code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
import matplotlib.pyplot as pp grid_width = max(maxx-minx, maxy-miny) / 200.0 ax = kwargs.pop('ax', None) xx, yy = np.mgrid[minx:maxx:grid_width, miny:maxy:grid_width] V = self.potential(xx, yy) # clip off any values greater than 200, since they mess up # the color scheme if ax is None: ax = pp ax.contourf(xx, yy, V.clip(max=200), 40, **kwargs)
def plot(self, minx=-1.5, maxx=1.2, miny=-0.2, maxy=2, **kwargs)
Helper function to plot the Muller potential
3.56454
3.493285
1.020398
value = True for i, X in enumerate(sequences): if not isinstance(X, np.ndarray): if (not allow_trajectory) and isinstance(X, md.Trajectory): value = False break if not isinstance(X, md.Trajectory) and X.ndim != ndim: value = False break if max_iter is not None and i >= max_iter: break if not value: raise ValueError('sequences must be a list of sequences')
def check_iter_of_sequences(sequences, allow_trajectory=False, ndim=2, max_iter=None)
Check that ``sequences`` is a iterable of trajectory-like sequences, suitable as input to ``fit()`` for estimators following the MSMBuilder API. Parameters ---------- sequences : object The object to check allow_trajectory : bool Are ``md.Trajectory``s allowed? ndim : int The expected dimensionality of the sequences max_iter : int, optional Only check at maximum the first ``max_iter`` entries in ``sequences``.
2.696543
2.850149
0.946106
X_2d = np.asarray(np.atleast_2d(X), dtype=dtype, order=order) if force_all_finite: _assert_all_finite(X_2d) if X is X_2d and copy: X_2d = _safe_copy(X_2d) return X_2d
def array2d(X, dtype=None, order=None, copy=False, force_all_finite=True)
Returns at least 2-d array with data from X
2.07291
2.155992
0.961465
meta = pd.DataFrame(parser.parse_fn(fn) for fn in glob.iglob(fn_glob)) return meta.set_index(parser.index).sort_index()
def gather_metadata(fn_glob, parser)
Given a glob and a parser object, create a metadata dataframe. Parameters ---------- fn_glob : str Glob string to find trajectory files. parser : descendant of _Parser Object that handles conversion of filenames to metadata rows.
3.746758
5.00804
0.748149
self._build_counts(sequences) # use a dict like a switch statement: dispatch to different # transition matrix estimators depending on the value of # self.reversible_type fit_method_map = { 'mle': self._fit_mle, 'transpose': self._fit_transpose, 'none': self._fit_asymetric} try: # pull out the appropriate method fit_method = fit_method_map[str(self.reversible_type).lower()] # step 3. estimate transition matrix self.transmat_, self.populations_ = fit_method(self.countsmat_) except KeyError: raise ValueError('reversible_type must be one of %s: %s' % ( ', '.join(fit_method_map.keys()), self.reversible_type)) self._is_dirty = True return self
def fit(self, sequences, y=None)
Estimate model parameters. Parameters ---------- sequences : list of array-like List of sequences, or a single sequence. Each sequence should be a 1D iterable of state labels. Labels can be integers, strings, or other orderable objects. Returns ------- self Notes ----- `None` and `NaN` are recognized immediately as invalid labels. Therefore, transition counts from or to a sequence item which is NaN or None will not be counted. The mapping_ attribute will not include the NaN or None.
5.310899
5.772287
0.920068
r result = [] for y in self.transform(sequences, mode=mode): if right: op = self.right_eigenvectors_[:, 1:] else: op = self.left_eigenvectors_[:, 1:] is_finite = np.isfinite(y) if not np.all(is_finite): value = np.empty((y.shape[0], op.shape[1])) value[is_finite, :] = np.take(op, y[is_finite].astype(np.int), axis=0) value[~is_finite, :] = np.nan else: value = np.take(op, y, axis=0) result.append(value) return result
def eigtransform(self, sequences, right=True, mode='clip')
r"""Transform a list of sequences by projecting the sequences onto the first `n_timescales` dynamical eigenvectors. Parameters ---------- sequences : list of array-like List of sequences, or a single sequence. Each sequence should be a 1D iterable of state labels. Labels can be integers, strings, or other orderable objects. right : bool Which eigenvectors to map onto. Both the left (:math:`\Phi`) and the right (:math`\Psi`) eigenvectors of the transition matrix are commonly used, and differ in their normalization. The two sets of eigenvectors are related by the stationary distribution :: \Phi_i(x) = \Psi_i(x) * \mu(x) In the MSM literature, the right vectors (default here) are approximations to the transfer operator eigenfunctions, whereas the left eigenfunction are approximations to the propagator eigenfunctions. For more details, refer to reference [1]. mode : {'clip', 'fill'} Method by which to treat labels in `sequences` which do not have a corresponding index. This can be due, for example, to the ergodic trimming step. ``clip`` Unmapped labels are removed during transform. If they occur at the beginning or end of a sequence, the resulting transformed sequence will be shorted. If they occur in the middle of a sequence, that sequence will be broken into two (or more) sequences. (Default) ``fill`` Unmapped labels will be replaced with NaN, to signal missing data. [The use of NaN to signal missing data is not fantastic, but it's consistent with current behavior of the ``pandas`` library.] Returns ------- transformed : list of 2d arrays Each element of transformed is an array of shape ``(n_samples, n_timescales)`` containing the transformed data. References ---------- .. [1] Prinz, Jan-Hendrik, et al. "Markov models of molecular kinetics: Generation and validation." J. Chem. Phys. 134.17 (2011): 174105.
2.809679
2.859441
0.982597
r counts, mapping = _transition_counts(sequences) if not set(self.mapping_.keys()).issuperset(mapping.keys()): return -np.inf inverse_mapping = {v: k for k, v in mapping.items()} # maps indices in counts to indices in transmat m2 = _dict_compose(inverse_mapping, self.mapping_) indices = [e[1] for e in sorted(m2.items())] transmat_slice = self.transmat_[np.ix_(indices, indices)] return np.nansum(np.log(transmat_slice) * counts)
def score_ll(self, sequences)
r"""log of the likelihood of sequences with respect to the model Parameters ---------- sequences : list of array-like List of sequences, or a single sequence. Each sequence should be a 1D iterable of state labels. Labels can be integers, strings, or other orderable objects. Returns ------- loglikelihood : float The natural log of the likelihood, computed as :math:`\sum_{ij} C_{ij} \log(P_{ij})` where C is a matrix of counts computed from the input sequences.
