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase_ ) as mock_head: snake_case_ = cached_file(UpperCAmelCase_ , "conf" , _raise_exceptions_for_connection_errors=UpperCAmelCase_ ) self.assertIsNone(UpperCAmelCase_ ) # This check we did call the fake head request mock_head.assert_called() def _lowercase ( self ): self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase_ ) ) def _lowercase ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCAmelCase_ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , UpperCAmelCase_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCAmelCase_ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , UpperCAmelCase_ , revision="ahaha" ) snake_case_ = get_file_from_repo("bert-base-cased" , UpperCAmelCase_ ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case_ = json.loads(open(UpperCAmelCase_ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 7_68 ) def _lowercase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = Path(UpperCAmelCase_ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(UpperCAmelCase_ , "a.txt" ) , str(UpperCAmelCase_ ) ) self.assertIsNone(get_file_from_repo(UpperCAmelCase_ , "b.txt" ) )
508
0
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : int ): """simple docstring""" __UpperCamelCase =[[] for _ in range(__UpperCamelCase )] __UpperCamelCase =key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(__UpperCamelCase ) <= key: return input_string for position, character in enumerate(__UpperCamelCase ): __UpperCamelCase =position % (lowest * 2) # puts it in bounds __UpperCamelCase =min(__UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__UpperCamelCase ) __UpperCamelCase =[''''''.join(__UpperCamelCase ) for row in temp_grid] __UpperCamelCase =''''''.join(__UpperCamelCase ) return output_string def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : int ): """simple docstring""" __UpperCamelCase =[] __UpperCamelCase =key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string __UpperCamelCase =[[] for _ in range(__UpperCamelCase )] # generates template for position in range(len(__UpperCamelCase ) ): __UpperCamelCase =position % (lowest * 2) # puts it in bounds __UpperCamelCase =min(__UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) __UpperCamelCase =0 for row in temp_grid: # fills in the characters __UpperCamelCase =input_string[counter : counter + len(__UpperCamelCase )] grid.append(list(__UpperCamelCase ) ) counter += len(__UpperCamelCase ) __UpperCamelCase ='''''' # reads as zigzag for position in range(len(__UpperCamelCase ) ): __UpperCamelCase =position % (lowest * 2) # puts it in bounds __UpperCamelCase =min(__UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def lowerCAmelCase (__UpperCamelCase : str ): """simple docstring""" __UpperCamelCase ={} for key_guess in range(1 , len(__UpperCamelCase ) ): # tries every key __UpperCamelCase =decrypt(__UpperCamelCase , __UpperCamelCase ) return results if __name__ == "__main__": import doctest doctest.testmod()
296
"""simple docstring""" class _lowercase : """simple docstring""" def __init__( self : Tuple , UpperCamelCase__ : Any ) -> int: '''simple docstring''' __UpperCamelCase =arr.split(''',''' ) def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' __UpperCamelCase =[int(self.array[0] )] * len(self.array ) __UpperCamelCase =[int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __UpperCamelCase =max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __UpperCamelCase =max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __lowercase = input('''please input some numbers:''') __lowercase = SubArray(whole_array) __lowercase = array.solve_sub_array() print(('''the results is:''', re))
296
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowercase_ ( __snake_case ): _lowerCamelCase = ['image_processor', 'tokenizer'] _lowerCamelCase = 'OwlViTImageProcessor' _lowerCamelCase = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , lowercase_=None , lowercase_=None , **lowercase_ ): _snake_case : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) _snake_case : str = kwargs.pop("feature_extractor" ) _snake_case : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase_ , lowercase_ ) def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="max_length" , lowercase_="np" , **lowercase_ ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(lowercase_ , lowercase_ ) or (isinstance(lowercase_ , lowercase_ ) and not isinstance(text[0] , lowercase_ )): _snake_case : List[Any] = [self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors=lowercase_ , **lowercase_ )] elif isinstance(lowercase_ , lowercase_ ) and isinstance(text[0] , lowercase_ ): _snake_case : str = [] # Maximum number of queries across batch _snake_case : Tuple = max([len(lowercase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowercase_ ) != max_num_queries: _snake_case : Optional[int] = t + [" "] * (max_num_queries - len(lowercase_ )) _snake_case : Optional[int] = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors=lowercase_ , **lowercase_ ) encodings.append(lowercase_ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _snake_case : List[Any] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _snake_case : Tuple = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _snake_case : Any = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _snake_case : List[str] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _snake_case : List[str] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _snake_case : int = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _snake_case : Optional[int] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _snake_case : Optional[Any] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _snake_case : Optional[int] = BatchEncoding() _snake_case : List[str] = input_ids _snake_case : str = attention_mask if query_images is not None: _snake_case : List[str] = BatchEncoding() _snake_case : Any = self.image_processor( lowercase_ , return_tensors=lowercase_ , **lowercase_ ).pixel_values _snake_case : List[Any] = query_pixel_values if images is not None: _snake_case : Union[str, Any] = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: _snake_case : Union[str, Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: _snake_case : Tuple = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def UpperCamelCase ( self , *lowercase_ , **lowercase_ ): return self.image_processor.post_process(*lowercase_ , **lowercase_ ) def UpperCamelCase ( self , *lowercase_ , **lowercase_ ): return self.image_processor.post_process_object_detection(*lowercase_ , **lowercase_ ) def UpperCamelCase ( self , *lowercase_ , **lowercase_ ): return self.image_processor.post_process_image_guided_detection(*lowercase_ , **lowercase_ ) def UpperCamelCase ( self , *lowercase_ , **lowercase_ ): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def UpperCamelCase ( self , *lowercase_ , **lowercase_ ): return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def UpperCamelCase ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase_ , ) return self.image_processor_class @property def UpperCamelCase ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase_ , ) return self.image_processor
670
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) class lowercase_ ( __snake_case ): def __init__( self , *lowercase_ , **lowercase_ ): warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
670
1
from PIL import Image def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ) -> int: def brightness(UpperCamelCase ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(__a ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 lowerCAmelCase__ = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
720
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings( a_, r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ", ) class lowercase ( a_ ): def _snake_case ( self , _snake_case) -> np.ndarray: if self.framework == "tf": UpperCAmelCase_ : Dict = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() elif self.framework == "pt": UpperCAmelCase_ : Any = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_snake_case) else: raise ValueError('Unsupported framework') return masked_index def _snake_case ( self , _snake_case) -> np.ndarray: UpperCAmelCase_ : Optional[int] = self.get_masked_index(_snake_case) UpperCAmelCase_ : int = np.prod(masked_index.shape) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def _snake_case ( self , _snake_case) -> int: if isinstance(_snake_case , _snake_case): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0]) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_snake_case) def _snake_case ( self , _snake_case , _snake_case=None , **_snake_case) -> Dict[str, GenericTensor]: if return_tensors is None: UpperCAmelCase_ : Optional[Any] = self.framework UpperCAmelCase_ : str = self.tokenizer(_snake_case , return_tensors=_snake_case) self.ensure_exactly_one_mask_token(_snake_case) return model_inputs def _snake_case ( self , _snake_case) -> Optional[int]: UpperCAmelCase_ : List[str] = self.model(**_snake_case) UpperCAmelCase_ : Optional[Any] = model_inputs['input_ids'] return model_outputs def _snake_case ( self , _snake_case , _snake_case=5 , _snake_case=None) -> str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCAmelCase_ : Optional[int] = target_ids.shape[0] UpperCAmelCase_ : Union[str, Any] = model_outputs['input_ids'][0] UpperCAmelCase_ : Optional[Any] = model_outputs['logits'] if self.framework == "tf": UpperCAmelCase_ : Optional[int] = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0] UpperCAmelCase_ : Tuple = outputs.numpy() UpperCAmelCase_ : Dict = outputs[0, masked_index, :] UpperCAmelCase_ : List[str] = stable_softmax(_snake_case , axis=-1) if target_ids is not None: UpperCAmelCase_ : str = tf.gather_nd(tf.squeeze(_snake_case , 0) , target_ids.reshape(-1 , 1)) UpperCAmelCase_ : str = tf.expand_dims(_snake_case , 0) UpperCAmelCase_ : int = tf.math.top_k(_snake_case , k=_snake_case) UpperCAmelCase_ , UpperCAmelCase_ : Dict = topk.values.numpy(), topk.indices.numpy() else: UpperCAmelCase_ : List[str] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_snake_case).squeeze(-1) # Fill mask pipeline supports only one ${mask_token} per sample UpperCAmelCase_ : int = outputs[0, masked_index, :] UpperCAmelCase_ : str = logits.softmax(dim=-1) if target_ids is not None: UpperCAmelCase_ : List[str] = probs[..., target_ids] UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = probs.topk(_snake_case) UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist())): UpperCAmelCase_ : Union[str, Any] = [] for v, p in zip(_values , _predictions): # Copy is important since we're going to modify this array in place UpperCAmelCase_ : Union[str, Any] = input_ids.numpy().copy() if target_ids is not None: UpperCAmelCase_ : str = target_ids[p].tolist() UpperCAmelCase_ : Union[str, Any] = p # Filter padding out: UpperCAmelCase_ : List[str] = tokens[np.where(tokens != self.tokenizer.pad_token_id)] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCAmelCase_ : Union[str, Any] = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case) UpperCAmelCase_ : Tuple = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p]), 'sequence': sequence} row.append(_snake_case) result.append(_snake_case) if single_mask: return result[0] return result def _snake_case ( self , _snake_case , _snake_case=None) -> List[str]: if isinstance(_snake_case , _snake_case): UpperCAmelCase_ : List[str] = [targets] try: UpperCAmelCase_ : Optional[int] = self.tokenizer.get_vocab() except Exception: UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : List[Any] = [] for target in targets: UpperCAmelCase_ : Optional[int] = vocab.get(_snake_case , _snake_case) if id_ is None: UpperCAmelCase_ : int = self.tokenizer( _snake_case , add_special_tokens=_snake_case , return_attention_mask=_snake_case , return_token_type_ids=_snake_case , max_length=1 , truncation=_snake_case , )['input_ids'] if len(_snake_case) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ 'We cannot replace it with anything meaningful, ignoring it') continue UpperCAmelCase_ : Tuple = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`.""") target_ids.append(id_) UpperCAmelCase_ : Union[str, Any] = list(set(_snake_case)) if len(_snake_case) == 0: raise ValueError('At least one target must be provided when passed.') UpperCAmelCase_ : Dict = np.array(_snake_case) return target_ids def _snake_case ( self , _snake_case=None , _snake_case=None) -> Dict: UpperCAmelCase_ : str = {} if targets is not None: UpperCAmelCase_ : Dict = self.get_target_ids(_snake_case , _snake_case) UpperCAmelCase_ : Optional[int] = target_ids if top_k is not None: UpperCAmelCase_ : List[str] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.') return {}, {}, postprocess_params def __call__( self , _snake_case , *_snake_case , **_snake_case) -> Optional[int]: UpperCAmelCase_ : Any = super().__call__(_snake_case , **_snake_case) if isinstance(_snake_case , _snake_case) and len(_snake_case) == 1: return outputs[0] return outputs
471
0
'''simple docstring''' import argparse _lowercase = """docs/source/_static/js/custom.js""" def A (__lowerCamelCase :List[Any] ): with open(__lowerCamelCase , encoding="""utf-8""" , newline="""\n""" ) as f: _lowerCAmelCase = f.readlines() _lowerCAmelCase = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 _lowerCAmelCase = f'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += f' "v{version}": "v{version}",\n' with open(__lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") _lowercase = parser.parse_args() update_custom_js(args.version)
5
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ): '''simple docstring''' UpperCAmelCase_ = TapasConfig.from_json_file(_UpperCamelCase ) # set absolute/relative position embeddings parameter UpperCAmelCase_ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": UpperCAmelCase_ = TapasForQuestionAnswering(config=_UpperCamelCase ) elif task == "WTQ": # run_task_main.py hparams UpperCAmelCase_ = 4 UpperCAmelCase_ = True # hparam_utils.py hparams UpperCAmelCase_ = 0.664_694 UpperCAmelCase_ = 0.207_951 UpperCAmelCase_ = 0.121_194 UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = 0.0_352_513 UpperCAmelCase_ = TapasForQuestionAnswering(config=_UpperCamelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams UpperCAmelCase_ = 4 UpperCAmelCase_ = False # hparam_utils.py hparams UpperCAmelCase_ = 36.4_519 UpperCAmelCase_ = 0.903_421 UpperCAmelCase_ = 222.088 UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = 0.763_141 UpperCAmelCase_ = TapasForQuestionAnswering(config=_UpperCamelCase ) elif task == "TABFACT": UpperCAmelCase_ = TapasForSequenceClassification(config=_UpperCamelCase ) elif task == "MLM": UpperCAmelCase_ = TapasForMaskedLM(config=_UpperCamelCase ) elif task == "INTERMEDIATE_PRETRAINING": UpperCAmelCase_ = TapasModel(config=_UpperCamelCase ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_UpperCamelCase ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) UpperCAmelCase_ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 ) tokenizer.save_pretrained(_UpperCamelCase ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase__ : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
390
