id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
39,123 | (h + b)^2 = h^2 + 2*h*b + b^2 \geq h^2 + b^2 |
9,011 | \frac{\mathrm{d}}{\mathrm{d}z} \operatorname{asin}\left(z\right) = \frac{1}{\cos\left(\operatorname{asin}(z)\right)} |
-1,769 | π \cdot 13/12 + 3/4 \cdot π = π \cdot 11/6 |
10,972 | 4 = (a + f)^2 = a \cdot a + f^2 + 2\cdot a\cdot f |
-6,303 | \frac{1}{q*3 + 27} = \frac{1}{(q + 9)*3} |
13,481 | \dfrac{5!}{2! \cdot 2! \cdot 1!} = \frac{120}{4} = 30 |
20,408 | (g^2 + f^2) \cdot (x^2 + h^2) = (g \cdot x + f \cdot h)^2 + (g \cdot h - f \cdot x) \cdot (g \cdot h - f \cdot x) = (g \cdot x - f \cdot h) \cdot (g \cdot x - f \cdot h) + \left(g \cdot h + f \cdot x\right)^2 |
-4,780 | \frac{1}{5 + y^2 + y\cdot 6}\cdot (9\cdot (-1) - y) = -\frac{1}{1 + y}\cdot 2 + \frac{1}{5 + y} |
14,531 | -((-1) + x)^2 + (x + 1)^2 = 4*x |
17,661 | 2^4 = (\sqrt{-7} + 1)^4 + (1 - \sqrt{-7})^4 |
24,127 | 4500 = \dfrac{1}{2}*\left(9999 + 1000*(-1) + 1\right) |
8,617 | 2(a^2 + b^2 + c^2 + (-1)) = 2(a^2 + b^2 + c^2 - ab - bc - ac) = (a - b) * (a - b) + \left(b - c\right)^2 + (c - a) * (c - a) |
20,491 | \frac{1}{2^{(-1) + m}} = \frac{1}{2^m \cdot 1/2} |
14,634 | \frac{a*1/b}{c} = \dfrac{a}{c*b} |
2,878 | 2\cdot f_1\cdot f_2 + 8 = f_2^3 - f_1^3 = \left(f_2 - f_1\right)\cdot (f_2 \cdot f_2 + f_2\cdot f_1 + f_1 \cdot f_1) \geq 2\cdot (f_2 \cdot f_2 + f_2\cdot f_1 + f_1 \cdot f_1) |
6,034 | -x^2 + y * y - x^3 = \left(y + x*\left(x + 1\right)^{1 / 2}\right) (y - \left(1 + x\right)^{\dfrac{1}{2}} x) |
28,177 | |x + (-1)| = |x + \left(-1\right) + 0*(-1)| \leq |x + (-1)| + 0 |
27,379 | 2\cdot x\cdot 2 = x\cdot 4 |
25,300 | 4\cdot 5/(1\cdot 2) = 10 |
-20,507 | \frac{j \cdot 3 + 21}{j \cdot 10 + 70} = 3/10 \cdot \frac{1}{7 + j} \cdot (7 + j) |
23,430 | b^{1/2}\cdot a^{1/2} = b^{1/2}\cdot a^{1/2} |
9,936 | (1 + 1)\cdot \left(1 + 1\right)\cdot (1 + 1)\cdot (1 + 4)\cdot (1 + 8) = 360 |
-26,534 | (100 + x^2 - x\cdot 20)\cdot 2 = 200 + x^2\cdot 2 - x\cdot 40 |
23,216 | |f \cdot c| = |c| \cdot |f| |
2,090 | n^a\times n^b = n^{a + b} |
-11,487 | i\cdot 6 = i\cdot 6 + 0 + 0\cdot (-1) |
861 | 3^n = 3^{n + \left(-1\right)} \cdot 3 \gt (n + (-1)) \cdot 3 = 3 n + 3 (-1) \gt n |
8,329 | -\pi/2 - 1 = -1 + (\left(-1\right)\cdot \pi)/2 |
35,139 | i*x*2 + x^2 = 0 \Rightarrow x |
-4,581 | \dfrac{-2x-5}{x^2+9x+20} = \dfrac{-5}{x+5} + \dfrac{3}{x+4} |
-4,416 | x^2+4x-5 = (x+5)(x-1) |
-20,930 | -8/5 \frac{(-5) x}{\left(-5\right) x} = x\cdot 40/((-25) x) |
