code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
url = self._build_url(constants.LIST_JOBS_ENDPOINT) params = {'project': project} jobs = self.client.get(url, params=params, timeout=self.timeout) return jobs
def list_jobs(self, project)
Lists all known jobs for a project. First class, maps to Scrapyd's list jobs endpoint.
3.530026
3.320344
1.063151
url = self._build_url(constants.LIST_PROJECTS_ENDPOINT) json = self.client.get(url, timeout=self.timeout) return json['projects']
def list_projects(self)
Lists all deployed projects. First class, maps to Scrapyd's list projects endpoint.
4.668737
4.137352
1.128436
url = self._build_url(constants.LIST_SPIDERS_ENDPOINT) params = {'project': project} json = self.client.get(url, params=params, timeout=self.timeout) return json['spiders']
def list_spiders(self, project)
Lists all known spiders for a specific project. First class, maps to Scrapyd's list spiders endpoint.
3.220605
3.044485
1.057849
url = self._build_url(constants.LIST_VERSIONS_ENDPOINT) params = {'project': project} json = self.client.get(url, params=params, timeout=self.timeout) return json['versions']
def list_versions(self, project)
Lists all deployed versions of a specific project. First class, maps to Scrapyd's list versions endpoint.
3.547071
3.246618
1.092544
url = self._build_url(constants.SCHEDULE_ENDPOINT) data = { 'project': project, 'spider': spider } data.update(kwargs) if settings: setting_params = [] for setting_name, value in iteritems(settings): setting_params.append('{0}={1}'.format(setting_name, value)) data['setting'] = setting_params json = self.client.post(url, data=data, timeout=self.timeout) return json['jobid']
def schedule(self, project, spider, settings=None, **kwargs)
Schedules a spider from a specific project to run. First class, maps to Scrapyd's scheduling endpoint.
2.862345
2.705502
1.057972
url = self._build_url(constants.DAEMON_STATUS_ENDPOINT) json = self.client.get(url, timeout=self.timeout) return json
def daemon_status(self)
Displays the load status of a service. :rtype: dict
4.80408
4.812163
0.99832
if not response.ok: raise ScrapydResponseError( "Scrapyd returned a {0} error: {1}".format( response.status_code, response.text)) try: json = response.json() except ValueError: raise ScrapydResponseError("Scrapyd returned an invalid JSON " "response: {0}".format(response.text)) if json['status'] == 'ok': json.pop('status') return json elif json['status'] == 'error': raise ScrapydResponseError(json['message'])
def _handle_response(self, response)
Handles the response received from Scrapyd.
2.492706
2.175476
1.145821
r for child in self.expr.all: if isinstance(child, TexExpr): node = TexNode(child) node.parent = self yield node else: yield child
def all(self)
r"""Returns all content in this node, regardless of whitespace or not. This includes all LaTeX needed to reconstruct the original source. >>> from TexSoup import TexSoup >>> soup = TexSoup(r''' ... \newcommand{reverseconcat}[3]{#3#2#1} ... ''') >>> list(soup.all) ['\n', \newcommand{reverseconcat}[3]{#3#2#1}, '\n']
8.428982
7.937995
1.061853
r for child in self.expr.children: node = TexNode(child) node.parent = self yield node
def children(self)
r"""Immediate children of this TeX element that are valid TeX objects. This is equivalent to contents, excluding text elements and keeping only Tex expressions. :return: generator of all children :rtype: Iterator[TexExpr] >>> from TexSoup import TexSoup >>> soup = TexSoup(r''' ... \begin{itemize} ... Random text! ... \item Hello ... \end{itemize}''') >>> next(soup.itemize.children) \item Hello <BLANKLINE>
12.137951
12.036999
1.008387
r if isinstance(self.expr, TexCmd) and len(self.expr.args) == 1: return self.expr.args[0].value
def string(self)
r"""This is valid if and only if 1. the expression is a :class:`.TexCmd` AND 2. the command has only one argument. :rtype: Union[None,str] >>> from TexSoup import TexSoup >>> soup = TexSoup(r'''\textbf{Hello}''') >>> soup.textbf.string 'Hello' >>> soup.textbf.string = 'Hello World' >>> soup.textbf.string 'Hello World' >>> soup.textbf \textbf{Hello World}
7.197481
3.938958
1.827255
r for descendant in self.contents: if isinstance(descendant, TokenWithPosition): yield descendant elif hasattr(descendant, 'text'): yield from descendant.text
def text(self)
r"""All text in descendant nodes. This is equivalent to contents, keeping text elements and excluding Tex expressions. >>> from TexSoup import TexSoup >>> soup = TexSoup(r''' ... \begin{itemize} ... \begin{itemize} ... \item Nested ... \end{itemize} ... \end{itemize}''') >>> next(soup.text) 'Nested\n '
7.27577
6.416265
1.133957
r assert isinstance(i, int), ( 'Provided index "{}" is not an integer! Did you switch your ' 'arguments? The first argument to `insert` is the ' 'index.'.format(i)) self.expr.insert(i, *nodes)
def insert(self, i, *nodes)
r"""Add node(s) to this node's list of children, inserted at position i. :param int i: Position to add nodes to :param TexNode nodes: List of nodes to add >>> from TexSoup import TexSoup >>> soup = TexSoup(r''' ... \begin{itemize} ... \item Hello ... \item Bye ... \end{itemize}''') >>> item = soup.item >>> soup.item.delete() >>> soup.itemize.insert(1, item) >>> soup.itemize \begin{itemize} \item Hello \item Bye \end{itemize}
10.029455
13.731786
0.730382
r return len(list(self.find_all(name, **attrs)))
def count(self, name=None, **attrs)
r"""Number of descendants matching criteria. :param Union[None,str] name: name of LaTeX expression :param attrs: LaTeX expression attributes, such as item text. :return: number of matching expressions :rtype: int >>> from TexSoup import TexSoup >>> soup = TexSoup(r''' ... \section{Hey} ... \textit{Silly} ... \textit{Willy}''') >>> soup.count('section') 1 >>> soup.count('textit') 2
10.528328
26.086269
0.403597
r # TODO: needs better abstraction for supports contents parent = self.parent if parent.expr._supports_contents(): parent.remove(self) return # TODO: needs abstraction for removing from arg for arg in parent.args: if self.expr in arg.contents: arg.contents.remove(self.expr)
def delete(self)
r"""Delete this node from the parse tree. Where applicable, this will remove all descendants of this node from the parse tree. >>> from TexSoup import TexSoup >>> soup = TexSoup(r'''\textit{\color{blue}{Silly}}\textit{keep me!}''') >>> soup.textit.color.delete() >>> soup \textit{}\textit{keep me!} >>> soup.textit.delete() >>> soup \textit{keep me!}
10.98651
11.030652
0.995998
r try: return next(self.find_all(name, **attrs)) except StopIteration: return None
def find(self, name=None, **attrs)
r"""First descendant node matching criteria. Returns None if no descendant node found. :return: descendant node matching criteria :rtype: Union[None,TexExpr] >>> from TexSoup import TexSoup >>> soup = TexSoup(r''' ... \section{Ooo} ... \textit{eee} ... \textit{ooo}''') >>> soup.find('textit') \textit{eee} >>> soup.find('textbf')
5.179988
10.588073
0.489229
r for descendant in self.__descendants(): if hasattr(descendant, '__match__') and \ descendant.__match__(name, attrs): yield descendant
def find_all(self, name=None, **attrs)
r"""Return all descendant nodes matching criteria. :param Union[None,str] name: name of LaTeX expression :param attrs: LaTeX expression attributes, such as item text. :return: All descendant nodes matching criteria :rtype: Iterator[TexNode] >>> from TexSoup import TexSoup >>> soup = TexSoup(r''' ... \section{Ooo} ... \textit{eee} ... \textit{ooo}''') >>> gen = soup.find_all('textit') >>> next(gen) \textit{eee} >>> next(gen) \textit{ooo} >>> next(soup.find_all('textbf')) Traceback (most recent call last): ... StopIteration
5.950149
7.04757
0.844284
r self.expr.insert( self.expr.remove(child.expr), *nodes)
def replace(self, child, *nodes)
r"""Replace provided node with node(s). :param TexNode child: Child node to replace :param TexNode nodes: List of nodes to subtitute in >>> from TexSoup import TexSoup >>> soup = TexSoup(r''' ... \begin{itemize} ... \item Hello ... \item Bye ... \end{itemize}''') >>> items = list(soup.find_all('item')) >>> bye = items[1] >>> soup.itemize.replace(soup.item, bye) >>> soup.itemize \begin{itemize} \item Bye \item Bye \end{itemize}
19.533968
40.371136
0.48386
return itertools.chain(self.contents, *[c.descendants for c in self.children])
def __descendants(self)
Implementation for descendants, hacky workaround for __getattr__ issues.