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) def a__ ( a , a ) -> str: A_ : Any = b.T A_ : Dict = np.sum(np.square(__lowerCAmelCase ) , axis=1 ) A_ : int = np.sum(np.square(__lowerCAmelCase ) , axis=0 ) A_ : Optional[Any] = np.matmul(__lowerCAmelCase , __lowerCAmelCase ) A_ : Any = aa[:, None] - 2 * ab + ba[None, :] return d def a__ ( a , a ) -> Union[str, Any]: A_ : Dict = x.reshape(-1 , 3 ) A_ : List[str] = squared_euclidean_distance(__lowerCAmelCase , __lowerCAmelCase ) return np.argmin(__lowerCAmelCase , axis=1 ) class __UpperCAmelCase( A__ ): """simple docstring""" __magic_name__ = ["""pixel_values"""] def __init__( self , __magic_name__ = None , __magic_name__ = True , __magic_name__ = None , __magic_name__ = PILImageResampling.BILINEAR , __magic_name__ = True , __magic_name__ = True , **__magic_name__ , ): """simple docstring""" super().__init__(**_lowerCAmelCase ) A_ : List[str] = size if size is not None else {'''height''': 256, '''width''': 256} A_ : Dict = get_size_dict(_lowerCAmelCase ) A_ : List[Any] = np.array(_lowerCAmelCase ) if clusters is not None else None A_ : Tuple = do_resize A_ : Union[str, Any] = size A_ : Any = resample A_ : List[Any] = do_normalize A_ : Optional[int] = do_color_quantize def UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ = PILImageResampling.BILINEAR , __magic_name__ = None , **__magic_name__ , ): """simple docstring""" A_ : Any = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dictionary must contain both height and width keys. Got {size.keys()}""" ) return resize( _lowerCAmelCase , size=(size['''height'''], size['''width''']) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None , ): """simple docstring""" A_ : List[str] = rescale(image=_lowerCAmelCase , scale=1 / 1_27.5 , data_format=_lowerCAmelCase ) A_ : Tuple = image - 1 return image def UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = ChannelDimension.FIRST , **__magic_name__ , ): """simple docstring""" A_ : Dict = do_resize if do_resize is not None else self.do_resize A_ : int = size if size is not None else self.size A_ : int = get_size_dict(_lowerCAmelCase ) A_ : Tuple = resample if resample is not None else self.resample A_ : Dict = do_normalize if do_normalize is not None else self.do_normalize A_ : Dict = do_color_quantize if do_color_quantize is not None else self.do_color_quantize A_ : Optional[int] = clusters if clusters is not None else self.clusters A_ : Optional[int] = np.array(_lowerCAmelCase ) A_ : Any = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. A_ : Any = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: A_ : List[str] = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_normalize: A_ : str = [self.normalize(image=_lowerCAmelCase ) for image in images] if do_color_quantize: A_ : str = [to_channel_dimension_format(_lowerCAmelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) A_ : Union[str, Any] = np.array(_lowerCAmelCase ) A_ : Dict = color_quantize(_lowerCAmelCase , _lowerCAmelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) A_ : Union[str, Any] = images.shape[0] A_ : Optional[int] = images.reshape(_lowerCAmelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. A_ : Optional[int] = list(_lowerCAmelCase ) else: A_ : Optional[int] = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] A_ : Tuple = {'''input_ids''': images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
709
from __future__ import annotations from collections.abc import Callable def a__ ( a , a , a , a = 1_0_0 , ) -> float: A_ : Any = x_start A_ : int = fnc(a ) A_ : int = 0.0 for _ in range(a ): # Approximates small segments of curve as linear and solve # for trapezoidal area A_ : List[Any] = (x_end - x_start) / steps + xa A_ : Dict = fnc(a ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step A_ : Optional[int] = xa A_ : List[str] = fxa return area if __name__ == "__main__": def a__ ( a ) -> List[str]: return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') _lowerCAmelCase = 1_0 while i <= 1_0_0_0_0_0: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 1_0
236
0
import os # Precomputes a list of the 100 first triangular numbers _UpperCamelCase : int =[int(0.5 * n * (n + 1)) for n in range(1, 101)] def a__ () -> Tuple: _A : Union[str, Any] = os.path.dirname(os.path.realpath(__A ) ) _A : Optional[int] = os.path.join(__A , '''words.txt''' ) _A : List[str] = '''''' with open(__A ) as f: _A : Dict = f.readline() _A : Tuple = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] _A : Tuple = [ word for word in [sum(ord(__A ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__A ) if __name__ == "__main__": print(solution())
206
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class SCREAMING_SNAKE_CASE : def __init__( self : Any , __SCREAMING_SNAKE_CASE : int = 14 ) -> None: if group not in primes: raise ValueError('''Unsupported Group''' ) a_ : Union[str, Any] = primes[group]['''prime'''] a_ : List[str] = primes[group]['''generator'''] a_ : str = int(hexlify(urandom(32 ) ) , base=16 ) def SCREAMING_SNAKE_CASE ( self : str ) -> str: return hex(self.__private_key )[2:] def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: a_ : Dict = pow(self.generator , self.__private_key , self.prime ) return hex(__SCREAMING_SNAKE_CASE )[2:] def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(__SCREAMING_SNAKE_CASE , (self.prime - 1) // 2 , self.prime ) == 1 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str ) -> str: a_ : str = int(__SCREAMING_SNAKE_CASE , base=16 ) if not self.is_valid_public_key(__SCREAMING_SNAKE_CASE ): raise ValueError('''Invalid public key''' ) a_ : Optional[int] = pow(__SCREAMING_SNAKE_CASE , self.__private_key , self.prime ) return shaaaa(str(__SCREAMING_SNAKE_CASE ).encode() ).hexdigest() @staticmethod def SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(__SCREAMING_SNAKE_CASE , (prime - 1) // 2 , __SCREAMING_SNAKE_CASE ) == 1 ) @staticmethod def SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int = 14 ) -> str: a_ : Tuple = int(__SCREAMING_SNAKE_CASE , base=16 ) a_ : Any = int(__SCREAMING_SNAKE_CASE , base=16 ) a_ : List[str] = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError('''Invalid public key''' ) a_ : Optional[int] = pow(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return shaaaa(str(__SCREAMING_SNAKE_CASE ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
466
0
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class A__ : '''simple docstring''' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: int=100 , _SCREAMING_SNAKE_CASE: str=13 , _SCREAMING_SNAKE_CASE: List[str]=30 , _SCREAMING_SNAKE_CASE: Any=2 , _SCREAMING_SNAKE_CASE: Any=3 , _SCREAMING_SNAKE_CASE: str=True , _SCREAMING_SNAKE_CASE: str=True , _SCREAMING_SNAKE_CASE: Optional[int]=32 , _SCREAMING_SNAKE_CASE: Union[str, Any]=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=4 , _SCREAMING_SNAKE_CASE: Any=37 , _SCREAMING_SNAKE_CASE: int="gelu" , _SCREAMING_SNAKE_CASE: int=0.1 , _SCREAMING_SNAKE_CASE: int=0.1 , _SCREAMING_SNAKE_CASE: List[str]=10 , _SCREAMING_SNAKE_CASE: List[str]=0.02 , _SCREAMING_SNAKE_CASE: Any=3 , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: List[Any]=[0, 1, 2, 3] , ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Any = parent __lowerCAmelCase : Dict = 100 __lowerCAmelCase : Tuple = batch_size __lowerCAmelCase : Tuple = image_size __lowerCAmelCase : Dict = patch_size __lowerCAmelCase : Dict = num_channels __lowerCAmelCase : Tuple = is_training __lowerCAmelCase : List[str] = use_labels __lowerCAmelCase : Optional[int] = hidden_size __lowerCAmelCase : List[str] = num_hidden_layers __lowerCAmelCase : int = num_attention_heads __lowerCAmelCase : Optional[Any] = intermediate_size __lowerCAmelCase : Any = hidden_act __lowerCAmelCase : Tuple = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : Tuple = type_sequence_label_size __lowerCAmelCase : Dict = initializer_range __lowerCAmelCase : Optional[Any] = scope __lowerCAmelCase : Optional[int] = out_indices __lowerCAmelCase : Optional[int] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase : int = (image_size // patch_size) ** 2 __lowerCAmelCase : List[str] = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self: Any) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __lowerCAmelCase : Tuple = None __lowerCAmelCase : Optional[int] = None if self.use_labels: __lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) __lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Tuple: """simple docstring""" return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Dict) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Dict = BeitModel(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[str] = BeitForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: List[str]) -> int: """simple docstring""" __lowerCAmelCase : Dict = self.type_sequence_label_size __lowerCAmelCase : Optional[Any] = BeitForImageClassification(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : Optional[Any] = BeitForImageClassification(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int]) -> Dict: """simple docstring""" __lowerCAmelCase : Dict = self.num_labels __lowerCAmelCase : Optional[int] = BeitForSemanticSegmentation(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() __lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)) __lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)) def _SCREAMING_SNAKE_CASE ( self: int) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = config_and_inputs __lowerCAmelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _SCREAMING_SNAKE_CASE ( self: int) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = BeitModelTester(self) __lowerCAmelCase : List[str] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self: str) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> List[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`") def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Optional[int]: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Dict: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __lowerCAmelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Optional[Any] = model_class(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : List[Any] = [*signature.parameters.keys()] __lowerCAmelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: int) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> str: """simple docstring""" __lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[str]: """simple docstring""" if not self.model_tester.is_training: return __lowerCAmelCase , __lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : List[Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_SCREAMING_SNAKE_CASE), BeitForMaskedImageModeling]: continue __lowerCAmelCase : List[Any] = model_class(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.train() __lowerCAmelCase : Union[str, Any] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = model(**_SCREAMING_SNAKE_CASE).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowerCAmelCase : List[Any] = False __lowerCAmelCase : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_SCREAMING_SNAKE_CASE), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __lowerCAmelCase : Tuple = model_class(_SCREAMING_SNAKE_CASE) model.gradient_checkpointing_enable() model.to(_SCREAMING_SNAKE_CASE) model.train() __lowerCAmelCase : Union[str, Any] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = model(**_SCREAMING_SNAKE_CASE).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[int]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : Optional[Any] = _config_zero_init(_SCREAMING_SNAKE_CASE) for model_class in self.all_model_classes: __lowerCAmelCase : Dict = model_class(config=_SCREAMING_SNAKE_CASE) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def _SCREAMING_SNAKE_CASE ( self: Tuple) -> int: """simple docstring""" for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Dict = BeitModel.from_pretrained(_SCREAMING_SNAKE_CASE) self.assertIsNotNone(_SCREAMING_SNAKE_CASE) def _lowercase ( ) -> Optional[Any]: __lowerCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> List[Any]: """simple docstring""" return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k").to(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = self.default_image_processor __lowerCAmelCase : Union[str, Any] = prepare_img() __lowerCAmelCase : int = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt").pixel_values.to(_SCREAMING_SNAKE_CASE) # prepare bool_masked_pos __lowerCAmelCase : Optional[int] = torch.ones((1, 196) , dtype=torch.bool).to(_SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): __lowerCAmelCase : Dict = model(pixel_values=_SCREAMING_SNAKE_CASE , bool_masked_pos=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = outputs.logits # verify the logits __lowerCAmelCase : Union[str, Any] = torch.Size((1, 196, 8192)) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]]).to(_SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-2)) @slow def _SCREAMING_SNAKE_CASE ( self: int) -> Any: """simple docstring""" __lowerCAmelCase : Dict = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224").to(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = self.default_image_processor __lowerCAmelCase : List[str] = prepare_img() __lowerCAmelCase : Dict = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt").to(_SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = outputs.logits # verify the logits __lowerCAmelCase : List[Any] = torch.Size((1, 1000)) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = torch.tensor([-1.2385, -1.0987, -1.0108]).to(_SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4)) __lowerCAmelCase : int = 281 self.assertEqual(logits.argmax(-1).item() , _SCREAMING_SNAKE_CASE) @slow def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k").to( _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = self.default_image_processor __lowerCAmelCase : Tuple = prepare_img() __lowerCAmelCase : Optional[int] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt").to(_SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): __lowerCAmelCase : List[str] = model(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = outputs.logits # verify the logits __lowerCAmelCase : Dict = torch.Size((1, 2_1841)) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = torch.tensor([1.6881, -0.2787, 0.5901]).to(_SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4)) __lowerCAmelCase : Tuple = 2396 self.assertEqual(logits.argmax(-1).item() , _SCREAMING_SNAKE_CASE) @slow def _SCREAMING_SNAKE_CASE ( self: str) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640") __lowerCAmelCase : List[str] = model.to(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = BeitImageProcessor(do_resize=_SCREAMING_SNAKE_CASE , size=640 , do_center_crop=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test") __lowerCAmelCase : List[Any] = Image.open(ds[0]["file"]) __lowerCAmelCase : Dict = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt").to(_SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = outputs.logits # verify the logits __lowerCAmelCase : Union[str, Any] = torch.Size((1, 150, 160, 160)) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = version.parse(PIL.__version__) < version.parse("9.0.0") if is_pillow_less_than_a: __lowerCAmelCase : str = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=_SCREAMING_SNAKE_CASE , ) else: __lowerCAmelCase : List[Any] = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=_SCREAMING_SNAKE_CASE , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4)) @slow def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Dict: """simple docstring""" __lowerCAmelCase : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640") __lowerCAmelCase : int = model.to(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = BeitImageProcessor(do_resize=_SCREAMING_SNAKE_CASE , size=640 , do_center_crop=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test") __lowerCAmelCase : Dict = Image.open(ds[0]["file"]) __lowerCAmelCase : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt").to(_SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): __lowerCAmelCase : List[Any] = model(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = outputs.logits.detach().cpu() __lowerCAmelCase : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=_SCREAMING_SNAKE_CASE , target_sizes=[(500, 300)]) __lowerCAmelCase : int = torch.Size((500, 300)) self.assertEqual(segmentation[0].shape , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = image_processor.post_process_semantic_segmentation(outputs=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = torch.Size((160, 160)) self.assertEqual(segmentation[0].shape , _SCREAMING_SNAKE_CASE)
