id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
10,996 | -\cos^2(x^2) + 1 = \sin^2(x^2) |
34,195 | (\frac{1}{(-1) + u} - \dfrac{1}{1 + u})/2 = \tfrac{1}{u \cdot u + (-1)} |
39,265 | \cos(i\varepsilon) = \frac{1}{2}(e^{-\varepsilon} + e^\varepsilon) = \cosh\left(\varepsilon\right) |
24,345 | \frac{1}{\binom{n}{p + (-1)}}*\binom{n}{p} = \frac{n!*\frac{1}{p!*(n - p)!}}{n!*\dfrac{1}{(p + (-1))!*(n - p + (-1))!}} = \frac{(p + \left(-1\right))!}{p!*(n - p)!}*(n - p + (-1))! = \dfrac{(p + (-1))!}{p!*(n - p)!}*\left(n - p + 1\right)! = (n - p + 1)/p |
27,617 | -\binom{9}{3} + \binom{15}{3} = \binom{6 + 5 + 4}{3} - \binom{4 + 5}{3} |
-2,595 | 24^{1 / 2} + 96^{\frac{1}{2}} - 6^{1 / 2} = \left(16*6\right)^{1 / 2} - 6^{1 / 2} + \left(4*6\right)^{1 / 2} |
10,132 | {7 \choose 1} \cdot {6 \choose 2} \cdot {4 \choose 4} = \frac{7!}{1! \cdot 4! \cdot 2!} |
-20,914 | \frac{1}{(-25) y}\left(45 - 30 y\right) = (-6y + 9)/((-5) y) \frac{1}{5}5 |
30,446 | e^{6 z} z = 1 \implies 0.2387 \approx z |
-5,207 | 1.56\times 10 = \dfrac{1.56}{1000}\times 10 = 1.56/100 |
21,165 | (\frac1x)^{1/5} = (\frac{1}{x})^{1/5} = x^{-1/5} |
-19,473 | \frac{1}{3 \cdot \tfrac18 \cdot 7} = \frac{8 / 7}{3} \cdot 1 |
14,592 | 1/2 \cdot 1/2 \cdot 1/2 = 1/8 |
12,002 | k \cdot 4 + 1 = 1 + k \cdot 4 + \left(-1\right) + 1 |
-7,912 | (14 + 34 \times i - 21 \times i + 51)/13 = (65 + 13 \times i)/13 = 5 + i |
-25,784 | \frac{11}{48} = 11\cdot \frac{1}{12}/4 |
-5,440 | 1.8 \times 10^{-3\,+\,-5} = 1.8 \times 10^{-8} |
9,328 | \mathbb{E}(A^2\cdot Y^2) = \mathbb{E}(A^2)\cdot \mathbb{E}(Y \cdot Y) |
606 | \frac{1}{1 + 2 \cdot a^2 \cdot c} = 1 - \dfrac{2 \cdot a^2 \cdot c}{1 + 2 \cdot a \cdot a \cdot c} \geq 1 - \frac{a \cdot c}{\sqrt{2 \cdot c}} \cdot 1 |
31,352 | g\cdot \cos^2(d) = -\cos(d) + b \Rightarrow g\cdot \cos^2(d) + \cos\left(d\right) - b = 0 |
14,320 | 1 = x^2 rightarrow x = 1 |
16,259 | (4/6)^5 = (\tfrac23)^5 |
10,351 | \tfrac{1}{x^{\frac13}}x^{\frac{4}{3}} = x^{\tfrac43 - \dfrac13} = x^{\frac133} = x |
-15,774 | \frac{1}{10}\cdot 5 - 6\cdot \frac{9}{10} = -49/10 |
10,325 | 9 - 6\cdot 3 = -9 |
-16,863 | 4 = 4(-4j) + 4 \cdot 6 = -16 j + 24 = -16 j + 24 |
-14,939 | 336 = 78 + 83 + 88 + 87 |
-1,096 | \frac{5}{8}*\frac59 = \dfrac{5*1/9}{8*1/5} |
6,717 | 1 - \cos{4\cdot y} = 2\cdot \sin^{22}{y} = 8\cdot \sin^2{y}\cdot \cos^2{y} = 8\cdot (1 - \cos{y})\cdot (1 + \cos{y})\cdot \cos^2{y} |