5.177042
6.042725
0.85674
doc = '''Markov state model ------------------ Lag time : {lag_time} Reversible type : {reversible_type} Ergodic cutoff : {ergodic_cutoff} Prior counts : {prior_counts} Number of states : {n_states} Number of nonzero entries in counts matrix : {counts_nz} ({percent_counts_nz}%) Nonzero counts matrix entries: Min. : {cnz_min:.1f} 1st Qu.: {cnz_1st:.1f} Median : {cnz_med:.1f} Mean : {cnz_mean:.1f} 3rd Qu.: {cnz_3rd:.1f} Max. : {cnz_max:.1f} Total transition counts : {cnz_sum} counts Total transition counts / lag_time: {cnz_sum_per_lag} units Timescales: [{ts}] units ''' counts_nz = np.count_nonzero(self.countsmat_) cnz = self.countsmat_[np.nonzero(self.countsmat_)] return doc.format( lag_time=self.lag_time, reversible_type=self.reversible_type, ergodic_cutoff=self.ergodic_cutoff, prior_counts=self.prior_counts, n_states=self.n_states_, counts_nz=counts_nz, percent_counts_nz=(100 * counts_nz / self.countsmat_.size), cnz_min=np.min(cnz), cnz_1st=np.percentile(cnz, 25), cnz_med=np.percentile(cnz, 50), cnz_mean=np.mean(cnz), cnz_3rd=np.percentile(cnz, 75), cnz_max=np.max(cnz), cnz_sum=np.sum(cnz), cnz_sum_per_lag=np.sum(cnz)/self.lag_time, ts=', '.join(['{:.2f}'.format(t) for t in self.timescales_]), )
def summarize(self)
Return some diagnostic summary statistics about this Markov model
2.533422
2.497684
1.014309
u, lv, rv = self._get_eigensystem() # make sure to leave off equilibrium distribution with np.errstate(invalid='ignore', divide='ignore'): timescales = - self.lag_time / np.log(u[1:]) return timescales
def timescales_(self)
Implied relaxation timescales of the model. The relaxation of any initial distribution towards equilibrium is given, according to this model, by a sum of terms -- each corresponding to the relaxation along a specific direction (eigenvector) in state space -- which decay exponentially in time. See equation 19. from [1]. Returns ------- timescales : array-like, shape = (n_timescales,) The longest implied relaxation timescales of the model, expressed in units of time-step between indices in the source data supplied to ``fit()``. References ---------- .. [1] Prinz, Jan-Hendrik, et al. "Markov models of molecular kinetics: Generation and validation." J. Chem. Phys. 134.17 (2011): 174105.
11.569642
12.683118
0.912208
if self.reversible_type is None: raise NotImplementedError('reversible_type must be "mle" or "transpose"') n_timescales = min(self.n_timescales if self.n_timescales is not None else self.n_states_ - 1, self.n_states_ - 1) u, lv, rv = self._get_eigensystem() sigma2 = np.zeros(n_timescales + 1) for k in range(n_timescales + 1): dLambda_dT = np.outer(lv[:, k], rv[:, k]) for i in range(self.n_states_): ui = self.countsmat_[:, i] wi = np.sum(ui) cov = wi*np.diag(ui) - np.outer(ui, ui) quad_form = dLambda_dT[i].dot(cov).dot(dLambda_dT[i]) sigma2[k] += quad_form / (wi**2*(wi+1)) return np.sqrt(sigma2)
def uncertainty_eigenvalues(self)
Estimate of the element-wise asymptotic standard deviation in the model eigenvalues. Returns ------- sigma_eigs : np.array, shape=(n_timescales+1,) The estimated symptotic standard deviation in the eigenvalues. References ---------- .. [1] Hinrichs, Nina Singhal, and Vijay S. Pande. "Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics." J. Chem. Phys. 126.24 (2007): 244101.
4.292411
4.104525
1.045775
# drop the first eigenvalue u = self.eigenvalues_[1:] sigma_eigs = self.uncertainty_eigenvalues()[1:] sigma_ts = sigma_eigs / (u * np.log(u)**2) return sigma_ts
def uncertainty_timescales(self)
Estimate of the element-wise asymptotic standard deviation in the model implied timescales. Returns ------- sigma_timescales : np.array, shape=(n_timescales,) The estimated symptotic standard deviation in the implied timescales. References ---------- .. [1] Hinrichs, Nina Singhal, and Vijay S. Pande. "Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics." J. Chem. Phys. 126.24 (2007): 244101.
7.616336
8.300938
0.917527
return np.concatenate([self.features[feat].partial_transform(traj) for feat in self.which_feat], axis=1)
def partial_transform(self, traj)
Featurize an MD trajectory into a vector space. Parameters ---------- traj : mdtraj.Trajectory A molecular dynamics trajectory to featurize. Returns ------- features : np.ndarray, dtype=float, shape=(n_samples, n_features) A featurized trajectory is a 2D array of shape `(length_of_trajectory x n_features)` where each `features[i]` vector is computed by applying the featurization function to the `i`th snapshot of the input trajectory.
5.954515
11.51773
0.516987
all_res = [] for feat in self.which_feat: all_res.extend(self.features[feat].describe_features(traj)) return all_res
def describe_features(self, traj)
Return a list of dictionaries describing the features. Follows the ordering of featurizers in self.which_feat. Parameters ---------- traj : mdtraj.Trajectory The trajectory to describe Returns ------- feature_descs : list of dict Dictionary describing each feature with the following information about the atoms participating in each feature - resnames: unique names of residues - atominds: atom indicies involved in the feature - resseqs: unique residue sequence ids (not necessarily 0-indexed) - resids: unique residue ids (0-indexed) - featurizer: featurizer dependent - featuregroup: other info for the featurizer
4.261335
3.566614
1.194785
features_list = self.feat.describe_features(traj) return [features_list[i] for i in self.indices]
def describe_features(self, traj)
Returns a sliced version of the feature descriptor Parameters ---------- traj : MDtraj trajectory object Returns ------- list of sliced dictionaries describing each feature.
