id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
11,620 | 5 + \sqrt{30} \cdot 0 = \sqrt{5} \cdot \sqrt{5} |
-1,035 | 2 * 2 = 2*2 = 4 |
-1,727 | -\pi*\frac56 = -\frac76*\pi + \frac{1}{3}*\pi |
-16,797 | 7 = 7\cdot 5\cdot k + 7\cdot 4 = 35\cdot k + 28 = 35\cdot k + 28 |
-27,485 | 11\cdot c\cdot c\cdot c\cdot 2 = c^3\cdot 22 |
-18,083 | 31 = 17 \cdot (-1) + 48 |
49,613 | \frac{1}{-x + 3} \cdot (3/2 + \frac12 \cdot 3 \cdot x) = -\frac12 \cdot 3 + \dfrac{2}{-\dfrac{x}{3} + 1} |
-10,622 | \frac{15*(-1) + x*15}{36 + 24*x} = \frac{5*(-1) + x*5}{12 + x*8}*3/3 |
11,621 | 0 = z^4 + 6*z^2 + 25 = (z^2 + 5)^2 - 4*z^2 = (z * z - 2*z + 5)*(z^2 + 2*z + 5) |
14,621 | -7 \cdot 17 + 2 \cdot 60 = 17 \cdot (-1) + 2 \cdot \left(-17 \cdot 3 + 60\right) |
12,348 | x + y \cdot 0.5 = 1.75 \Rightarrow x = 1.75 - y \cdot 0.5 |
24,209 | z^{1 + k} = z^k \cdot z |
27,985 | |z + (-1)| = |1 - z| \geq |1| - |z| = 1 - |z| \Rightarrow |z| \geq \frac{1}{4} \cdot 3 |
9,336 | \left(\left(2 = a + 1/a \Rightarrow 0 = a^2 - 2\cdot a + 1\right) \Rightarrow \left(a + (-1)\right) \cdot \left(a + (-1)\right) = 0\right) \Rightarrow 1 = a |
19,830 | X \backslash E + z = X \cap \overline{E + z} = X \cap \overline{E} + z |
23,311 | \left(1 + 2 rightarrow k_1 \cos(E) + k_2 \sin(E) = 1\right) rightarrow \left(\cos(E) k_1\right)^2 = (-\sin(E) k_2 + 1)^2 |
14,676 | 45*(-1) + 25 = 36*(-1) + 16 |
8,699 | (a \cdot x) \cdot (a \cdot x) = (x \cdot a) \cdot (x \cdot a) |
-29,195 | -1 \cdot 2 + 4\cdot 1 = 2 |
3,037 | \tfrac{\sin{x^5}}{x^5}*x^4 = \frac{\sin{x^5}}{x} |
12,956 | 1 - \frac{2 \cdot c}{a - b + c} \cdot 1 = \frac{1}{a - b + c} \cdot (-c \cdot 2 + a - b + c) |
6,189 | 128\times 512 = 2^7\times 2^9 = 2^{16} = 65536 |
-20,980 | \frac{90 (-1) - s*9}{10 s + 100} = \frac{10 + s}{s + 10} (-\frac{9}{10}) |
-2,660 | \sqrt{11} \cdot 4 + \sqrt{11} = \sqrt{16} \cdot \sqrt{11} + \sqrt{11} |
-26,907 | \sum_{x=1}^∞ \frac{(-5)^x}{x\cdot 5^x} = \sum_{x=1}^∞ \frac{(-1)^x\cdot 5^x}{x\cdot 5^x} = \sum_{x=1}^∞ (-1)^x/x |
24,056 | \tfrac{1}{\frac13 + 1/4} = \frac{12}{7} |
14,552 | \frac{2 + 2\cdot \sin(X)}{\cos(X)\cdot (1 + \sin(X))} = 2/\cos(X) = 2\cdot \sec(X) |
41,730 | 4 + 6\times 166 = 1000 |
15,997 | A - C = 0 \Rightarrow -C^2 + A^2 = 0 |
36,996 | |g\cdot x| = |g\cdot x| |
6,677 | 9 \cdot (-1) + 2 \cdot d = 2 \cdot d + 1 + 10 \cdot (-1) |