2,552 | T \times E \times B = B \times T \times E |
-26,390 | \epsilon^{k + l} = \epsilon^l*\epsilon^k |
73 | {n + \left(-1\right) \choose 2*i + (-1)} = {n + (-1) \choose n + (-1) - 2*i + (-1)} = {n + (-1) \choose n - 2*i} |
10,427 | (-1) + Q^x = ((-1) + Q)\cdot (1 + Q + \dotsm + Q^{(-1) + x}) |
-4,698 | x^2 + x*5 + 6 = (2 + x)*\left(x + 3\right) |
16,543 | (3^{y - z} + 1)*3^z = 3^z + 3^y |
21,780 | 1 = 20*z + 3*y rightarrow z = -1, y = 7 |
19,147 | 2 \cdot \sin(X) \cdot \cos(X) = \sin(2 \cdot X) |
-21,035 | \frac{1}{28 \cdot (-1) - 35 \cdot f} \cdot (42 \cdot \left(-1\right) + f \cdot 7) = \dfrac{f + 6 \cdot (-1)}{4 \cdot (-1) - 5 \cdot f} \cdot 7/7 |
3,846 | \left(\sqrt{f} \cdot \sqrt{g}\right)^2 = f \cdot g |
11,056 | JK + IK = K\cdot (J + I) |
15,118 | \dfrac{1 + 2\cdot n}{(-1) + n\cdot 2}\cdot 2 = \frac{1}{1 + n}\cdot \left(2\cdot n + 1\right)\cdot \frac{n\cdot 2 + 2}{n\cdot 2 + (-1)} |
12,127 | 183 - \left(-1\right) + k = 184 - k |
-184 | \frac{8!}{(8 + 4\cdot (-1))!\cdot 4!} = {8 \choose 4} |
2,642 | 128 = \tfrac{256}{2} |
-11,491 | -15*i - 23 = -25 + 2 - i*15 |
10,564 | |7 + 2\times (-1)| = 5 > 2 |
-1,404 | (\left(-5\right)*1/3)/(1/4*5) = -\frac53*4/5 |
22,299 | \cos(2\cdot s) = 1 - \sin^2(s)\cdot 2 |
13,434 | -f\cdot \left(-b\right) = fb |
-9,588 | 0.01\cdot \left(-87\right) = -87.5/100 = -\frac{1}{8}\cdot 7 |
8,818 | \tfrac{1}{30^4} \cdot 657720 = 203/250 |
2,552 | C*Z*B = C*Z*B |
-9,354 | y \cdot 11 + 66 = y \cdot 11 + 2 \cdot 3 \cdot 11 |
-1,910 | \pi/3 - \dfrac{11}{12} \pi = -\frac{7}{12} \pi |
-3,220 | \sqrt{6} \cdot 4 - 2 \cdot \sqrt{6} = -\sqrt{4} \cdot \sqrt{6} + \sqrt{16} \cdot \sqrt{6} |
15,184 | |y^2 - y| = |y|*|(-1) + y| |
10,340 | d^3 = d^2 d |
31,620 | \sqrt{\tfrac{x + 1}{(-1) + x}} = u \implies x = \dfrac{u^2 + 1}{u^2 + (-1)} = 1 + \frac{1}{u^2 + (-1)}2 |
-15,781 | -\dfrac{5}{10} + 1 = 5/10 |
-64 | (-1) + 1 = 0 |
14,448 | \pi e^x = d/dx (\pi e^x) |
19,132 | 3 (-1) + y \geq 0 rightarrow 3 \leq y |
23,814 | 0 = -\frac{4}{u^3} - 4/u - u + \dfrac{3*b}{u^2}*1 = \frac{1}{u^3}*(-4 - 4*u^2 - u^3 + 3*u*b) |
35,412 | 12 = 2! \cdot 3! |
14,000 | \frac{1}{2! \cdot 3!} 7! = 420 |
29,831 | e^{-z^2} y = a + z \Rightarrow y = e^{-z^2} a + ze^{-z^2} |
4,798 | b \cdot a \cdot b = b \cdot a \cdot b |