7.199171
6.224135
1.156654
r for arg in self.args: for expr in arg: yield expr for content in self._contents: yield content
def all(self)
r"""Returns all content in this expression, regardless of whitespace or not. This includes all LaTeX needed to reconstruct the original source. >>> expr1 = TexExpr('textbf', ('\n', 'hi')) >>> expr2 = TexExpr('textbf', ('\n', 'hi'), preserve_whitespace=True) >>> list(expr1.all) == list(expr2.all) True
11.966186
13.018222
0.919187
r for content in self.all: is_whitespace = isinstance(content, str) and content.isspace() if not is_whitespace or self.preserve_whitespace: yield content
def contents(self)
r"""Returns all contents in this expression. Optionally includes whitespace if set when node was created. >>> expr1 = TexExpr('textbf', ('\n', 'hi')) >>> list(expr1.contents) ['hi'] >>> expr2 = TexExpr('textbf', ('\n', 'hi'), preserve_whitespace=True) >>> list(expr2.contents) ['\n', 'hi']
7.981812
6.465816
1.234463
for content in self.contents: if isinstance(content, TokenWithPosition): for word in content.split(): yield word else: yield content
def tokens(self)
Further breaks down all tokens for a particular expression into words and other expressions. >>> tex = TexEnv('lstlisting', ('var x = 10',)) >>> list(tex.tokens) ['var x = 10']
6.247718
7.448231
0.838819
self._assert_supports_contents() for j, expr in enumerate(exprs): self._contents.insert(i + j, expr)
def insert(self, i, *exprs)
Insert content at specified position into expression. :param int i: Position to add content to :param Union[TexExpr,str] exprs: List of contents to add >>> expr = TexExpr('textbf', ('hello',)) >>> expr TexExpr('textbf', ['hello']) >>> expr.insert(0, 'world') >>> expr TexExpr('textbf', ['world', 'hello'])
5.908981
10.340433
0.571444
self._assert_supports_contents() index = self._contents.index(expr) self._contents.remove(expr) return index
def remove(self, expr)
Remove a provided expression from its list of contents. :param Union[TexExpr,str] expr: Content to add :return: index of the expression removed :rtype: int >>> expr = TexExpr('textbf', ('hello',)) >>> expr.remove('hello') 0 >>> expr TexExpr('textbf', [])
6.378564
8.928995
0.714365
if isinstance(s, arg_type): return s if isinstance(s, (list, tuple)): for arg in arg_type: if [s[0], s[-1]] == arg.delims(): return arg(*s[1:-1]) raise TypeError('Malformed argument. First and last elements must ' 'match a valid argument format. In this case, TexSoup' ' could not find matching punctuation for: %s.\n' 'Common issues include: Unescaped special characters,' ' mistyped closing punctuation, misalignment.' % (str(s))) for arg in arg_type: if arg.__is__(s): return arg(arg.__strip__(s)) raise TypeError('Malformed argument. Must be an Arg or a string in ' 'either brackets or curly braces.')
def parse(s)
Parse a string or list and return an Argument object :param Union[str,iterable] s: Either a string or a list, where the first and last elements are valid argument delimiters. >>> Arg.parse(RArg('arg0')) RArg('arg0') >>> Arg.parse('[arg0]') OArg('arg0')
7.572085
6.647281
1.139125
r arg = self.__coerce(arg) if isinstance(arg, Arg): super().insert(i, arg) if len(self) <= 1: self.all.append(arg) else: if i > len(self): i = len(self) - 1 before = self[i - 1] index_before = self.all.index(before) self.all.insert(index_before + 1, arg)
def insert(self, i, arg)
r"""Insert whitespace, an unparsed argument string, or an argument object. :param int i: Index to insert argument into :param Arg arg: Argument to insert >>> arguments = TexArgs(['\n', RArg('arg0'), '[arg2]']) >>> arguments.insert(1, '[arg1]') >>> len(arguments) 3 >>> arguments [RArg('arg0'), OArg('arg1'), OArg('arg2')] >>> arguments.all ['\n', RArg('arg0'), OArg('arg1'), OArg('arg2')] >>> arguments.insert(10, '[arg3]') >>> arguments[3] OArg('arg3')
3.768437
4.340316
0.86824
item = self.__coerce(item) self.all.remove(item) super().remove(item)
def remove(self, item)
Remove either an unparsed argument string or an argument object. :param Union[str,Arg] item: Item to remove >>> arguments = TexArgs([RArg('arg0'), '[arg2]', '{arg3}']) >>> arguments.remove('{arg0}') >>> len(arguments) 2 >>> arguments[0] OArg('arg2')
7.594739
14.810404
0.512798
item = super().pop(i) j = self.all.index(item) return self.all.pop(j)
def pop(self, i)
Pop argument object at provided index. :param int i: Index to pop from the list >>> arguments = TexArgs([RArg('arg0'), '[arg2]', '{arg3}']) >>> arguments.pop(1) OArg('arg2') >>> len(arguments) 2 >>> arguments[0] RArg('arg0')
5.087618
10.688807
0.475976
@functools.wraps(f) def wrap(*args, **kwargs): iterator = kwargs.get('iterator', args[0]) if not isinstance(iterator, Buffer): iterator = Buffer(iterator) return f(iterator, *args[1:], **kwargs) return wrap
def to_buffer(f)
Decorator converting all strings and iterators/iterables into Buffers.
2.647245
2.180748
1.213916
if j < 0: return self.backward(-j) self.__i += j return self[self.__i-j:self.__i]
def forward(self, j=1)
Move forward by j steps. >>> b = Buffer('abcdef') >>> b.forward(3) 'abc' >>> b.forward(-2) 'bc'
5.812663
5.680748
1.023221
i, c = 0, '' while self.hasNext() and not condition(self.peek()): c += self.forward(1) i += 1 assert self.backward(i) == c return i
def num_forward_until(self, condition)
Forward until one of the provided matches is found. :param condition: set of valid strings
4.642958
6.196098
0.749336
c = TokenWithPosition('', self.peek().position) while self.hasNext() and not condition(self.peek()): c += self.forward(1) return c
def forward_until(self, condition)
Forward until one of the provided matches is found. The returned string contains all characters found *before the condition was met. In other words, the condition will be true for the remainder of the buffer. :param condition: set of valid strings
8.988616
13.74484
0.653963
try: if isinstance(j, int): return self[self.__i+j] return self[self.__i + j[0]:self.__i + j[1]] except IndexError: return None
def peek(self, j=(0, 1))
Peek at the next value(s), without advancing the Buffer. Return None if index is out of range.
3.295739
2.840222
1.160381
if isinstance(tex, str): tex = tex else: tex = ''.join(itertools.chain(*tex)) buf, children = Buffer(tokenize(tex)), [] while buf.hasNext(): content = read_tex(buf) if content is not None: children.append(content) return TexEnv('[tex]', children), tex
def read(tex)
Read and parse all LaTeX source :param Union[str,iterable] tex: LaTeX source :return TexEnv: the global environment
6.31156
6.01088
1.050023
# soupify soup = TexSoup(tex) # resolve subimports for subimport in soup.find_all('subimport'): path = subimport.args[0] + subimport.args[1] subimport.replace_with(*resolve(open(path)).contents) # resolve imports for _import in soup.find_all('import'): _import.replace_with(*resolve(open(_import.args[0])).contents) # resolve includes for include in soup.find_all('include'): include.replace_with(*resolve(open(include.args[0])).contents) return soup
def resolve(tex)
Resolve all imports and update the parse tree. Reads from a tex file and once finished, writes to a tex file.
2.84927
2.633973
1.081738
r return sum(len(a.string) for a in TexSoup(tex).find_all(command))
def sollen(tex, command)
r"""Measure solution length :param Union[str,buffer] tex: the LaTeX source as a string or file buffer :param str command: the command denoting a solution i.e., if the tex file uses '\answer{<answer here>}', then the command is 'answer'. :return int: the solution length
8.991314
10.817654
0.83117
r parsed, src = read(tex_code) return TexNode(parsed, src=src)
def TexSoup(tex_code)
r""" At a high-level, parses provided Tex into a navigable, searchable structure. This is accomplished in two steps: 1. Tex is parsed, cleaned, and packaged. 2. Structure fed to TexNodes for a searchable, coder-friendly interface. :param Union[str,iterable] tex_code: the Tex source :return: :class:`TexSoup.data.TexNode` object representing tex document >>> from TexSoup import TexSoup >>> soup = TexSoup(r''' ... \begin{document} ... ... \section{Hello \textit{world}.} ... ... \subsection{Watermelon} ... ... (n.) A sacred fruit. Also known as: ... ... \begin{itemize} ... \item red lemon ... \item life ... \end{itemize} ... ... Here is the prevalence of each synonym. ... ... \begin{tabular}{c c} ... red lemon & uncommon \\ \n ... life & common ... \end{tabular} ... ... \end{document} ... ''') >>> soup.section \section{Hello \textit{world}.} >>> soup.section.name 'section' >>> soup.section.string 'Hello \\textit{world}.' >>> soup.section.parent.name 'document' >>> soup.tabular \begin{tabular}{c c} red lemon & uncommon \\ \n life & common \end{tabular} >>> soup.tabular.args[0].value 'c c' >>> soup.itemize \begin{itemize} \item red lemon \item life \end{itemize} >>> soup.item \item red lemon ... >>> list(soup.find_all('item')) [\item red lemon , \item life ] >>> soup = TexSoup(r'''\textbf{'Hello'}\textit{'Y'}O\textit{'U'}''') >>> soup.textbf.delete() >>> 'Hello' not in repr(soup) True >>> soup.textit.replace_with('S') >>> soup.textit.replace_with('U', 'P') >>> soup SOUP
20.70517
39.257076
0.527425
# soupify soup = TexSoup(tex) # extract all unique labels labels = set(label.string for label in soup.find_all('label')) # create dictionary mapping label to number of references return dict((label, soup.find_all('\ref{%s}' % label)) for label in labels)
def count(tex)
Extract all labels, then count the number of times each is referenced in the provided file. Does not follow \includes.