615
"""simple docstring""" import string from math import logaa def _lowercase ( __snake_case ,__snake_case ) -> int: __lowerCAmelCase : int = document.translate( str.maketrans("" ,"" ,string.punctuation ) ).replace("\n" ,"" ) __lowerCAmelCase : Dict = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _lowercase ( __snake_case ,__snake_case ) -> tuple[int, int]: __lowerCAmelCase : Optional[Any] = corpus.lower().translate( str.maketrans("" ,"" ,string.punctuation ) ) # strip all punctuation and replace it with '' __lowerCAmelCase : List[str] = corpus_without_punctuation.split("\n" ) __lowerCAmelCase : str = term.lower() return (len([doc for doc in docs if term in doc] ), len(__snake_case )) def _lowercase ( __snake_case ,__snake_case ,__snake_case=False ) -> float: if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) ,3 ) def _lowercase ( __snake_case ,__snake_case ) -> float: return round(tf * idf ,3 )
615
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'timm_backbone' def __init__( self : List[Any] , _A : str=None , _A : List[str]=3 , _A : Dict=True , _A : Optional[Any]=True , _A : Tuple=None , **_A : Dict , ): '''simple docstring''' super().__init__(**_A ) UpperCAmelCase__ : List[Any] = backbone UpperCAmelCase__ : Union[str, Any] = num_channels UpperCAmelCase__ : str = features_only UpperCAmelCase__ : List[str] = use_pretrained_backbone UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : Union[str, Any] = out_indices if out_indices is not None else (-1,)
75
import math def UpperCAmelCase ( UpperCAmelCase )-> int: '''simple docstring''' if not isinstance(UpperCAmelCase ,UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(UpperCAmelCase ) if number < 1: SCREAMING_SNAKE_CASE_ = f'''Input value of [number={number}] must be > 0''' raise ValueError(UpperCAmelCase ) elif number == 1: return 3 elif number == 2: return 5 else: SCREAMING_SNAKE_CASE_ = int(math.log(number // 3 ,2 ) ) + 2 SCREAMING_SNAKE_CASE_ = [3, 5] SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 for block in range(1 ,UpperCAmelCase ): for _ in range(UpperCAmelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): A_ = 0 try: A_ = proth(number) except ValueError: print(F'ValueError: there is no {number}th Proth number') continue print(F'The {number}th Proth number: {value}')
393
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
65
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase_ = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def lowercase ( lowerCAmelCase__ : List[Any] ) -> str: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : int ) -> Union[str, Any]: from transformers.testing_utils import pytest_terminal_summary_main __a = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(lowerCAmelCase__ , id=lowerCAmelCase__ )
65
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ : List[str] = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys A__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
233
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase : Union[str, Any] = {"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys _lowercase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
210
0
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : Optional[Any] = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class a__ ( __SCREAMING_SNAKE_CASE ): _A = "autoformer" _A = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Optional[int] , A_ : Optional[int] = None , A_ : Optional[int] = None , A_ : str = "student_t" , A_ : str = "nll" , A_ : int = 1 , A_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , A_ : bool = True , A_ : int = 0 , A_ : int = 0 , A_ : int = 0 , A_ : int = 0 , A_ : Optional[List[int]] = None , A_ : Optional[List[int]] = None , A_ : int = 64 , A_ : int = 2 , A_ : int = 2 , A_ : int = 2 , A_ : int = 2 , A_ : int = 32 , A_ : int = 32 , A_ : str = "gelu" , A_ : float = 0.1 , A_ : float = 0.1 , A_ : float = 0.1 , A_ : float = 0.1 , A_ : float = 0.1 , A_ : int = 1_00 , A_ : float = 0.02 , A_ : bool = True , A_ : Optional[Any]=True , A_ : int = 10 , A_ : int = 25 , A_ : int = 3 , **A_ : Optional[Any] , ) -> List[str]: """simple docstring""" lowerCamelCase_: List[str] = prediction_length lowerCamelCase_: Tuple = context_length if context_length is not None else prediction_length lowerCamelCase_: Optional[int] = distribution_output lowerCamelCase_: Union[str, Any] = loss lowerCamelCase_: Optional[Any] = input_size lowerCamelCase_: Tuple = num_time_features lowerCamelCase_: Optional[Any] = lags_sequence lowerCamelCase_: Union[str, Any] = scaling lowerCamelCase_: List[str] = num_dynamic_real_features lowerCamelCase_: Dict = num_static_real_features lowerCamelCase_: Dict = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) lowerCamelCase_: List[Any] = cardinality else: lowerCamelCase_: Tuple = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) lowerCamelCase_: str = embedding_dimension else: lowerCamelCase_: List[str] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCamelCase_: Any = num_parallel_samples # Transformer architecture configuration lowerCamelCase_: Optional[Any] = input_size * len(self.lags_sequence ) + self._number_of_features lowerCamelCase_: List[str] = d_model lowerCamelCase_: Union[str, Any] = encoder_attention_heads lowerCamelCase_: Optional[Any] = decoder_attention_heads lowerCamelCase_: Union[str, Any] = encoder_ffn_dim lowerCamelCase_: Optional[Any] = decoder_ffn_dim lowerCamelCase_: Optional[Any] = encoder_layers lowerCamelCase_: Optional[Any] = decoder_layers lowerCamelCase_: Optional[int] = dropout lowerCamelCase_: Any = attention_dropout lowerCamelCase_: str = activation_dropout lowerCamelCase_: Optional[int] = encoder_layerdrop lowerCamelCase_: List[Any] = decoder_layerdrop lowerCamelCase_: str = activation_function lowerCamelCase_: Tuple = init_std lowerCamelCase_: int = use_cache # Autoformer lowerCamelCase_: int = label_length lowerCamelCase_: Any = moving_average lowerCamelCase_: Tuple = autocorrelation_factor super().__init__(is_encoder_decoder=A_ , **A_ ) @property def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
703
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
584
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class lowerCamelCase ( unittest.TestCase ): UpperCamelCase_ : str = StableDiffusionLDMaDPipeline UpperCamelCase_ : int = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ : Any = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ : str = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self :Optional[int] ) -> str: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=6 , out_channels=6 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) SCREAMING_SNAKE_CASE = CLIPTextModel(lowercase ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__ ( self :Union[str, Any] , lowercase :List[Any] , lowercase :int=0 ) -> Optional[int]: """simple docstring""" if str(lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowercase ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowercase ).manual_seed(lowercase ) SCREAMING_SNAKE_CASE = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self :Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline(**lowercase ) SCREAMING_SNAKE_CASE = ldmad_pipe.to(lowercase ) ldmad_pipe.set_progress_bar_config(disable=lowercase ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowercase ) SCREAMING_SNAKE_CASE = ldmad_pipe(**lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = output.rgb, output.depth SCREAMING_SNAKE_CASE = rgb[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = depth[0, -3:, -1] assert rgb.shape == (1, 6_4, 6_4, 3) assert depth.shape == (1, 6_4, 6_4) SCREAMING_SNAKE_CASE = np.array( [0.37_33_81_76, 0.7_02_47, 0.74_20_31_93, 0.51_64_36_04, 0.58_25_67_93, 0.60_93_21_36, 0.4_18_10_95, 0.48_35_58_77, 0.46_53_52_62] ) SCREAMING_SNAKE_CASE = np.array([1_03.4_67_27, 85.81_20_04, 87.84_92_36] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def snake_case__ ( self :Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline(**lowercase ) SCREAMING_SNAKE_CASE = ldmad_pipe.to(lowercase ) ldmad_pipe.set_progress_bar_config(disable=lowercase ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowercase ) SCREAMING_SNAKE_CASE = 3 * [inputs['''prompt''']] # forward SCREAMING_SNAKE_CASE = ldmad_pipe(**lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = output.rgb, output.depth SCREAMING_SNAKE_CASE = rgb_slice_a[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = depth_slice_a[0, -3:, -1] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowercase ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('''prompt''' )] SCREAMING_SNAKE_CASE = ldmad_pipe.tokenizer( lowercase , padding='''max_length''' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=lowercase , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE = text_inputs['''input_ids'''].to(lowercase ) SCREAMING_SNAKE_CASE = ldmad_pipe.text_encoder(lowercase )[0] SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = ldmad_pipe(**lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = output.rgb, output.depth SCREAMING_SNAKE_CASE = rgb_slice_a[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def snake_case__ ( self :int ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=lowercase ) SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline(**lowercase ) SCREAMING_SNAKE_CASE = ldmad_pipe.to(lowercase ) ldmad_pipe.set_progress_bar_config(disable=lowercase ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowercase ) SCREAMING_SNAKE_CASE = '''french fries''' SCREAMING_SNAKE_CASE = ldmad_pipe(**lowercase , negative_prompt=lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = output.rgb, output.depth SCREAMING_SNAKE_CASE = rgb[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = depth[0, -3:, -1] assert rgb.shape == (1, 6_4, 6_4, 3) assert depth.shape == (1, 6_4, 6_4) SCREAMING_SNAKE_CASE = np.array( [0.3_70_44, 0.71_81_15_03, 0.7_22_32_51, 0.48_60_36_75, 0.5_63_83_91, 0.6_36_49_48, 0.42_83_37_04, 0.4_90_13_15, 0.47_92_62_17] ) SCREAMING_SNAKE_CASE = np.array([1_07.8_47_38, 84.6_28_02, 89.96_21_35] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def snake_case__ ( self :Tuple ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self :Any , lowercase :Any , lowercase :int="cpu" , lowercase :Union[str, Any]=torch.floataa , lowercase :Optional[int]=0 ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = torch.Generator(device=lowercase ).manual_seed(lowercase ) SCREAMING_SNAKE_CASE = np.random.RandomState(lowercase ).standard_normal((1, 4, 6_4, 6_4) ) SCREAMING_SNAKE_CASE = torch.from_numpy(lowercase ).to(device=lowercase , dtype=lowercase ) SCREAMING_SNAKE_CASE = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self :Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ) SCREAMING_SNAKE_CASE = ldmad_pipe.to(lowercase ) ldmad_pipe.set_progress_bar_config(disable=lowercase ) SCREAMING_SNAKE_CASE = self.get_inputs(lowercase ) SCREAMING_SNAKE_CASE = ldmad_pipe(**lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = output.rgb, output.depth SCREAMING_SNAKE_CASE = rgb[0, -3:, -3:, -1].flatten() SCREAMING_SNAKE_CASE = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_1_2, 5_1_2, 3) assert depth.shape == (1, 5_1_2, 5_1_2) SCREAMING_SNAKE_CASE = np.array( [0.53_80_54_65, 0.56_70_73_05, 0.5_48_65_15, 0.57_01_22_36, 0.5_81_45_11, 0.56_25_34_87, 0.54_84_30_14, 0.55_09_22_63, 0.6_45_97_06] ) SCREAMING_SNAKE_CASE = np.array( [0.9_26_37_81, 0.6_67_86_72, 0.5_48_65_15, 0.92_20_21_45, 0.67_83_11_35, 0.56_25_34_87, 0.9_24_16_94, 0.7_55_14_78, 0.6_45_97_06] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def snake_case__ ( self :List[Any] ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self :Any , lowercase :Any , lowercase :Optional[Any]="cpu" , lowercase :str=torch.floataa , lowercase :Optional[Any]=0 ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = torch.Generator(device=lowercase ).manual_seed(lowercase ) SCREAMING_SNAKE_CASE = np.random.RandomState(lowercase ).standard_normal((1, 4, 6_4, 6_4) ) SCREAMING_SNAKE_CASE = torch.from_numpy(lowercase ).to(device=lowercase , dtype=lowercase ) SCREAMING_SNAKE_CASE = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 5_0, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self :Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ).to(lowercase ) ldmad_pipe.set_progress_bar_config(disable=lowercase ) SCREAMING_SNAKE_CASE = self.get_inputs(lowercase ) SCREAMING_SNAKE_CASE = ldmad_pipe(**lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = output.rgb, output.depth SCREAMING_SNAKE_CASE = 0.49_55_86 SCREAMING_SNAKE_CASE = 0.33_79_55_15 SCREAMING_SNAKE_CASE = 1_12.4_85_18 SCREAMING_SNAKE_CASE = 98.48_97_46 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def snake_case__ ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d-4c''' ).to(lowercase ) ldmad_pipe.set_progress_bar_config(disable=lowercase ) SCREAMING_SNAKE_CASE = self.get_inputs(lowercase ) SCREAMING_SNAKE_CASE = ldmad_pipe(**lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = output.rgb, output.depth SCREAMING_SNAKE_CASE = 0.4_19_41_27 SCREAMING_SNAKE_CASE = 0.35_37_55_86 SCREAMING_SNAKE_CASE = 0.5_63_85_02 SCREAMING_SNAKE_CASE = 0.34_68_61_03 assert rgb.shape == (1, 5_1_2, 5_1_2, 3) assert depth.shape == (1, 5_1_2, 5_1_2, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
201
