id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
21,555 | \frac38 = 3/(2\cdot 4) |
1,791 | 2 + f = f + (-1) + 3 |
-2,777 | \sqrt{10}\cdot (2 + 4 + \left(-1\right)) = 5\cdot \sqrt{10} |
50,346 | \lim_{l \to 0} \sin{l} = 0 = \lim_{l \to 0} l |
8,279 | \sin{x\cdot a} = \sin{a\cdot x} |
8,820 | h \cdot x \cdot a = h \cdot x \cdot a |
1,080 | f\cdot a\cdot 2 = \left(a + f\right)^2 - a^2 - f^2 |
-4,375 | \tfrac{1}{48}\cdot 56\cdot \frac{1}{a^3}\cdot a^4 = 7\cdot 8/\left(6\cdot 8\right)\cdot \dfrac{a^4}{a^3} |
-20,174 | \frac{1}{(-8)\cdot r}\cdot (9 + r)\cdot 7/7 = \left(7\cdot r + 63\right)/(r\cdot (-56)) |
-10,554 | 5/5 \cdot \frac{6 + 3 \cdot z}{3 \cdot z + 12 \cdot (-1)} = \frac{30 + z \cdot 15}{15 \cdot z + 60 \cdot (-1)} |
-19,069 | \frac{1}{40}\times 17 = G_r/\left(64\times \pi\right)\times 64\times \pi = G_r |
30,516 | \frac{24}{45} = \dfrac{1}{10!} (9!*2 + 2*8*8! + 8!*2*7) |
20,162 | -\pi/6 + \pi/2 = \frac{1}{3} \cdot \pi |
-9,243 | -60 y + 90 = 2 \cdot 3 \cdot 3 \cdot 5 - y \cdot 2 \cdot 2 \cdot 3 \cdot 5 |
13,076 | (-B + A)*\left(B + A\right) = A^2 - B^2 |
8,389 | z x = b a\wedge -b b + a a = x^2 - z^2 \Rightarrow z z - b^2 = x^2 - a^2 |
2,770 | \frac{1}{10} = 2!\times 3!/5! |
-9,248 | -x \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot x \cdot x = -16 \cdot x^3 |
-4,731 | -\frac{4}{3 + y} + \frac{2}{5 \left(-1\right) + y} = \frac{26 - 2 y}{15 (-1) + y^2 - y\cdot 2} |
11,308 | e^{(-1) - Q} = \frac1e\cdot e^{-Q} |
-20,020 | 2/2\cdot 2/7 = \frac{1}{14}4 |
18,644 | p^2 - q^2 = (-q + p) \cdot (p + q) |
11,492 | (10 + 6*(-1))/1 = (18 + 2)/5 = \frac17*\left(26 + 2\right) |
-11,513 | i\cdot 2 - 10 = -6 + 4\cdot \left(-1\right) + 2\cdot i |
7,917 | \frac{1}{12} - 1/60 = \frac{1}{15} = 1/(3*5) |
26,801 | 21^2 \times 5 \times 3 + 5^2 \times 21 \times 3 + 5^3 = 8315 |
31,028 | (y^a)^{\frac1g} = y^{a/g} = (y^{\frac{1}{g}})^a |
12,768 | k^4 + 4\cdot k \cdot k \cdot k + 8\cdot k^2 + 8\cdot k + 4 = (k^2 + 2\cdot k + 2)^2 = (\left(k + 1\right)^2 + 1)^2 |
27,365 | |x| \lt 4 \Rightarrow |x|^2 < 16 |
32,648 | ((-1) \cdot (-1))^{\frac{1}{4}} = 1 |
7,775 | -(l^2 + (-1))^2 + \left(1 + l^2\right)^2 = 4\cdot l^2 |
19,674 | \left(a - b\right) \left(a - b\right) = b^2 + a^2 - a b*2 |
-11,797 | \frac{1}{8}\cdot 27 = (3/2)^3 |
2,451 | \operatorname{E}\left(B\right)\cdot \operatorname{E}\left(F\right) = \operatorname{E}\left(B\cdot F\right) |