6.285995
4.72041
1.331663
r while text.hasNext(): for name, f in tokenizers: current_token = f(text) if current_token is not None: return current_token
def next_token(text)
r"""Returns the next possible token, advancing the iterator to the next position to start processing from. :param Union[str,iterator,Buffer] text: LaTeX to process :return str: the token >>> b = Buffer(r'\textbf{Do play\textit{nice}.} $$\min_w \|w\|_2^2$$') >>> print(next_token(b), next_token(b), next_token(b), next_token(b)) \textbf { Do play \textit >>> print(next_token(b), next_token(b), next_token(b), next_token(b)) { nice } . >>> print(next_token(b)) } >>> print(next_token(Buffer('.}'))) . >>> next_token(b) ' ' >>> next_token(b) '$$' >>> b2 = Buffer(r'\gamma = \beta') >>> print(next_token(b2), next_token(b2), next_token(b2)) \gamma = \beta
7.481994
10.882093
0.687551
r current_token = next_token(text) while current_token is not None: yield current_token current_token = next_token(text)
def tokenize(text)
r"""Generator for LaTeX tokens on text, ignoring comments. :param Union[str,iterator,Buffer] text: LaTeX to process >>> print(*tokenize(r'\textbf{Do play \textit{nice}.}')) \textbf { Do play \textit { nice } . } >>> print(*tokenize(r'\begin{tabular} 0 & 1 \\ 2 & 0 \end{tabular}')) \begin { tabular } 0 & 1 \\ 2 & 0 \end { tabular }
3.822971
4.812232
0.794428
def wrap(f): tokenizers.append((name, f)) return f return wrap
def token(name)
Marker for a token :param str name: Name of tokenizer
7.946814
8.498227
0.935114
if text.peek() == '\\': for point in PUNCTUATION_COMMANDS: if text.peek((1, len(point) + 1)) == point: return text.forward(len(point) + 1)
def tokenize_punctuation_command(text)
Process command that augments or modifies punctuation. This is important to the tokenization of a string, as opening or closing punctuation is not supposed to match. :param Buffer text: iterator over text, with current position
5.447432
5.766193
0.944719
if text.peek() == '\\': c = text.forward(1) tokens = set(string.punctuation + string.whitespace) - {'*'} while text.hasNext() and (c == '\\' or text.peek() not in tokens) and c not in MATH_TOKENS: c += text.forward(1) return c
def tokenize_command(text)
Process command, but ignore line breaks. (double backslash) :param Buffer text: iterator over line, with current position
6.638646
6.310711
1.051965
r result = TokenWithPosition('', text.position) if text.peek() == '%' and text.peek(-1) != '\\': result += text.forward(1) while text.peek() != '\n' and text.hasNext(): result += text.forward(1) return result
def tokenize_line_comment(text)
r"""Process a line comment :param Buffer text: iterator over line, with current position >>> tokenize_line_comment(Buffer('hello %world')) >>> tokenize_line_comment(Buffer('%hello world')) '%hello world' >>> tokenize_line_comment(Buffer('%hello\n world')) '%hello'
6.118985
6.444227
0.94953
for delim in ARG_TOKENS: if text.startswith(delim): return text.forward(len(delim))
def tokenize_argument(text)
Process both optional and required arguments. :param Buffer text: iterator over line, with current position
9.260691
13.067533
0.708679
r if text.startswith('$') and ( text.position == 0 or text.peek(-1) != '\\' or text.endswith(r'\\')): starter = '$$' if text.startswith('$$') else '$' return TokenWithPosition(text.forward(len(starter)), text.position)
def tokenize_math(text)
r"""Prevents math from being tokenized. :param Buffer text: iterator over line, with current position >>> b = Buffer(r'$\min_x$ \command') >>> tokenize_math(b) '$' >>> b = Buffer(r'$$\min_x$$ \command') >>> tokenize_math(b) '$$'
9.870281
9.588457
1.029392
r if delimiters is None: delimiters = ALL_TOKENS result = TokenWithPosition('', text.position) for c in text: if c == '\\' and str(text.peek()) in delimiters and str(c + text.peek()) not in delimiters: c += next(text) elif str(c) in delimiters: # assumes all tokens are single characters text.backward(1) return result result += c if text.peek((0, 2)) == '\\\\': result += text.forward(2) if text.peek((0, 2)) == '\n\n': result += text.forward(2) return result return result
def tokenize_string(text, delimiters=None)
r"""Process a string of text :param Buffer text: iterator over line, with current position :param Union[None,iterable,str] delimiters: defines the delimiters >>> tokenize_string(Buffer('hello')) 'hello' >>> b = Buffer(r'hello again\command') >>> tokenize_string(b) 'hello again' >>> print(b.peek()) \ >>> print(tokenize_string(Buffer(r'0 & 1 \\\command'))) 0 & 1 \\
4.759193
4.680061
1.016908
r c = next(src) if c.startswith('%'): return c elif c.startswith('$'): name = '$$' if c.startswith('$$') else '$' expr = TexEnv(name, [], nobegin=True) return read_math_env(src, expr) elif c.startswith('\[') or c.startswith("\("): if c.startswith('\['): name = 'displaymath' begin = '\[' end = '\]' else: name = "math" begin = "\(" end = "\)" expr = TexEnv(name, [], nobegin=True, begin=begin, end=end) return read_math_env(src, expr) elif c.startswith('\\'): command = TokenWithPosition(c[1:], src.position) if command == 'item': contents, arg = read_item(src) mode, expr = 'command', TexCmd(command, contents, arg) elif command == 'begin': mode, expr, _ = 'begin', TexEnv(src.peek(1)), src.forward(3) else: mode, expr = 'command', TexCmd(command) expr.args = read_args(src, expr.args) if mode == 'begin': read_env(src, expr) return expr if c in ARG_START_TOKENS: return read_arg(src, c) return c
def read_tex(src)
r"""Read next expression from buffer :param Buffer src: a buffer of tokens
4.166256
4.063146
1.025377
r def stringify(s): return TokenWithPosition.join(s.split(' '), glue=' ') def forward_until_new(s): t = TokenWithPosition('', s.peek().position) while (s.hasNext() and any([s.peek().startswith(substr) for substr in string.whitespace]) and not t.strip(" ").endswith('\n')): t += s.forward(1) return t # Item argument such as in description environment arg = [] extra = [] if src.peek() in ARG_START_TOKENS: c = next(src) a = read_arg(src, c) arg.append(a) if not src.hasNext(): return extra, arg last = stringify(forward_until_new(src)) extra.append(last.lstrip(" ")) while (src.hasNext() and not str(src).strip(" ").startswith('\n\n') and not src.startswith('\item') and not src.startswith('\end') and not (isinstance(last, TokenWithPosition) and last.strip(" ").endswith('\n\n') and len(extra) > 1)): last = read_tex(src) extra.append(last) return extra, arg
def read_item(src)
r"""Read the item content. There can be any number of whitespace characters between \item and the first non-whitespace character. However, after that first non-whitespace character, the item can only tolerate one successive line break at a time. \item can also take an argument. :param Buffer src: a buffer of tokens :return: contents of the item and any item arguments
7.29919
6.820169
1.070236
r content = src.forward_until(lambda s: s == expr.end) if not src.startswith(expr.end): end = src.peek() explanation = 'Instead got %s' % end if end else 'Reached end of file.' raise EOFError('Expecting %s. %s' % (expr.end, explanation)) else: src.forward(1) expr.append(content) return expr
def read_math_env(src, expr)
r"""Read the environment from buffer. Advances the buffer until right after the end of the environment. Adds parsed content to the expression automatically. :param Buffer src: a buffer of tokens :param TexExpr expr: expression for the environment :rtype: TexExpr
7.302614
6.832764
1.068764
r contents = [] if expr.name in SKIP_ENVS: contents = [src.forward_until(lambda s: s == '\\end')] while src.hasNext() and not src.startswith('\\end{%s}' % expr.name): contents.append(read_tex(src)) if not src.startswith('\\end{%s}' % expr.name): end = src.peek((0, 5)) explanation = 'Instead got %s' % end if end else 'Reached end of file.' raise EOFError('Expecting \\end{%s}. %s' % (expr.name, explanation)) else: src.forward(4) expr.append(*contents) return expr
def read_env(src, expr)
r"""Read the environment from buffer. Advances the buffer until right after the end of the environment. Adds parsed content to the expression automatically. :param Buffer src: a buffer of tokens :param TexExpr expr: expression for the environment :rtype: TexExpr
6.643965
5.826166
1.140367
r args = args or TexArgs() # Unlimited whitespace before first argument candidate_index = src.num_forward_until(lambda s: not s.isspace()) while src.peek().isspace(): args.append(read_tex(src)) # Restricted to only one line break after first argument line_breaks = 0 while src.peek() in ARG_START_TOKENS or \ (src.peek().isspace() and line_breaks == 0): space_index = src.num_forward_until(lambda s: not s.isspace()) if space_index > 0: line_breaks += 1 if src.peek((0, space_index)).count("\n") <= 1 and src.peek(space_index) in ARG_START_TOKENS: args.append(read_tex(src)) else: line_breaks = 0 tex_text = read_tex(src) args.append(tex_text) if not args: src.backward(candidate_index) return args
def read_args(src, args=None)
r"""Read all arguments from buffer. Advances buffer until end of last valid arguments. There can be any number of whitespace characters between command and the first argument. However, after that first argument, the command can only tolerate one successive line break, before discontinuing the chain of arguments. :param TexArgs args: existing arguments to extend :return: parsed arguments :rtype: TexArgs
4.307753
3.971709
1.08461
content = [c] while src.hasNext(): if src.peek() in ARG_END_TOKENS: content.append(next(src)) break else: content.append(read_tex(src)) return Arg.parse(content)
def read_arg(src, c)
Read the argument from buffer. Advances buffer until right before the end of the argument. :param Buffer src: a buffer of tokens :param str c: argument token (starting token) :return: the parsed argument :rtype: Arg
5.54202
6.156846
0.900139
if self._pareto_front is None: self._pareto_front = self._calc_pareto_front(*args, **kwargs) return self._pareto_front
def pareto_front(self, *args, **kwargs)
Returns ------- P : np.array The Pareto front of a given problem. It is only loaded or calculate the first time and then cached. For a single-objective problem only one point is returned but still in a two dimensional array.
