id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-4,702 | \frac{-x + 5}{x^2 - 5\cdot x + 6} = -\frac{1}{x + 2\cdot (-1)}\cdot 3 + \frac{2}{3\cdot \left(-1\right) + x} |
46,505 | 106 = 126 + 20 \cdot (-1) |
-10,294 | \dfrac{4}{5*(-1) + z*2}*4/4 = \frac{16}{z*8 + 20*(-1)} |
33,702 | f_3\cdot f_2 = f_3\cdot f_2 |
872 | 3 + \frac13 \cdot 2 \cdot r = r \cdot 2/3 + 2 \cdot (-1) + 5 |
4,250 | (1 + ((-1) + x)^2)\cdot (1 + (x + 1)^2) = 4^1 + x^4 |
-20,382 | 4/4 \cdot \dfrac{1}{-3} \cdot (r \cdot 7 + 1) = \left(28 \cdot r + 4\right)/\left(-12\right) |
27,135 | \dfrac{1}{1 + 3} \times (15 + 3 \times (-1)) = \frac14 \times 12 = 3 |
6,250 | E[F_2]\cdot E[F_1] = E[F_1\cdot F_2] |
-20,224 | \frac{7 (-1) - 7 y}{2 + y*2} = -7/2 \frac{y + 1}{y + 1} |
-5,019 | 10^5\cdot 13.8 = 13.8\cdot 10^{0 + 5} |
13,445 | \dfrac{1}{s^2 + 1} = \frac{\mathrm{d}}{\mathrm{d}s} \tan^{-1}{s} |
4,803 | f^2 + a \cdot a = \left(a + f\right) \cdot \left(a + f\right) - a\cdot f\cdot 2 |
15,905 | C = E \setminus G \Rightarrow C \cdot E = G |
25,683 | 6*\frac12 3 + 9 (-1) = 0 |
-3,263 | \sqrt{2}\cdot 2 - \sqrt{2} = \sqrt{2}\cdot \sqrt{4} - \sqrt{2} |
28,372 | \frac{(-1)^k}{\sqrt{k-1} + (-1)^k} = \frac{(-1)^k(\sqrt{k-1} - (-1)^k)}{(\sqrt{k-1} + (-1)^k)(\sqrt{k-1} - (-1)^k)} = \frac{(-1)^k \sqrt{k-1}}{k-2} - \frac{1}{k-2} |
-11,643 | (0 + 9) + (-9i) = 9-9i |
-19,465 | \frac54\cdot 4/3 = 1/4\cdot 5/\left(\dfrac{1}{4}\cdot 3\right) |
9,729 | a^2 = a^1*a |
3,940 | \sum_{k=3}^n k^2 = \sum_{k=1}^n k^2 - 1^2 + 2^2 = \sum_{k=1}^n k^2 + 5 \times (-1) |
36,639 | i + 884 = 891 \Rightarrow 7 = i |
12,911 | (-1) + y^4 = (y + 1) \cdot ((-1) + y) \cdot \left(1 + y^2\right) |
-25,501 | \frac{d}{dt} \sin\left(\pi\cdot t\right) = \pi\cdot \cos\left(t\cdot \pi\right) |
-2,428 | (1 + 5) \sqrt{13} = \sqrt{13}*6 |
2,668 | \mathbb{E}(Y) \cdot \mathbb{E}(Y) = \mathbb{E}(Y^2) |
34,240 | x_1 = 3\cdot (-1) + x_1 |
-14,132 | 4 + (3 - 5 \cdot 6) \cdot 7 = 4 + (3 + 30 \cdot (-1)) \cdot 7 = 4 - 189 = 4 + 189 \cdot (-1) = -185 |
66 | (c\cdot x + b + I)^2 = c^2\cdot x^2 + 2\cdot c\cdot b\cdot x + b \cdot b + I = 2\cdot c\cdot b\cdot x + b^2 + 2\cdot c^2 + I |
-5,852 | \frac{1}{y*3 + 12}*5 = \frac{5}{(4 + y)*3} |
159 | \cos(x) \cdot \cos(z) - \sin(x) \cdot \sin(z) = \cos(z + x) |
20,901 | q^4 = ... = 2 + 3 \cdot q |
13,474 | ff^i = f^{i + 1} |
