id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
16,249 | -\frac{1}{2} = 1 + 1 + 1 + 1 + 1 + \dotsm |
12,398 | 4*11!*41!/52! = \frac{{4 \choose 3}}{{52 \choose 11}} |
-26,135 | e^7 \cdot 7 - \frac{1}{e^{14}} \cdot 7 = 7 \cdot \left(e^7 - \dfrac{1}{e^{14}}\right) |
-469 | \left(e^{i*\pi*19/12}\right)^{20} = e^{19*\pi*i/12*20} |
-2,589 | 27^{1 / 2} + 75^{1 / 2} = (25\cdot 3)^{1 / 2} + (9\cdot 3)^{\frac{1}{2}} |
8,815 | \lambda < y rightarrow y/2 \gt \tfrac{\lambda}{2} |
11,789 | v - P(v) + P(v) = v |
23,383 | \frac{4}{51}*48/52 + 3/51*4/52 = 4/52 |
24,957 | z^{a - b} = \frac{1}{z^b}z^a |
40,070 | Q*I = I = I*Q |
18,548 | \dfrac{2\cdot \pi}{1/6\cdot \pi} = 12 |
-10,459 | \frac{8}{20\times (-1) + p\times 16}\times \frac15\times 5 = \frac{40}{80\times p + 100\times (-1)} |
-7,047 | \dfrac{1}{4} \cdot 1 / 5 = \frac{1}{20} |
-22,332 | \left((-1) + s\right)\cdot (s + 5) = 5\cdot (-1) + s^2 + s\cdot 4 |
13,592 | (a + c)^2 = a^2 + c^2 = a + c |
18,197 | (x \cdot x + (-1))^3 = x^6 - 3 \cdot x^4 + 3 \cdot x^2 + (-1) |
-11,505 | -i \times 20 - 8 = -8 + 0 \times (-1) - i \times 20 |
21,365 | b^p \frac{1}{0! p!}p! = b^p |
31,749 | (1 + 1) \cdot \left(a + c\right) = a + c + a + c = a + c + a + c |
622 | \dfrac{1}{(1 + \frac1y) y} = \frac{1}{1 + y} |
-2,277 | \frac{1}{14} \times 3 = -3/14 + \frac{6}{14} |
-11,535 | -i\cdot 2 + 15 + 8 = -i\cdot 2 + 23 |
-30,629 | 4 \cdot (-1) + z \cdot 12 = 4 \cdot (3 \cdot z + (-1)) |
110 | d \cdot a \cdot 2 + a \cdot a + d^2 = \left(d + a\right)^2 |
-20,940 | \frac{54*z + 81*\left(-1\right)}{-24*z + 36} = -9/4*\frac{-z*6 + 9}{-z*6 + 9} |
-26,613 | (-9\cdot x + k\cdot 7)^2 = 49\cdot k^2 - k\cdot x\cdot 126 + 81\cdot x^2 |
7,531 | (z + a)\cdot (h + z) = z^2 + (a + h)\cdot z + a\cdot h |
8,779 | (n * n*2 + z^2 - 2nz) (z^2 + 2nz + n^2*2) = n^4*4 + z^4 |
-19,996 | 12/2 = 2/2 \cdot 6/1 |
40,961 | a/x := a/x |
12,845 | 1/9 = \frac{2}{6}*\frac{1}{6}2 |
-11,938 | 4.838\cdot 0.001 = \frac{1}{1000}4.838 |
11,901 | \frac{2 + \zeta + (-1)}{((-1) + \zeta) (\zeta + 1)} = \frac{1}{(-1) + \zeta} |
-10,515 | -6/(k\cdot 15)\cdot \frac44 = -24/(60\cdot k) |
-7,788 | 8/2 + i \cdot 4/2 = \left(8 + 4 \cdot i\right)/2 |
14,989 | g^4 \cdot 4 + c^4 = (c^2 - 2gc + 2g^2) (g^2 \cdot 2 + c^2 + 2gc) |
-6,721 | 8/100 + \dfrac{4}{10} = 40/100 + 8/100 |
14,978 | (1 - x - z)^2 = x^2 + z^2 \Rightarrow (-1) + 2\cdot x + z\cdot 2 = 2\cdot z\cdot x |
24,838 | \mathbb{E}[U*V] = \mathbb{E}[V]*\mathbb{E}[U] |
-11,493 | i\times 36 + 16 + 20\times (-1) = 36\times i - 4 |
-22,152 | 24/9 = \dfrac{8}{3} |
1,856 | 4^2 \cdot 5 + 1 = 9^2 |
25,431 | 2^k \cdot 3 = 2^k + 2^k + 2^k |
23,657 | z = x\Longrightarrow x \approx z |
-3,102 | 3\cdot 5^{1/2} + 5^{1/2}\cdot 5 = 25^{1/2}\cdot 5^{1/2} + 5^{1/2}\cdot 9^{1/2} |
27,024 | 3^2 + 6(-1) = 9 + 6(-1) = 3 |
18,622 | (x^4 - z^4) (x^4 - z^4) + (2 x^2 z^2)^2 = \left(z^4 + x^4\right)^2 |
39,359 | 5^{2\cdot A} = (5^2)^A = 25^A |
27,496 | \sin{y \cdot \pi} = \sin{\pi \cdot y/2} \cdot \cos{y \cdot \pi/2} \cdot 2 |
37,704 | \frac{1}{8!} = 1/40320 \approx 2.5\cdot 10^{-5} |
-9,399 | s \cdot 2 \cdot 2 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 3 = 18 + 24 s |
7,684 | \left(A\cdot Z\right) \cdot \left(A\cdot Z\right) = Z \cdot Z\cdot A^2 |
