id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
7,894 | d_x = 2*d_x |
-26,441 | \left(x + 2 \cdot (-1)\right) \cdot (x + 3) = 6 \cdot (-1) + x^2 + x |
18,196 | 5 \left(-1\right) + 6 x + 4 (-1) + 2 x = x \cdot 8 + 9 (-1) |
16,741 | 2\cdot (l\cdot 2 + 1) = 4\cdot l + 2 |
1,442 | 54 = 135\cdot 2/5 |
15,186 | (g_1 + g_2) \cdot (g_1 + g_2) \leq 2 \cdot (g_1 \cdot g_1 + g_2^2) = 2 \cdot c \cdot c \Rightarrow g_2 + g_1 \leq c \cdot \sqrt{2} |
-4,975 | 10^4*46.4 = 46.4*10^{3 + 1} |
25,360 | \dfrac{z}{1 + z} = \frac{1/(r_1)\times r_2}{\dfrac{r_2}{r_1} + 1} \Rightarrow \frac{r_2}{r_1} = z |
-26,131 | 12 = 2^4 - 2^3 + 2^2 + 0\cdot \left(-1\right) |
40,835 | 51 = 4 \cdot 50 + 4 \left(-20\right) + 3 (-15) + 2 (-9) + (-6) |
10,934 | cos(2x)=\cos^2(x)-\sin^2(x) |
17,485 | x^3 + 3*h*x * x + 3*x*h^2 + h^3 = (h + x)^3 |
11,787 | \frac13\cdot (n + 1)^3 \geq 3\cdot (n + 1) + 3\cdot (-1) = \frac{1}{3}\cdot (n + 1)^3 \geq 3\cdot n |
12,225 | 2*x + (1 - 2*x - 15*x/16 - \dfrac{1}{16})/16 = 2*x + \tfrac{15}{256} - 47*x/256 = \frac{465*x}{256} + \frac{1}{256}*15 |
-10,277 | 30 = 10 \cdot r + 16 + 50 \cdot (-1) = 10 \cdot r + 34 \cdot (-1) |
-3,101 | \sqrt{7}\cdot \left(4 + 1 + 3\right) = 8\cdot \sqrt{7} |
4,082 | \frac{1}{2}\cdot \left(1 - 1\right) = 0 |
29,486 | (2 \cdot d + 3 \cdot a) \cdot (d - 2 \cdot a) = -6 \cdot a^2 + 2 \cdot d^2 - a \cdot d |
-22,808 | \dfrac{16}{40} = 8*2/(8*5) |
28,060 | 1/3 + 4/3 \cdot 8 = 11 |
-23,405 | \frac{6}{35} = 3/5*2/7 |
1,051 | (x^3 + 3*(-1))*20 + 77 = 17 + x^3*20 |
-10,582 | -\frac{1}{4\cdot q^2 \cdot q}\cdot 28 = -\frac{7}{q^3}\cdot \frac14\cdot 4 |
17,432 | X \times Z = -(-Z + X)^2/4 + (X + Z)^2/4 |
24,397 | z^2 + 2\cdot z - z^2 - 2\cdot z = z^2 - z \cdot z + 2\cdot z - z \cdot z + 2\cdot z = 4\cdot z |
-29,183 | 8 = 3 \cdot 2 - -2 |
6,441 | \tan^2\left(y\right)*3 = \sec^2(y)*3 - 3 |
17,457 | \dfrac{1}{64}\cdot 9 = \frac{\frac14\cdot 3}{4}\cdot 3/4 |
-10,781 | -\frac{6}{r*25 + 20 (-1)} \dfrac{2}{2} = -\frac{12}{40 (-1) + 50 r} |
-3,698 | \frac{11}{g} = \frac{11}{g} |
12,466 | 1 - \tfrac{1}{1 + z_k} = \frac{z_k}{z_k + 1} |
34,035 | z_2*z_1*z_3 + z_3*z_2*z_1 + z_3*z_1*z_2 = 3*z_3*z_2*z_1 |
-29,362 | (-b + a)\times (a + b) = a \times a - b^2 |
24,993 | v^T*A^T*A*v = \|A*v\| * \|A*v\| \leq \|A\|^2*v^T*v |
31,304 | \dfrac32 = \dfrac18\cdot (2 + 1 + 1 + 2 + 2 + 1 + 1 + 2) |