2.373275
2.428561
0.977235
if self._pareto_set is None: self._pareto_set = self._calc_pareto_set(*args, **kwargs) return self._pareto_set
def pareto_set(self, *args, **kwargs)
Returns ------- S : np.array Returns the pareto set for a problem. Points in the X space to be known to be optimal!
2.376363
2.661328
0.892924
for_committors = committors([source], [sink], msm) cond_committors = conditional_committors(source, sink, waypoint, msm) if hasattr(msm, 'all_transmats_'): frac_visited = np.zeros((msm.n_states,)) for i, tprob in enumerate(msm.all_transmats_): frac_visited[i] = _fraction_visited(source, sink, waypoint, msm.transmat_, for_committors, cond_committors) return np.median(frac_visited, axis=0) return _fraction_visited(source, sink, waypoint, msm.transmat_, for_committors, cond_committors)
def fraction_visited(source, sink, waypoint, msm)
Calculate the fraction of times a walker on `tprob` going from `sources` to `sinks` will travel through the set of states `waypoints` en route. Computes the conditional committors q^{ABC^+} and uses them to find the fraction of paths mentioned above. Note that in the notation of Dickson et. al. this computes h_c(A,B), with sources = A sinks = B waypoint = C Parameters ---------- source : int The index of the source state sink : int The index of the sink state waypoint : int The index of the intermediate state msm : msmbuilder.MarkovStateModel MSM to analyze. Returns ------- fraction_visited : float The fraction of times a walker going from `sources` -> `sinks` stops by `waypoints` on its way. See Also -------- msmbuilder.tpt.conditional_committors Calculate the probability of visiting a waypoint while on a path between a source and sink. msmbuilder.tpt.hub_scores : function Compute the 'hub score', the weighted fraction of visits for an entire network. References ---------- .. [1] Dickson & Brooks (2012), J. Chem. Theory Comput., 8, 3044-3052.
3.431543
2.962518
1.15832
n_states = msm.n_states_ if isinstance(waypoints, int): waypoints = [waypoints] elif waypoints is None: waypoints = xrange(n_states) elif not (isinstance(waypoints, list) or isinstance(waypoints, np.ndarray)): raise ValueError("waypoints (%s) must be an int, a list, or None" % str(waypoints)) hub_scores = [] for waypoint in waypoints: other_states = (i for i in xrange(n_states) if i != waypoint) # calculate the hub score for this waypoint hub_score = 0.0 for (source, sink) in itertools.permutations(other_states, 2): hub_score += fraction_visited(source, sink, waypoint, msm) hub_score /= float((n_states - 1) * (n_states - 2)) hub_scores.append(hub_score) return np.array(hub_scores)
def hub_scores(msm, waypoints=None)
Calculate the hub score for one or more waypoints The "hub score" is a measure of how well traveled a certain state or set of states is in a network. Specifically, it is the fraction of times that a walker visits a state en route from some state A to another state B, averaged over all combinations of A and B. Parameters ---------- msm : msmbuilder.MarkovStateModel MSM to analyze waypoints : array_like, int, optional The index of the intermediate state (or more than one). If None, then all waypoints will be used Returns ------- hub_score : float The hub score for the waypoint References ---------- .. [1] Dickson & Brooks (2012), J. Chem. Theory Comput., 8, 3044-3052.
2.405271
2.291564
1.04962
fraction_visited = (np.float(tprob[source, :].dot(cond_committors)) / np.float(tprob[source, :].dot(for_committors))) return fraction_visited
def _fraction_visited(source, sink, waypoint, tprob, for_committors, cond_committors)
Calculate the fraction of times a walker on `tprob` going from `sources` to `sinks` will travel through the set of states `waypoints` en route. Computes the conditional committors q^{ABC^+} and uses them to find the fraction of paths mentioned above. Note that in the notation of Dickson et. al. this computes h_c(A,B), with sources = A sinks = B waypoint = C Parameters ---------- source : int The index of the source state sink : int The index of the sink state waypoint : int The index of the intermediate state tprob : np.ndarray Transition matrix for_committors : np.ndarray The forward committors for the reaction sources -> sinks cond_committors : np.ndarray Conditional committors, i.e. the probability of visiting a waypoint when on a path between source and sink. Returns ------- fraction_visited : float The fraction of times a walker going from `sources` -> `sinks` stops by `waypoints` on its way. See Also -------- msmbuilder.tpt.conditional_committors Calculate the probability of visiting a waypoint while on a path between a source and sink. msmbuilder.tpt.hub_scores : function Compute the 'hub score', the weighted fraction of visits for an entire network. References ---------- .. [1] Dickson & Brooks (2012), J. Chem. Theory Comput., 8, 3044-3052.
3.753615
4.360282
0.860865
super(BACE, self).fit(sequences, y=y) if self.n_macrostates is not None: self._do_lumping() else: raise RuntimeError('n_macrostates must not be None to fit') return self
def fit(self, sequences, y=None)
Fit a BACE lumping model using a sequence of cluster assignments. Parameters ---------- sequences : list(np.ndarray(dtype='int')) List of arrays of cluster assignments y : None Unused, present for sklearn compatibility only. Returns ------- self
6.977251
6.067203
1.149995
c = copy.deepcopy(self.countsmat_) if self.sliding_window: c *= self.lag_time c, macro_map, statesKeep = self._filterFunc(c) w = np.array(c.sum(axis=1)).flatten() w[statesKeep] += 1 unmerged = np.zeros(w.shape[0], dtype=np.int8) unmerged[statesKeep] = 1 # get nonzero indices in upper triangle indRecalc = self._getInds(c, statesKeep) dMat = np.zeros(c.shape, dtype=np.float32) i = 0 nCurrentStates = statesKeep.shape[0] self.bayesFactors = {} dMat, minX, minY = self._calcDMat(c, w, indRecalc, dMat, statesKeep, unmerged) while nCurrentStates > self.n_macrostates: c, w, indRecalc, dMat, macro_map, statesKeep, unmerged, minX, minY = self._mergeTwoClosestStates( c, w, indRecalc, dMat, macro_map, statesKeep, minX, minY, unmerged) nCurrentStates -= 1 if self.save_all_maps: saved_map = copy.deepcopy(macro_map) self.map_dict[nCurrentStates] = saved_map if nCurrentStates - 1 == self.n_macrostates: self.microstate_mapping_ = macro_map
def _do_lumping(self)
Do the BACE lumping.
5.250536
5.132033
1.023091
params = msm.get_params() lumper = cls(n_macrostates, filter, save_all_maps, n_proc, chunk_size, **params) lumper.transmat_ = msm.transmat_ lumper.populations_ = msm.populations_ lumper.mapping_ = msm.mapping_ lumper.countsmat_ = msm.countsmat_ lumper.n_states_ = msm.n_states_ if n_macrostates is not None: lumper._do_lumping() return lumper
def from_msm(cls, msm, n_macrostates, filter=1.1, save_all_maps=True, n_proc=1, chunk_size=100)
Create and fit lumped model from pre-existing MSM. Parameters ---------- msm : MarkovStateModel The input microstate msm to use. n_macrostates : int The number of macrostates Returns ------- lumper : cls The fit MVCA object.
2.639792
2.856491
0.924138
if self.currval >= self.maxval: return 100.0 return self.currval * 100.0 / self.maxval
def percentage(self)
Returns the progress as a percentage.
3.597317
2.930399
1.227586
return _brownian_eigs(n_grid, lag_time, DOUBLEWELL_GRAD_POTENTIAL, -np.pi, np.pi, reflect_bc=True)
def doublewell_eigs(n_grid, lag_time=1)
Analytic eigenvalues/eigenvectors for the doublwell system TODO: DOCUMENT ME
10.467216
12.158859
0.860872
transmat = _brownian_transmat(n_grid, lag_time, grad_potential, xmin, xmax, reflect_bc) u, lv, rv = _solve_msm_eigensystem(transmat, k=len(transmat) - 1) return u, rv
def _brownian_eigs(n_grid, lag_time, grad_potential, xmin, xmax, reflect_bc)
Analytic eigenvalues/eigenvectors for 1D Brownian dynamics
5.121587
5.07596
1.008989
seq_id = [k for k, v in self.all_sequences.items() if v == traj.top.to_fasta(chain=0)][0] return self.feat_dict[seq_id].partial_transform(traj)
def partial_transform(self, traj)
Featurize an MD trajectory into a vector space derived from residue-residue distances Parameters ---------- traj : mdtraj.Trajectory A molecular dynamics trajectory to featurize. Returns ------- features : np.ndarray, dtype=float, shape=(n_samples, n_features) A featurized trajectory is a 2D array of shape `(length_of_trajectory x n_features)` where each `features[i]` vector is computed by applying the featurization function to the `i`th snapshot of the input trajectory. See Also -------- transform : simultaneously featurize a collection of MD trajectories Warning ------- Only works for chain 0 for now.
