id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
1,921 | n^{-\frac{1}{3}} = \frac{1}{n^{\dfrac{1}{3}}} |
21,788 | (a + b)*(a^2 - b*a + b^2) = a * a^2 + b^3 |
14,774 | 19 = (\dfrac{3}{2}) \cdot (\dfrac{3}{2}) \cdot (\dfrac{3}{2}) + (5/2)^3 |
159 | \cos{A}*\cos{R} - \sin{R}*\sin{A} = \cos(A + R) |
22,648 | \frac{\partial}{\partial x} x^n = n \cdot x^{n + \left(-1\right)} |
9,362 | \tfrac{\pi}{2}Z^2 + \pi Z^2/2 = \frac{4Z^2 \pi}{4} |
52,786 | 189 = 27\times 7 |
316 | 0 = 2\cdot s^2\cdot a - s\cdot a^2\cdot 3\Longrightarrow \tfrac{s\cdot 2}{3} = a |
25,572 | x^6 = x^3\cdot x \cdot x^2 = x^2\cdot x^2\cdot x^2 |
7,505 | G \cdot G + x \cdot G + G \cdot C + C \cdot x = (G + C) \cdot (G + x) |
-5,441 | 2.36 \cdot 10 = \dfrac{23.6}{1000} \cdot 1 = 2.36/100 |
17,109 | \sin\left(2 \cdot G\right) = 2 \cdot \sin(G) \cdot \cos(G) |
3,636 | \frac{1}{(2\cdot \left(-1\right) + m)!\cdot 2} + \frac{1}{\left((-1) + m\right)!} = \frac{m + 1}{(m + (-1))!\cdot 2} |
13,849 | (-1)^k*(-1) = (-1)^{1 + k} |
31,451 | o + |1| \times x = 0\Longrightarrow -x = o |
32,405 | -(2 - \sqrt{7}) (2 + \sqrt{7}) = 3 |
2,885 | 3630 = 6!\cdot 121/24 |
27,143 | (5^{1 + x} + (-1))/4 + 5^{x + 1} = 1 + 5 + \dots + 5^x + 5^{x + 1} |
17,953 | \left(-205\times s + 120\times x = s\Longrightarrow x\times 120 = 206\times s\right)\Longrightarrow x = s\times 103/60 |
-6,628 | \tfrac{1}{5 \cdot x + 20} \cdot 3 = \dfrac{1}{(x + 4) \cdot 5} \cdot 3 |
8,288 | B^6 = B^3 * B^3 |
-2,175 | -\pi/6 = \pi\cdot \frac{7}{4} - \pi\cdot 23/12 |
-25,584 | \frac{d}{dq} (-3/q) = \frac{3}{q^2} |
16,334 | (j\cdot 2)^2 = j^2\cdot 4 |
-12,364 | 50 = 5 * 5*2 |
-28,786 | \int x^5\,\mathrm{d}x = \frac{x^{5 + 1}}{5 + 1} + F = x^6/6 + F |
24,522 | 0 = \left(\sqrt{l}\right)^2 - n\Longrightarrow n = l |
22,215 | \frac{1}{6^3} \cdot 3^3 = 1/8 |
20,141 | \sqrt{A}^2=A |
25,488 | (a_m + (-1))\times (a_m + 1) = a_m^2 + \left(-1\right) |
27,281 | \sin{q} = \cos(q - \dfrac{\pi}{2}) |
3,507 | z^2 + 2vz + 2v^2 = z \cdot z + 2vz + v \cdot v + v^2 = (z + v) \cdot (z + v) + v^2 |
13,981 | -2 \cdot (x_1 \cdot x_2 + x_3 \cdot x_1 + x_3 \cdot x_2) + (x_3 + x_1 + x_2) \cdot (x_3 + x_1 + x_2) = x_1 \cdot x_1 + x_2^2 + x_3 \cdot x_3 |
37,925 | \frac{6!}{3! \times 4!} = 5 |