-1,219 | \dfrac132\cdot \frac{3}{5} = \frac{3\cdot \frac{1}{5}}{3\cdot \dfrac{1}{2}} |
35,910 | \dfrac{91}{24} + 2 \cdot \left(-1\right) - 1^{-1} - 1/2 = \frac{1}{24} \cdot 7 |
4,964 | \cos\left(5y\right) = \cos\left(y\cdot 2 + y\cdot 3\right) |
23,642 | (x^2 + 2x + 2) (x^2 - 2x + 2) = x^4 + 4 |
-18,417 | \dfrac{n^2 - 4}{n^2 - 7n + 10} = \dfrac{(n + 2)(n - 2)}{(n - 5)(n - 2)} |
17,901 | 4\cdot \left(-1\right) + x \cdot x = x \implies \left(2 + x\right)\cdot (x + 2\cdot (-1)) = x |
21,312 | (10^{410})^{7*x + 10*(-1)} = 10^{7*x + 10*\left(-1\right) + 4} = 10^{7*x + 6*(-1)} |
38,591 | (y^{1/2})^2 = y |
28,644 | 5 + (n + 1)^2 = n^2 + 2*n + 6 |
5,712 | \left(y = -3 \cdot x + 4 \Rightarrow -x \cdot 3 = y + 4 \cdot (-1)\right) \Rightarrow x = \frac{1}{-3} \cdot \left(y + 4 \cdot \left(-1\right)\right) |
-2,103 | \pi\times 5/12 = -\pi/12 + \pi/2 |
15,727 | |\frac{1}{2+x} - \frac{1}{2+y}| = \frac{|x-y|}{(2+x)(2+y)} \le \frac14|x-y| |
-7,710 | \frac{1}{20}(8 - 4i - 16 i + 8(-1)) = \frac{1}{20}(0 - 20 i) = -i |
41,888 | \dfrac{1}{4!} \cdot (5 + 1)! = 30 |
-18,324 | \frac{1}{(2\cdot (-1) + f)\cdot (f + 5\cdot \left(-1\right))}\cdot (f + 5\cdot (-1))\cdot (f + 5) = \frac{f^2 + 25\cdot \left(-1\right)}{f^2 - 7\cdot f + 10} |
35,631 | 0 = \sin{π \cdot 4} |
-30,280 | \dfrac{4 + P^2}{P + 3\cdot (-1)} = \dfrac{1}{3\cdot (-1) + P}\cdot 13 + P + 3 |
18,759 | 20!/2 = 18!*19*20/2 |
11,723 | \frac{1}{y + (-1)}(y + 1) (y + (-1)) = \dfrac{y + (-1)}{y + \left(-1\right)} (y + 1) = y + 1 |
43 | \left(A_2 \times A_1 \times A_2^T\right)^T = (A_2^T)^T \times A_1^T \times A_2^T = A_2 \times A_1 \times A_2^T |
-17,482 | 56 = 43*\left(-1\right) + 99 |
8,574 | (\omega + z) \cdot (\omega + z) - z^2 = \omega^2 + z \cdot \omega \cdot 2 |
32,611 | p^{-n} = \frac{1}{p^n} |
-13,941 | \frac{35}{1 + 6} = \frac{1}{7}\cdot 35 = \frac17\cdot 35 = 5 |
-1,387 | \frac{1}{9*\frac17}((-1) \tfrac19) = -1/9*7/9 |
8,082 | 4*y*z = (y + z)^2 - (-y + z)^2 |
28,706 | y^6 + \left(-1\right) = (y^3 + (-1))*(y * y * y + 1) = (y^2 + \left(-1\right))*(y^2 + y + 1)*(y^2 - y + 1) |
-699 | (e^{7 \cdot \pi \cdot i/6})^6 = e^{7 \cdot i \cdot \pi/6 \cdot 6} |
-30,157 | \frac{\mathrm{d}}{\mathrm{d}y} y^k = ky^{(-1) + k} |
-20,557 | \frac{-x \cdot 18 + 2 (-1)}{x \cdot \left(-10\right)} = 2/2 \frac{1}{(-5) x} ((-1) - 9 x) |
11,041 | \frac{1}{b^x \cdot h} \cdot f = f \cdot b^{-x}/h |
