id
int64
-30,985
55.9k
text
stringlengths
5
437k
-18,272
\dfrac{x}{(x + 7\cdot \left(-1\right))\cdot (x + 6)}\cdot (6 + x) = \frac{x^2 + x\cdot 6}{x^2 - x + 42\cdot (-1)}
-21,683
-\frac153 = -\frac{1}{5}3
-28,759
x^2 \cdot 2 - 2 \cdot x + 6 - \dfrac{23}{x + 3} = \frac{1}{3 + x} \cdot \left(2 \cdot x^3 + 4 \cdot x^2 + 5 \cdot (-1)\right)
32,611
t^{-l} = \frac{1}{t^l}
31,877
212/39 = \frac{17}{39} + 5
-20,201
\frac17 \cdot 5 \cdot \tfrac{(-1) + a}{(-1) + a} = \frac{1}{7 \cdot (-1) + 7 \cdot a} \cdot (5 \cdot (-1) + 5 \cdot a)
-4,024
\tfrac{10}{3}\cdot t = t\cdot 10/3
-20,823
(80 (-1) - 60 p)/(30 p) = (8(-1) - p*6)/(3p) \frac{1}{10}10
-25,584
\frac{d}{dt} (-\frac3t) = \frac{3}{t^2}
15,233
\tfrac{1}{350} \cdot 1807 = 57/350 + 5
-27,710
\frac{d}{dz} (-\cos{z}\cdot 12) = \sin{z}\cdot 12
17,306
6\cdot (-1) + 2\cdot x^2 - 4\cdot x = -(9\cdot x - x^3\cdot 3 + 6\cdot x^2) - x^3\cdot 3 + x^2\cdot 8 + 5\cdot x + 6\cdot \left(-1\right)
-19,682
\frac45\cdot 10 = 40/5
54,286
\frac{1}{1 + 4 + 1}\cdot \left(1\cdot 2 + \frac{1}{2}\cdot 4 + 0\right) = \left(2 + 2\right)/6 = 4/6 = 2/3
-22,338
(y + 9\times (-1))\times (1 + y) = y^2 - 8\times y + 9\times (-1)
32,778
(n-2i)+(i) = (n-i)
18,055
\tfrac{1}{25}*25 = 1
31,082
1+\frac1{1+\frac1{\frac53}}=1+\frac1{1+\frac1{1+\frac23}}
21,880
1 - n + n\cdot 2 - 2\cdot n + (-1) = -n
4,778
4 + l^2 + l\cdot 4 = (l + 2) \cdot (l + 2)
-24,216
8 \times (10 + 5) = 8 \times 15 = 120
-5,970
\frac{4}{5 \cdot y + 40} = \frac{1}{(y + 8) \cdot 5} \cdot 4
-11,136
\left(x + 9\cdot (-1)\right)^2 + b = (x + 9\cdot (-1))\cdot (x + 9\cdot (-1)) + b = x^2 - 18\cdot x + 81 + b
7,349
det\left(k\cdot C\right) = k^{29}\cdot det\left(C\right) = k\cdot det\left(C\right)
5,146
\tfrac{1}{t + 1} = 1 - t + t^2 - \frac{1}{1 + t} t^3
5,663
\frac{1}{b\cdot R} = 1/(R\cdot b) \implies R\cdot b = R\cdot b
-3,070
3^{1 / 2} \cdot 8 = (1 + 5 + 2) \cdot 3^{\tfrac{1}{2}}
5,808
\binom{n}{2} \binom{n + 2 \left(-1\right)}{l}/(\binom{n}{l}) = \binom{-l + n}{2}
23,420
q = \frac{1}{3} + \frac{2}{3} (\dfrac{1}{3} + \dfrac{q}{3}) = 5/9 + \frac{2}{9} q
-1,600
2 \cdot \pi - 5/12 \cdot \pi = \pi \cdot 19/12
253
\sin(\frac{1}{12}) = \sin(-\frac{1}{4} + \frac{1}{3})
15,017
\frac{1}{1 + e^{-z}} = \dfrac{e^z}{e^z + 1}