4.580416
5.347209
0.856599
check_iter_of_sequences(sequences) s = super(MultiSequencePreprocessingMixin, self) s.fit(self._concat(sequences)) return self
def fit(self, sequences, y=None)
Fit Preprocessing to X. Parameters ---------- sequences : list of array-like, each of shape [sequence_length, n_features] A list of multivariate timeseries. Each sequence may have a different length, but they all must have the same number of features. y : None Ignored Returns ------- self
15.502545
21.251339
0.729486
s = super(MultiSequencePreprocessingMixin, self) return s.transform(sequence)
def partial_transform(self, sequence)
Apply preprocessing to single sequence Parameters ---------- sequence: array like, shape (n_samples, n_features) A single sequence to transform Returns ------- out : array like, shape (n_samples, n_features)
12.956225
17.694736
0.732208
s = super(MultiSequencePreprocessingMixin, self) if hasattr(s, 'fit'): return s.fit(sequence) return self
def partial_fit(self, sequence, y=None)
Fit Preprocessing to X. Parameters ---------- sequence : array-like, [sequence_length, n_features] A multivariate timeseries. y : None Ignored Returns ------- self
7.573755
8.963161
0.844987
return self.partial_fit(np.concatenate(X, axis=0))
def fit(self, X, y=None)
Fit Preprocessing to X. Parameters ---------- sequence : array-like, [sequence_length, n_features] A multivariate timeseries. y : None Ignored Returns ------- self
8.166861
16.840052
0.484966
check_iter_of_sequences(sequences) for sequence in sequences: s = super(MultiSequencePreprocessingMixin, self) s.partial_fit(sequence) return self
def fit(self, sequences, y=None)
Fit Preprocessing to X. Parameters ---------- sequences : list of array-like, each of shape [sequence_length, n_features] A list of multivariate timeseries. Each sequence may have a different length, but they all must have the same number of features. y : None Ignored Returns ------- self
11.977576
16.829081
0.711719
# check to make sure topologies are consistent with the reference frame try: assert traj.top == self.reference_frame.top except: warnings.warn("The topology of the trajectory is not" + "the same as that of the reference frame," + "which might give meaningless results.") distances, _ = md.compute_contacts(traj, self.contacts, self.scheme, ignore_nonprotein=False, periodic = self.periodic) return self._transform(distances)
def partial_transform(self, traj)
Featurize an MD trajectory into a vector space derived from residue-residue distances Parameters ---------- traj : mdtraj.Trajectory A molecular dynamics trajectory to featurize. Returns ------- features : np.ndarray, dtype=float, shape=(n_samples, n_features) A featurized trajectory is a 2D array of shape `(length_of_trajectory x n_features)` where each `features[i]` vector is computed by applying the featurization function to the `i`th snapshot of the input trajectory. See Also -------- transform : simultaneously featurize a collection of MD trajectories
7.193724
7.658197
0.93935
feature_descs = [] # fill in the atom indices using just the first frame distances, residue_indices = md.compute_contacts(traj[0], self.contacts, self.scheme, ignore_nonprotein=False, periodic=self.periodic) top = traj.topology aind = [] resseqs = [] resnames = [] for resid_ids in residue_indices: aind += ["N/A"] resseqs += [[top.residue(ri).resSeq for ri in resid_ids]] resnames += [[top.residue(ri).name for ri in resid_ids]] zippy = itertools.product(["Ligand Contact"], [self.scheme], ["N/A"], zip(aind, resseqs, residue_indices, resnames)) feature_descs.extend(dict_maker(zippy)) return feature_descs
def describe_features(self, traj)
Return a list of dictionaries describing the contacts features. Parameters ---------- traj : mdtraj.Trajectory The trajectory to describe Returns ------- feature_descs : list of dict Dictionary describing each feature with the following information about the atoms participating in each dihedral - resnames: unique names of residues - atominds: the four atom indicies - resseqs: unique residue sequence ids (not necessarily 0-indexed) - resids: unique residue ids (0-indexed) - featurizer: Contact - featuregroup: ca, heavy etc.
6.571094
6.014325
1.092574
# check to make sure topologies are consistent with the reference frame try: assert traj.top == self.reference_frame.top except: warnings.warn("The topology of the trajectory is not" + "the same as that of the reference frame," + "which might give meaningless results.") X = np.zeros((traj.n_frames, self.n_features)) for f in range(self.n_features): frame = self.reference_traj[f] traj.superpose(frame, atom_indices=self.align_indices) X[:,f] = self._naive_rmsd(traj, frame, self.calculate_indices) return X
def partial_transform(self, traj)
Featurize an MD trajectory into a vector space via distance after superposition Parameters ---------- traj : mdtraj.Trajectory A molecular dynamics trajectory to featurize. Returns ------- features : np.ndarray, shape=(n_frames, n_ref_frames) The RMSD value of each frame of the input trajectory to be featurized versus each frame in the reference trajectory. The number of features is the number of reference frames. See Also -------- transform : simultaneously featurize a collection of MD trajectories
5.132881
4.84587
1.059228
def retry_func(func): @wraps(func) def wrapper(*args, **kwargs): num_retries = 0 while num_retries <= max_retries: try: ret = func(*args, **kwargs) break except HTTPError: if num_retries == max_retries: raise num_retries += 1 time.sleep(5) return ret return wrapper return retry_func
def retry(max_retries=1)
Retry a function `max_retries` times.
1.997395
1.933396
1.033102
if data_home is not None: return _expand_and_makedir(data_home) msmb_data = has_msmb_data() if msmb_data is not None: return _expand_and_makedir(msmb_data) data_home = environ.get('MSMBUILDER_DATA', join('~', 'msmbuilder_data')) return _expand_and_makedir(data_home)
def get_data_home(data_home=None)
Return the path of the msmbuilder data dir. As of msmbuilder v3.6, this function will prefer data downloaded via the msmb_data conda package (and located within the python installation directory). If this package exists, we will use its data directory as the data home. Otherwise, we use the old logic: This folder is used by some large dataset loaders to avoid downloading the data several times. By default the data dir is set to a folder named 'msmbuilder_data' in the user's home folder. Alternatively, it can be set by the 'MSMBUILDER_DATA' environment variable or programmatically by giving an explicit folder path. The '~' symbol is expanded to the user home folder. If the folder does not already exist, it is automatically created.
3.782146
2.822734
1.339888
lines = [s.strip() for s in cls.__doc__.splitlines()] note_i = lines.index("Notes") return "\n".join(lines[note_i + 2:])
def description(cls)
Get a description from the Notes section of the docstring.
4.238931
2.977722
1.423548
generic_keys = set(properties.keys()) - set(exclude_list) for generic_key in generic_keys: self.__setattr__( self._convert_to_snake_case(generic_key), properties[generic_key], )
def set_generic_keys(self, properties, exclude_list)
Sets all the key value pairs that were not set manually in __init__.