-26,419 | 1/\left(390625\times 9765625\right) = 5^{-8 - 10} = 5^{-8 + 10\times (-1)} = 1/3814697265625 |
-20,780 | \tfrac{1}{-63\cdot z + 42\cdot (-1)}\cdot (45\cdot z + 30) = -5/7\cdot \tfrac{-9\cdot z + 6\cdot (-1)}{-9\cdot z + 6\cdot (-1)} |
3,889 | \frac{4^t + (-1)}{1 + 2*t} = \frac{1}{2*t + 1}*((-1) + 2^t)*\left(1 + 2^t\right) |
8,292 | \cos{z} = \frac12(e^{iz} + e^{-iz}) \sin{z} = \frac{1}{2i}(e^{iz} - e^{-iz}) |
-18,070 | 84 + 18*(-1) = 66 |
23,040 | 50 \cdot z^2 - 50 \cdot z + 25 = 25 + 50 \cdot z^2 - z \cdot 50 |
45,695 | y = |y| = (y^2)^{1/2} |
19,744 | d - b = \frac{-b^2 + d^2}{b + d} |
20,419 | z y = 1/(z y) = \dfrac{1}{y z} = y z z |
29,709 | 27000 = 3^3\times 2 \times 2^2\times 5 \times 5 \times 5 |
-8,537 | 8/6 - 10^{-1} = \frac{5}{6\cdot 5}\cdot 8 - 3/(10\cdot 3) = \frac{1}{30}\cdot 40 - \frac{3}{30} = \dfrac{1}{30}\cdot (40 + 3\cdot (-1)) = \frac{37}{30} |
3,937 | (-\sqrt{3} + 2) \times 5 = 10 - \sqrt{3} \times 5 |
12,538 | 3 \cdot (30 + 20) = 150 |
7,809 | 3 = 128 + 125*\left(-1\right) = 2^7 - 5^3 |
-10,611 | \frac{5}{5}\cdot (-\frac{1}{t + 3\cdot \left(-1\right)}\cdot 6) = -\frac{30}{5\cdot t + 15\cdot (-1)} |
29,246 | (-d + x) \cdot (d + x) = x \cdot x - d^2 |
3,675 | \left(SA\right)^T B = A^T S^T B = A^T SB |
-595 | (e^{\frac{\pi}{12}\cdot i})^{13} = e^{13\cdot \frac{\pi\cdot i}{12}} |
25,024 | c^n\cdot c^l = c^{n + l} |
8,524 | ( h, c_b\cdot f') = c_b\cdot f'\cdot h |
-2,569 | \sqrt{9} \cdot \sqrt{11} - \sqrt{4} \cdot \sqrt{11} = 3\sqrt{11} - 2\sqrt{11} |
10,957 | (\frac{1}{2})^{1/8} = 2^{7/8}/2 |
-15,431 | \frac{1}{z^4\cdot \dfrac{1}{x^2}}\cdot z^3 = \frac{z^3}{\frac{1}{x^2}}\cdot \frac{1}{z^4} = x \cdot x/z = \frac{x^2}{z} |
20,158 | m n = m n |
34,584 | 6058655748 = 61 \cdot 61^2 + 1823^3 = 1049^3 + 1699^3 |
-10,001 | \frac{5}{10} = 1/2 |
27,625 | x = \dfrac{\pi}{4} \Rightarrow \cos^5\left(x\right) - \sin^5(x) = 0 \neq \cos\left(5\cdot \pi/4\right) |
21,007 | 32 = (1 + 3) \left(3 + 1\right) (1 + 1) |
-20,669 | \frac{4*(-1) - r*3}{30*r + 40} = -1/10*\frac{1}{r*3 + 4}*(3*r + 4) |
1,916 | (1 + n \cdot n \cdot n) (n^3 + \left(-1\right)) = n^6 + (-1) |
21,171 | v*(h + d) = dv + vh |
4,074 | 1/(d\cdot c) = 1/(d\cdot c) |
20,827 | X_m\cdot X_g\cdot f = m\cdot g\cdot f = g\cdot m\cdot f = X_g\cdot X_m\cdot f |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.