7.430648
7.397398
1.004495
packages = ['mdtraj.scripts'] for dir,subdirs,files in os.walk('MDTraj'): package = dir.replace(os.path.sep, '.') if '__init__.py' not in files: # not a package continue packages.append(package.replace('MDTraj', 'mdtraj')) return packages
def find_packages()
Find all of mdtraj's python packages. Adapted from IPython's setupbase.py. Copyright IPython contributors, licensed under the BSD license.
3.857608
3.130775
1.232157
"Does this compiler support SSE3 intrinsics?" self._print_support_start('SSE3') result = self.hasfunction('__m128 v; _mm_hadd_ps(v,v)', include='<pmmintrin.h>', extra_postargs=['-msse3']) self._print_support_end('SSE3', result) return result
def _detect_sse3(self)
Does this compiler support SSE3 intrinsics?
9.8557
8.562344
1.151052
"Does this compiler support SSE4.1 intrinsics?" self._print_support_start('SSE4.1') result = self.hasfunction( '__m128 v; _mm_round_ps(v,0x00)', include='<smmintrin.h>', extra_postargs=['-msse4']) self._print_support_end('SSE4.1', result) return result
def _detect_sse41(self)
Does this compiler support SSE4.1 intrinsics?
10.176908
8.875016
1.146692
if self.information_ is None: self._build_information() sigma_K = _ratematrix.sigma_K( self.information_, theta=self.theta_, n=self.n_states_) return sigma_K
def uncertainty_K(self)
Estimate of the element-wise asymptotic standard deviation in the rate matrix
9.041026
8.71819
1.03703
if self.information_ is None: self._build_information() sigma_pi = _ratematrix.sigma_pi( self.information_, theta=self.theta_, n=self.n_states_) return sigma_pi
def uncertainty_pi(self)
Estimate of the element-wise asymptotic standard deviation in the stationary distribution.
8.993578
9.047277
0.994065
if self.information_ is None: self._build_information() sigma_eigenvalues = _ratematrix.sigma_eigenvalues( self.information_, theta=self.theta_, n=self.n_states_) if self.n_timescales is None: return sigma_eigenvalues return np.nan_to_num(sigma_eigenvalues[:self.n_timescales+1])
def uncertainty_eigenvalues(self)
Estimate of the element-wise asymptotic standard deviation in the model eigenvalues
5.613792
5.883111
0.954222
if self.information_ is None: self._build_information() sigma_timescales = _ratematrix.sigma_timescales( self.information_, theta=self.theta_, n=self.n_states_) if self.n_timescales is None: return sigma_timescales return sigma_timescales[:self.n_timescales]
def uncertainty_timescales(self)
Estimate of the element-wise asymptotic standard deviation in the model relaxation timescales.
5.243085
5.422495
0.966914
if self.theta_ is not None: return self.theta_ if self.guess == 'log': transmat, pi = _transmat_mle_prinz(countsmat) K = np.real(scipy.linalg.logm(transmat)) / self.lag_time elif self.guess == 'pseudo': transmat, pi = _transmat_mle_prinz(countsmat) K = (transmat - np.eye(self.n_states_)) / self.lag_time elif isinstance(self.guess, np.ndarray): pi = _solve_ratemat_eigensystem(self.guess)[1][:, 0] K = self.guess S = np.multiply(np.sqrt(np.outer(pi, 1/pi)), K) sflat = np.maximum(S[np.triu_indices_from(countsmat, k=1)], 0) theta0 = np.concatenate((sflat, np.log(pi))) return theta0
def _initial_guess(self, countsmat)
Generate an initial guess for \theta.
4.705449
4.521624
1.040655
lag_time = float(self.lag_time) # only the "active set" of variables not at the bounds of the # feasible set. inds = np.where(self.theta_ != 0)[0] hessian = _ratematrix.hessian( self.theta_, self.countsmat_, t=lag_time, inds=inds) self.information_ = np.zeros((len(self.theta_), len(self.theta_))) self.information_[np.ix_(inds, inds)] = scipy.linalg.pinv(-hessian)
def _build_information(self)
Build the inverse of hessian of the log likelihood at theta_
7.168124
6.315843
1.134943
# eigenvectors from the model we're scoring, `self` V = self.right_eigenvectors_ m2 = self.__class__(**self.get_params()) m2.fit(sequences) if self.mapping_ != m2.mapping_: V = self._map_eigenvectors(V, m2.mapping_) S = np.diag(m2.populations_) C = S.dot(m2.transmat_) try: trace = np.trace(V.T.dot(C.dot(V)).dot(np.linalg.inv(V.T.dot(S.dot(V))))) except np.linalg.LinAlgError: trace = np.nan return trace
def score(self, sequences, y=None)
Score the model on new data using the generalized matrix Rayleigh quotient Parameters ---------- sequences : list of array-like List of sequences, or a single sequence. Each sequence should be a 1D iterable of state labels. Labels can be integers, strings, or other orderable objects. Returns ------- gmrq : float Generalized matrix Rayleigh quotient. This number indicates how well the top ``n_timescales+1`` eigenvectors of this model perform as slowly decorrelating collective variables for the new data in ``sequences``. References ---------- .. [1] McGibbon, R. T. and V. S. Pande, "Variational cross-validation of slow dynamical modes in molecular kinetics" J. Chem. Phys. 142, 124105 (2015)
4.759985
5.127392
0.928344
# likelihood + grad logp1, grad = loglikelihood(theta, counts) # exponential prior on s_{ij} logp2 = lexponential(theta[:-n], beta, grad=grad[:-n]) # dirichlet prior on \pi logp3 = ldirichlet_softmax(theta[-n:], alpha=alpha, grad=grad[-n:]) logp = logp1 + logp2 + logp3 return logp, grad
def _log_posterior(theta, counts, alpha, beta, n)
Log of the posterior probability and gradient Parameters ---------- theta : ndarray, shape=(n_params,) The free parameters of the reversible rate matrix counts : ndarray, shape=(n, n) The count matrix (sufficient statistics for the likielihood) alpha : ndarray, shape=(n,) Dirichlet concentration parameters beta : ndarray, shape=(n_params-n,) Scale parameter for the exponential prior on the symmetric rate matrix.
5.569827
5.223208
1.066361
us, lvs, rvs = self._get_eigensystem() # make sure to leave off equilibrium distribution timescales = -1 / us[:,1:] return timescales
def all_timescales_(self)
Implied relaxation timescales each sample in the ensemble Returns ------- timescales : array-like, shape = (n_samples, n_timescales,) The longest implied relaxation timescales of the each sample in the ensemble.
27.625971
23.476265
1.176762
cumsum = np.cumsum(pvals) if size is None: size = (1,) axis = 0 elif isinstance(size, tuple): size = size + (1,) axis = len(size) - 1 else: raise TypeError('size must be an int or tuple of ints') random_state = check_random_state(random_state) return np.sum(cumsum < random_state.random_sample(size), axis=axis)
def categorical(pvals, size=None, random_state=None)
Return random integer from a categorical distribution Parameters ---------- pvals : sequence of floats, length p Probabilities of each of the ``p`` different outcomes. These should sum to 1. size : int or tuple of ints, optional Defines the shape of the returned array of random integers. If None (the default), returns a single float. random_state: RandomState or an int seed, optional A random number generator instance.
2.378471
2.641203
0.900525
if hasattr(msm, 'all_transmats_'): commits = np.zeros(msm.all_transmats_.shape[:2]) for i, tprob in enumerate(msm.all_transmats_): commits[i, :] = _committors(sources, sinks, tprob) return np.median(commits, axis=0) return _committors(sources, sinks, msm.transmat_)
def committors(sources, sinks, msm)
Get the forward committors of the reaction sources -> sinks. Parameters ---------- sources : array_like, int The set of unfolded/reactant states. sinks : array_like, int The set of folded/product states. msm : msmbuilder.MarkovStateModel MSM fit to the data. Returns ------- forward_committors : np.ndarray The forward committors for the reaction sources -> sinks References ---------- .. [1] Weinan, E. and Vanden-Eijnden, E. Towards a theory of transition paths. J. Stat. Phys. 123, 503-523 (2006). .. [2] Metzner, P., Schutte, C. & Vanden-Eijnden, E. Transition path theory for Markov jump processes. Multiscale Model. Simul. 7, 1192-1219 (2009). .. [3] Berezhkovskii, A., Hummer, G. & Szabo, A. Reactive flux and folding pathways in network models of coarse-grained protein dynamics. J. Chem. Phys. 130, 205102 (2009). .. [4] Noe, Frank, et al. "Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations." PNAS 106.45 (2009): 19011-19016.