2.853903
2.442372
1.168497
star_resources = [] for statement in self.statements: if not statement.resource: continue if statement.resource == "*" or (isinstance(statement.resource, list) and "*" in statement.resource): star_resources.append(statement) return star_resources
def star_resource_statements(self)
Find statements with a resources that is a * or has a * in it.
2.9098
2.524237
1.152744
wildcard_allowed = [] for statement in self.statements: if statement.wildcard_actions(pattern) and statement.effect == "Allow": wildcard_allowed.append(statement) return wildcard_allowed
def wildcard_allowed_actions(self, pattern=None)
Find statements which allow wildcard actions. A pattern can be specified for the wildcard action
4.98648
4.755055
1.048669
wildcard_allowed = [] for statement in self.statements: if statement.wildcard_principals(pattern) and statement.effect == "Allow": wildcard_allowed.append(statement) return wildcard_allowed
def wildcard_allowed_principals(self, pattern=None)
Find statements which allow wildcard principals. A pattern can be specified for the wildcard principal
4.94492
4.473185
1.105458
if not whitelist: return [] nonwhitelisted = [] for statement in self.statements: if statement.non_whitelisted_principals(whitelist) and statement.effect == "Allow": nonwhitelisted.append(statement) return nonwhitelisted
def nonwhitelisted_allowed_principals(self, whitelist=None)
Find non whitelisted allowed principals.
3.953676
3.61427
1.093907
not_principals = [] for statement in self.statements: if statement.not_principal and statement.effect == "Allow": not_principals.append(statement) return not_principals
def allows_not_principal(self)
Find allowed not-principals.
4.091753
3.354367
1.219829
self.parameters = [] for param_name, param_value in parameters.items(): p = Parameter(param_name, param_value) if p: self.parameters.append(p)
def parse_parameters(self, parameters)
Parses and sets parameters in the model.
2.790042
2.688282
1.037853
self.resources = {} resource_factory = ResourceFactory() for res_id, res_value in resources.items(): r = resource_factory.create_resource(res_id, res_value) if r: if r.resource_type in self.resources: self.resources[r.resource_type].append(r) else: self.resources[r.resource_type] = [r]
def parse_resources(self, resources)
Parses and sets resources in the model using a factory.
2.227008
1.971234
1.129753
if self._session is None: self._session = requests.Session() self._session.headers.update(self._headers) return self._session
def session(self)
Get session object to benefit from connection pooling. http://docs.python-requests.org/en/master/user/advanced/#session-objects :rtype: requests.Session
2.531342
2.57665
0.982416
if self._client is None: self._client = KeycloakClient(server_url=self._server_url, headers=self._headers) return self._client
def client(self)
:rtype: keycloak.client.KeycloakClient
3.896165
2.61988
1.487154
return KeycloakOpenidConnect(realm=self, client_id=client_id, client_secret=client_secret)
def open_id_connect(self, client_id, client_secret)
Get OpenID Connect client :param str client_id: :param str client_secret: :rtype: keycloak.openid_connect.KeycloakOpenidConnect
4.828731
4.15101
1.163267
payload = OrderedDict(username=username) for key in USER_KWARGS: from keycloak.admin.clientroles import to_camel_case if key in kwargs: payload[to_camel_case(key)] = kwargs[key] return self._client.post( url=self._client.get_full_url( self.get_path('collection', realm=self._realm_name) ), data=json.dumps(payload, sort_keys=True) )
def create(self, username, **kwargs)
Create a user in Keycloak http://www.keycloak.org/docs-api/3.4/rest-api/index.html#_users_resource :param str username: :param object credentials: (optional) :param str first_name: (optional) :param str last_name: (optional) :param str email: (optional) :param boolean enabled: (optional)
4.427022
4.890455
0.905237
return self._client.get( url=self._client.get_full_url( self.get_path('collection', realm=self._realm_name) ) )
def all(self)
Return all registered users http://www.keycloak.org/docs-api/3.4/rest-api/index.html#_users_resource
7.393078
4.95914
1.490798
self._user = self._client.get( url=self._client.get_full_url( self.get_path( 'single', realm=self._realm_name, user_id=self._user_id ) ) ) self._user_id = self.user["id"] return self._user
def get(self)
Return registered user with the given user id. http://www.keycloak.org/docs-api/3.4/rest-api/index.html#_users_resource
4.768811
3.967529
1.20196
payload = {} for k, v in self.user.items(): payload[k] = v for key in USER_KWARGS: from keycloak.admin.clientroles import to_camel_case if key in kwargs: payload[to_camel_case(key)] = kwargs[key] result = self._client.put( url=self._client.get_full_url( self.get_path( 'single', realm=self._realm_name, user_id=self._user_id ) ), data=json.dumps(payload, sort_keys=True) ) self.get() return result
def update(self, **kwargs)
Update existing user. https://www.keycloak.org/docs-api/2.5/rest-api/index.html#_userrepresentation :param str first_name: first_name for user :param str last_name: last_name for user :param str email: Email for user :param bool email_verified: User email verified :param Map attributes: Atributes in user :param string array realm_roles: Realm Roles :param Map client_roles: Client Roles :param string array groups: Groups for user
3.964881
3.832154
1.034635
return self._realm.client.post( self.well_known['resource_registration_endpoint'], data=self._get_data(name=name, **kwargs), headers=self.get_headers(token) )
def resource_set_create(self, token, name, **kwargs)
Create a resource set. https://docs.kantarainitiative.org/uma/rec-oauth-resource-reg-v1_0_1.html#rfc.section.2.2.1 :param str token: client access token :param str id: Identifier of the resource set :param str name: :param str uri: (optional) :param str type: (optional) :param list scopes: (optional) :param str icon_url: (optional) :param str DisplayName: (optional) :param boolean ownerManagedAccess: (optional) :param str owner: (optional) :rtype: str
5.023178
5.402681
0.929756
return self._realm.client.put( '{}/{}'.format( self.well_known['resource_registration_endpoint'], id), data=self._get_data(name=name, **kwargs), headers=self.get_headers(token) )
def resource_set_update(self, token, id, name, **kwargs)
Update a resource set. https://docs.kantarainitiative.org/uma/rec-oauth-resource-reg-v1_0_1.html#update-resource-set :param str token: client access token :param str id: Identifier of the resource set :param str name: :param str uri: (optional) :param str type: (optional) :param list scopes: (optional) :param str icon_url: (optional) :rtype: str
4.894165
4.83914
1.011371
return self._realm.client.get( '{}/{}'.format( self.well_known['resource_registration_endpoint'], id), headers=self.get_headers(token) )
def resource_set_read(self, token, id)
Read a resource set. https://docs.kantarainitiative.org/uma/rec-oauth-resource-reg-v1_0_1.html#read-resource-set :param str token: client access token :param str id: Identifier of the resource set :rtype: dict
6.448932
7.113332
0.906598
data = dict(resource_id=id, resource_scopes=scopes, **kwargs) return self._realm.client.post( self.well_known['permission_endpoint'], data=self._dumps([data]), headers=self.get_headers(token) )
def resource_create_ticket(self, token, id, scopes, **kwargs)