-8,035 | \frac12 \cdot (5 + 3 \cdot i + 5 \cdot i + 3 \cdot (-1)) = (2 + 8 \cdot i)/2 = 1 + 4 \cdot i |
-17,843 | 6 = 15 + 9*(-1) |
9,224 | |\lambda \mu| = |\mu| |\lambda| |
-25,807 | 1*2/(6*7) = 2/42 |
6,385 | 6*4*2*3*5 = 720 |
-729 | \frac{\pi}{4} = -\pi \cdot 26 + \dfrac{105}{4} \cdot \pi |
3,529 | \dfrac{1}{2} \cdot (3 \pm \sqrt{-4 \cdot (3 - i) + 9}) = \left(3 \pm \sqrt{-3 + i \cdot 4}\right)/2 |
13,650 | f_1^2 + f_2 \cdot f_2 = \dotsm = f_1^2\cdot f_2^2 |
27,266 | r\cdot x\cdot r = x\cdot r^2 |
13,298 | 5^2 + 5^2 = \left(4 \cdot 4 + 3^2\right)\cdot 2 |
25,782 | \sin(z\cdot 2) = 2\cos(z) \sin\left(z\right) |
2,121 | (\left(x^3 + 2 + x + x^2\right)^{1 / 2} + 1)^{\frac{1}{2}} = v \Rightarrow 2 + x + x^2 + x \cdot x^2 = (v^2 + (-1))^2 |
21,416 | \pi \cdot 2/(\frac1b) = \pi \cdot b \cdot 2 |
-17,538 | 27 \cdot \left(-1\right) + 36 = 9 |
2,120 | 25 = x^2 + y^2 \implies y = \sqrt{25 - x^2} |
-2,467 | \sqrt{7} \cdot (1 + 5) = 6 \cdot \sqrt{7} |
-17,200 | \dfrac{1}{\cos^2{x}} \cdot (1 - \sin^2{x}) = \tfrac{\cos^2{x}}{\cos^2{x}} |
6,730 | g^{b_2}*g^{b_1} = g^{b_2 + b_1} |
22,611 | 7 \cdot ((-1) + 2 \cdot 4)^2 = 2 \cdot (2 \cdot 7 + \left(-1\right))^2 + 5 \cdot ((-1) + 2)^2 |
-2,489 | -3\cdot \sqrt{2} + \sqrt{2}\cdot 2 + \sqrt{2}\cdot 5 = -\sqrt{9}\cdot \sqrt{2} + \sqrt{2}\cdot \sqrt{4} + \sqrt{25}\cdot \sqrt{2} |
11,272 | i - 1 = C\cdot i \implies C = 1 + i |
-5,204 | \frac{1}{1000}\cdot 0.33 = \frac{0.33}{1000} |
8,103 | 4 x^2 - x^2 = 4 x^2 - x^2 = \left(4 + (-1)\right) x^2 = 3 x^2 |
22,246 | \frac{1}{(k + 2)!}\times (2\times k + 2)! = (k + 3)\times \left(k + 4\right)\times \dots\times (2\times k + 2) \gt (k + 2)\times \dots\times (k + 2) |
15,671 | \frac{1}{y + 3}*\left(y + 2\right) = \frac{1}{y + 3}*(y + 3 + (-1)) = 1 - \frac{1}{y + 3} |
6,876 | (y - d)^2 + g \cdot g = y^2 - 2 \cdot y \cdot d + d^2 + g^2 |
-11,790 | (\dfrac{1}{125})^{1/3} = 125^{-1/3} |
36,007 | 15/16 + \dfrac{3}{64} = 63/64 = 1 - \tfrac{1}{64} |
7,777 | \frac13((-1) r) + r - r/3 = r/3 |
28,103 | \sin{l} = \frac{1}{2 \cdot i} \cdot \left(e^{i \cdot l} - e^{-i \cdot l}\right) \cdot \cos{l} = (e^{i \cdot l} + e^{-i \cdot l})/2 |
-30,274 | \frac{1}{2} \cdot (8 - 4) = \frac{1}{2} \cdot 4 = 2 |
26,447 | i^{12} = i^4 \times i^4 \times i^4 |
15,412 | g\times U = U = U\times g |
1,012 | n + (-1) + n + 2 \cdot (-1) + n + 3 \cdot (-1) = 6 \cdot (-1) + n \cdot 3 |
35,712 | -\frac{1}{10} + \dfrac{1}{30} + \dfrac{1}{15} = 0 |
7,021 | 2x + 2 = (1 + x)^2 - x^2 + 1 |
50,342 | \frac{1}{2!}\cdot 4! = 4\cdot 3 = 12 |
21,091 | 2 \sin{b} \cos{b} = \sin{b \cdot 2} |
15,977 | \dfrac{1}{x + (-1)}*(x * x * x + (-1)) = x^2 + x + 1 |
-2,220 | 10/17 - 9/17 = \frac{1}{17} |
-2,333 | \dfrac{6}{11} = 10/11 - 4/11 |
13,740 | \left(i + 2\right) \cdot (i + 2 \cdot (-1)) = i^2 + 4 \cdot (-1) |
10,857 | -\frac{1}{36} + 1 = \dfrac{1}{6^2}*(6^2 - 1^2) |
29,695 | (x^T G x)^T = x^T G^T x = -x^T G x |
-18,388 | \frac{s^2 + s\cdot 3}{9(-1) + s^2} = \tfrac{(3 + s) s}{(3(-1) + s) \left(3 + s\right)} |
-16,747 | -5 = -5\cdot 4\cdot y - -30 = -20\cdot y + 30 = -20\cdot y + 30 |
20,554 | C = y*H_1 + y*H_2 \Rightarrow y*(H_2 + H_1) = C |
6,468 | \frac{d}{dt} e^E = E \times e^E = e^E \times E |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.