id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
2,896 | \left(1 + y^4/9\right)^{\frac12}\cdot 9^{\frac12} = \left(9 + y^4\right)^{1/2} |
38,105 | 1 - 34/50*34/50 = \frac{1344}{2500} |
-5,340 | 4.2 \cdot 10^{3 \cdot (-1) + 4} = 4.2 \cdot 10^1 |
8,225 | \left(\left(-1\right) H_n\right)/(B_n*(-1)) = H_n/(B_n) |
-18,799 | x = \frac{x\cdot 9}{9} |
12,223 | h\cdot 36 + 4/h = 72 \implies 1 + h \cdot h\cdot 9 = 18\cdot h |
19,068 | \sec(x) = -25/7 \Rightarrow -\dfrac{7}{25} = \cos(x) |
20,242 | 13 = (3 + 2\cdot \text{i})\cdot \left(3 - \text{i}\cdot 2\right) |
12,172 | -\cos(x) + \sin(x\cdot 0) = -\cos(x) |
-1,964 | π \cdot \frac{19}{12} + π \cdot 7/6 = \frac{1}{4} \cdot 11 \cdot π |
25,570 | \tanh(1) = \frac{e^2 + (-1)}{e e + 1} |
-1,884 | -7/4 \pi + 3/2 \pi = -\tfrac{\pi}{4} |
1,283 | \dfrac{1/13*6}{4}*4 = \dfrac{6}{13} |
19,372 | \left(\alpha \cdot \beta\right)^1 = \beta \cdot \alpha |
23,645 | \frac{1}{m!} \times (m + 1)! = m + 1 |
13,386 | (-b + a)^2 = (-a + b) \cdot (-a + b) |
22,802 | \sqrt{8^2 + 4 \cdot 4 + (-8)^2} = 12 |
45,805 | 2 \cdot 3=6 |
27,567 | c\cdot \overline{z} = \overline{z\cdot \overline{c}} |
-3,803 | 4 \cdot t \cdot t \cdot t = t^3 \cdot 4 |
-4,413 | (2\cdot (-1) + z)\cdot (4\cdot (-1) + z) = z^2 - 6\cdot z + 8 |
-20,249 | \dfrac{1}{-4 \cdot y + 9} \cdot (-4 \cdot y + 9) \cdot 9/2 = \dfrac{81 - 36 \cdot y}{18 - 8 \cdot y} |
1,098 | B \times B + A^2 + B \times A \times 2 = B^2 + A^2 + A \times B + B \times A |
19,393 | (2 - 1/3)\cdot \left(3 - 1/5\right)\cdot (-1/2 + 5) = 21 |
16,828 | g \times E = g \times E |
2,186 | s = s \cdot s = (-s)^2 = -s |
7,192 | x^{10} = \left(1 - x\right)\times (13 - 21\times x) = 21\times x \times x - 34\times x + 13 = 21\times (1 - x) - 34\times x + 13 = 34 - 55\times x |
26,537 | -(3*\sqrt{3} + 5)/2 = -\frac{5}{2} - \sqrt{3}*3/2 |
12,189 | \left(-5\right)^2 + \left(-3\right)^2 + 1^2 = 35 = 5*(\left(-5\right)*(-3) - 5 - 3) |
7,743 | d/dy (4 + y^3 + y^2*2 + 3*y) = 3 + 3*y^2 + y*4 |
-9,200 | -k \cdot 72 + 36 \cdot \left(-1\right) = -k \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 - 2 \cdot 2 \cdot 3 \cdot 3 |
-25,871 | y^3 = \frac{y^5}{y^2} |
30,264 | b + c \neq 0 \Rightarrow b \neq -c |
38,347 | \left(k_2 + 1\right)! + (-1) = \left(k_2 + 1\right)\cdot k_2! + (-1) = (k_1 + 1)\cdot k_2! + (k_2 - k_1)\cdot k_2! + (-1) > (k_1 + 1)\cdot k_2! |