23,085 | \binom{2}{2}\cdot \binom{4}{2}\cdot \binom{6}{2} = 90 |
-23,428 | \frac{1}{4} \cdot 3/5 = 3/20 |
-22,242 | (3 + s)\cdot (s + 9\cdot (-1)) = 27\cdot (-1) + s \cdot s - 6\cdot s |
-13,332 | 8 + \frac{1}{10}30 = 8 + 3 = 11 |
2,834 | T \cdot r \cdot r = (r \cdot T + s) \cdot r = r \cdot (r \cdot T + s) + s \cdot r = r^2 \cdot T + 2 \cdot r \cdot s |
12,032 | \left(z + (-1)\right)^{1/2} = \left(z + \left(-1\right)\right)^{1/2} \neq (z + (-1))^{-1/2} |
25,866 | 2016 = 3^2*7*2^5 |
7,460 | 2 + 2/3 \cdot (2 \cdot \left(-1\right) + 5) = 4 |
31,825 | -\cos(x) = -\cos(-x) |
-3,561 | \frac{r \cdot 6}{12 \cdot r^2} = \frac{r}{r^2} \cdot \frac{1}{12} \cdot 6 |
-3 | -19 = 4\cdot (-1) - 15 |
8,710 | 1 + i^5\cdot 6 + i^4\cdot 15 + 20\cdot i^3 + i^2\cdot 15 + i\cdot 6 = \left(i + 1\right)^6 - i^6 |
-18,353 | \frac{n}{(6 + n) (n + 5 (-1))} (n + 6) = \frac{6 n + n^2}{n^2 + n + 30 \left(-1\right)} |
-13,536 | 7 + 7\cdot 3 = 7 + 21 = 7 + 21 = 28 |
-747 | (e^{i\pi})^{11} = e^{i\pi*11} |
28,274 | {i + j \choose i} = \dfrac{1}{j! \cdot i!} \cdot (i + j)! |
8,416 | 1 = \frac{1}{1 - \frac{1}{6}5}c = \frac{c}{\frac16} |
-15,567 | \dfrac{h^{10}}{\frac{1}{z^2}\cdot h^5}\cdot \dfrac{1}{z^8} = \dfrac{(\frac{h^5}{z^4})^2}{\frac{1}{z^2\cdot \frac{1}{h^5}}} |
-7,698 | \frac{1}{10}(7 + 11 i - 21 i + 33) = (40 - 10 i)/10 = 4 - i |
20,312 | {n + (-1) \choose k + (-1)}*\frac{n}{k} = {n \choose k} |
13,077 | \cos(2\cdot p) = x \Rightarrow -\sin\left(2\cdot p\right)\cdot 2 = \frac{\text{d}x}{\text{d}p} |
21,063 | \frac{1}{2} \cdot 6 + \dfrac{1}{3} \cdot 5 + \frac16 \cdot 4 = 16/3 |
14,930 | h^d = h^{2 \cdot \dfrac{d}{2}} = (h^2)^{d/2} |
-20,230 | \frac{1}{-t \cdot 4 + 3 \cdot (-1)} \cdot 3 \cdot 5/5 = \frac{15}{15 \cdot (-1) - 20 \cdot t} |
-24,089 | \frac{32}{6 + 10} = 32/16 = 32/16 = 2 |
8,903 | \tfrac12*(3^{11} + (-1)) = 88573 = 23*3851 |
621 | (k + 1)! + (k + 1) (k + 1)! = (1 + k + 1) (k + 1)! = (k + 2) \left(k + 1\right)! = (k + 2)! |
2,618 | -E \cdot E + C^2 = (C - E) \cdot \left(E + C\right) |
21,620 | 3500^2 \cdot 2 = 10^5 + 10^5 + 30^5 |
13,664 | \frac{1}{2 \cdot x} = \frac{\frac12}{x} \cdot 1 |
-30,906 | 10 = 20\cdot 0 + 10 |
23,197 | A^s A^t = A^{t + s} |
7,787 | \frac{1}{k^{\frac{1}{2}}} = \frac{2}{k^{\frac{1}{2}} + k^{\dfrac{1}{2}}} < \dfrac{2}{k^{1 / 2} + (k + (-1))^{1 / 2}} |
310 | \tfrac{1}{S^2}\cdot \left(-x + S\right) = -\frac{x}{S^2} + 1/S |