Create a ticket form permission to resource. https://www.keycloak.org/docs/latest/authorization_services/index.html#_service_protection_permission_api_papi :param str token: user access token :param str id: resource id :param list scopes: scopes access is wanted :param dict claims: (optional) :rtype: dict
5.454419
5.664816
0.962859
return self._realm.client.post( '{}/{}'.format(self.well_known['policy_endpoint'], id), data=self._get_data(name=name, scopes=scopes, **kwargs), headers=self.get_headers(token) )
def resource_associate_permission(self, token, id, name, scopes, **kwargs)
Associates a permission with a Resource. https://www.keycloak.org/docs/latest/authorization_services/index.html#_service_authorization_uma_policy_api :param str token: client access token :param str id: resource id :param str name: permission name :param list scopes: scopes access is wanted :param str description:optional :param list roles: (optional) :param list groups: (optional) :param list clients: (optional) :param str condition: (optional) :rtype: dict
4.393842
5.240376
0.838459
return self._realm.client.put( '{}/{}'.format(self.well_known['policy_endpoint'], id), data=self._dumps(kwargs), headers=self.get_headers(token) )
def permission_update(self, token, id, **kwargs)
To update an existing permission. https://www.keycloak.org/docs/latest/authorization_services/index.html#_service_authorization_uma_policy_api :param str token: client access token :param str id: permission id :rtype: dict
5.88362
7.309687
0.804907
return self._realm.client.delete( '{}/{}'.format(self.well_known['policy_endpoint'], id), headers=self.get_headers(token) )
def permission_delete(self, token, id)
Removing a Permission. https://www.keycloak.org/docs/latest/authorization_services/index.html#removing-a-permission :param str token: client access token :param str id: permission id :rtype: dict
6.368392
8.749663
0.727844
return self._realm.client.get( self.well_known['policy_endpoint'], headers=self.get_headers(token), **kwargs )
def permission_list(self, token, **kwargs)
Querying permission https://www.keycloak.org/docs/latest/authorization_services/index.html#querying-permission :param str token: client access token :param str resource: (optional) :param str name: (optional) :param str scope: (optional) :rtype: dict
6.850407
11.314564
0.60545
headers = {"Authorization": "Bearer %s" % token} url = self._realm.client.get_full_url( PATH_ENTITLEMENT.format(self._realm.realm_name, self._client_id) ) return self._realm.client.get(url, headers=headers)
def entitlement(self, token)
Client applications can use a specific endpoint to obtain a special security token called a requesting party token (RPT). This token consists of all the entitlements (or permissions) for a user as a result of the evaluation of the permissions and authorization policies associated with the resources being requested. With an RPT, client applications can gain access to protected resources at the resource server. http://www.keycloak.org/docs/latest/authorization_services/index .html#_service_entitlement_api :rtype: dict
3.704324
3.992744
0.927764
missing_padding = len(token) % 4 if missing_padding != 0: token += '=' * (4 - missing_padding) return json.loads(base64.b64decode(token).decode('utf-8'))
def _decode_token(cls, token)
Permission information is encoded in an authorization token.
2.282079
2.129614
1.071593
headers = { "Authorization": "Bearer %s" % token, 'Content-type': 'application/x-www-form-urlencoded', } data = [ ('grant_type', 'urn:ietf:params:oauth:grant-type:uma-ticket'), ('audience', self._client_id), ('response_include_resource_name', True), ] if resource_scopes_tuples: for atuple in resource_scopes_tuples: data.append(('permission', '#'.join(atuple))) data.append(('submit_request', submit_request)) elif ticket: data.append(('ticket', ticket)) authz_info = {} try: response = self._realm.client.post( self.well_known['token_endpoint'], data=urlencode(data), headers=headers, ) error = response.get('error') if error: self.logger.warning( '%s: %s', error, response.get('error_description') ) else: token = response.get('refresh_token') decoded_token = self._decode_token(token.split('.')[1]) authz_info = decoded_token.get('authorization', {}) except KeycloakClientError as error: self.logger.warning(str(error)) return authz_info
def get_permissions(self, token, resource_scopes_tuples=None, submit_request=False, ticket=None)
Request permissions for user from keycloak server. https://www.keycloak.org/docs/latest/authorization_services/index .html#_service_protection_permission_api_papi :param str token: client access token :param Iterable[Tuple[str, str]] resource_scopes_tuples: list of tuples (resource, scope) :param boolean submit_request: submit request if not allowed to access? :param str ticket: Permissions ticket rtype: dict
2.674719
2.807078
0.952848
return self.eval_permissions( token=token, resource_scopes_tuples=[(resource, scope)], submit_request=submit_request )
def eval_permission(self, token, resource, scope, submit_request=False)
Evalutes if user has permission for scope on resource. :param str token: client access token :param str resource: resource to access :param str scope: scope on resource :param boolean submit_request: submit request if not allowed to access? rtype: boolean
4.602666
5.534023
0.831703
permissions = self.get_permissions( token=token, resource_scopes_tuples=resource_scopes_tuples, submit_request=submit_request ) res = [] for permission in permissions.get('permissions', []): for scope in permission.get('scopes', []): ptuple = (permission.get('rsname'), scope) if ptuple in resource_scopes_tuples: res.append(ptuple) return res == resource_scopes_tuples
def eval_permissions(self, token, resource_scopes_tuples=None, submit_request=False)
Evaluates if user has permission for all the resource scope combinations. :param str token: client access token :param Iterable[Tuple[str, str]] resource_scopes_tuples: resource to access :param boolean submit_request: submit request if not allowed to access? rtype: boolean
2.822711
3.010509
0.937619
return self._client.post( url=self._client.get_full_url( self.get_path( 'single', realm=self._realm_name, id=self._user_id ) ), data=json.dumps(roles, sort_keys=True) )
def add(self, roles)
:param roles: _rolerepresentation array keycloak api
4.191003
3.695123
1.134198
return jwt.decode( token, key, audience=kwargs.pop('audience', None) or self._client_id, algorithms=algorithms or ['RS256'], **kwargs )
def decode_token(self, token, key, algorithms=None, **kwargs)