14,975 | x\cdot x + 2\cdot x\cdot d + d\cdot d = (d + x)\cdot \left(x + d\right) |
2,856 | \frac{1}{Y}Z^Q = \frac{1}{Y}Z^Q |
-21,610 | \sin(\frac12\pi) = 1 |
-3,109 | \sqrt{25\cdot 3} + \sqrt{16\cdot 3} = \sqrt{48} + \sqrt{75} |
-11,540 | 4 + 6\cdot i = 6\cdot i + 4 + 0\cdot \left(-1\right) |
-29,320 | -4 + 8 + i\cdot 18 = 4 + 18\cdot i |
1,999 | {(-1) + x + r \choose x} = {(-1) + x + r \choose r + (-1)} |
15,244 | 1 + \frac{2}{b + (-1)} = \frac{1 + b}{(-1) + b} |
29,779 | \frac{4}{6^3}\cdot 6\cdot 5 = 5/9 |
-1,898 | -\frac{\pi}{6} = -13/12 \pi + \pi \tfrac{11}{12} |
26,421 | -\frac{1}{x\cdot (1 - 1/x)} = \frac{1}{-x + 1} |
-9,458 | t \cdot 60 + 54 = t \cdot 2 \cdot 2 \cdot 3 \cdot 5 + 2 \cdot 3 \cdot 3 \cdot 3 |
2,442 | o^6 + y^6 = (o^2)^3 + (y^2)^3 = \left(o \cdot o + y^2\right) \cdot \left(o^4 - o^2 \cdot y^2 + y^4\right) |
1,501 | 1 + b + b^2 + b^3 + \ldots + b^x = \frac{1}{1 - b}\cdot (-b^{x + 1} + 1) |
-9,397 | -3 \times 2 \times 2 \times 2 \times 2 + x \times 2 \times 3 \times 3 = 18 \times x + 48 \times (-1) |
-4,715 | \dfrac{7 \times x + 15}{x^2 + x \times 6 + 5} = \dfrac{2}{x + 1} + \frac{5}{x + 5} |
17,756 | \sqrt{2} = 1.414213562373*... |
24,796 | 1/(L\cdot U) = \frac{1}{L\cdot U} |
8,901 | (0^2 + 1 \cdot 1)^2 + 2^2 = \left(0 + 1\right)^2 + 2 \cdot 2 = 1^2 + 2^2 = 1 + 4 = 5 |
-20,772 | \dfrac{-8\cdot n + 24}{15\cdot (-1) + n\cdot 5} = \dfrac{n + 3\cdot (-1)}{3\cdot \left(-1\right) + n}\cdot (-\frac15\cdot 8) |
15,319 | \sin^l{x} = \sin^{l + 2*(-1)}{x}*\sin^2{x} = \sin^{l + 2*(-1)}{x}*\left(1 - \cos^2{x}\right) |
26,924 | \left(-1\right) + 10*4 = 39 |
-7,519 | 19/3 = \frac1957 |
14,728 | |2\cdot e^{i\cdot t} + (-1)|^2 = |2\cdot \cos{t} + 2\cdot i\cdot \sin{t} + (-1)|^2 = \left(2\cdot \cos{t} + (-1)\right)^2 + (2\cdot \sin{t})^2 |
11,998 | \dfrac{1}{\sqrt{r + 3 (-1)}} = \sqrt{\frac{1}{r + 3 \left(-1\right)}} = \sqrt{e^{3 r}} |
42,110 | d^0 d^1 = d^1 = d^1 |
20,115 | d^{i + 1}\cdot x^{i + 1} = d\cdot x\cdot (d\cdot x)^i = d\cdot x\cdot d^i\cdot x^i |
32,199 | \dfrac{1}{455} \cdot 64 = 384/2730 |
23,745 | |x + b|^2 = (x + b)*\overline{x + b} = \left(x + b\right)*(\overline{x} + \overline{b}) |