import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def a ( a ) ->List[Any]: '''simple docstring''' if hor == 128: SCREAMING_SNAKE_CASE = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') SCREAMING_SNAKE_CASE = (32, 128, 256) SCREAMING_SNAKE_CASE = ('''UpResnetBlock1D''', '''UpResnetBlock1D''') elif hor == 32: SCREAMING_SNAKE_CASE = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') SCREAMING_SNAKE_CASE = (32, 64, 128, 256) SCREAMING_SNAKE_CASE = ('''UpResnetBlock1D''', '''UpResnetBlock1D''', '''UpResnetBlock1D''') SCREAMING_SNAKE_CASE = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) SCREAMING_SNAKE_CASE = model.state_dict() SCREAMING_SNAKE_CASE = { '''down_block_types''': down_block_types, '''block_out_channels''': block_out_channels, '''up_block_types''': up_block_types, '''layers_per_block''': 1, '''use_timestep_embedding''': True, '''out_block_type''': '''OutConv1DBlock''', '''norm_num_groups''': 8, '''downsample_each_block''': False, '''in_channels''': 14, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''sample_size''': 6_5536, '''mid_block_type''': '''MidResTemporalBlock1D''', '''act_fn''': '''mish''', } SCREAMING_SNAKE_CASE = UNetaDModel(**a ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) SCREAMING_SNAKE_CASE = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): SCREAMING_SNAKE_CASE = state_dict.pop(a ) hf_value_function.load_state_dict(a ) torch.save(hf_value_function.state_dict() , F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , '''w''' ) as f: json.dump(a , a ) def a ( ) ->Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { '''in_channels''': 14, '''down_block_types''': ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D'''), '''up_block_types''': (), '''out_block_type''': '''ValueFunction''', '''mid_block_type''': '''ValueFunctionMidBlock1D''', '''block_out_channels''': (32, 64, 128, 256), '''layers_per_block''': 1, '''downsample_each_block''': True, '''sample_size''': 6_5536, '''out_channels''': 14, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''use_timestep_embedding''': True, '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''norm_num_groups''': 8, '''act_fn''': '''mish''', } SCREAMING_SNAKE_CASE = torch.load('''/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch''' ) SCREAMING_SNAKE_CASE = model SCREAMING_SNAKE_CASE = UNetaDModel(**a ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) SCREAMING_SNAKE_CASE = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): SCREAMING_SNAKE_CASE = state_dict.pop(a ) hf_value_function.load_state_dict(a ) torch.save(hf_value_function.state_dict() , '''hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin''' ) with open('''hub/hopper-medium-v2/value_function/config.json''' , '''w''' ) as f: json.dump(a , a ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
201
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
714
def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): # Return True if there is node that has not iterated. _UpperCamelCase = [False] * len(__snake_case ) _UpperCamelCase = [] queue.append(__snake_case ) _UpperCamelCase = True while queue: _UpperCamelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__snake_case ) _UpperCamelCase = True _UpperCamelCase = u return visited[t] def _snake_case ( __snake_case , __snake_case , __snake_case ): # This array is filled by BFS and to store path _UpperCamelCase = [-1] * (len(__snake_case )) _UpperCamelCase = 0 while bfs(__snake_case , __snake_case , __snake_case , __snake_case ): _UpperCamelCase = float('''Inf''' ) _UpperCamelCase = sink while s != source: # Find the minimum value in select path _UpperCamelCase = min(__snake_case , graph[parent[s]][s] ) _UpperCamelCase = parent[s] max_flow += path_flow _UpperCamelCase = sink while v != source: _UpperCamelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCamelCase = parent[v] return max_flow _lowerCAmelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _lowerCAmelCase, _lowerCAmelCase = 0, 5 print(ford_fulkerson(graph, source, sink))
71
0
def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): __lowerCAmelCase = '' for i in table: res += inp[i - 1] return res def a_ ( lowerCAmelCase_ : Union[str, Any] ): return data[1:] + data[0] def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = '' for i in range(len(lowerCAmelCase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : List[str] ): __lowerCAmelCase = int('0b' + data[0] + data[-1], 2 ) __lowerCAmelCase = int('0b' + data[1:3], 2 ) return bin(s[row][col] )[2:] def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Any ): __lowerCAmelCase = message[:4] __lowerCAmelCase = message[4:] __lowerCAmelCase = apply_table(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = xor(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = apply_sbox(lowerCAmelCase_, temp[:4] ) # noqa: E741 __lowerCAmelCase = apply_sbox(lowerCAmelCase_, temp[4:] ) __lowerCAmelCase = '0' * (2 - len(lowerCAmelCase_ )) + l # noqa: E741 __lowerCAmelCase = '0' * (2 - len(lowerCAmelCase_ )) + r __lowerCAmelCase = apply_table(l + r, lowerCAmelCase_ ) __lowerCAmelCase = xor(lowerCAmelCase_, lowerCAmelCase_ ) return temp + right if __name__ == "__main__": _snake_case : str = input('Enter 10 bit key: ') _snake_case : Any = input('Enter 8 bit message: ') _snake_case : Tuple = [6, 3, 7, 4, 8, 5, 10, 9] _snake_case : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _snake_case : List[Any] = [2, 4, 3, 1] _snake_case : Tuple = [2, 6, 3, 1, 4, 8, 5, 7] _snake_case : Union[str, Any] = [4, 1, 3, 5, 7, 2, 8, 6] _snake_case : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1] _snake_case : Optional[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _snake_case : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _snake_case : Optional[Any] = apply_table(key, paa_table) _snake_case : Any = temp[:5] _snake_case : Dict = temp[5:] _snake_case : Dict = left_shift(left) _snake_case : Any = left_shift(right) _snake_case : Optional[int] = apply_table(left + right, pa_table) _snake_case : Optional[Any] = left_shift(left) _snake_case : Any = left_shift(right) _snake_case : Tuple = left_shift(left) _snake_case : List[str] = left_shift(right) _snake_case : Optional[Any] = apply_table(left + right, pa_table) # encryption _snake_case : Any = apply_table(message, IP) _snake_case : Optional[Any] = function(expansion, sa, sa, keya, temp) _snake_case : Optional[int] = temp[4:] + temp[:4] _snake_case : Optional[Any] = function(expansion, sa, sa, keya, temp) _snake_case : str = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption _snake_case : Tuple = apply_table(CT, IP) _snake_case : Dict = function(expansion, sa, sa, keya, temp) _snake_case : Optional[int] = temp[4:] + temp[:4] _snake_case : Any = function(expansion, sa, sa, keya, temp) _snake_case : Optional[Any] = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
53
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
451
0
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _lowerCAmelCase : """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any]=1_4 , SCREAMING_SNAKE_CASE : Any=7 , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : List[Any]=False , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : List[str]=9_9 , SCREAMING_SNAKE_CASE : Tuple=3_2 , SCREAMING_SNAKE_CASE : int=4 , SCREAMING_SNAKE_CASE : Tuple=4 , SCREAMING_SNAKE_CASE : Tuple=4 , SCREAMING_SNAKE_CASE : Tuple=3_7 , SCREAMING_SNAKE_CASE : int="gelu" , SCREAMING_SNAKE_CASE : Any=0.1 , SCREAMING_SNAKE_CASE : str=0.1 , SCREAMING_SNAKE_CASE : int=5_1_2 , SCREAMING_SNAKE_CASE : int=0.0_2 , ) -> Any: """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = rotary_dim lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = initializer_range lowerCAmelCase = None lowerCAmelCase = vocab_size - 1 lowerCAmelCase = vocab_size - 1 lowerCAmelCase = vocab_size - 1 def __A ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __A ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def __A ( self : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Dict: """simple docstring""" lowerCAmelCase = 2_0 lowerCAmelCase = model_class_name(SCREAMING_SNAKE_CASE ) lowerCAmelCase = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE ) lowerCAmelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" ) lowerCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , position_ids=SCREAMING_SNAKE_CASE , ) lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCAmelCase = model( input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE , ) lowerCAmelCase = model(SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> int: """simple docstring""" lowerCAmelCase = 2_0 lowerCAmelCase = model_class_name(SCREAMING_SNAKE_CASE ) lowerCAmelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE ) lowerCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , position_ids=SCREAMING_SNAKE_CASE , ) lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCAmelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE , position_ids=SCREAMING_SNAKE_CASE , ) lowerCAmelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) @require_flax class _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowerCAmelCase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __A ( self : List[str] ) -> str: """simple docstring""" lowerCAmelCase = FlaxGPTJModelTester(self ) def __A ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_class_name in self.all_model_classes: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __A ( self : List[Any] ) -> List[Any]: """simple docstring""" for model_class_name in self.all_model_classes: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @tooslow def __A ( self : Union[str, Any] ) -> int: """simple docstring""" lowerCAmelCase = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" ) lowerCAmelCase = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE ) lowerCAmelCase = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) lowerCAmelCase = False lowerCAmelCase = model.config.eos_token_id lowerCAmelCase = jax.jit(model.generate ) lowerCAmelCase = jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE ) lowerCAmelCase = [ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @is_pt_flax_cross_test def __A ( self : Any ) -> Dict: """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase = pt_inputs["input_ids"].shape lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase = 0 lowerCAmelCase = 1 lowerCAmelCase = 0 lowerCAmelCase = 1 lowerCAmelCase = pt_model_class(SCREAMING_SNAKE_CASE ).eval() lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) lowerCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE ) lowerCAmelCase = fx_state with torch.no_grad(): lowerCAmelCase = pt_model(**SCREAMING_SNAKE_CASE ).to_tuple() lowerCAmelCase = fx_model(**SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(SCREAMING_SNAKE_CASE ) lowerCAmelCase = model_class.from_pretrained(SCREAMING_SNAKE_CASE , from_pt=SCREAMING_SNAKE_CASE ) lowerCAmelCase = fx_model_loaded(**SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def __A ( self : Optional[Any] ) -> Dict: """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = pt_model_class(SCREAMING_SNAKE_CASE ).eval() lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) lowerCAmelCase = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , fx_model.params ) lowerCAmelCase , lowerCAmelCase = pt_inputs["input_ids"].shape lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase = 0 lowerCAmelCase = 1 lowerCAmelCase = 0 lowerCAmelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase = pt_model(**SCREAMING_SNAKE_CASE ).to_tuple() lowerCAmelCase = fx_model(**SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(SCREAMING_SNAKE_CASE ) lowerCAmelCase = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE , from_flax=SCREAMING_SNAKE_CASE ) with torch.no_grad(): lowerCAmelCase = pt_model_loaded(**SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def __A ( self : int ) -> Union[str, Any]: """simple docstring""" for model_class_name in self.all_model_classes: lowerCAmelCase = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE )
720
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowercase : Tuple = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 1_3_1_0_7_2, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, } def __a ( A__ , A__ ) -> Optional[Any]: return torch.atana(A__ , A__ ) / math.pi * 2 def __a ( A__ ) -> List[str]: lowerCAmelCase = torch.sin(t * math.pi / 2 ) ** 2 lowerCAmelCase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(A__ , A__ ) class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" pass class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" super().__init__() lowerCAmelCase = DiffusionAttnUnetaD(SCREAMING_SNAKE_CASE , n_attn_layers=4 ) lowerCAmelCase = deepcopy(self.diffusion ) lowerCAmelCase = torch.quasirandom.SobolEngine(1 , scramble=SCREAMING_SNAKE_CASE ) def __a ( A__ ) -> Dict: lowerCAmelCase = MODELS_MAP[model_name]["url"] os.system(f"wget {url} ./" ) return f"./{model_name}.ckpt" lowercase : List[Any] = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } lowercase : int = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } lowercase : Optional[Any] = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } lowercase : List[Any] = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } lowercase : Optional[Any] = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } lowercase : Union[str, Any] = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def __a ( A__ ) -> str: if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(f"ResConvBlock error with {name}" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __a ( A__ ) -> List[Any]: for key, value in ATTN_MAP.items(): if name.startswith(A__ ) and not isinstance(A__ , A__ ): return name.replace(A__ , A__ ) elif name.startswith(A__ ): return [name.replace(A__ , A__ ) for v in value] raise ValueError(f"Attn error with {name}" ) def __a ( A__ , A__=13 ) -> str: lowerCAmelCase = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) lowerCAmelCase = 0 if string.startswith("net.3." ): depth += 1 lowerCAmelCase = string[6:] elif string.startswith("net." ): lowerCAmelCase = string[4:] while string.startswith("main.7." ): depth += 1 lowerCAmelCase = string[7:] if string.startswith("main." ): lowerCAmelCase = string[5:] # mid block if string[:2].isdigit(): lowerCAmelCase = string[:2] lowerCAmelCase = string[2:] else: lowerCAmelCase = string[0] lowerCAmelCase = string[1:] if depth == max_depth: lowerCAmelCase = MID_NUM_TO_LAYER[layer_num] lowerCAmelCase = "mid_block" elif depth > 0 and int(A__ ) < 7: lowerCAmelCase = DOWN_NUM_TO_LAYER[layer_num] lowerCAmelCase = f"down_blocks.{depth}" elif depth > 0 and int(A__ ) > 7: lowerCAmelCase = UP_NUM_TO_LAYER[layer_num] lowerCAmelCase = f"up_blocks.{max_depth - depth - 1}" elif depth == 0: lowerCAmelCase = DEPTH_0_TO_LAYER[layer_num] lowerCAmelCase = f"up_blocks.{max_depth - 1}" if int(A__ ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(f"Naming error with {input_string} and string_left: {string_left}." ) lowerCAmelCase = string_left[1:] if "resnets" in new_layer: lowerCAmelCase = convert_resconv_naming(A__ ) elif "attentions" in new_layer: lowerCAmelCase = convert_attn_naming(A__ ) lowerCAmelCase = new_string_left if not isinstance(A__ , A__ ): lowerCAmelCase = prefix + "." + new_layer + "." + string_left else: lowerCAmelCase = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def __a ( A__ ) -> str: lowerCAmelCase = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue lowerCAmelCase = rename(A__ ) # check if we need to transform from Conv => Linear for attention if isinstance(A__ , A__ ): lowerCAmelCase = transform_conv_attns(A__ , A__ , A__ ) else: lowerCAmelCase = v return new_state_dict def __a ( A__ , A__ , A__ ) -> Any: if len(A__ ) == 1: if len(v.shape ) == 3: # weight lowerCAmelCase = v[:, :, 0] else: # bias lowerCAmelCase = v else: # qkv matrices lowerCAmelCase = v.shape[0] lowerCAmelCase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: lowerCAmelCase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: lowerCAmelCase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __a ( A__ ) -> Dict: lowerCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"Make sure to provide one of the official model names {MODELS_MAP.keys()}" lowerCAmelCase = download(A__ ) lowerCAmelCase = MODELS_MAP[model_name]["sample_rate"] lowerCAmelCase = MODELS_MAP[model_name]["sample_size"] lowerCAmelCase = Object() lowerCAmelCase = sample_size lowerCAmelCase = sample_rate lowerCAmelCase = 0 lowerCAmelCase = UNetaDModel(sample_size=A__ , sample_rate=A__ ) lowerCAmelCase = diffusers_model.state_dict() lowerCAmelCase = DiffusionUncond(A__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=A__ )["state_dict"] ) lowerCAmelCase = orig_model.diffusion_ema.eval() lowerCAmelCase = orig_model.state_dict() lowerCAmelCase = rename_orig_weights(A__ ) lowerCAmelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) lowerCAmelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(A__ ) == 0, f"Problem with {renamed_minus_diffusers}" assert all(k.endswith("kernel" ) for k in list(A__ ) ), f"Problem with {diffusers_minus_renamed}" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}" if key == "time_proj.weight": lowerCAmelCase = value.squeeze() lowerCAmelCase = value diffusers_model.load_state_dict(A__ ) lowerCAmelCase = 100 lowerCAmelCase = 33 lowerCAmelCase = IPNDMScheduler(num_train_timesteps=A__ ) lowerCAmelCase = torch.manual_seed(A__ ) lowerCAmelCase = torch.randn([1, 2, config.sample_size] , generator=A__ ).to(A__ ) lowerCAmelCase = torch.linspace(1 , 0 , steps + 1 , device=A__ )[:-1] lowerCAmelCase = get_crash_schedule(A__ ) lowerCAmelCase = DanceDiffusionPipeline(unet=A__ , scheduler=A__ ) lowerCAmelCase = torch.manual_seed(33 ) lowerCAmelCase = pipe(num_inference_steps=A__ , generator=A__ ).audios lowerCAmelCase = sampling.iplms_sample(A__ , A__ , A__ , {} ) lowerCAmelCase = generated.clamp(-1 , 1 ) lowerCAmelCase = (generated - audio).abs().sum() lowerCAmelCase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , A__ ) print("Diff max" , A__ ) assert diff_max < 1e-3, f"Diff max: {diff_max} is too much :-/" print(f"Conversion for {model_name} successful!" ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') lowercase : Tuple = parser.parse_args() main(args)