22,100 | \frac{15\cdot a^2}{2} = 8\cdot a \cdot a - \dfrac{a^2}{2} |
19,360 | 50 = (y + 10) \cdot y = y \cdot y + 10 \cdot y = y^2 + 10 \cdot y |
-23,875 | 2 \cdot 3 + 5 \cdot \frac{16}{8} = 2 \cdot 3 + 5 \cdot 2 = 6 + 5 \cdot 2 = 6 + 10 = 16 |
-29,520 | \frac{1}{2!}4! = \tfrac{24}{2} = 12 |
9,303 | y^3 - 4\cdot y + 4\cdot (-1) = (y + 3\cdot (-1))\cdot \left(y^2 + 3\cdot y + 5\right) = \left(y + 3\cdot \left(-1\right)\right)\cdot (y^2 - 8\cdot y + 5) = (y + 3\cdot (-1))\cdot (y + 4\cdot (-1))^2 |
2,281 | 22/35 = 11/14*\tfrac{1}{15}12 |
28,029 | \mathbb{E}\left(d_G*d_x\right) = \mathbb{E}\left(d_x\right)*\mathbb{E}\left(d_G\right) |
-2,644 | \sqrt{10}\cdot \sqrt{9} + \sqrt{25}\cdot \sqrt{10} - \sqrt{10} = -\sqrt{10} + 3\cdot \sqrt{10} + 5\cdot \sqrt{10} |
40,570 | 4 + 2\cdot 11 = 26 |
33,066 | 5 \left(-1\right) + 20 = 15 |
-20,632 | 9\cdot q/\left(9\cdot q\right)\cdot (-3/8) = ((-27)\cdot q)/(q\cdot 72) |
24,588 | \pi - 2 = 2\cdot (-1) + \pi |
30,169 | E \cdot M = M \cdot E |
36,723 | \frac{1}{2^3}\cdot 6! = \frac{1}{8}\cdot 720 = 90 |
9,690 | f + g = xy \Rightarrow x = (g + f)/y |
17,393 | 5^2 = y^2 + z^2 \implies y = \left(25 - z^2\right)^{1/2} |
5,935 | (y \cdot z)^3 = y^3 \cdot z \cdot z^2 |
6,872 | (a + 2\cdot \left(-1\right))^2 + 4\cdot \left(-1\right) = -4\cdot a + a^2 |
-2,141 | \frac{1}{3}*\pi + \pi*2/3 = \pi |
2,534 | h \cdot g^r/h = (\frac{g}{h} \cdot h)^r |
-1,325 | \frac{1}{(-9) \cdot \frac12} \cdot (1/7 \cdot (-5)) = -5/7 \cdot \left(-\frac29\right) |
28,932 | f_1*T + f_2*T*x = T*\left(f_1 + f_2*x\right) |
-24,846 | \int \frac{1}{x^6}\,\mathrm{d}x = \frac{1}{x^5 \cdot (-6 + 1)} + C = -\frac{1}{5x^5} + C |
21,189 | 1 = \dfrac{2}{7} + \frac{8}{35} + \dfrac{1}{35}12 + 1/7 |
-6,383 | \frac{1}{3 \cdot (5 + y) \cdot (y + 8 \cdot (-1))} \cdot 6 = 3/3 \cdot \dfrac{1}{(8 \cdot (-1) + y) \cdot (y + 5)} \cdot 2 |
4,242 | (-b + d)*(d + b) = d * d - b * b |
-587 | (e^{23\cdot \pi\cdot i/12})^{16} = e^{16\cdot i\cdot \pi\cdot 23/12} |
-11,085 | \left(x + 2\right)^2 + b = \left(x + 2\right)*\left(x + 2\right) + b = x * x + 4*x + 4 + b |
28,525 | \binom{20 + 4 + \left(-1\right)}{4 + (-1)} = \binom{23}{3} = 1771 |
21,819 | \frac12(0 + 2) = 1 |
17,440 | e^{2\cdot x} = e^x \cdot e^x |
19,169 | (a + (-1)) \cdot (1 + a) = a^2 + (-1) |
-13,419 | 3 + 4\times 2 = 3 + 8 = 11 |
-16,005 | -8\cdot \tfrac{9}{10} + \frac{1}{10}\cdot 7 = -\frac{65}{10} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.