2,653 | \left(2 + (-1)\right) \cdot (k + 2 + (-1)) = k + 1 |
13,890 | 1 + x \cdot x + x = 1 + (x + 1)^2 - 1 + x |
8,299 | 97^2 = (100 + 3\times (-1))^2 = 10000 + 600\times (-1) + 9 |
9,449 | g + a - b = a - -g + b |
18,757 | ( (2 \pi)^2, \sin(\pi \cdot 2)) = ( (-2 \pi)^2, \sin(-2 \pi)) |
3,292 | (-(af \cdot 2)^{1/2} + a + f) (a + f + (fa \cdot 2)^{1/2}) = a^2 + f \cdot f |
-23,349 | 1/28 = \frac{1}{4 \cdot 7} |
-20,839 | -\dfrac76 \cdot \dfrac{2 + 3 \cdot p}{3 \cdot p + 2} = \frac{1}{12 + 18 \cdot p} \cdot \left(14 \cdot (-1) - 21 \cdot p\right) |
16,943 | \tfrac{1}{10}3\cdot 2/10 = 6/100 |
-7,933 | (36 - 8 \times i - 9 \times i + 2 \times (-1))/17 = (34 - 17 \times i)/17 = 2 - i |
31,017 | 2/7 + \dfrac{1}{7}*2 = \frac47 |
25,524 | 1/(a*\frac1c) = c/a |
13,958 | (1 + X + X^2)^s = (\frac{1 - X^3}{1 - X})^s = (1 - X^3)^s*\left(1 - X\right)^{-s} |
5,099 | d*E*z = d*z*E |
3,624 | v*G_0*v = v*G_0^{\frac{1}{2}}*G_0^{1/2}*v = G_0^{\frac{1}{2}}*v |
15,956 | \frac{2 \times \tan{z}}{\tan^2{z} + 1} = \sin{2 \times z} |
41,640 | (-1)^{1/2} \cdot (-1)^{1/2} \cdot (-1)^{1/2} = -(-1)^{1/2} |
-9,259 | d^2\cdot 26 = d\cdot 2\cdot 13\cdot d |
25,385 | x^a x^h = x^{h + a} |
14,279 | \cos^{-1}(\cos{2\cdot \pi}) = \cos^{-1}(\cos{0}) |
9,963 | \left(4 + 1\right)\cdot 5^{l + 1} = 5^{1 + l} + 4\cdot 5^{l + 1} |
26,898 | y^2 \cdot 25 + 13 = \left(y^2 + \frac{13}{25}\right) \cdot 25 |
849 | \dfrac{2890}{6^5}*0 + 1*\frac{2611}{6^5} + 2*\frac{1}{6^5}*2275 = \frac{7161}{6^5} |
-9,370 | n*4 + 20 = 2*2*n + 2*2*5 |
15,105 | -c^2 + h^2 = (c + h)\cdot (h - c) |
-4,338 | 110*n/\left(n*99\right) = 110/99*\dfrac1n*n |
-2,687 | \left(3 + 4 + 5 \cdot \left(-1\right)\right) \cdot \sqrt{6} = 2 \cdot \sqrt{6} |
9,439 | (l_2 + l_1)\cdot 2 = l_2 + l_1 + l_2 + l_1 |
21,767 | \left(1 + z\right)^2 = z^2 + 2\cdot z + 1 |
21,300 | (-1) + a^2 = (1 + a) \times \left(a + \left(-1\right)\right) |
9,755 | 4181 = 3100 + 930 + 155 + 4\cdot (-1) |
-20,541 | 6/6 \cdot \frac{1}{-8} \cdot (-10 \cdot t + 4) = \left(24 - t \cdot 60\right)/(-48) |
52,136 | 3^{\frac{1}{2}} + 7^{1 / 2} = 3^{1 / 2} + 7^{\frac{1}{2}} |
15,926 | -\left(z + \left(-1\right)\right)\cdot (3 + z) = 3 - z^2 - z\cdot 2 |
8,588 | 1 + n = 1 + 3 + n + 3\cdot (-1) = 3 + n + 2\cdot (-1) = 3 + n + 1 + 3\cdot (-1) |