13,258
17 = 563 + 546 \cdot (-1) = g - 4 \cdot a - 5 \cdot a - g = 2 \cdot g - 9 \cdot a
21,132
x\cdot y^2 + t\cdot y + s = (1 + 4\cdot k)\cdot \pi \Rightarrow -\pi\cdot (1 + k\cdot 4) + y \cdot y\cdot x + t\cdot y + s = 0
24,512
( z_k^1, z_k^2, z_k^3 \dotsm) = z_k
8,459
d/dx \sqrt{x} = 1/\left(\sqrt{x}*2\right)
7,805
\dfrac14*3*\int A^{-1/3}\,\text{d}A = (\int \tfrac{1}{A^{1/3}}\,\text{d}A)*\tfrac34
-5,456
\frac{2}{10 + 2 \cdot m} = \frac{2}{2 \cdot (5 + m)}
-1,650
\pi \dfrac{1}{12}11 + \pi \cdot 4/3 = 9/4 \pi
27,331
\left(a + d\right)^3 = a^3 + 3\cdot a^2\cdot d + a\cdot d \cdot d\cdot 3 + d \cdot d \cdot d
8,832
|\bar{y}^2/y| = |\bar{y}|^2/|y| = \frac{|y|^2}{|y|} = |y|
12,353
-3 \times y \times z + \left(-z + x\right)^2 + (x - 3 \times y)^2 + 2 \times x^2 = x^2 \times 4 + 9 \times y^2 + z^2 - 6 \times x \times y - 3 \times y \times z - 2 \times x \times z
35,442
\sum_{n=2}^\infty \frac{14^n}{3^{3n+4}(3n+7)}\leq\sum_{n=2}^\infty \frac{14^n}{7\cdot 3^{3n+4}}=\frac{1}{7}\sum_{n=2}^\infty \frac{14^n}{3^4\cdot 27^n}=\frac{1}{7\cdot 81}\sum_{n=2}^\infty \left(\frac{14}{27}\right)^n
-26,148
-4\cdot 25^{\frac12\cdot 3} - -4\cdot 0^{\frac32} = -500 + 0 = -500
32,420
2 \cdot (5 \cdot n + 11) + n + 2 = 24 + 11 \cdot n
-18,332
\frac{1}{(10 + y)\cdot (3 + y)}\cdot (y + 10)\cdot y = \frac{10\cdot y + y^2}{30 + y \cdot y + 13\cdot y}
28,659
2*\cos^2(Z) + (-1) = \cos\left(Z*2\right)
1,912
\binom{m}{r} = \dfrac{1}{r!*(m - r)!}*m!
-12,557
172 + 123 (-1) = 49
29,236
h^k \cdot h^x = h^{x + k}
-20,580
\frac{1}{10 \cdot n + 10 \cdot \left(-1\right)} \cdot (n \cdot 5 + 15 \cdot (-1)) = 5/5 \cdot \frac{3 \cdot (-1) + n}{2 \cdot \left(-1\right) + n \cdot 2}
9,494
z \cdot 3 + z + (-1) = z \cdot 4 + (-1)
28,779
1 + i_1 = 21 \implies 20 = i_1
2,301
j^2\cdot 32 = \dfrac{1}{2}\cdot \left(j\cdot 8\right)^2
28,535
d^{m + 1} = d^m\cdot d^1
11,426
\|X\| = \|X + F - F\| \leq \|X + F\| + \|F\|
27,878
g^{k_1}*g^{k_2} = g^{k_1 + k_2}
21,479
\frac12 \lt \dfrac{1}{y^2 + 1}y\Longrightarrow 0 \gt (y + (-1))^2
7,694
200 = (300 \cdot (-1) + 500 - 200 + 0)/2 + 200
-20,400
-\frac{1}{n*9 + 90*\left(-1\right)}*63 = -\frac{1}{10*\left(-1\right) + n}*7*9/9
32,787
R_b \cdot R_a = R_b \cdot R_a
-7,562