785 | 1/30 = 2/3*\dfrac15/4 |
20,604 | 158311 = 8^6 + 10^5\cdot 9 - 8\cdot 9^5 + 9^6 |
12,305 | \frac{1}{2} + \frac{1}{4} + \frac18 + ... = 1 |
18,710 | \alpha^4 + x^4 = (x^2 + \alpha^2)^2 - 2 \cdot (x \cdot \alpha)^2 |
2,543 | -81*12 + (1 + 12)*75 = -81*12 + 75*13 |
-17,897 | 31 = 24 + 7 |
26,930 | \frac{1}{2}\cdot (\sqrt{5} + 1) = 1/2 + \sqrt{5}/2 |
24,966 | x = 2 + e^z\Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}z} = e^z = x + 2*(-1) |
8,229 | -\dfrac{1}{2^x} + 1 = \tfrac{1}{2} + \frac{1}{2 \cdot 2} + \ldots + \frac{1}{2^x} |
32,636 | \frac{\partial}{\partial z} \operatorname{asin}\left((z + b)/a\right) = \frac{1}{a \times (1 - \dfrac{1}{a^2} \times \left(z + b\right)^2)^{1/2}} = \frac{1}{(a^2 - \left(z + b\right)^2)^{1/2}} |
-17,336 | \dfrac{50.3}{100} = 0.503 |
-2,811 | \sqrt{6} + \sqrt{25*6} = \sqrt{150} + \sqrt{6} |
12,937 | G^2\times I = H^2\times I \implies H\times I = I\times G |
29,776 | a + \left(-1\right) + \dfrac{99}{9} = a + 10 |
10,236 | x \cdot b \cdot z = x \cdot z = x \cdot b \cdot z |
20,178 | \frac{\pi}{12} = \frac{\tfrac16}{2}\pi |
17,383 | -n + 2 \cdot d = d - n - d |
31,046 | det\left(A_1 \cdot \cdots \cdot A_n\right) = det\left(A_1\right) \cdot \cdots \cdot det\left(A_n\right) |
15,804 | \ln(2) \ln(n) = \ln(2) \ln(n) |
-22,367 | 48\cdot \left(-1\right) + y^2 - y\cdot 2 = (6 + y)\cdot (8\cdot (-1) + y) |
16,112 | -\tanh^2{V} + 1 = \frac{d}{dV} \tanh{V} |
-20,786 | \frac{-l \cdot 10 + 7}{-l \cdot 10 + 7} \cdot 9/1 = \frac{-90 \cdot l + 63}{-10 \cdot l + 7} |
16,423 | (z + 2(-1)) (\bar{z} + 2) = z\bar{z} + 2\left(z - \bar{z}\right) + 4(-1) = |z|^2 + 4\left(-1\right) + 4i\Im{(z)} |
-3,662 | \frac{1}{r^4}\cdot r\cdot \frac{63}{70} = \frac{r}{r^4}\cdot \frac{63}{7\cdot 10}\cdot 1 |
-2,610 | 250^{1/2} - 40^{1/2} = \left(25\cdot 10\right)^{1/2} - \left(4\cdot 10\right)^{1/2} |
31,076 | 55/42 = \frac{49}{42}\cdot 44/42\cdot \frac{1}{42}\cdot 45 |
16,580 | \frac{y}{15}\cdot 2 = \frac{2}{15}\cdot y |
8,363 | -\cos(\pi) - -\cos(0) = 2 |
5,739 | 7\cdot h = 2\cdot h\cdot 4 - h |
3,554 | \sqrt{\overline{y}} = \sqrt{|y| \cdot e^{-i \cdot \phi}} = \sqrt{|y|} \cdot e^{((-1) \cdot i \cdot \phi)/2} |
-29,319 | -7 - 17 i = 3 + 10 (-1) - i*17 |
23,225 | 9\cdot x + 5\cdot z + 4\cdot (x\cdot 2 + 3\cdot z) = x\cdot 17 + 17\cdot z |
-13,501 | 2 \times 9 + 10 \times \dfrac{ 30 }{ 5 } = 2 \times 9 + 10 \times 6 = 18 + 10 \times 6 = 18 + 60 = 78 |