-5,246 | 1.35 \times 10 = \frac{13.5}{10^6} \times 1 = \dfrac{1.35}{10^5} |
33,927 | 2 \cdot \left(c - x\right) = -(x - c) + c - x |
34,883 | (y + h)\cdot \overline{y + h} = y\cdot \bar{y} + y\cdot \bar{h} + \bar{y}\cdot h + h\cdot \bar{h} = |y|^2 + 2\cdot \operatorname{re}{(y\cdot \bar{h})} + |h|^2 |
-11,886 | 1.255/10 = 1.255\cdot 0.1 |
8,295 | \sqrt{6 + \sqrt{20}} = \sqrt{6 + 2\cdot \sqrt{5}} |
-22,769 | \frac{70}{30} = \frac{10}{10 \cdot 3} \cdot 7 |
7,466 | \sin(\pi*4 + \pi*2) = \sin{\pi*4} + \sin{2\pi} |
-23,180 | -6 = -1/2 \times 12 |
-20,934 | \dfrac{-r \cdot 7 + 2}{2 - r \cdot 7} (-1^{-1}) = \frac{2(-1) + 7r}{2 - 7r} |
9,365 | \frac{z + 1}{z + (-1)} = \frac{1}{\left(z + (-1)\right) \cdot 1/z} \cdot \tfrac{1}{z} \cdot (z + 1) = \frac{1 + 1/z}{1 - 1/z} |
31,311 | x f_1 f_2 x = x f_1 f_2 x |
52,345 | 100 \cdot 10.233 = \left\{1023.3\right\} = 0.3 |
50,596 | 7^1 = 2^1 + 5^1 |
-3,354 | \sqrt{13}*(3 + 2 + 4) = \sqrt{13}*9 |
28,778 | 2*3*k + 5 = 2*3*k + 4 + 1 = 2*(3*k + 2) + 1 |
1,247 | z + \left(-1\right) = I\Longrightarrow 1 + I = z |
3,101 | x\cdot K = 1/(x\cdot K) = 1/\left(K\cdot x\right) = K\cdot x |
35,846 | 1 + e^{2i} = 1 + e^{i} \cdot e^{i} = 1 + e^i \cdot i \sin(1) + e^i \cdot \cos(1) |
15,023 | \frac{1}{x^2 - y^2} \cdot (x - y) = \frac{1}{y + x} |
6,562 | g^3 - b^3 = (g^2 + b\cdot g + b^2)\cdot (g - b) |
4,185 | (1 - \frac{1}{2})^{-\tfrac{3}{2}} = 2^{\frac12\cdot 3} = \sqrt{8} |
15,680 | \dfrac{\sin^r(\|x\|)}{\|x\|^r} \|x\|^{r + (-1)} = \frac{1}{\|x\|}\sin^r(\|x\|) |
29,362 | t + 3 = \dfrac{1}{3\cdot (-1) + t}\cdot \left(t^2 + 9\cdot \left(-1\right)\right) |
-18,943 | \frac{5}{6} = \frac{1}{9 \cdot \pi} \cdot A_s \cdot 9 \cdot \pi = A_s |
8,512 | a x + x b = (a + b) x |
27,938 | \sqrt{h} = h^{\frac{1}{2}} |
21,836 | 2*27 + 9\left(-1\right) = 45 |
-18,803 | \frac{5}{5} \cdot y = y |
-4,410 | z^2 + 3*z + 4*(-1) = (z + (-1))*(z + 4) |
16,306 | |A - y\cdot I| = |(A - y\cdot I)^Z| = |A^Z - y\cdot I| |
16,174 | A^2 - Z^2 = (A - Z) \cdot (A + Z) |
18,087 | (e + \left(-1\right)) \cdot ((-1) + g) = 70 \implies \left[g, e\right] = [2, 71], \left[3, 36\right], \left[6,15\right] |
-15,100 | \frac{1}{r^4*\frac{1}{k^{16}}}*k^4 = \frac{k^4}{\tfrac{1}{\frac{1}{r^4}*k^{16}}} |
-6,468 | \frac{3}{16 + z \cdot 2} = \frac{1}{\left(z + 8\right) \cdot 2} \cdot 3 |
1,287 | \frac{1}{-61^3 + 1049^3}(1823^3 - 1699^3) = 1 |