\frac{1}{41}(60 - 130 i + 48 i + 104) = \frac{1}{41}(164 - 82 i) = 4 - 2i
-4,026
x^2/3 = \frac13 \cdot x \cdot x
27,716
7^B = (1 + 6)^B
-12,686
40 = 112 \cdot (-1) + 152
4,684
\dfrac{1}{4} = (-1/2)^2
12,948
\left(\sqrt{T} \cdot 2 = T \implies T^2 = T \cdot 4\right) \implies -T \cdot 4 + T^2 = 0
10,433
-\dfrac12 = \cos(2\pi/5) + \cos(\pi\cdot 4/5)
-13,757
2 + \frac{1}{6} 24 = 2 + 4 = 2 + 4 = 6
32,371
bg + bh + gh = ((g + h + b)^2 - h \cdot h + b^2 + g^2)/2
6,375
\frac{1}{d}\cdot K\cdot A\cdot \epsilon_0 = C \Rightarrow \epsilon_0\cdot \frac{K}{d}\cdot A = C
-1,987
\pi = \pi*\frac{7}{12} + \pi*5/12
7,046
\frac{3^2\cdot 7\cdot 11\cdot 19}{13\cdot 17\cdot 50\cdot 49} = \tfrac{13167}{541450}
52,616
\sqrt{y^2-2y}-y=\left(\sqrt{y^2-2y}-y\right)\cdot\frac{\sqrt{y^2-2y}+y}{\sqrt{y^2-2y}+y}
-24,170
\tfrac{66}{7 + 4} = \frac{1}{11} \cdot 66 = 66/11 = 6
15,711
\sin(x+\pi)=-\sin x
-2,174
2/14 = -\frac{3}{14} + 5/14
39,604
65536 = 4096\times 2^4
-474
\pi\cdot 95/3 - 30\cdot \pi = \pi\cdot 5/3
20,693
g \cdot b = t \cdot f \Rightarrow t = g \cdot b/f
-5,462
\frac{2}{3\cdot r + 30} = \frac{1}{(10 + r)\cdot 3}\cdot 2
27,833
1/17 + \dfrac{1}{16} \cdot 2 = 1/16 + \frac{1}{16} + 1/17
3,223
\sum_{r=0}^n a^r \cdot b^{n - r} = \sum_{r=0}^n (\frac{a}{b})^r \cdot b^n = b^n \cdot \sum_{r=0}^n (a/b)^r
13,385
2\cdot \pi = 6\cdot \pi/3
-25,581
\frac{d}{dt} (2t^3 + 6) = 3 \cdot 2t^2 = 6t^2
-2,117
-\pi/3 = 19/12\cdot \pi - 23/12\cdot \pi
16,038
13*(3 * 3^2*5)^2 = 236925
29,211
y^d \cdot y^c = y^{c + d}
-22,277
x^2 - 13\cdot x + 30 = (x + 10\cdot (-1))\cdot (x + 3\cdot (-1))
4,138
y^2 + 2\cdot y + 3 = \frac{1}{(-1) + y}\cdot \left(3\cdot (-1) + y^3 + y \cdot y + y\right)
37,348
1 + \dfrac{17}{24} = 41/24
-503
-\pi\cdot 6 + \frac{1}{12}\cdot 77\cdot \pi = 5/12\cdot \pi
3,893
3\cdot c_1 + x\cdot 6 = 0 \implies -x\cdot 2 = c_1
24,921
\frac{1}{2 + 3 + (-1)}*(3 + \left(-1\right)) = 2/4 = 1/2
19,674
a^2 - 2xa + x \cdot x = (-x + a) \cdot (-x + a)
-11,500
12 + 8 - i \cdot 10 = -10 \cdot i + 20
19,240
(-1/3 + \frac{1}{2})\cdot 5 = \tfrac{1}{2}\cdot 3 - 2/3
31,451
x + |1|*c_2 = 0 \Rightarrow x = -c_2
4,458
\sigma\times g_2/\sigma\times g_1 = \dfrac{g_1}{\sigma}\times \sigma\times \sigma\times g_2/\sigma
21,152
62/132 = \tfrac{31}{66}