159
0
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowerCamelCase : List[Any] = ["text", "image", "audio"] def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((5_12, 5_12) ) ) elif input_type == "audio": inputs.append(torch.ones(30_00 ) ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): inputs.append(create_inputs(UpperCamelCase__ ) ) else: raise ValueError(f"Invalid type requested: {input_type}" ) return inputs def _lowerCAmelCase ( _UpperCamelCase : List ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for output in outputs: if isinstance(UpperCamelCase__ , (str, AgentText) ): output_types.append('text' ) elif isinstance(UpperCamelCase__ , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(UpperCamelCase__ , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(f"Invalid output: {output}" ) return output_types @is_tool_test class A__ : def A ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) _SCREAMING_SNAKE_CASE =self.tool.inputs for _input in inputs: if isinstance(_input , _a ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) _SCREAMING_SNAKE_CASE =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def A ( self : str ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =create_inputs(self.tool.inputs ) _SCREAMING_SNAKE_CASE =self.tool(*_a ) # There is a single output if len(self.tool.outputs ) == 1: _SCREAMING_SNAKE_CASE =[outputs] self.assertListEqual(output_types(_a ) , self.tool.outputs ) def A ( self : List[str] ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def A ( self : List[str] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =create_inputs(self.tool.inputs ) _SCREAMING_SNAKE_CASE =self.tool(*_a ) if not isinstance(_a , _a ): _SCREAMING_SNAKE_CASE =[outputs] self.assertEqual(len(_a ) , len(self.tool.outputs ) ) for output, output_type in zip(_a , self.tool.outputs ): _SCREAMING_SNAKE_CASE =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_a , _a ) ) def A ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =create_inputs(self.tool.inputs ) _SCREAMING_SNAKE_CASE =[] for _input, input_type in zip(_a , self.tool.inputs ): if isinstance(_a , _a ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error _SCREAMING_SNAKE_CASE =self.tool(*_a ) if not isinstance(_a , _a ): _SCREAMING_SNAKE_CASE =[outputs] self.assertEqual(len(_a ) , len(self.tool.outputs ) )
405
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowercase = HfArgumentParser(InitializationArguments) lowercase = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowercase = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowercase = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) lowercase = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowercase = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
240
0
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @property def __lowercase( self ) -> Tuple: torch.manual_seed(0 ) __UpperCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __lowercase( self ) -> Optional[int]: __UpperCamelCase = self.dummy_uncond_unet __UpperCamelCase = KarrasVeScheduler() __UpperCamelCase = KarrasVePipeline(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = pipe(num_inference_steps=2 , generator=_SCREAMING_SNAKE_CASE , output_type='numpy' ).images __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = pipe(num_inference_steps=2 , generator=_SCREAMING_SNAKE_CASE , output_type='numpy' , return_dict=_SCREAMING_SNAKE_CASE )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase( self ) -> Tuple: __UpperCamelCase = 'google/ncsnpp-celebahq-256' __UpperCamelCase = UNetaDModel.from_pretrained(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = KarrasVeScheduler() __UpperCamelCase = KarrasVePipeline(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = pipe(num_inference_steps=20 , generator=_SCREAMING_SNAKE_CASE , output_type='numpy' ).images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __UpperCamelCase = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
567
def _a ( __lowercase , __lowercase = 0 ) -> list: """simple docstring""" __UpperCamelCase = length or len(__lowercase ) __UpperCamelCase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __UpperCamelCase , __UpperCamelCase = list_data[i + 1], list_data[i] __UpperCamelCase = True return list_data if not swapped else bubble_sort(__lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
567
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ : Optional[int] =OmegaConf.load(lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase ) ) ) return config def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: __magic_name__ : List[str] ="""./model_checkpoints/vqgan_only.yaml""" __magic_name__ : Dict =load_config(lowerCamelCase , display=lowerCamelCase ) __magic_name__ : Tuple =VQModel(**config.model.params ) if ckpt_path is None: __magic_name__ : Optional[Any] ="""./model_checkpoints/vqgan_only.pt""" __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location=lowerCamelCase ) if ".ckpt" in ckpt_path: __magic_name__ : Any =sd["""state_dict"""] model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) model.to(lowerCamelCase ) del sd return model def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] =model.encode(lowerCamelCase ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __magic_name__ : List[Any] =model.decode(lowerCamelCase ) return xrec def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=False ): __magic_name__ , __magic_name__ : Optional[int] =string.rsplit(""".""" , 1 ) if reload: __magic_name__ : Optional[int] =importlib.import_module(lowerCamelCase ) importlib.reload(lowerCamelCase ) return getattr(importlib.import_module(lowerCamelCase , package=lowerCamelCase ) , cls ) def lowerCAmelCase_ ( lowerCamelCase ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): __magic_name__ : str =instantiate_from_config(lowerCamelCase ) if sd is not None: model.load_state_dict(lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): # load the specified checkpoint if ckpt: __magic_name__ : str =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Any =pl_sd["""global_step"""] print(F"loaded model from global step {global_step}." ) else: __magic_name__ : List[Any] ={"""state_dict""": None} __magic_name__ : Optional[Any] =None __magic_name__ : Tuple =load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=lowerCamelCase , eval_mode=lowerCamelCase )["""model"""] return model, global_step
21
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __a ( a ): """simple docstring""" _a = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _a = [1_4_4, 1_9_2, 2_4_0] _a = [1_6, 3_2, 6_4, 9_6, 1_2_8, 1_6_0, 6_4_0] elif "mobilevit_xs" in mobilevit_name: _a = [9_6, 1_2_0, 1_4_4] _a = [1_6, 3_2, 4_8, 6_4, 8_0, 9_6, 3_8_4] elif "mobilevit_xxs" in mobilevit_name: _a = [6_4, 8_0, 9_6] _a = [1_6, 1_6, 2_4, 4_8, 6_4, 8_0, 3_2_0] _a = 0.05 _a = 2.0 if mobilevit_name.startswith("deeplabv3_" ): _a = 5_1_2 _a = 1_6 _a = 2_1 _a = "pascal-voc-id2label.json" else: _a = 1_0_0_0 _a = "imagenet-1k-id2label.json" _a = "huggingface/label-files" _a = json.load(open(hf_hub_download(a, a, repo_type="dataset" ), "r" ) ) _a = {int(a ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} return config def __a ( a, a=False ): """simple docstring""" for i in range(1, 6 ): if F'layer_{i}.' in name: _a = name.replace(F'layer_{i}.', F'encoder.layer.{i - 1}.' ) if "conv_1." in name: _a = name.replace("conv_1.", "conv_stem." ) if ".block." in name: _a = name.replace(".block.", "." ) if "exp_1x1" in name: _a = name.replace("exp_1x1", "expand_1x1" ) if "red_1x1" in name: _a = name.replace("red_1x1", "reduce_1x1" ) if ".local_rep.conv_3x3." in name: _a = name.replace(".local_rep.conv_3x3.", ".conv_kxk." ) if ".local_rep.conv_1x1." in name: _a = name.replace(".local_rep.conv_1x1.", ".conv_1x1." ) if ".norm." in name: _a = name.replace(".norm.", ".normalization." ) if ".conv." in name: _a = name.replace(".conv.", ".convolution." ) if ".conv_proj." in name: _a = name.replace(".conv_proj.", ".conv_projection." ) for i in range(0, 2 ): for j in range(0, 4 ): if F'.{i}.{j}.' in name: _a = name.replace(F'.{i}.{j}.', F'.{i}.layer.{j}.' ) for i in range(2, 6 ): for j in range(0, 4 ): if F'.{i}.{j}.' in name: _a = name.replace(F'.{i}.{j}.', F'.{i}.' ) if "expand_1x1" in name: _a = name.replace("expand_1x1", "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: _a = name.replace("conv_3x3", "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: _a = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" ) for i in range(2, 5 ): if F'.global_rep.{i}.weight' in name: _a = name.replace(F'.global_rep.{i}.weight', ".layernorm.weight" ) if F'.global_rep.{i}.bias' in name: _a = name.replace(F'.global_rep.{i}.bias', ".layernorm.bias" ) if ".global_rep." in name: _a = name.replace(".global_rep.", ".transformer." ) if ".pre_norm_mha.0." in name: _a = name.replace(".pre_norm_mha.0.", ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: _a = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: _a = name.replace(".pre_norm_ffn.0.", ".layernorm_after." ) if ".pre_norm_ffn.1." in name: _a = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: _a = name.replace(".pre_norm_ffn.4.", ".output.dense." ) if ".transformer." in name: _a = name.replace(".transformer.", ".transformer.layer." ) if ".aspp_layer." in name: _a = name.replace(".aspp_layer.", "." ) if ".aspp_pool." in name: _a = name.replace(".aspp_pool.", "." ) if "seg_head." in name: _a = name.replace("seg_head.", "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: _a = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." ) if "classifier.fc." in name: _a = name.replace("classifier.fc.", "classifier." ) elif (not base_model) and ("segmentation_head." not in name): _a = "mobilevit." + name return name def __a ( a, a, a=False ): """simple docstring""" if base_model: _a = "" else: _a = "mobilevit." for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(a ) if key[:8] == "encoder.": _a = key[8:] if "qkv" in key: _a = key.split("." ) _a = int(key_split[0][6:] ) - 1 _a = int(key_split[3] ) _a = model.get_submodule(F'{model_prefix}encoder.layer.{layer_num}' ) _a = layer.transformer.layer[transformer_num].attention.attention.all_head_size _a = ( F'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.' ) if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] else: _a = val[:dim] _a = val[dim : dim * 2] _a = val[-dim:] else: _a = val return orig_state_dict def __a ( ): """simple docstring""" _a = "http://images.cocodataset.org/val2017/000000039769.jpg" _a = Image.open(requests.get(a, stream=a ).raw ) return im @torch.no_grad() def __a ( a, a, a, a=False ): """simple docstring""" _a = get_mobilevit_config(a ) # load original state_dict _a = torch.load(a, map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): _a = MobileViTForSemanticSegmentation(a ).eval() else: _a = MobileViTForImageClassification(a ).eval() _a = convert_state_dict(a, a ) model.load_state_dict(a ) # Check outputs on an image, prepared by MobileViTImageProcessor _a = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 3_2 ) _a = image_processor(images=prepare_img(), return_tensors="pt" ) _a = model(**a ) _a = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 2_1, 3_2, 3_2) if mobilevit_name == "deeplabv3_mobilevit_s": _a = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _a = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _a = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3, :3, :3], a, atol=1e-4 ) else: assert logits.shape == (1, 1_0_0_0) if mobilevit_name == "mobilevit_s": _a = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": _a = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": _a = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3], a, atol=1e-4 ) Path(a ).mkdir(exist_ok=a ) print(F'Saving model {mobilevit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(a ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(a ) if push_to_hub: _a = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) _a = model_mapping[mobilevit_name] image_processor.push_to_hub(a, organization="apple" ) model.push_to_hub(a, organization="apple" ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--mobilevit_name""", default="""mobilevit_s""", type=str, help=( """Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',""" """ 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'.""" ), ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
388
0
"""simple docstring""" def lowercase ( UpperCamelCase : int ): """simple docstring""" if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) A__ : int =[0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A__ : List[str] =1 if upper_limit > 0: A__ : str =1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(UpperCamelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: __A : str = int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(f"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
595