3.004132
3.197969
0.939387
# typecheck for data in [source, sink, waypoint]: if not isinstance(data, int): raise ValueError("source, sink, and waypoint must be integers.") if (source == waypoint) or (sink == waypoint) or (sink == source): raise ValueError('source, sink, waypoint must all be disjoint!') if hasattr(msm, 'all_transmats_'): cond_committors = np.zeros(msm.all_transmats_.shape[:2]) for i, tprob in enumerate(msm.all_transmats_): cond_committors[i, :] = _conditional_committors(source, sink, waypoint, tprob) return np.median(cond_committors, axis=0) return _conditional_committors(source, sink, waypoint, msm.transmat_)
def conditional_committors(source, sink, waypoint, msm)
Computes the conditional committors :math:`q^{ABC^+}` which are is the probability of starting in one state and visiting state B before A while also visiting state C at some point. Note that in the notation of Dickson et. al. this computes :math:`h_c(A,B)`, with ``sources = A``, ``sinks = B``, ``waypoint = C`` Parameters ---------- waypoint : int The index of the intermediate state source : int The index of the source state sink : int The index of the sink state msm : msmbuilder.MarkovStateModel MSM to analyze. Returns ------- cond_committors : np.ndarray Conditional committors, i.e. the probability of visiting a waypoint when on a path between source and sink. See Also -------- msmbuilder.tpt.fraction_visited : function Calculate the fraction of visits to a waypoint from a given source to a sink. msmbuilder.tpt.hub_scores : function Compute the 'hub score', the weighted fraction of visits for an entire network. Notes ----- Employs dense linear algebra, memory use scales as N^2, and cycle use scales as N^3 References ---------- .. [1] Dickson & Brooks (2012), J. Chem. Theory Comput., 8, 3044-3052.
3.035148
3.179837
0.954498
n_states = np.shape(tprob)[0] forward_committors = _committors([source], [sink], tprob) # permute the transition matrix into cannonical form - send waypoint the the # last row, and source + sink to the end after that Bsink_indices = [source, sink, waypoint] perm = np.array([i for i in xrange(n_states) if i not in Bsink_indices], dtype=int) perm = np.concatenate([perm, Bsink_indices]) permuted_tprob = tprob[perm, :][:, perm] # extract P, R n = n_states - len(Bsink_indices) P = permuted_tprob[:n, :n] R = permuted_tprob[:n, n:] # calculate the conditional committors ( B = N*R ), B[i,j] is the prob # state i ends in j, where j runs over the source + sink + waypoint # (waypoint is position -1) B = np.dot(np.linalg.inv(np.eye(n) - P), R) # add probs for the sinks, waypoint / b[i] is P( i --> {C & not A, B} ) b = np.append(B[:, -1].flatten(), [0.0] * (len(Bsink_indices) - 1) + [1.0]) cond_committors = b * forward_committors[waypoint] # get the original order cond_committors = cond_committors[np.argsort(perm)] return cond_committors
def _conditional_committors(source, sink, waypoint, tprob)
Computes the conditional committors :math:`q^{ABC^+}` which are is the probability of starting in one state and visiting state B before A while also visiting state C at some point. Note that in the notation of Dickson et. al. this computes :math:`h_c(A,B)`, with ``sources = A``, ``sinks = B``, ``waypoint = C`` Parameters ---------- waypoint : int The index of the intermediate state source : int The index of the source state sink : int The index of the sink state tprob : np.ndarray Transition matrix Returns ------- cond_committors : np.ndarray Conditional committors, i.e. the probability of visiting a waypoint when on a path between source and sink. Notes ----- Employs dense linear algebra, memory use scales as N^2, and cycle use scales as N^3 References ---------- .. [1] Dickson & Brooks (2012), J. Chem. Theory Comput., 8, 3044-3052.
5.85895
5.909542
0.991439
n_states = np.shape(tprob)[0] sources = np.array(sources, dtype=int).reshape((-1, 1)) sinks = np.array(sinks, dtype=int).reshape((-1, 1)) # construct the committor problem lhs = np.eye(n_states) - tprob for a in sources: lhs[a, :] = 0.0 # np.zeros(n) lhs[:, a] = 0.0 lhs[a, a] = 1.0 for b in sinks: lhs[b, :] = 0.0 # np.zeros(n) lhs[:, b] = 0.0 lhs[b, b] = 1.0 ident_sinks = np.zeros(n_states) ident_sinks[sinks] = 1.0 rhs = np.dot(tprob, ident_sinks) rhs[sources] = 0.0 rhs[sinks] = 1.0 forward_committors = np.linalg.solve(lhs, rhs) return forward_committors
def _committors(sources, sinks, tprob)
Get the forward committors of the reaction sources -> sinks. Parameters ---------- sources : array_like, int The set of unfolded/reactant states. sinks : array_like, int The set of folded/product states. tprob : np.ndarray Transition matrix Returns ------- forward_committors : np.ndarray The forward committors for the reaction sources -> sinks References ---------- .. [1] Weinan, E. and Vanden-Eijnden, E. Towards a theory of transition paths. J. Stat. Phys. 123, 503-523 (2006). .. [2] Metzner, P., Schutte, C. & Vanden-Eijnden, E. Transition path theory for Markov jump processes. Multiscale Model. Simul. 7, 1192-1219 (2009). .. [3] Berezhkovskii, A., Hummer, G. & Szabo, A. Reactive flux and folding pathways in network models of coarse-grained protein dynamics. J. Chem. Phys. 130, 205102 (2009). .. [4] Noe, Frank, et al. "Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations." PNAS 106.45 (2009): 19011-19016.
2.29444
2.25843
1.015945
frames_by_state = [] for state, pairs in enumerate(selected_pairs_by_state): if isinstance(trajectories[0], str): if top: process = lambda x, frame: md.load_frame(x, frame, top=top) else: process = lambda x, frame: md.load_frame(x, frame) else: process = lambda x, frame: x[frame] frames = [process(trajectories[trj], frame) for trj, frame in pairs] try: # If frames are mdtraj Trajectories # Get an empty trajectory with correct shape and call the join # method on it to merge trajectories state_trj = frames[0][0:0].join(frames) except AttributeError: state_trj = np.array(frames) # Just a bunch of np arrays frames_by_state.append(state_trj) return frames_by_state
def map_drawn_samples(selected_pairs_by_state, trajectories, top=None)
Lookup trajectory frames using pairs of (trajectory, frame) indices. Parameters ---------- selected_pairs_by_state : array, dtype=int, shape=(n_states, n_samples, 2) selected_pairs_by_state[state, sample] gives the (trajectory, frame) index associated with a particular sample from that state. trajectories : list(md.Trajectory) or list(np.ndarray) or list(filenames) The trajectories assocated with sequences, which will be used to extract coordinates of the state centers from the raw trajectory data. This can also be a list of np.ndarray objects or filenames. If they are filenames, mdtraj will be used to load them top : md.Topology, optional, default=None Use this topology object to help mdtraj load filenames Returns ------- frames_by_state : mdtraj.Trajectory Output will be a list of trajectories such that frames_by_state[state] is a trajectory drawn from `state` of length `n_samples`. If trajectories are numpy arrays, the output will be numpy arrays instead of md.Trajectories Examples -------- >>> selected_pairs_by_state = hmm.draw_samples(sequences, 3) >>> samples = map_drawn_samples(selected_pairs_by_state, trajectories) Notes ----- YOU are responsible for ensuring that selected_pairs_by_state and trajectories correspond to the same dataset! See Also -------- ghmm.GaussianHMM.draw_samples : Draw samples from GHMM ghmm.GaussianHMM.draw_centroids : Draw centroids from GHMM
3.918947
3.509178
1.116771
# Upper and lower bounds on the sum of the K matrix, to ensure proper # proposal weights. See Eq. 17 of [1]. K_MINUS = 0.9 K_PLUS = 1.1 Z = np.asarray(Z) n_states = Z.shape[0] if not Z.ndim == 2 and Z.shape[1] == n_states: raise ValueError("Z must be square. Z.shape=%s" % str(Z.shape)) K = 0.5 * (Z + Z.T) / np.sum(Z, dtype=float) random = check_random_state(random_state) n_accept = 0 for t in range(n_samples): # proposal # Select two indices in [0...n_states). We draw them by drawing a # random floats in [0,1) and then rounding to int so that this method # is exactly analogous to `metzner_mcmc_fast`, which, for each MCMC # iteration, draws 4 random floats in [0,1) from the same numpy PSRNG, # and then inside the C step kernel (src/metzner_mcmc.c) uses two of # them like this. This ensures that this function and # `metzner_mcmc_fast` give _exactly_ the same sequence of transition # matricies, given the same random seed. i, j = (random.rand(2) * n_states).astype(np.int) sc = np.sum(K) if i == j: a, b = max(-K[i,j], K_MINUS - sc), K_PLUS - sc else: a, b = max(-K[i,j], 0.5*(K_MINUS - sc)), 0.5*(K_PLUS - sc) epsilon = random.uniform(a, b) K_proposal = np.copy(K) K_proposal[i, j] += epsilon if i != j: K_proposal[j, i] += epsilon # acceptance? cutoff = np.exp(_logprob_T(_K_to_T(K_proposal), Z) - _logprob_T(_K_to_T(K), Z)) r = random.rand() # print 'i', i, 'j', j # print 'a', a, 'b', b # print 'cutoff', cutoff # print 'r', r # print 'sc', sc if r < cutoff: n_accept += 1 K = K_proposal if (t+1) % n_thin == 0: yield _K_to_T(K)
def metzner_mcmc_slow(Z, n_samples, n_thin=1, random_state=None)