-3,033 | (1 + 2) \sqrt{11} = 3 \sqrt{11} |
40,215 | 2568 = 2 \cdot 2^2 \cdot 3 \cdot 107 |
-20,779 | \frac{10}{n*5 + 15 (-1)} = \frac{1}{n + 3(-1)}2*\frac55 |
16,941 | 0 = 6 - \frac{42}{7} 1 |
9,907 | \frac{1}{7} + 1/21 + 1/28 + 1/42 = \frac14 |
39,061 | \frac14 + \frac{1}{6} = (3 + 2)/12 = \dfrac{5}{12} |
7,574 | d^2*d * d = d^4 = d^3*d = d |
27,924 | 2^2*2013^3 = 61 * 61 * 61*2 * 2*3^3*11^3 |
25,776 | \binom{3}{1}\binom{2}{1}\binom{5}{3} = 60 |
16,266 | 5\cdot \tan^2{\frac{\pi}{10}} + 10\cdot \left(-1\right) + \cot^2{\dfrac{1}{10}\cdot \pi} = 0 |
7,904 | |E*C| = |E|*|C| |
28,771 | z^2 - z \cdot 6 + 38 = (3 \cdot (-1) + z) \cdot (3 \cdot (-1) + z) + 29 |
19,516 | \dfrac{1}{2550} \cdot 288 = \frac{48}{51} \cdot \dfrac{1}{50} \cdot 6 |
9,480 | y^{1/2} \cdot y^{\frac{1}{2}} = y^1 = y |
9,823 | 0 = -4\cdot 3^{1/8} x + 1 + x\cdot 3^{9/8}\cdot 4 \Rightarrow 8\cdot 3^{1/8} x = -1 |
19,311 | \operatorname{atan}(y) = a + z \Rightarrow y = \tan(a + z) |
967 | x \cdot x = -\dfrac{1}{3} + \frac{1}{3} \cdot (x^3 - (x + (-1))^3) + x |
17,435 | e^{t\cdot y}\cdot e^y = e^{t\cdot y + y} = e^{(t + 1)\cdot y} |
9,326 | (a^{x + g} - a^x)/g = \tfrac{1}{g}\cdot (a^x\cdot a^g - a^x) = a^x\cdot \frac1g\cdot (a^g + (-1)) |
32,193 | -16 = a + b \implies -b + a = -1 |
15,901 | 2 \cdot \left(2 + k \cdot 3\right) = 6 \cdot k + 4 |
2,370 | z^{2 \cdot (-1) + \tfrac{1}{3} \cdot 4} = z^{-\dfrac{2}{3}} |
-9,469 | 3*3*3*3 - 2*3*3*3*x = -54*x + 81 |
28,773 | \cos(90 - \theta) = \cos(\theta) \cdot \cos(90) + \sin(90) \cdot \sin(\theta) |
-11,552 | -i*17 - 6 + 5 = -17 i - 1 |
15,441 | z^{50} = z^{32} z \cdot z z^{16} |
-18,652 | -\frac{90}{20} = -9/2 |
-11,505 | -8 - 20 \cdot i = -8 + 0 \cdot (-1) - 20 \cdot i |
-20,175 | \frac{1}{8 - 24\times p}\times (14\times (-1) + p\times 42) = \frac{-p\times 6 + 2}{-6\times p + 2}\times (-7/4) |
-11,604 | 15 + 2 - i\cdot 7 = -7\cdot i + 17 |
45,125 | 7\cdot (\dfrac{1}{5^4}\cdot 7^2 \cdot 7)^{18} \lt 7\cdot (\frac12)^9 = 7/512 < 1 |
38,423 | (x + 1) \cdot (x + 3) = (x + 1) \cdot x + (x + 3) \cdot 3 = x \cdot x + x + 3 \cdot x + 9 = x^2 + 4 \cdot x + 9 |
29,054 | a^{0 + 1} = a^1 \cdot a^0 |
15,174 | \frac{1}{3} = \frac{0}{3}*1/2 + 2*1/3/2 |
-21,122 | \frac{6}{9} = \tfrac{1}{3} \cdot 2 \cdot 3/3 |
-6,009 | \frac{4}{2x + 8} = \frac{4}{2(x + 4)} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.