-8,775 | 42 \pi + \pi \cdot 9 + \pi \cdot 9 = \pi \cdot 60 |
-553 | (e^{\dfrac{17*\pi*i}{12}})^{17} = e^{17*17*\pi*i/12} |
-20,441 | -\tfrac{2}{-2} (-5/4) = 10/(-8) |
28,808 | x*6 - 3*y = 3*(2*x - y) |
1,874 | ((-1) + 2^{33}) \cdot (2^{33} + 1) = 2^{66} + \left(-1\right) |
-6,725 | \frac{8}{10} + 9/100 = 80/100 + \frac{9}{100} |
-28,413 | x^2 + 10 \cdot x + 41 = x \cdot x + 10 \cdot x + 25 + 16 = (x + 5)^2 + 16 = (x + 5)^2 + 4 \cdot 4 |
10,050 | Y*x*Y^Y = x*Y*Y = Y*Y*x |
21,101 | 5\cdot (g_1^2 + g_2^2) = (2\cdot g_1 - g_2)^2 + (g_2\cdot 2 + g_1)^2 |
6,209 | \frac{1}{2} = \ln(2)/(\ln(4)) |
9,230 | t^m\cdot b_m = t^m\cdot b_{m + 1}\cdot t \implies b_m = b_{1 + m}\cdot t |
23,477 | \sin(z)\cdot \cos\left(a\right) + \sin(a)\cdot \cos(z) = \sin(a + z) |
5,116 | 1/2 - \cos{x \cdot 2}/2 = \sin^2{x} |
10,748 | 5 + 2 + 4 = 5 + 2 + 4 |
-7,731 | \frac{-32 + 8\cdot i}{3\cdot i + 5}\cdot \frac{-i\cdot 3 + 5}{-3\cdot i + 5} = \frac{1}{i\cdot 3 + 5}\cdot (i\cdot 8 - 32) |
21,173 | \lim_{h \to 0} (-x \times x + (h + x)^2)/h = \lim_{h \to 0}(2 \times x + h) |
-4,397 | \frac{q^5}{q^2} \cdot \frac{36}{9} \cdot 1 = 36/9 \cdot \frac{1}{q^2} \cdot q^5 |
34,755 | 3*(-1) + n^2 = \left(n + 2\right)*(n + 2*(-1)) + 1 |
9,782 | \frac{(x\cdot 2 + (-1))!}{(-1) + 2\cdot x} = (2\cdot (-1) + x\cdot 2)! |
39,529 | (SF)^T Y = F^T S^T Y = F^T SY |
29,443 | \dfrac28/7 \times 2 = 1/14 |
20,445 | \frac{x^3 + \left(-1\right)}{\left(-1\right) + x} = x^2 + x + 1 |
-20,889 | \frac{2 - 5*k}{10 - k}*\dfrac{2}{2} = \frac{-10*k + 4}{-2*k + 20} |
32,390 | \left(1 + n\right)! = n! + n! n |
34,360 | (-1) + x x + x^2 - x + x^2 - x + x^2 - 2 x + 1 + x^3 - x^2\cdot 3 + 3 x = -x + x^3 + x^2 |
25,590 | ( a, f) + \varphi\cdot b' = \left( \varphi + a, b' + f\right) |
4,538 | (k_1 + s k_2)/(k_2) = s + k_1/(k_2) |
19,461 | 2 \cdot \sqrt{21} + 10 = (\sqrt{7} + \sqrt{3}) \cdot (\sqrt{7} + \sqrt{3}) |
25,378 | -\sin(x) \cdot \sin\left(\beta\right) + \cos(\beta) \cdot \cos(x) = \cos\left(x + \beta\right) |
-5,487 | \frac{4}{x \cdot 5 + 10 \cdot (-1)} = \dfrac{4}{(x + 2 \cdot (-1)) \cdot 5} |
-22,346 | y^2 - y \cdot 13 + 36 = \left(4 \cdot (-1) + y\right) \cdot (y + 9 \cdot (-1)) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.