"""simple docstring""" import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( _UpperCamelCase , unittest.TestCase): '''simple docstring''' __magic_name__ : Union[str, Any] = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : Union[str, Any]=0 ): A__ : Union[str, Any] =np.random.RandomState(UpperCamelCase__ ) A__ : int ={ "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _UpperCAmelCase ( self : Optional[Any] ): A__ : str =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : List[str] =self.get_dummy_inputs() A__ : List[Any] =pipe(**UpperCamelCase__ ).images A__ : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A__ : List[str] =np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase ( self : int ): A__ : Optional[int] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A__ : List[str] =PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Union[str, Any] =self.get_dummy_inputs() A__ : Optional[int] =pipe(**UpperCamelCase__ ).images A__ : Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A__ : Optional[Any] =np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase ( self : int ): A__ : int =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A__ : List[Any] =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Dict =self.get_dummy_inputs() A__ : List[str] =pipe(**UpperCamelCase__ ).images A__ : str =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A__ : Optional[Any] =np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase ( self : Dict ): A__ : Optional[int] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A__ : str =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Optional[Any] =self.get_dummy_inputs() A__ : List[Any] =pipe(**UpperCamelCase__ ).images A__ : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A__ : Union[str, Any] =np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase ( self : Union[str, Any] ): A__ : Optional[Any] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A__ : List[str] =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Union[str, Any] =self.get_dummy_inputs() A__ : Optional[int] =pipe(**UpperCamelCase__ ).images A__ : Optional[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A__ : str =np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase ( self : Any ): A__ : List[str] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) A__ : Tuple =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : str =self.get_dummy_inputs() A__ : List[Any] =pipe(**UpperCamelCase__ ).images A__ : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A__ : str =np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase ( self : str ): A__ : int =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : List[Any] =self.get_dummy_inputs() A__ : Optional[Any] =3 * [inputs["prompt"]] # forward A__ : Any =pipe(**UpperCamelCase__ ) A__ : str =output.images[0, -3:, -3:, -1] A__ : Any =self.get_dummy_inputs() A__ : str =3 * [inputs.pop("prompt" )] A__ : Dict =pipe.tokenizer( UpperCamelCase__ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors="np" , ) A__ : Dict =text_inputs["input_ids"] A__ : Optional[int] =pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] A__ : Optional[Any] =prompt_embeds # forward A__ : int =pipe(**UpperCamelCase__ ) A__ : Tuple =output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def _UpperCAmelCase ( self : str ): A__ : Optional[Any] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Optional[Any] =self.get_dummy_inputs() A__ : Union[str, Any] =3 * ["this is a negative prompt"] A__ : List[str] =negative_prompt A__ : int =3 * [inputs["prompt"]] # forward A__ : List[Any] =pipe(**UpperCamelCase__ ) A__ : str =output.images[0, -3:, -3:, -1] A__ : Any =self.get_dummy_inputs() A__ : str =3 * [inputs.pop("prompt" )] A__ : Tuple =[] for p in [prompt, negative_prompt]: A__ : List[str] =pipe.tokenizer( UpperCamelCase__ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors="np" , ) A__ : Tuple =text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) A__ , A__ : int =embeds # forward A__ : List[str] =pipe(**UpperCamelCase__ ) A__ : List[str] =output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase): '''simple docstring''' @property def _UpperCAmelCase ( self : int ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCAmelCase ( self : str ): A__ : List[Any] =ort.SessionOptions() A__ : int =False return options def _UpperCAmelCase ( self : Tuple ): # using the PNDM scheduler by default A__ : Optional[Any] =OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Any ="A painting of a squirrel eating a burger" np.random.seed(0 ) A__ : Optional[int] =sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" ) A__ : List[str] =output.images A__ : int =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ : Any =np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCAmelCase ( self : List[str] ): A__ : int =DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) A__ : int =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Any ="open neural network exchange" A__ : Union[str, Any] =np.random.RandomState(0 ) A__ : int =sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type="np" ) A__ : List[Any] =output.images A__ : Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ : Dict =np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCAmelCase ( self : str ): A__ : List[Any] =LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) A__ : Union[str, Any] =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : List[Any] ="open neural network exchange" A__ : List[str] =np.random.RandomState(0 ) A__ : Tuple =sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type="np" ) A__ : Dict =output.images A__ : Any =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ : int =np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCAmelCase ( self : int ): A__ : Dict =0 def test_callback_fn(UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : np.ndarray ) -> None: A__ : Dict =True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) A__ : Optional[int] =latents[0, -3:, -3:, -1] A__ : str =np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) A__ : Optional[Any] =latents[0, -3:, -3:, -1] A__ : List[Any] =np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 A__ : Dict =False A__ : Dict =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : int ="Andromeda galaxy in a bottle" A__ : Union[str, Any] =np.random.RandomState(0 ) pipe( prompt=UpperCamelCase__ , num_inference_steps=5 , guidance_scale=7.5 , generator=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _UpperCAmelCase ( self : Union[str, Any] ): A__ : Dict =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert pipe.safety_checker is None A__ : str =pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase__ ) A__ : Any =OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None A__ : Dict =pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None
595
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __snake_case ( ) -> Any: """simple docstring""" A = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=UpperCamelCase__ , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=UpperCamelCase__ , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=UpperCamelCase__ ) return parser.parse_args() def __snake_case ( ) -> str: """simple docstring""" A = parse_args() # Import training_script as a module. A = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) A = script_fpath.stem A = importlib.import_module(UpperCamelCase__ ) # Patch sys.argv A = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
690
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Dict = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : int = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowerCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
442
0
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case__: """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any]=13 , SCREAMING_SNAKE_CASE : Any=3 , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE : List[str]=0.1 , SCREAMING_SNAKE_CASE : str=224 , SCREAMING_SNAKE_CASE : Tuple=1_000 , SCREAMING_SNAKE_CASE : Union[str, Any]=[3, 3, 6, 4] , SCREAMING_SNAKE_CASE : List[str]=[48, 56, 112, 220] , ): lowercase__ : List[str] = parent lowercase__ : List[Any] = batch_size lowercase__ : int = num_channels lowercase__ : Optional[Any] = is_training lowercase__ : Optional[Any] = use_labels lowercase__ : str = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Union[str, Any] = num_labels lowercase__ : int = image_size lowercase__ : Tuple = layer_depths lowercase__ : Optional[int] = embed_dims def snake_case ( self : List[str] ): lowercase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : List[str] = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ : Optional[Any] = self.get_config() return config, pixel_values, labels def snake_case ( self : Optional[Any] ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=SCREAMING_SNAKE_CASE , layer_scale_init_value=1E-5 , ) def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ): lowercase__ : Optional[int] = SwiftFormerModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ): lowercase__ : Optional[int] = self.num_labels lowercase__ : int = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : str = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase__ : List[str] = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : str = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : Any ): (lowercase__) : str = self.prepare_config_and_inputs() lowercase__ : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case__(_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowercase_ = ( {"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification} if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def snake_case ( self : str ): lowercase__ : Optional[Any] = SwiftFormerModelTester(self ) lowercase__ : List[str] = ConfigTester( self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def snake_case ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def snake_case ( self : str ): pass def snake_case ( self : Union[str, Any] ): lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) ) def snake_case ( self : Dict ): lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Dict = [*signature.parameters.keys()] lowercase__ : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def snake_case ( self : Dict ): lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def snake_case ( self : Any ): lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) @slow def snake_case ( self : Any ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = SwiftFormerModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def snake_case ( self : Union[str, Any] ): pass def snake_case ( self : Tuple ): def check_hidden_states_output(SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int ): lowercase__ : str = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowercase__ : Optional[Any] = outputs.hidden_states lowercase__ : Dict = 8 self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(SCREAMING_SNAKE_CASE ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : int = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] ): def _config_zero_init(SCREAMING_SNAKE_CASE : Any ): lowercase__ : Dict = copy.deepcopy(SCREAMING_SNAKE_CASE ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 1E-1_0 ) if isinstance(getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ): lowercase__ : Union[str, Any] = _config_zero_init(getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return configs_no_init lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[int] = _config_zero_init(SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: lowercase__ : Any = model_class(config=SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case ( self : Optional[Any] ): pass def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case__(unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self : Optional[Any] ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowercase__ : List[str] = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = self.default_image_processor lowercase__ : str = prepare_img() lowercase__ : int = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowercase__ : Union[str, Any] = model(**SCREAMING_SNAKE_CASE ) # verify the logits lowercase__ : Dict = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) lowercase__ : str = torch.tensor([[-2.1_7_0_3E0_0, 2.1_1_0_7E0_0, -2.0_8_1_1E0_0]] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
714
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Dict = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] lowercase__ : str = True if "large" in model_name or "huge" in model_name else False lowercase__ : Optional[Any] = True if "large" in model_name or "huge" in model_name else False lowercase__ : List[str] = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : int = [3, 3, 3, 3] lowercase__ : Tuple = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : Optional[Any] = [4, 4, 4, 4] lowercase__ : Optional[Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : Union[str, Any] = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : Union[str, Any] = [3, 3, 3, 3] else: lowercase__ : Tuple = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Optional[Any] = 96 elif "small" in model_name: lowercase__ : List[str] = 96 elif "base" in model_name: lowercase__ : str = 128 elif "large" in model_name: lowercase__ : Any = 192 elif "xlarge" in model_name: lowercase__ : str = 256 elif "huge" in model_name: lowercase__ : List[str] = 352 # set label information lowercase__ : Tuple = "huggingface/label-files" if "large" in model_name or "huge" in model_name: lowercase__ : List[Any] = "imagenet-22k-id2label.json" else: lowercase__ : Optional[int] = "imagenet-1k-id2label.json" lowercase__ : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowercase__ : Optional[int] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowercase__ : int = {v: k for k, v in idalabel.items()} lowercase__ : str = FocalNetConfig( embed_dim=lowerCamelCase__ , depths=lowerCamelCase__ , focal_levels=lowerCamelCase__ , focal_windows=lowerCamelCase__ , use_conv_embed=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid=lowerCamelCase__ , use_post_layernorm=lowerCamelCase__ , use_layerscale=lowerCamelCase__ , ) return config def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if "patch_embed.proj" in name: lowercase__ : int = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowercase__ : Dict = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: lowercase__ : List[str] = "encoder." + name if "encoder.layers" in name: lowercase__ : Optional[Any] = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: lowercase__ : Optional[Any] = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : Any = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Optional[Any] = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Optional[Any] = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": lowercase__ : List[str] = "layernorm.weight" if name == "norm.bias": lowercase__ : List[Any] = "layernorm.bias" if "head" in name: lowercase__ : Optional[int] = name.replace("head" , "classifier" ) else: lowercase__ : Union[str, Any] = "focalnet." + name return name def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ): """simple docstring""" lowercase__ : List[Any] = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on lowercase__ : Union[str, Any] = model_name_to_url[model_name] print("Checkpoint URL: " , lowerCamelCase__ ) lowercase__ : Optional[int] = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): lowercase__ : Tuple = state_dict.pop(lowerCamelCase__ ) lowercase__ : List[str] = val lowercase__ : List[str] = get_focalnet_config(lowerCamelCase__ ) lowercase__ : Union[str, Any] = FocalNetForImageClassification(lowerCamelCase__ ) model.eval() # load state dict model.load_state_dict(lowerCamelCase__ ) # verify conversion lowercase__ : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : int = BitImageProcessor( do_resize=lowerCamelCase__ , size={"shortest_edge": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCamelCase__ , crop_size=224 , do_normalize=lowerCamelCase__ , image_mean=lowerCamelCase__ , image_std=lowerCamelCase__ , ) lowercase__ : Tuple = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) lowercase__ : Tuple = processor(images=lowerCamelCase__ , return_tensors="pt" ) lowercase__ : Any = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ : int = image_transforms(lowerCamelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , lowerCamelCase__ , atol=1e-4 ) lowercase__ : List[Any] = model(**lowerCamelCase__ ) lowercase__ : int = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Union[str, Any] = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Optional[int] = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": lowercase__ : int = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": lowercase__ : Tuple = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": lowercase__ : str = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": lowercase__ : Optional[Any] = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) lowerCAmelCase__ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