-20,342 | 3/3 \cdot \frac{1}{-3 \cdot k + 3 \cdot (-1)} \cdot (\left(-2\right) \cdot k) = \frac{1}{-9 \cdot k + 9 \cdot (-1)} \cdot (k \cdot \left(-6\right)) |
-18,962 | \frac{1}{3} = \frac{B_s}{25\cdot \pi}\cdot 25\cdot \pi = B_s |
4,792 | (-1) + \frac{k}{u + k} = \frac{u \cdot (-1)}{u + k} |
32,883 | x^6 x^n = x^{6 + n} |
-7,031 | \frac{5}{13}\cdot 6/14 = 15/91 |
-30,582 | -\left(2\cdot x + 3\right)\cdot 7 = -x\cdot 14 + 21\cdot (-1) |
1,836 | E_x \cdot E_l = E_l \cdot E_x |
-1,485 | -2/9 (-9/5) = \frac{1}{1/2 (-9)}((-1) \cdot 9 \cdot \frac15) |
4,850 | \left(36/100 = 4/z \Rightarrow z \cdot 36 = 400\right) \Rightarrow 11.11 = z |
50,482 | 3 + 1108 = 1111 |
17,981 | 1 - (\tfrac56)^6 = 31031/46656 |
10,830 | x = \dfrac{1}{1^{-1}}\cdot x = x/1 = x |
-162 | \binom{9}{3} = \frac{9!}{\left(3 \cdot (-1) + 9\right)! \cdot 3!} |
-1,505 | 7\cdot \frac{1}{8}/(8\cdot 1/7) = 7/8\cdot 7/8 |
-18,604 | z = 5 \cdot (5 \cdot z + 6 \cdot (-1)) = 25 \cdot z + 30 \cdot (-1) |
20,717 | p^{m + 1} \gt p^{m + 1} + (-1) = (p^m + (-1))^p > p^{\left(m + (-1)\right)*p} |
21,468 | p^2 + p*2 + 9 = 8 + \left(1 + p\right)^2 |
-6,562 | \frac{1}{4\cdot l + 28\cdot (-1)}\cdot 4 = \frac{4}{(l + 7\cdot (-1))\cdot 4} |
6,539 | x + 1 + 2*(-1) = x + (-1) |
13,812 | \sin{\theta} = \frac{2\cdot \tan{\theta/2}}{\tan^2{\frac12\cdot \theta} + 1} |
-22,235 | (k + 6)\cdot (k + 9) = 54 + k^2 + 15\cdot k |
-17,406 | \dfrac{127.6}{100} = 1.276 |
-1,289 | -9/5\cdot 6/1 = ((-9)\cdot \frac15)/(\tfrac16) |
-1,252 | -\frac57\cdot 7/1 = (\frac17 (-5))/(\frac17) |
37,940 | {5 \choose 4}*{8 \choose 4} = 350 |
14,793 | x^3 + (-1) = (x + (-1)) \cdot \left(1 + x \cdot x + x\right) |
15,491 | |x*D| = |x*D| |
14,967 | D^T D = D^T D |
-17,477 | 7 = 32 + 25 \left(-1\right) |
-5,210 | 10^5\cdot 7.1 = 7.1\cdot 10^{(-4) (-1) + 1} |
6,727 | \frac{2}{7!}\cdot 6! = \frac{2}{7} |
-20,439 | \frac{1}{8*j + 16}*(7*j + 14) = 7/8*\frac{1}{j + 2}*(2 + j) |
9,208 | 564.453 \lt 1000 \vartheta \lt 564.484 \Rightarrow 564 = \left\lfloor{1000 \vartheta}\right\rfloor |
-8,077 | \left(38 - 8i + 95 i + 20\right)/29 = \frac{1}{29}(58 + 87 i) = 2 + 3i |
-18,955 | 3/5 = x_r/(25*\pi)*25*\pi = x_r |
-11,971 | \tfrac{71}{90} = p/(12*\pi)*12*\pi = p |
-10,663 | 12/12*\frac{1}{c^2}*2 = \frac{1}{12*c * c}*24 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.