1,493 | 0 = (x \times I - C)^2 \times v_2 = \left(x \times I - C\right) \times (x \times I - C) \times v_2 |
22,685 | 1/(\sqrt{2}) = \frac{1}{2}\cdot \sqrt{2} |
-5,402 | \frac{10.6}{10^5} = \dfrac{10.6}{10^5} |
14,072 | \dfrac12 \cdot (\left(-1\right) \cdot \pi) = -\pi/2 |
-1,586 | \frac{\pi}{3} + \dfrac{23}{12} \pi = \dfrac149 \pi |
6,949 | \dfrac{1}{AD} = 1/(AD) |
-20,436 | \frac{1}{n + 10\cdot \left(-1\right)}\cdot \left(n + 10\cdot (-1)\right)/9 = \dfrac{n + 10\cdot (-1)}{90\cdot (-1) + 9\cdot n} |
4,948 | k*m = \left(m + (-1)\right)*k + k |
12,107 | -(17^{1/2} - 1)/4 = \frac{1}{4} - 17^{1/2}/4 |
-27,592 | 4 \cdot \frac{1}{9}/4 = 1/9 |
-5,666 | \dfrac{1}{6 + 2\cdot x} = \dfrac{1}{2\cdot (x + 3)} |
-5,538 | \frac{1}{k \cdot k + k + 72 \cdot (-1)} \cdot 2 = \tfrac{2}{\left(k + 9\right) \cdot (8 \cdot \left(-1\right) + k)} |
14,700 | \frac{1 + 3\cdot x^2}{x \cdot x + 3\cdot (-1)} + 3\cdot (-1) = \frac{10}{3\cdot \left(-1\right) + x \cdot x} |
38,086 | (1 + 6 + 15 + 12)^x = 34^x |
34,766 | 1/2016 = \dfrac{1}{63 \cdot 32} |
39,494 | \tfrac{1}{36}\cdot 3 = 3\cdot 1/6/6 |
3,142 | x^2/x! = \frac{x}{(x + (-1))!} |
22,025 | \frac{1}{y + 4 \cdot (-1) + 4 + (-1)} = \frac{1}{3 \cdot ((y + 4 \cdot \left(-1\right))/3 + 1)} |
14,592 | 1/2*1/2*\frac12 = \frac{1}{8} |
9,211 | (3 (-1) + t) (1 + t) = t^2 - 2 t + 3 \left(-1\right) |
-22,720 | \dfrac{90}{81} = \frac{10\times 9}{9\times 9} |
329 | ((-1) + n) \cdot \left(n + 1\right) = (-1) + n^2 |
-1,354 | -\frac19*7/3 = (\left(-1\right)*7)/(9*3) = -\dfrac{1}{27}*7 |
2,551 | \frac{X}{x - X\cdot W} = \dfrac{X}{-W\cdot X + x} |
15,221 | G*\mathbb{E}(\Delta) = \mathbb{E}(\Delta)*G |
17,013 | x^3 + 3x^2 + 2x = x \cdot (1 + x) (2 + x) |
7,848 | 4^{m + 1} = 4^m \cdot 4 > 4 \cdot m |
-16,407 | 6\times \sqrt{99} = \sqrt{9\times 11}\times 6 |
32,628 | 5/9 = \frac{1}{3} + 2 \cdot 1/3/3 |
10,135 | K + \dfrac{n\cdot K}{p + 1} = \left(1 + \dfrac{1}{1 + p}\cdot n\right)\cdot K |
-18,358 | \dfrac{-x \cdot 6 + x^2}{6 \cdot (-1) + x^2 - x \cdot 5} = \frac{(x + 6 \cdot \left(-1\right)) \cdot x}{(x + 1) \cdot \left(6 \cdot (-1) + x\right)} |
6,350 | \frac{1}{y^2} - y^2 = 1 \implies 1 - y^4 = y^2 \implies y^4 + y^2 - 1 =0 |
10,990 | (1 + 4*n)*\pi/2 = \frac{\pi}{2} + 2*n*\pi |
14,146 | 0.1 = 0.0111111 \cdot \dotsm |
21,531 | \frac{y \cdot y}{y \cdot y + 1} = \dfrac{1}{y^2 + 1}\cdot (y^2 + 1 + (-1)) = 1 - \frac{1}{y^2 + 1} |