A JSON Web Key (JWK) is a JavaScript Object Notation (JSON) data structure that represents a cryptographic key. This specification also defines a JWK Set JSON data structure that represents a set of JWKs. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and IANA registries established by that specification. https://tools.ietf.org/html/rfc7517 :param str token: A signed JWS to be verified. :param str key: A key to attempt to verify the payload with. :param str,list algorithms: (optional) Valid algorithms that should be used to verify the JWS. Defaults to `['RS256']` :param str audience: (optional) The intended audience of the token. If the "aud" claim is included in the claim set, then the audience must be included and must equal the provided claim. :param str,iterable issuer: (optional) Acceptable value(s) for the issuer of the token. If the "iss" claim is included in the claim set, then the issuer must be given and the claim in the token must be among the acceptable values. :param str subject: (optional) The subject of the token. If the "sub" claim is included in the claim set, then the subject must be included and must equal the provided claim. :param str access_token: (optional) An access token returned alongside the id_token during the authorization grant flow. If the "at_hash" claim is included in the claim set, then the access_token must be included, and it must match the "at_hash" claim. :param dict options: (optional) A dictionary of options for skipping validation steps. defaults: .. code-block:: python { 'verify_signature': True, 'verify_aud': True, 'verify_iat': True, 'verify_exp': True, 'verify_nbf': True, 'verify_iss': True, 'verify_sub': True, 'verify_jti': True, 'leeway': 0, } :return: The dict representation of the claims set, assuming the signature is valid and all requested data validation passes. :rtype: dict :raises jose.exceptions.JWTError: If the signature is invalid in any way. :raises jose.exceptions.ExpiredSignatureError: If the signature has expired. :raises jose.exceptions.JWTClaimsError: If any claim is invalid in any way.
3.88221
5.799247
0.669433
return self._realm.client.post(self.get_url('end_session_endpoint'), data={ 'refresh_token': refresh_token, 'client_id': self._client_id, 'client_secret': self._client_secret })
def logout(self, refresh_token)
The logout endpoint logs out the authenticated user. :param str refresh_token:
3.457398
4.344213
0.795863
url = self.well_known['userinfo_endpoint'] return self._realm.client.get(url, headers={ "Authorization": "Bearer {}".format( token ) })
def userinfo(self, token)
The UserInfo Endpoint is an OAuth 2.0 Protected Resource that returns Claims about the authenticated End-User. To obtain the requested Claims about the End-User, the Client makes a request to the UserInfo Endpoint using an Access Token obtained through OpenID Connect Authentication. These Claims are normally represented by a JSON object that contains a collection of name and value pairs for the Claims. http://openid.net/specs/openid-connect-core-1_0.html#UserInfo :param str token: :rtype: dict
7.999733
7.810247
1.024261
payload = {'response_type': 'code', 'client_id': self._client_id} for key in kwargs.keys(): # Add items in a sorted way for unittest purposes. payload[key] = kwargs[key] payload = sorted(payload.items(), key=lambda val: val[0]) params = urlencode(payload) url = self.get_url('authorization_endpoint') return '{}?{}'.format(url, params)
def authorization_url(self, **kwargs)
Get authorization URL to redirect the resource owner to. https://tools.ietf.org/html/rfc6749#section-4.1.1 :param str redirect_uri: (optional) Absolute URL of the client where the user-agent will be redirected to. :param str scope: (optional) Space delimited list of strings. :param str state: (optional) An opaque value used by the client to maintain state between the request and callback :return: URL to redirect the resource owner to :rtype: str
3.79753
3.925326
0.967443
return self._token_request(grant_type='authorization_code', code=code, redirect_uri=redirect_uri)
def authorization_code(self, code, redirect_uri)
Retrieve access token by `authorization_code` grant. https://tools.ietf.org/html/rfc6749#section-4.1.3 :param str code: The authorization code received from the authorization server. :param str redirect_uri: the identical value of the "redirect_uri" parameter in the authorization request. :rtype: dict :return: Access token response
3.580948
5.307037
0.674755
return self._token_request(grant_type='password', username=username, password=password, **kwargs)
def password_credentials(self, username, password, **kwargs)
Retrieve access token by 'password credentials' grant. https://tools.ietf.org/html/rfc6749#section-4.3 :param str username: The user name to obtain an access token for :param str password: The user's password :rtype: dict :return: Access token response
5.249111
6.124967
0.857002
return self._token_request(grant_type='refresh_token', refresh_token=refresh_token, **kwargs)
def refresh_token(self, refresh_token, **kwargs)
Refresh an access token https://tools.ietf.org/html/rfc6749#section-6 :param str refresh_token: :param str scope: (optional) Space delimited list of strings. :rtype: dict :return: Access token response
3.897741
5.466653
0.713003
payload = { 'grant_type': grant_type, 'client_id': self._client_id, 'client_secret': self._client_secret } payload.update(**kwargs) return self._realm.client.post(self.get_url('token_endpoint'), data=payload)
def _token_request(self, grant_type, **kwargs)
Do the actual call to the token end-point. :param grant_type: :param kwargs: See invoking methods. :return:
2.838407
3.252654
0.872643
async with req_ctx as response: try: response.raise_for_status() except aiohttp.client.ClientResponseError as cre: text = await response.text(errors='replace') self.logger.debug('{cre}; ' 'Request info: {cre.request_info}; ' 'Response headers: {cre.headers}; ' 'Response status: {cre.status}; ' 'Content: {text}'.format(cre=cre, text=text)) raise KeycloakClientError(original_exc=cre) try: result = await response.json(content_type=None) except ValueError: result = await response.read() return result
async def _handle_response(self, req_ctx) -> Any
:param aiohttp.client._RequestContextManager req_ctx :return:
3.228522
3.09973
1.041549
payload = OrderedDict(name=name) for key in ROLE_KWARGS: if key in kwargs: payload[to_camel_case(key)] = kwargs[key] return self._client.post( url=self._client.get_full_url( self.get_path('collection', realm=self._realm_name, id=self._client_id) ), data=json.dumps(payload, sort_keys=True) )
def create(self, name, **kwargs)
Create new role http://www.keycloak.org/docs-api/3.4/rest-api/index.html #_roles_resource :param str name: Name for the role :param str description: (optional) :param str id: (optional) :param bool client_role: (optional) :param bool composite: (optional) :param object composites: (optional) :param str container_id: (optional) :param bool scope_param_required: (optional)
4.401087
4.382604
1.004217
payload = OrderedDict(name=name) for key in ROLE_KWARGS: if key in kwargs: payload[to_camel_case(key)] = kwargs[key] return self._client.put( url=self._client.get_full_url( self.get_path('single', realm=self._realm_name, id=self._client_id, role_name=self._role_name) ), data=json.dumps(payload, sort_keys=True) )
def update(self, name, **kwargs)
Update existing role. http://www.keycloak.org/docs-api/3.4/rest-api/index.html#_roles_resource :param str name: Name for the role :param str description: (optional) :param str id: (optional) :param bool client_role: (optional) :param bool composite: (optional) :param object composites: (optional) :param str container_id: (optional) :param bool scope_param_required: (optional)
4.004014
4.022539
0.995395
# also check cpio cpio = util.find_program("cpio") if not cpio: raise util.PatoolError("cpio(1) is required for rpm2cpio extraction; please install it") path = util.shell_quote(os.path.abspath(archive)) cmdlist = [util.shell_quote(cmd), path, "|", util.shell_quote(cpio), '--extract', '--make-directories', '--preserve-modification-time', '--no-absolute-filenames', '--force-local', '--nonmatching', r'"*\.\.*"'] if verbosity > 1: cmdlist.append('-v') return (cmdlist, {'cwd': outdir, 'shell': True})
def extract_rpm (archive, compression, cmd, verbosity, interactive, outdir)
Extract a RPM archive.