81
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _A : def __init__( self : int , _A : Collection[float] | None = None ) -> None: """simple docstring""" if components is None: lowercase : str = [] lowercase : Tuple = list(_A ) def __len__( self : Optional[int] ) -> int: """simple docstring""" return len(self.__components ) def __str__( self : str ) -> str: """simple docstring""" return "(" + ",".join(map(_A , self.__components ) ) + ")" def __add__( self : Union[str, Any] , _A : Vector ) -> Vector: """simple docstring""" lowercase : Any = len(self ) if size == len(_A ): lowercase : int = [self.__components[i] + other.component(_A ) for i in range(_A )] return Vector(_A ) else: raise Exception('''must have the same size''' ) def __sub__( self : List[str] , _A : Vector ) -> Vector: """simple docstring""" lowercase : Optional[Any] = len(self ) if size == len(_A ): lowercase : str = [self.__components[i] - other.component(_A ) for i in range(_A )] return Vector(_A ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self : List[str] , _A : float ) -> Vector: """simple docstring""" ... @overload def __mul__( self : List[Any] , _A : Vector ) -> float: """simple docstring""" ... def __mul__( self : Optional[int] , _A : float | Vector ) -> float | Vector: """simple docstring""" if isinstance(_A , (float, int) ): lowercase : Union[str, Any] = [c * other for c in self.__components] return Vector(_A ) elif isinstance(_A , _A ) and len(self ) == len(_A ): lowercase : List[Any] = len(self ) lowercase : str = [self.__components[i] * other.component(_A ) for i in range(_A )] return sum(_A ) else: # error case raise Exception('''invalid operand!''' ) def __a ( self : Tuple ) -> Vector: """simple docstring""" return Vector(self.__components ) def __a ( self : Union[str, Any] , _A : int ) -> float: """simple docstring""" if isinstance(_A , _A ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def __a ( self : str , _A : int , _A : float ) -> None: """simple docstring""" assert -len(self.__components ) <= pos < len(self.__components ) lowercase : Union[str, Any] = value def __a ( self : str ) -> float: """simple docstring""" if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) lowercase : Optional[int] = [c**2 for c in self.__components] return math.sqrt(sum(_A ) ) def __a ( self : int , _A : Vector , _A : bool = False ) -> float: """simple docstring""" lowercase : Union[str, Any] = self * other lowercase : Tuple = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def snake_case( __magic_name__ ) -> str: '''simple docstring''' assert isinstance(_a , _a ) return Vector([0] * dimension ) def snake_case( __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' assert isinstance(_a , _a ) and (isinstance(_a , _a )) lowercase : Union[str, Any] = [0] * dimension lowercase : Any = 1 return Vector(_a ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' assert ( isinstance(_a , _a ) and isinstance(_a , _a ) and (isinstance(_a , (int, float) )) ) return x * scalar + y def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' random.seed(_a ) lowercase : Union[str, Any] = [random.randint(_a , _a ) for _ in range(_a )] return Vector(_a ) class _A : def __init__( self : int , _A : list[list[float]] , _A : int , _A : int ) -> None: """simple docstring""" lowercase : List[str] = matrix lowercase : Optional[int] = w lowercase : Optional[Any] = h def __str__( self : Any ) -> str: """simple docstring""" lowercase : Dict = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : List[Any] , _A : Matrix ) -> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): lowercase : Dict = [] for i in range(self.__height ): lowercase : Any = [ self.__matrix[i][j] + other.component(_A , _A ) for j in range(self.__width ) ] matrix.append(_A ) return Matrix(_A , self.__width , self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self : Optional[Any] , _A : Matrix ) -> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): lowercase : Union[str, Any] = [] for i in range(self.__height ): lowercase : Union[str, Any] = [ self.__matrix[i][j] - other.component(_A , _A ) for j in range(self.__width ) ] matrix.append(_A ) return Matrix(_A , self.__width , self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self : List[str] , _A : float ) -> Matrix: """simple docstring""" ... @overload def __mul__( self : Any , _A : Vector ) -> Vector: """simple docstring""" ... def __mul__( self : str , _A : float | Vector ) -> Vector | Matrix: """simple docstring""" if isinstance(_A , _A ): # matrix-vector if len(_A ) == self.__width: lowercase : Union[str, Any] = zero_vector(self.__height ) for i in range(self.__height ): lowercase : Optional[int] = [ self.__matrix[i][j] * other.component(_A ) for j in range(self.__width ) ] ans.change_component(_A , sum(_A ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(_A , (int, float) ): # matrix-scalar lowercase : str = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(_A , self.__width , self.__height ) return None def __a ( self : Optional[int] ) -> int: """simple docstring""" return self.__height def __a ( self : Tuple ) -> int: """simple docstring""" return self.__width def __a ( self : Any , _A : int , _A : int ) -> float: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def __a ( self : Tuple , _A : int , _A : int , _A : float ) -> None: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: lowercase : str = value else: raise Exception('''change_component: indices out of bounds''' ) def __a ( self : int , _A : int , _A : int ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) lowercase : List[str] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(_A ) ): lowercase : Optional[int] = minor[i][:y] + minor[i][y + 1 :] return Matrix(_A , self.__width - 1 , self.__height - 1 ).determinant() def __a ( self : int , _A : int , _A : int ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(_A , _A ) else: raise Exception('''Indices out of bounds''' ) def __a ( self : Dict ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowercase : List[Any] = [ self.__matrix[0][y] * self.cofactor(0 , _A ) for y in range(self.__width ) ] return sum(_A ) def snake_case( __magic_name__ ) -> str: '''simple docstring''' lowercase : list[list[float]] = [[0] * n for _ in range(_a )] return Matrix(_a , _a , _a ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[str]: '''simple docstring''' random.seed(_a ) lowercase : list[list[float]] = [ [random.randint(_a , _a ) for _ in range(_a )] for _ in range(_a ) ] return Matrix(_a , _a , _a )
217
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
0
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def UpperCAmelCase__ (snake_case__ : Dict ): """simple docstring""" _snake_case , _snake_case : Any = image.size _snake_case , _snake_case : Tuple = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _snake_case : int = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) _snake_case : Tuple = np.array(snake_case__ ).astype(np.floataa ) / 2_55.0 _snake_case : str = image[None].transpose(0 , 3 , 1 , 2 ) _snake_case : str = torch.from_numpy(snake_case__ ) return 2.0 * image - 1.0 class lowercase( __a ): '''simple docstring''' def __init__( self: Any, a_: VQModel, a_: UNetaDModel, a_: Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ], ): '''simple docstring''' super().__init__() self.register_modules(vqvae=a_, unet=a_, scheduler=a_ ) @torch.no_grad() def __call__( self: Dict, a_: Union[torch.Tensor, PIL.Image.Image] = None, a_: Optional[int] = 1, a_: Optional[int] = 100, a_: Optional[float] = 0.0, a_: Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_: Optional[str] = "pil", a_: bool = True, ): '''simple docstring''' if isinstance(a_, PIL.Image.Image ): _snake_case : List[Any] = 1 elif isinstance(a_, torch.Tensor ): _snake_case : int = image.shape[0] else: raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(a_ )}" ) if isinstance(a_, PIL.Image.Image ): _snake_case : Optional[int] = preprocess(a_ ) _snake_case , _snake_case : Any = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _snake_case : str = (batch_size, self.unet.config.in_channels // 2, height, width) _snake_case : Any = next(self.unet.parameters() ).dtype _snake_case : int = randn_tensor(a_, generator=a_, device=self.device, dtype=a_ ) _snake_case : List[str] = image.to(device=self.device, dtype=a_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(a_, device=self.device ) _snake_case : Optional[int] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _snake_case : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _snake_case : Optional[int] = {} if accepts_eta: _snake_case : Optional[Any] = eta for t in self.progress_bar(a_ ): # concat latents and low resolution image in the channel dimension. _snake_case : List[str] = torch.cat([latents, image], dim=1 ) _snake_case : int = self.scheduler.scale_model_input(a_, a_ ) # predict the noise residual _snake_case : Any = self.unet(a_, a_ ).sample # compute the previous noisy sample x_t -> x_t-1 _snake_case : Dict = self.scheduler.step(a_, a_, a_, **a_ ).prev_sample # decode the image latents with the VQVAE _snake_case : Tuple = self.vqvae.decode(a_ ).sample _snake_case : Dict = torch.clamp(a_, -1.0, 1.0 ) _snake_case : Optional[Any] = image / 2 + 0.5 _snake_case : List[Any] = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": _snake_case : List[str] = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
28
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase( __a ): '''simple docstring''' lowercase__ = (IPNDMScheduler,) lowercase__ = (("num_inference_steps", 50),) def UpperCamelCase_ ( self: Union[str, Any], **a_: Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = {"""num_train_timesteps""": 1_000} config.update(**a_ ) return config def UpperCamelCase_ ( self: Tuple, a_: Optional[int]=0, **a_: int ): '''simple docstring''' _snake_case : Optional[int] = dict(self.forward_default_kwargs ) _snake_case : Optional[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[Any] = self.dummy_sample _snake_case : Dict = 0.1 * sample _snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : int = self.get_scheduler_config(**a_ ) _snake_case : Dict = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : int = dummy_past_residuals[:] if time_step is None: _snake_case : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : Tuple = scheduler_class.from_pretrained(a_ ) new_scheduler.set_timesteps(a_ ) # copy over dummy past residuals _snake_case : Optional[Any] = dummy_past_residuals[:] _snake_case : List[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : str = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : Optional[Any] = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Optional[int] = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self: str, a_: Any=0, **a_: Tuple ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : List[Any] = kwargs.pop("""num_inference_steps""", a_ ) _snake_case : Optional[int] = self.dummy_sample _snake_case : Tuple = 0.1 * sample _snake_case : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _snake_case : Any = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals (must be after setting timesteps) _snake_case : Union[str, Any] = dummy_past_residuals[:] if time_step is None: _snake_case : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _snake_case : List[str] = scheduler_class.from_pretrained(a_ ) # copy over dummy past residuals new_scheduler.set_timesteps(a_ ) # copy over dummy past residual (must be after setting timesteps) _snake_case : List[str] = dummy_past_residuals[:] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : int = new_scheduler.step(a_, a_, a_, **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self: List[Any], **a_: Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(**a_ ) _snake_case : List[Any] = scheduler_class(**a_ ) _snake_case : Union[str, Any] = 10 _snake_case : Union[str, Any] = self.dummy_model() _snake_case : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(a_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Optional[Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample for i, t in enumerate(scheduler.timesteps ): _snake_case : Union[str, Any] = model(a_, a_ ) _snake_case : Any = scheduler.step(a_, a_, a_ ).prev_sample return sample def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : int = kwargs.pop("""num_inference_steps""", a_ ) for scheduler_class in self.scheduler_classes: _snake_case : Union[str, Any] = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**a_ ) _snake_case : Dict = self.dummy_sample _snake_case : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(a_, """set_timesteps""" ): scheduler.set_timesteps(a_ ) elif num_inference_steps is not None and not hasattr(a_, """set_timesteps""" ): _snake_case : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _snake_case : List[str] = dummy_past_residuals[:] _snake_case : Optional[int] = scheduler.timesteps[5] _snake_case : Optional[Any] = scheduler.timesteps[6] _snake_case : str = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : List[str] = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample _snake_case : Any = scheduler.step(a_, a_, a_, **a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=a_, time_step=a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.full_loop() _snake_case : Optional[int] = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
28