Metropolis Markov chain Monte Carlo sampler for reversible transition matrices Parameters ---------- Z : np.array, shape=(n_states, n_states) The effective count matrix, the number of observed transitions between states plus the number of prior counts n_samples : int Number of steps to iterate the chain for n_thin : int Yield every ``n_thin``-th sample from the MCMC chain random_state : int or RandomState instance or None (default) Pseudo Random Number generator seed control. If None, use the numpy.random singleton. Notes ----- The transition matrix posterior distribution is :: P(T | Z) \propto \Prod_{ij} T_{ij}^{Z_{ij}} and constrained to be reversible, such that there exists a \pi s.t. :: \pi_i T_{ij} = \pi_j T_{ji} Yields ------ T : np.array, shape=(n_states, n_states) This generator yields samples from the transition matrix posterior References ---------- .. [1] P. Metzner, F. Noe and C. Schutte, "Estimating the sampling error: Distribution of transition matrices and functions of transition matrices for given trajectory data." Phys. Rev. E 80 021106 (2009) See Also -------- metzner_mcmc_fast
4.071599
4.145965
0.982063
import matplotlib.pyplot as pp def _scatter(Ts, xi, xj, yi, yj): pp.grid(False) pp.hexbin(Ts[:, xi, xj], Ts[:, yi, yj], cmap='hot_r', vmin=0, vmax=100) pp.xlabel('T_{%d,%d}' % (xi+1, xj+1)) pp.ylabel('T_{%d,%d}' % (yi+1, yj+1)) pp.plot([0,1], [1,0], c='k') pp.ylim(0, 1) pp.xlim(0, 1) C = np.array([[1, 10, 2], [2, 26, 3], [15, 20, 20]]) Ts = np.array(list(metzner_mcmc_slow(C, 100000))) pp.figure(figsize=(6, 6)); pp.subplot(axisbg=(0,0,0,0)) _scatter(Ts, 0, 1, 0, 2) pp.figure(figsize=(6, 6)); pp.subplot(axisbg=(0,0,0,0)) _scatter(Ts, 1, 0, 1, 2) pp.figure(figsize=(6, 6)); pp.subplot(axisbg=(0,0,0,0)) _scatter(Ts, 2, 0, 2, 1) pp.show()
def _metzner_figure_4()
Generate figure 4 from Metzner's paper [1]. This can be used as a rough test of the sampler
2.537697
2.471442
1.026808
''' Computes transition probabilities and standard errors of the transition probabilities due to finite sampling using the MSM counts matrix. First, the transition probabilities are computed by dividing the each element c_ij by the row-sumemd counts of row i. THe standard errors are then computed by first computing the standard deviation of the transition probability, treating each count as a Bernoulli process with p = t_ij (std = (t_ij - t_ij ^2)^0.5). This is then divided by the square root of the row-summed counts of row i to obtain the standard error. Parameters: ---------- countsmat: np.ndarray The msm counts matrix transmat: np.ndarray If you have a transition matrix you want to use (e.g. MLE symmetrized), you can supply that here. This function will use the transition probabilities from this matrix to calculate the Bernoulli standard deviations, which will be divided by the row-summed counts in the original supplied counts matrix. Returns: ----------- transmat, np.ndarray: The MSM transition matrix scale, np.ndarray: The matrix of standard errors for each transition probability ''' norm = np.sum(countsmat, axis=1) if not transmat: transmat = (countsmat.transpose() / norm).transpose() counts = (np.ones((len(transmat), len(transmat))) * norm).transpose() scale = ((transmat - transmat ** 2) ** 0.5 / counts ** 0.5) + 10 ** -15 return transmat, scale
def create_perturb_params(countsmat, transmat=None)
Computes transition probabilities and standard errors of the transition probabilities due to finite sampling using the MSM counts matrix. First, the transition probabilities are computed by dividing the each element c_ij by the row-sumemd counts of row i. THe standard errors are then computed by first computing the standard deviation of the transition probability, treating each count as a Bernoulli process with p = t_ij (std = (t_ij - t_ij ^2)^0.5). This is then divided by the square root of the row-summed counts of row i to obtain the standard error. Parameters: ---------- countsmat: np.ndarray The msm counts matrix transmat: np.ndarray If you have a transition matrix you want to use (e.g. MLE symmetrized), you can supply that here. This function will use the transition probabilities from this matrix to calculate the Bernoulli standard deviations, which will be divided by the row-summed counts in the original supplied counts matrix. Returns: ----------- transmat, np.ndarray: The MSM transition matrix scale, np.ndarray: The matrix of standard errors for each transition probability
6.558023
1.446754
4.532924
''' Perturbs each nonzero entry in the MSM transition matrix by treating it as a Gaussian random variable with mean t_ij and standard deviation equal to the standard error computed using "create_perturb_params". Returns a sampled transition matrix that takes into consideration errors due to finite sampling (useful for boostrapping, etc.) Parameters: ---------- transmat: np.ndarray: The transition matrix, whose elements serve as the means of the Gaussian random variables scale: np.ndarray: The matrix of standard errors. For transition probability t_ij, this is assumed to be the standard error of the mean of a binomial distribution with p = transition probability and number of observations equal to the summed counts in row i. ''' output = np.vectorize(np.random.normal)(transmat, scale) output[np.where(output < 0)] = 0 return (output.transpose() / np.sum(output, axis=1)).transpose()
def perturb_tmat(transmat, scale)
Perturbs each nonzero entry in the MSM transition matrix by treating it as a Gaussian random variable with mean t_ij and standard deviation equal to the standard error computed using "create_perturb_params". Returns a sampled transition matrix that takes into consideration errors due to finite sampling (useful for boostrapping, etc.) Parameters: ---------- transmat: np.ndarray: The transition matrix, whose elements serve as the means of the Gaussian random variables scale: np.ndarray: The matrix of standard errors. For transition probability t_ij, this is assumed to be the standard error of the mean of a binomial distribution with p = transition probability and number of observations equal to the summed counts in row i.
9.284511
1.514304
6.131207
tica_msm = TemplateDir( 'tica', [ 'tica/tica.py', 'tica/tica-plot.py', 'tica/tica-sample-coordinate.py', 'tica/tica-sample-coordinate-plot.py', ], [ TemplateDir( 'cluster', [ 'cluster/cluster.py', 'cluster/cluster-plot.py', 'cluster/sample-clusters.py', 'cluster/sample-clusters-plot.py', ], [ TemplateDir( 'msm', [ 'msm/timescales.py', 'msm/timescales-plot.py', 'msm/microstate.py', 'msm/microstate-plot.py', 'msm/microstate-traj.py', ], [], ) ] ) ] ) layout = TemplateDir( '', [ '0-test-install.py', '1-get-example-data.py', 'README.md', ], [ TemplateDir( 'analysis', [ 'analysis/gather-metadata.py', 'analysis/gather-metadata-plot.py', ], [ TemplateDir( 'rmsd', [ 'rmsd/rmsd.py', 'rmsd/rmsd-plot.py', ], [], ), TemplateDir( 'landmarks', [ 'landmarks/find-landmarks.py', 'landmarks/featurize.py', 'landmarks/featurize-plot.py', ], [tica_msm], ), TemplateDir( 'dihedrals', [ 'dihedrals/featurize.py', 'dihedrals/featurize-plot.py', ], [tica_msm], ) ] ) ] ) return layout
def get_layout()
Specify a hierarchy of our templates.
2.369858
2.319826
1.021567
if name == self.name: if limit is not None: assert limit == 1 self.subdirs = [] return self for subdir in self.subdirs: res = subdir.find(name, limit) if res is not None: return res return None
def find(self, name, limit=None)
Find the named TemplateDir in the hierarchy
2.67486
2.413258
1.108402
if msm is None: msm = MarkovStateModel() param_grid = {'lag_time' : lag_times} models = param_sweep(msm, sequences, param_grid, n_jobs=n_jobs, verbose=verbose) timescales = [m.timescales_ for m in models] n_timescales = min(n_timescales, min(len(ts) for ts in timescales)) timescales = np.array([ts[:n_timescales] for ts in timescales]) return timescales
def implied_timescales(sequences, lag_times, n_timescales=10, msm=None, n_jobs=1, verbose=0)
Calculate the implied timescales for a given MSM. Parameters ---------- sequences : list of array-like List of sequences, or a single sequence. Each sequence should be a 1D iterable of state labels. Labels can be integers, strings, or other orderable objects. lag_times : array-like Lag times to calculate implied timescales at. n_timescales : int, optional Number of timescales to calculate. msm : msmbuilder.msm.MarkovStateModel, optional Instance of an MSM to specify parameters other than the lag time. If None, then the default parameters (as implemented by msmbuilder.msm.MarkovStateModel) will be used. n_jobs : int, optional Number of jobs to run in parallel Returns ------- timescales : np.ndarray, shape = [n_models, n_timescales] The slowest timescales (in units of lag times) for each model.
2.535767
2.684185
0.944706
def inner(func): @functools.wraps(func) def wrapper(*fargs, **kw): fname = name if name is None: fname = func.__name__ warnings.warn("%s" % fname, category=ExperimentalWarning, stacklevel=2) return func(*fargs, **kw) return wrapper return inner
def experimental(name=None)
A simple decorator to mark functions and methods as experimental.