6.061433
6.224617
0.973784
try: with tarfile.open(archive) as tfile: tfile.list(verbose=verbosity>1) except Exception as err: msg = "error listing %s: %s" % (archive, err) raise util.PatoolError(msg) return None
def list_tar (archive, compression, cmd, verbosity, interactive)
List a TAR archive with the tarfile Python module.
4.091401
4.178373
0.979185
try: with tarfile.open(archive) as tfile: tfile.extractall(path=outdir) except Exception as err: msg = "error extracting %s: %s" % (archive, err) raise util.PatoolError(msg) return None
def extract_tar (archive, compression, cmd, verbosity, interactive, outdir)
Extract a TAR archive with the tarfile Python module.
3.373628
3.417433
0.987182
mode = get_tar_mode(compression) try: with tarfile.open(archive, mode) as tfile: for filename in filenames: tfile.add(filename) except Exception as err: msg = "error creating %s: %s" % (archive, err) raise util.PatoolError(msg) return None
def create_tar (archive, compression, cmd, verbosity, interactive, filenames)
Create a TAR archive with the tarfile Python module.
3.362991
3.29165
1.021673
if compression == 'gzip': return 'w:gz' if compression == 'bzip2': return 'w:bz2' if compression == 'lzma' and py_lzma: return 'w:xz' if compression: msg = 'pytarfile does not support %s for tar compression' raise util.PatoolError(msg % compression) # no compression return 'w'
def get_tar_mode (compression)
Determine tarfile open mode according to the given compression.
3.336429
3.331508
1.001477
cmdlist = [util.shell_quote(cmd)] if verbosity > 1: cmdlist.append('-v') cmdlist.extend(['-c', '--']) cmdlist.extend([util.shell_quote(x) for x in filenames]) cmdlist.extend(['>', util.shell_quote(archive)]) return (cmdlist, {'shell': True})
def create_singlefile_standard (archive, compression, cmd, verbosity, interactive, filenames)
Standard routine to create a singlefile archive (like gzip).
3.390628
3.356664
1.010118
cmdlist = [cmd, '-n'] add_star_opts(cmdlist, compression, verbosity) cmdlist.append("file=%s" % archive) return cmdlist
def list_tar (archive, compression, cmd, verbosity, interactive)
List a TAR archive.
8.692081
8.431235
1.030938
cmdlist = [cmd, '-c'] add_star_opts(cmdlist, compression, verbosity) cmdlist.append("file=%s" % archive) cmdlist.extend(filenames) return cmdlist
def create_tar (archive, compression, cmd, verbosity, interactive, filenames)
Create a TAR archive.
6.11434
6.03195
1.013659
cmdlist = [cmd, 'x', '-r'] if not interactive: cmdlist.append('-y') cmdlist.extend([archive, outdir]) return cmdlist
def extract_arj (archive, compression, cmd, verbosity, interactive, outdir)
Extract an ARJ archive.
4.437896
4.287957
1.034967
cmdlist = [cmd] if verbosity > 1: cmdlist.append('v') else: cmdlist.append('l') if not interactive: cmdlist.append('-y') cmdlist.extend(['-r', archive]) return cmdlist
def list_arj (archive, compression, cmd, verbosity, interactive)
List an ARJ archive.
3.138335
3.121249
1.005474
cmdlist = [cmd, 'a', '-r'] if not interactive: cmdlist.append('-y') cmdlist.append(archive) cmdlist.extend(filenames) return cmdlist
def create_arj (archive, compression, cmd, verbosity, interactive, filenames)
Create an ARJ archive.
3.85667
3.935459
0.97998
cmdlist = [cmd, 'a', archive] cmdlist.extend(filenames) cmdlist.extend(['-method', '4']) return cmdlist
def create_zpaq(archive, compression, cmd, verbosity, interactive, filenames)
Create a ZPAQ archive.
7.211496
7.373081
0.978084
return [cmd, '-d', outdir, archive]
def extract_alzip (archive, compression, cmd, verbosity, interactive, outdir)
Extract a ALZIP archive.
16.532717
18.566353
0.890467
cmdlist = [cmd, '--extract'] add_tar_opts(cmdlist, compression, verbosity) cmdlist.extend(["--file", archive, '--directory', outdir]) return cmdlist
def extract_tar (archive, compression, cmd, verbosity, interactive, outdir)
Extract a TAR archive.
4.830472
4.669214
1.034537
cmdlist = [cmd, '--list'] add_tar_opts(cmdlist, compression, verbosity) cmdlist.extend(["--file", archive]) return cmdlist
def list_tar (archive, compression, cmd, verbosity, interactive)
List a TAR archive.