-9,667 | \frac25 = \frac{10}{25} |
3,600 | (x + y)^3 \geq x^3 + y^3 = 2\Longrightarrow 2^{\frac13} \leq x + y |
-5,390 | 39.6\cdot 10^{5 - 4} = 10^1\cdot 39.6 |
-11,310 | (x + 6 \cdot (-1))^2 + b = (x + 6 \cdot (-1)) \cdot (x + 6 \cdot (-1)) + b = x \cdot x - 12 \cdot x + 36 + b |
-20,233 | \dfrac11 \cdot 1 = \tfrac{1}{-7 \cdot z + 10} \cdot \left(-7 \cdot z + 10\right) |
-4,640 | \dfrac{-6\cdot x + 21}{20\cdot (-1) + x^2 - x} = -\dfrac{1}{5\cdot (-1) + x} - \dfrac{5}{x + 4} |
19,063 | \frac{1}{w - z} = \frac{1}{\left(w - z\right) \cdot \left(w - z\right)} |
-10,263 | -\frac{8}{20\cdot x^3}\cdot \frac{5}{5} = -\frac{1}{100\cdot x^3}\cdot 40 |
5,471 | -\sqrt{5}/2 + \frac12 = \dfrac{1}{2} \cdot (1 - \sqrt{5}) |
1,770 | x^2 + \left(z + 1\right) (z + (-1)) = x^2 + z^2 + \left(-1\right) |
-23,043 | -3/2 \cdot (-\frac{21}{2}) = \frac{1}{4} \cdot 63 |
10,047 | 1 - \frac{1}{2^{32}} = \frac{1}{2^{32}} \times (2^{32} + (-1)) |
-14,275 | 10 + (5 \times 2) = 10 + (10) = 10 + 10 = 20 |
24,915 | b*(a + b) = (b + a) b |
3,228 | r \cdot \delta_{i \cdot j} = \delta_{j \cdot i} \cdot r |
-26,423 | 4^{11}/(\tfrac{1}{65536}) = 4^{11 - -8} = 4^{19} |
2,571 | \frac{1}{2}(4 \cdot 4 - 3^2 + 2^2 - 1^2) = 5 |
-24,851 | \int \frac{1}{x^3}\,\mathrm{d}x = \dfrac{1}{x^2*(-3 + 1)} + C = -\frac{1}{2 x^2} + C |
-17,213 | -\frac{1}{9}4 = -\frac49 |
23,557 | -c^3 + a^3 = (a - c)*\left(a^2 + a*c + c^2\right) |
8,676 | y^5 = 1^2\cdot y^1\cdot y^2 \cdot y^2 = 1^1\cdot y^2 \cdot y\cdot (y \cdot y)^1 = 1^0\cdot y^5\cdot (y^2)^0 |
691 | 210 = 495 - 5*{7 \choose 3} + {5 \choose 3}*7 + {7 \choose 4} + {5 \choose 4} |
18,615 | F^{30} = (F^{15})^2 = (\frac{F^{16}}{F})^2 |
12,131 | 4/3 \cdot 9/8 \cdot \frac{6}{\pi^2} = \frac{1}{\pi^2} \cdot 9 \approx 0.91189 |
-20,355 | \frac{1}{4(-1) + 2z}\left(9z + 18 (-1)\right) = \frac92 \frac{1}{z + 2(-1)}(2\left(-1\right) + z) |
669 | y \in \left[0, 1\right] \Rightarrow \left\{y\right\} = y |
40,310 | y^x = y^{x + (-1)} \cdot y = 2^{(x + (-1))/2} \cdot y |
18,988 | 5/11 = 1 - \tfrac{1}{11}\cdot 6 |
47,189 | 6\times 2=12 |
30,340 | x + 20 \cdot (-1) + 20 = x |
14,808 | 1 - \dfrac{1}{1 + x}*2 = \frac{x + (-1)}{1 + x} |
8,270 | 0.54 \cdot N = 0.6 \cdot z + 0.4 \cdot \left(-z + N\right) \Rightarrow z = 0.7 \cdot N |
36,074 | \tfrac{{6 \choose 2}}{{7 \choose 3}} = \frac{15}{35} = \tfrac{1}{7}*3 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.