2.596628
2.52154
1.029779
lines = doc.splitlines() labelstart, labelend = None, None foundattributes = False for i, line in enumerate(lines): stripped = line.strip() if stripped == 'Attributes': foundattributes = True if foundattributes and not labelstart and stripped.startswith('labels_'): labelstart = len('\n'.join(lines[:i])) + 1 if labelstart and not labelend and stripped == '': labelend = len('\n'.join(lines[:i + 1])) if labelstart is None or labelend is None: return doc replace = '\n'.join([ ' labels_ : list of arrays, each of shape [sequence_length, ]', ' The label of each point is an integer in [0, n_clusters).', '', ]) return doc[:labelstart] + replace + doc[labelend:]
def _replace_labels(doc)
Really hacky find-and-replace method that modifies one of the sklearn docstrings to change the semantics of labels_ for the subclasses
3.619166
3.322793
1.089194
if isinstance(X, np.ndarray): if not (X.dtype == 'float32' or X.dtype == 'float64'): X = X.astype('float64') labels, inertia = libdistance.assign_nearest( X, self.cluster_centers_, metric=self.metric) return labels
def predict(self, X)
Predict the closest cluster each sample in X belongs to. In the vector quantization literature, `cluster_centers_` is called the code book and each value returned by `predict` is the index of the closest code in the code book. Parameters ---------- X : array-like, shape = [n_samples, n_features] New data to predict. Returns ------- Y : array, shape [n_samples,] Index of the closest center each sample belongs to.
4.384741
4.30265
1.019079
MultiSequenceClusterMixin.fit(self, sequences) self.cluster_ids_ = self._split_indices(self.cluster_ids_) return self
def fit(self, sequences, y=None)
Fit the kcenters clustering on the data Parameters ---------- sequences : list of array-like, each of shape [sequence_length, n_features] A list of multivariate timeseries, or ``md.Trajectory``. Each sequence may have a different length, but they all must have the same number of features, or the same number of atoms if they are ``md.Trajectory``s. Returns ------- self
7.745762
13.017882
0.595009
if compress is not None or cache_size is not None: warnings.warn("compress and cache_size are no longer valid options") with open(filename, 'wb') as f: pickle.dump(value, f)
def dump(value, filename, compress=None, cache_size=None)
Save an arbitrary python object using pickle. Parameters ----------- value : any Python object The object to store to disk using pickle. filename : string The name of the file in which it is to be stored compress : None No longer used cache_size : positive number, optional No longer used See Also -------- load : corresponding loader
2.933469
3.859736
0.760018
try: with open(filename, 'rb') as f: return pickle.load(f) except Exception as e1: try: return jl_load(filename) except Exception as e2: raise IOError( "Unable to load {} using the pickle or joblib protocol.\n" "Pickle: {}\n" "Joblib: {}".format(filename, e1, e2) )
def load(filename)
Load an object that has been saved with dump. We try to open it using the pickle protocol. As a fallback, we use joblib.load. Joblib was the default prior to msmbuilder v3.2 Parameters ---------- filename : string The name of the file to load.
2.937313
2.80873
1.04578
print('Saving "%s"... (%s)' % (fn, type(value))) dump(value, fn, compress=compress)
def verbosedump(value, fn, compress=None)
Verbose wrapper around dump
4.851748
4.937037
0.982725
if hasattr(msm, 'all_transmats_'): fluxes = np.zeros_like(msm.all_transmats_) for i, el in enumerate(zip(msm.all_transmats_, msm.all_populations_)): tprob = el[0] populations = el[1] fluxes[i, :, :] = _fluxes(sources, sinks, tprob, populations, for_committors) return np.median(fluxes, axis=0) return _fluxes(sources, sinks, msm.transmat_, msm.populations_, for_committors)
def fluxes(sources, sinks, msm, for_committors=None)
Compute the transition path theory flux matrix. Parameters ---------- sources : array_like, int The set of unfolded/reactant states. sinks : array_like, int The set of folded/product states. msm : msmbuilder.MarkovStateModel MSM that has been fit to data. for_committors : np.ndarray, optional The forward committors associated with `sources`, `sinks`, and `tprob`. If not provided, is calculated from scratch. If provided, `sources` and `sinks` are ignored. Returns ------- flux_matrix : np.ndarray The flux matrix See Also -------- net_fluxes References ---------- .. [1] Weinan, E. and Vanden-Eijnden, E. Towards a theory of transition paths. J. Stat. Phys. 123, 503-523 (2006). .. [2] Metzner, P., Schutte, C. & Vanden-Eijnden, E. Transition path theory for Markov jump processes. Multiscale Model. Simul. 7, 1192-1219 (2009). .. [3] Berezhkovskii, A., Hummer, G. & Szabo, A. Reactive flux and folding pathways in network models of coarse-grained protein dynamics. J. Chem. Phys. 130, 205102 (2009). .. [4] Noe, Frank, et al. "Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations." PNAS 106.45 (2009): 19011-19016.
2.752641
2.73773
1.005447
flux_matrix = fluxes(sources, sinks, msm, for_committors=for_committors) net_flux = flux_matrix - flux_matrix.T net_flux[np.where(net_flux < 0)] = 0.0 return net_flux
def net_fluxes(sources, sinks, msm, for_committors=None)
Computes the transition path theory net flux matrix. Parameters ---------- sources : array_like, int The set of unfolded/reactant states. sinks : array_like, int The set of folded/product states. msm : msmbuilder.MarkovStateModel MSM fit to data. for_committors : np.ndarray, optional The forward committors associated with `sources`, `sinks`, and `tprob`. If not provided, is calculated from scratch. If provided, `sources` and `sinks` are ignored. Returns ------- net_flux : np.ndarray The net flux matrix See Also -------- fluxes References ---------- .. [1] Weinan, E. and Vanden-Eijnden, E. Towards a theory of transition paths. J. Stat. Phys. 123, 503-523 (2006). .. [2] Metzner, P., Schutte, C. & Vanden-Eijnden, E. Transition path theory for Markov jump processes. Multiscale Model. Simul. 7, 1192-1219 (2009). .. [3] Berezhkovskii, A., Hummer, G. & Szabo, A. Reactive flux and folding pathways in network models of coarse-grained protein dynamics. J. Chem. Phys. 130, 205102 (2009). .. [4] Noe, Frank, et al. "Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations." PNAS 106.45 (2009): 19011-19016.
2.674048
3.162248
0.845616
n_states = np.shape(populations)[0] # check if we got the committors if for_committors is None: for_committors = _committors(sources, sinks, tprob) else: for_committors = np.array(for_committors) if for_committors.shape != (n_states,): raise ValueError("Shape of committors %s should be %s" % (str(for_committors.shape), str((n_states,)))) sources = np.array(sources).reshape((-1,)) sinks = np.array(sinks).reshape((-1,)) X = np.zeros((n_states, n_states)) X[(np.arange(n_states), np.arange(n_states))] = (populations * (1.0 - for_committors)) Y = np.zeros((n_states, n_states)) Y[(np.arange(n_states), np.arange(n_states))] = for_committors fluxes = np.dot(np.dot(X, tprob), Y) fluxes[(np.arange(n_states), np.arange(n_states))] = np.zeros(n_states) return fluxes
def _fluxes(sources, sinks, tprob, populations, for_committors=None)
Compute the transition path theory flux matrix. Parameters ---------- sources : array_like, int The set of unfolded/reactant states. sinks : array_like, int The set of folded/product states. tprob : np.ndarray Transition matrix populations : np.ndarray, (n_states,) MSM populations for_committors : np.ndarray, optional The forward committors associated with `sources`, `sinks`, and `tprob`. If not provided, is calculated from scratch. If provided, `sources` and `sinks` are ignored. Returns ------- flux_matrix : np.ndarray The flux matrix See Also -------- net_fluxes References ---------- .. [1] Weinan, E. and Vanden-Eijnden, E. Towards a theory of transition paths. J. Stat. Phys. 123, 503-523 (2006). .. [2] Metzner, P., Schutte, C. & Vanden-Eijnden, E. Transition path theory for Markov jump processes. Multiscale Model. Simul. 7, 1192-1219 (2009). .. [3] Berezhkovskii, A., Hummer, G. & Szabo, A. Reactive flux and folding pathways in network models of coarse-grained protein dynamics. J. Chem. Phys. 130, 205102 (2009). .. [4] Noe, Frank, et al. "Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations." PNAS 106.45 (2009): 19011-19016.
2.045923
2.067445
0.98959
data = [] indices = [] fns = [] for file in filenames: kwargs = {} if file.endswith('.h5') else {'top': topology} count = 0 for t in md.iterload(file, chunk=chunk, stride=stride, **kwargs): x = featurizer.partial_transform(t) n_frames = len(x) data.append(x) indices.append(count + (stride * np.arange(n_frames))) fns.extend([file] * n_frames) count += (stride * n_frames) if len(data) == 0: raise ValueError("None!") return np.concatenate(data), np.concatenate(indices), np.array(fns)
def featurize_all(filenames, featurizer, topology, chunk=1000, stride=1)
Load and featurize many trajectory files. Parameters ---------- filenames : list of strings List of paths to MD trajectory files featurizer : Featurizer The featurizer to be invoked on each trajectory trajectory as it is loaded topology : str, Topology, Trajectory Topology or path to a topology file, used to load trajectories with MDTraj chunk : {int, None} If chunk is an int, load the trajectories up in chunks using md.iterload for better memory efficiency (less trajectory data needs to be in memory at once) stride : int, default=1 Only read every stride-th frame. Returns ------- data : np.ndarray, shape=(total_length_of_all_trajectories, n_features) indices : np.ndarray, shape=(total_length_of_all_trajectories) fns : np.ndarray shape=(total_length_of_all_trajectories) These three arrays all share the same indexing, such that data[i] is the featurized version of indices[i]-th frame in the MD trajectory with filename fns[i].
3.295015
2.802971
1.175544