31,553 | (6 + 7 + 12 + 15 + 19)^3 = 19^4 + 6^4 + 7^4 + 12^4 + 15^4 |
6,298 | 2 \cdot \dfrac26 \cdot 3 \cdot \frac{6 + 3 \cdot (-1)}{6 + (-1)} = \frac15 \cdot 6 = 1.2 |
3,829 | t - x + (-1) = t - x + 1 |
1,004 | \frac{1}{1 - y^2} = \frac{1}{2 (y + 1)} + \frac{1}{2*(-y + 1)} |
11,664 | F * F^2 + 3F^2 H + 3H^2 F + H * H^2 = (H + F)^3 |
20,330 | r^0 - r^l = 1 - r^l |
3,314 | \beta \cdot s - s^2 = -(s - \frac{\beta}{2}) \cdot (s - \frac{\beta}{2}) + \frac14 \cdot \beta \cdot \beta |
11,242 | \tfrac{9}{48} + 3/54 = 3/16 + 1/18 = \dots |
4,392 | (-b^2 + c * c)*x = x*(c - b)*\left(c + b\right) |
-6,086 | \frac{1}{40 + x*4}*5 = \frac{1}{(10 + x)*4}*5 |
2,230 | 0 = (g + b - d)\cdot z \cdot z + 2\cdot (g + b)\cdot z + g + b + d = (g + b)\cdot \left(z + 1\right) \cdot \left(z + 1\right) - d\cdot (z^2 + (-1)) |
-22,272 | a^2 + 2 \times a + 15 \times (-1) = (a + 3 \times (-1)) \times (a + 5) |
15,573 | \dfrac{2 + 7}{1 + 3} = 9/4 |
13,517 | \alpha^9\times \alpha\times \alpha^3 = \alpha^{13} |
-2,771 | (4 + 1)\cdot 5^{1 / 2} = 5\cdot 5^{1 / 2} |
14,690 | -10 \cdot x = 1 \pm \left(4 \cdot x^4 - 4 \cdot x^2 + 1\right)^{1/2} = 1 \pm ((2 \cdot x^2 + (-1)) \cdot (2 \cdot x^2 + (-1)))^{1/2} |
11,781 | 84\cdot 256^3 + 101\cdot 256^2 + 256^1\cdot 115 + 256^0\cdot 116 = 1415934836 |
29,522 | \frac{1}{\left(y - a\right) (y - b)} = \frac{1}{b - a}\left(-\frac{1}{y - a} + \dfrac{1}{-b + y}\right) |
1,033 | n = \dfrac12\cdot \left((-1) + 1 + 2\cdot n\right) |
25,923 | a^{b \cdot \psi} = (a^b)^\psi = (a^\psi)^b |
-14,236 | \dfrac{12}{9 + 3} = \tfrac{12}{12} = 12/12 = 1 |
-10,376 | -12 = -2*y + 12 + 10*(-1) = -2*y + 2 |
41,768 | \sum_{n=1}^\infty nx^{n-1}=\sum_{n=0}^\infty(n+1)x^n=\sum_{n=0}^\infty nx^n+\sum_{n=0}^\infty x^n |
21,165 | \left(\tfrac1x\right)^{1/5} = (\frac{1}{x})^{1/5} = x^{-1/5} |
2,736 | 0 + 2 = C\Longrightarrow C = 2 |
8,159 | 3 = (\dfrac{1}{2}*\sqrt{12})^2 |
15,574 | (b + a)^2 = a \cdot a + 2 \cdot a \cdot b + b^2 |
31,627 | t*x^2/y = \frac{\left(t*x\right)^2}{y*t} |
6,875 | (O_l)/(\pi_l) = O_l/(\pi_l) |
12,360 | (k + 1)^3 - k + 1 - k^3 + k = k\cdot 3 + k^2\cdot 3 |
16,801 | 3*3*4*4=144 |
36,509 | 55 = 5^2 + 1 \times 1 + 2^2 + 3 \times 3 + 4^2 |
26,708 | 2^{\frac34} = \left(2^3\right)^{1/4} |
7,139 | \frac{\sqrt{1 + x^2} + x}{\sqrt{1 + x^2}} = 1 + \frac{x}{\sqrt{x^2 + 1}} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.