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { """configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegatronBertForCausalLM""", """MegatronBertForMaskedLM""", """MegatronBertForMultipleChoice""", """MegatronBertForNextSentencePrediction""", """MegatronBertForPreTraining""", """MegatronBertForQuestionAnswering""", """MegatronBertForSequenceClassification""", """MegatronBertForTokenClassification""", """MegatronBertModel""", """MegatronBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'fnet' def __init__( self , lowercase=32_000 , lowercase=768 , lowercase=12 , lowercase=3_072 , lowercase="gelu_new" , lowercase=0.1 , lowercase=512 , lowercase=4 , lowercase=0.02 , lowercase=1e-12 , lowercase=False , lowercase=512 , lowercase=3 , lowercase=1 , lowercase=2 , **lowercase , ) -> int: super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = type_vocab_size lowerCAmelCase = layer_norm_eps lowerCAmelCase = use_tpu_fourier_optimizations lowerCAmelCase = tpu_short_seq_length
532
0
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __SCREAMING_SNAKE_CASE = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __SCREAMING_SNAKE_CASE = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ __SCREAMING_SNAKE_CASE = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[ "https://github.com/m-popovic/chrF", ] , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int = CHRF.CHAR_ORDER , __lowerCamelCase : int = CHRF.WORD_ORDER , __lowerCamelCase : int = CHRF.BETA , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , ) -> Dict: A : Any = len(references[0] ) if any(len(__lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A : str = [[refs[i] for refs in references] for i in range(__lowerCamelCase )] A : List[Any] = CHRF(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) A : List[str] = sb_chrf.corpus_score(__lowerCamelCase , __lowerCamelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
17
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
17
1
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: list[float] ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) SCREAMING_SNAKE_CASE__ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(UpperCamelCase__ ) ) return round(UpperCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :Any , lowerCamelCase_ :Dict=None ): '''simple docstring''' # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' snake_case_ : List[str] = nn.Parameter(lowerCamelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' snake_case_ : Optional[Any] = nn.Parameter(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[int] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : List[str] = np.asarray(weights[0] ) snake_case_ : Dict = np.asarray(weights[1] ) snake_case_ : Any = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : Tuple = np.asarray(weights[0] ) snake_case_ : List[Any] = np.asarray(weights[1] ) snake_case_ : Dict = np.asarray(weights[2] ) snake_case_ : Optional[Any] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int ): '''simple docstring''' # layernorm 1 snake_case_ : str = weights[0][0][0] snake_case_ : Tuple = np.asarray(layer_norm_a[0] ) snake_case_ : Optional[int] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # lsh weights + output snake_case_ : Dict = weights[0][1] if len(lowerCamelCase_ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) else: set_layer_weights_in_torch_local(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) # intermediate weighs snake_case_ : Tuple = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase_ ) == 4: snake_case_ : Dict = intermediate_weights[2] # layernorm 2 snake_case_ : Tuple = np.asarray(intermediate_weights[0][0] ) snake_case_ : List[str] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # intermediate dense snake_case_ : Optional[Any] = np.asarray(intermediate_weights[1][0] ) snake_case_ : str = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) # intermediate out snake_case_ : Optional[int] = np.asarray(intermediate_weights[4][0] ) snake_case_ : List[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' # reformer model snake_case_ : List[Any] = torch_model.reformer # word embeds snake_case_ : int = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase_ ) , ) if isinstance(weights[3] , lowerCamelCase_ ): snake_case_ : Tuple = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case_ : List[Any] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' snake_case_ : Any = nn.Parameter(torch.tensor(lowerCamelCase_ ) ) snake_case_ : Tuple = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case_ : Optional[int] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # output layer norm snake_case_ : str = np.asarray(weights[7][0] ) snake_case_ : Optional[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # output embeddings snake_case_ : Dict = np.asarray(weights[9][0] ) snake_case_ : Optional[int] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int ): '''simple docstring''' # Initialise PyTorch model snake_case_ : Dict = ReformerConfig.from_json_file(lowerCamelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case_ : Dict = ReformerModelWithLMHead(lowerCamelCase_ ) with open(lowerCamelCase_ , """rb""" ) as f: snake_case_ : Tuple = pickle.load(lowerCamelCase_ )["""weights"""] set_model_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A : Dict = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
334
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Any = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __lowerCAmelCase : int = 25_0004 __lowerCAmelCase : Union[str, Any] = 25_0020 @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MBartTokenizer _lowerCamelCase = MBartTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case_ : List[str] = MBartTokenizer(_lowercase , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Tuple = MBartTokenizer(_lowercase , keep_accents=_lowercase ) snake_case_ : Any = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case_ : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case_ : Optional[Any] = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case_ : Tuple = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case_ : Any = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case_ : Tuple = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) snake_case_ : Optional[int] = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) snake_case_ : Union[str, Any] = tempfile.mkdtemp() snake_case_ : str = tokenizer_r.save_pretrained(_lowercase ) snake_case_ : Optional[Any] = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) snake_case_ : int = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way snake_case_ : List[str] = tokenizer_r.from_pretrained(_lowercase ) snake_case_ : List[str] = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=True snake_case_ : List[Any] = tempfile.mkdtemp() snake_case_ : str = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) snake_case_ : List[Any] = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way snake_case_ : str = tokenizer_r.from_pretrained(_lowercase ) snake_case_ : List[Any] = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=False snake_case_ : List[Any] = tempfile.mkdtemp() snake_case_ : Optional[Any] = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) snake_case_ : str = tokenizer_p.save_pretrained(_lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case_ : Dict = tokenizer_r.from_pretrained(_lowercase ) snake_case_ : Optional[Any] = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = '''facebook/mbart-large-en-ro''' _lowerCamelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] _lowerCamelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] _lowerCamelCase = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def UpperCAmelCase__ ( cls ) -> Union[str, Any]: '''simple docstring''' snake_case_ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) snake_case_ : Union[str, Any] = 1 return cls def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' self.assertIn(_lowercase , self.tokenizer.all_special_ids ) snake_case_ : Tuple = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] snake_case_ : Optional[int] = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) snake_case_ : Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = ["""this is gunna be a long sentence """ * 2_0] assert isinstance(src_text[0] , _lowercase ) snake_case_ : int = 1_0 snake_case_ : str = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _lowercase ) self.assertEqual(len(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = tempfile.mkdtemp() snake_case_ : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowercase ) snake_case_ : str = MBartTokenizer.from_pretrained(_lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase ) @require_torch def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors="""pt""" ) snake_case_ : Any = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) snake_case_ : Dict = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) snake_case_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors="""pt""" ) snake_case_ : Dict = self.tokenizer( text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=1_0 , return_tensors="""pt""" ) snake_case_ : Tuple = targets["""input_ids"""] snake_case_ : Optional[Any] = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Optional[int] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(_lowercase ) , { # A, test, EOS, en_XX """input_ids""": [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 2_5_0_0_0_1, } , )
21
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
21
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "imagegpt" lowerCamelCase_ = ["past_key_values"] lowerCamelCase_ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self :int , __A :int=512 + 1 , __A :int=32 * 32 , __A :Any=512 , __A :Any=24 , __A :Tuple=8 , __A :Tuple=None , __A :Optional[Any]="quick_gelu" , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :int=0.1 , __A :Dict=1E-5 , __A :List[str]=0.0_2 , __A :Optional[int]=True , __A :str=True , __A :Union[str, Any]=False , __A :Dict=False , __A :List[Any]=False , **__A :str , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_positions SCREAMING_SNAKE_CASE__ = n_embd SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_inner SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = layer_norm_epsilon SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = scale_attn_weights SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE__ = reorder_and_upcast_attn SCREAMING_SNAKE_CASE__ = tie_word_embeddings super().__init__(tie_word_embeddings=__A , **__A ) class UpperCamelCase_ ( UpperCamelCase__ ): @property def _snake_case ( self :str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def _snake_case ( self :Dict , __A :"FeatureExtractionMixin" , __A :int = 1 , __A :int = -1 , __A :bool = False , __A :Optional["TensorType"] = None , __A :int = 3 , __A :int = 32 , __A :int = 32 , ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self._generate_dummy_images(__A , __A , __A , __A ) SCREAMING_SNAKE_CASE__ = dict(preprocessor(images=__A , return_tensors=__A ) ) return inputs
6
snake_case_ : List[Any] = "Alexander Joslin" import operator as op from .stack import Stack def __a ( __UpperCAmelCase : str ) -> int: """simple docstring""" lowerCamelCase_ : List[str] = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} lowerCamelCase_ : Stack[int] = Stack() lowerCamelCase_ : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__UpperCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__UpperCAmelCase ) elif i == ")": # RULE 4 lowerCamelCase_ : Optional[int] = operator_stack.peek() operator_stack.pop() lowerCamelCase_ : Optional[int] = operand_stack.peek() operand_stack.pop() lowerCamelCase_ : Any = operand_stack.peek() operand_stack.pop() lowerCamelCase_ : int = operators[opr](__UpperCAmelCase , __UpperCAmelCase ) operand_stack.push(__UpperCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": snake_case_ : List[Any] = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
488
0
'''simple docstring''' import colorsys from PIL import Image # type: ignore def __snake_case ( _UpperCAmelCase : float, _UpperCAmelCase : float, _UpperCAmelCase : int): UpperCamelCase = x UpperCamelCase = y for step in range(_UpperCAmelCase): # noqa: B007 UpperCamelCase = a * a - b * b + x UpperCamelCase = 2 * a * b + y UpperCamelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __snake_case ( _UpperCAmelCase : float): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def __snake_case ( _UpperCAmelCase : float): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(_UpperCAmelCase, 1, 1)) def __snake_case ( _UpperCAmelCase : int = 800, _UpperCAmelCase : int = 600, _UpperCAmelCase : float = -0.6, _UpperCAmelCase : float = 0, _UpperCAmelCase : float = 3.2, _UpperCAmelCase : int = 50, _UpperCAmelCase : bool = True, ): UpperCamelCase = Image.new('''RGB''', (image_width, image_height)) UpperCamelCase = img.load() # loop through the image-coordinates for image_x in range(_UpperCAmelCase): for image_y in range(_UpperCAmelCase): # determine the figure-coordinates based on the image-coordinates UpperCamelCase = figure_width / image_width * image_height UpperCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase = get_distance(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase = get_color_coded_rgb(_UpperCAmelCase) else: UpperCamelCase = get_black_and_white_rgb(_UpperCAmelCase) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure snake_case_ : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
350
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Dict = logging.get_logger(__name__) snake_case_ : Union[str, Any] = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = '''encodec''' def __init__( self , lowerCamelCase__=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCamelCase__=2_4_0_0_0 , lowerCamelCase__=1 , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=1_2_8 , lowerCamelCase__=3_2 , lowerCamelCase__=1 , lowerCamelCase__=[8, 5, 4, 2] , lowerCamelCase__="weight_norm" , lowerCamelCase__=7 , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__="reflect" , lowerCamelCase__=2 , lowerCamelCase__=2 , lowerCamelCase__=1.0 , lowerCamelCase__=1_0_2_4 , lowerCamelCase__=None , lowerCamelCase__=True , **lowerCamelCase__ , ): '''simple docstring''' UpperCamelCase = target_bandwidths UpperCamelCase = sampling_rate UpperCamelCase = audio_channels UpperCamelCase = normalize UpperCamelCase = chunk_length_s UpperCamelCase = overlap UpperCamelCase = hidden_size UpperCamelCase = num_filters UpperCamelCase = num_residual_layers UpperCamelCase = upsampling_ratios UpperCamelCase = norm_type UpperCamelCase = kernel_size UpperCamelCase = last_kernel_size UpperCamelCase = residual_kernel_size UpperCamelCase = dilation_growth_rate UpperCamelCase = use_causal_conv UpperCamelCase = pad_mode UpperCamelCase = compress UpperCamelCase = num_lstm_layers UpperCamelCase = trim_right_ratio UpperCamelCase = codebook_size UpperCamelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCamelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) super().__init__(**lowerCamelCase__ ) @property def UpperCAmelCase ( self ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def UpperCAmelCase ( self ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def UpperCAmelCase ( self ): '''simple docstring''' return int(1_0_0_0 * self.target_bandwidths[-1] // (self.frame_rate * 1_0) )
350
1