26,518 | p \cdot e^{z \cdot p} = \frac{\partial}{\partial z} e^{p \cdot z} |
-18,334 | \frac{9 \cdot a + a^2}{a^2 + 81 \cdot (-1)} = \frac{a}{\left(a + 9\right) \cdot (a + 9 \cdot (-1))} \cdot (a + 9) |
2,107 | U \cdot N = U \cdot N |
5,066 | \frac{1}{17}*2 + 1/16 = 1/16 + 1/17 + \dfrac{1}{17} |
-23,475 | 1/7 \cdot 5/2 = 5/14 |
47,608 | 1523 = 1 + 79 \left(-1\right) + 1601 |
-9,547 | 64 = 8\cdot 8 |
9,360 | 1/x \cdot a = a/x |
19,382 | ((-1) + z^4) \left(1 + z^4\right) = (-1) + z^8 |
5,026 | 0 = 1 + \tan^4{\pi/10} \cdot 5 - 10 \cdot \tan^2{\frac{1}{10} \cdot \pi} |
17,594 | 1/12 = 7/x \Rightarrow x = 84 |
5,210 | 5x^2-2x-10=(ax+b)(cx+d)=acx^2+(ad+bc)x+bd |
19,479 | x = p^2 \Rightarrow \sqrt{x} = p |
-20,744 | \dfrac22 \cdot \tfrac{1}{\left(-2\right) \cdot x} \cdot (x + 3 \cdot (-1)) = \frac{1}{(-1) \cdot 4 \cdot x} \cdot (6 \cdot (-1) + x \cdot 2) |
19,612 | |D/A| = |D|/|A| |
38,281 | \sum_{k=0}^\infty M^k/k! = \sum_{k=0}^{n + (-1)} M^k/k! + \sum_{k=n}^\infty M^k/k! = \sum_{k=0}^{n + (-1)} M^k/k! |
14,980 | \frac{\partial}{\partial z} (g/z) = g \cdot d/dz \frac{1}{z} |
14,490 | det\left(A + B\right)\times det\left(A - B\right) = det\left(A + B\right)\times det\left(A^T - B^T\right) = det\left(\left(A + B\right)\times (A^T - B^T)\right) |
23,906 | (a^3 - c^3) (a^2 + a c + c c) = (a - c) (a^2 + a c + c^2) \left(a^2 + a c + c^2\right) = (a - c) (a^2 + a c + c^2) (a^2 + a c + c^2) |
8,373 | 2 + q = 1 + j\cdot q\cdot 2 \Rightarrow q\cdot (2\cdot j + (-1)) = 1 |
13,791 | -x^2\cdot 3 + 3\cdot x + 6 = -3\cdot (x + 1)\cdot (2\cdot (-1) + x) |
8,770 | h * h + x * x \geq h^2 = h^g h^{2 - g} \geq h^g x^{2 - g} |
-483 | e^{\frac{i\pi}{12}19} \cdot (e^{\frac{1}{12}19 \pi i})^2 = e^{3\frac{1}{12}\pi i \cdot 19} |
46,106 | \binom{20}{3} - \binom{4}{3} = 1140 + 4\left(-1\right) = 1136 |
-27,686 | \frac{\text{d}}{\text{d}y} (18*\sin{y}) = \cos{y}*18 |
26,543 | a^n\cdot y = a\cdot ...\cdot a\cdot a\cdot y = a\cdot ...\cdot a\cdot y\cdot a = a\cdot ...\cdot y\cdot a\cdot a = ... = y\cdot a^n |
21,701 | \frac{1}{x^n}e^x = x^{-n} e^x \gt \frac{x}{(n + 1)!} |
9,072 | 5*\tan(z) = 2*\tan(2*z) = 2*\dfrac{2}{1 - \tan^2(z)}*\tan(z) |
-603 | e^{11\cdot i\cdot π/2} = (e^{i\cdot π/2})^{11} |
18,086 | \rho^2 + (-1)^n \rho - \frac{1}{4} = 0 \implies (\sqrt{2} + \left(-1\right)^{1 + n})/2 = \rho |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.