5.636677
5.478647
1.028845
cmdlist = [cmd, '--create'] add_tar_opts(cmdlist, compression, verbosity) cmdlist.extend(["--file", archive, '--']) cmdlist.extend(filenames) return cmdlist
def create_tar (archive, compression, cmd, verbosity, interactive, filenames)
Create a TAR archive.
4.800838
4.531335
1.059475
progname = os.path.basename(cmdlist[0]) if compression == 'gzip': cmdlist.append('-z') elif compression == 'compress': cmdlist.append('-Z') elif compression == 'bzip2': cmdlist.append('-j') elif compression in ('lzma', 'xz') and progname == 'bsdtar': cmdlist.append('--%s' % compression) elif compression in ('lzma', 'xz', 'lzip'): # use the compression name as program name since # tar is picky which programs it can use program = compression # set compression program cmdlist.extend(['--use-compress-program', program]) if verbosity > 1: cmdlist.append('--verbose') if progname == 'tar': cmdlist.append('--force-local')
def add_tar_opts (cmdlist, compression, verbosity)
Add tar options to cmdlist.
3.601314
3.44281
1.046039
# archmage can only extract in non-existing directories # so a nice dirname is created name = util.get_single_outfile("", archive) outfile = os.path.join(outdir, name) return [cmd, '-x', os.path.abspath(archive), outfile]
def extract_chm (archive, compression, cmd, verbosity, interactive, outdir)
Extract a CHM archive.
13.252467
14.876823
0.890813
try: with zipfile.ZipFile(archive, "r") as zfile: for name in zfile.namelist(): if verbosity >= 0: print(name) except Exception as err: msg = "error listing %s: %s" % (archive, err) raise util.PatoolError(msg) return None
def list_zip(archive, compression, cmd, verbosity, interactive)
List member of a ZIP archive with the zipfile Python module.
3.137389
3.18537
0.984937
try: with zipfile.ZipFile(archive) as zfile: zfile.extractall(outdir) except Exception as err: msg = "error extracting %s: %s" % (archive, err) raise util.PatoolError(msg) return None
def extract_zip(archive, compression, cmd, verbosity, interactive, outdir)
Extract a ZIP archive with the zipfile Python module.
3.085525
3.247449
0.950138
try: with zipfile.ZipFile(archive, 'w') as zfile: for filename in filenames: if os.path.isdir(filename): write_directory(zfile, filename) else: zfile.write(filename) except Exception as err: msg = "error creating %s: %s" % (archive, err) raise util.PatoolError(msg) return None
def create_zip(archive, compression, cmd, verbosity, interactive, filenames)
Create a ZIP archive with the zipfile Python module.
2.69245
2.791517
0.964511
for dirpath, dirnames, filenames in os.walk(directory): zfile.write(dirpath) for filename in filenames: zfile.write(os.path.join(dirpath, filename))
def write_directory (zfile, directory)
Write recursively all directories and filenames to zipfile instance.
1.99054
1.702591
1.169124
cmdlist = [util.shell_quote(cmd)] outfile = util.get_single_outfile(outdir, archive, extension=".wav") cmdlist.extend(['-x', '-', util.shell_quote(outfile), '<', util.shell_quote(archive)]) return (cmdlist, {'shell': True})
def extract_shn (archive, compression, cmd, verbosity, interactive, outdir)
Decompress a SHN archive to a WAV file.
7.698307
6.607451
1.165095
if len(filenames) > 1: raise util.PatoolError("multiple filenames for shorten not supported") cmdlist = [util.shell_quote(cmd)] cmdlist.extend(['-', util.shell_quote(archive), '<', util.shell_quote(filenames[0])]) return (cmdlist, {'shell': True})
def create_shn (archive, compression, cmd, verbosity, interactive, filenames)
Compress a WAV file to a SHN archive.
6.710344
6.632543
1.01173
check_archive_ext(archive) cmdlist = [cmd, '-d', outdir] if verbosity > 1: cmdlist.append('-v') cmdlist.extend(['u', archive]) return cmdlist
def extract_dms (archive, compression, cmd, verbosity, interactive, outdir)
Extract a DMS archive.
5.136802
4.997931
1.027786
check_archive_ext(archive) return [cmd, 'v', archive]
def list_dms (archive, compression, cmd, verbosity, interactive)
List a DMS archive.
22.264875
23.31345
0.955023
if not archive.lower().endswith(".dms"): rest = archive[-4:] msg = "xdms(1) archive file must end with `.dms', not `%s'" % rest raise util.PatoolError(msg)
def check_archive_ext (archive)
xdms(1) cannot handle files with extensions other than '.dms'.
11.193983
6.451819
1.735012
cmdlist = [cmd] cmdlist.append('-l') if verbosity > 1: cmdlist.append('-v') cmdlist.append(archive) return cmdlist
def list_xz (archive, compression, cmd, verbosity, interactive)
List a XZ archive.
3.191787
3.108344
1.026845
cmdlist = [util.shell_quote(cmd), '--format=lzma'] if verbosity > 1: cmdlist.append('-v') outfile = util.get_single_outfile(outdir, archive) cmdlist.extend(['-c', '-d', '--', util.shell_quote(archive), '>', util.shell_quote(outfile)]) return (cmdlist, {'shell': True})
def extract_lzma(archive, compression, cmd, verbosity, interactive, outdir)
Extract an LZMA archive.
4.60701
4.716743
0.976736
cmdlist = [cmd, 'x'] if not outdir.endswith('/'): outdir += '/' cmdlist.extend([archive, outdir]) return cmdlist
def extract_ace (archive, compression, cmd, verbosity, interactive, outdir)
Extract an ACE archive.
4.960293
4.787302
1.036135
cmdlist = [cmd] if verbosity > 1: cmdlist.append('v') else: cmdlist.append('l') cmdlist.append(archive) return cmdlist
def list_ace (archive, compression, cmd, verbosity, interactive)
List an ACE archive.
3.589509
3.430534
1.046341
targetname = util.get_single_outfile(outdir, archive) try: with bz2.BZ2File(archive) as bz2file: with open(targetname, 'wb') as targetfile: data = bz2file.read(READ_SIZE_BYTES) while data: targetfile.write(data) data = bz2file.read(READ_SIZE_BYTES) except Exception as err: msg = "error extracting %s to %s: %s" % (archive, targetname, err) raise util.PatoolError(msg) return None
def extract_bzip2 (archive, compression, cmd, verbosity, interactive, outdir)
Extract a BZIP2 archive with the bz2 Python module.
2.761298
2.761226
1.000026
if len(filenames) > 1: raise util.PatoolError('multi-file compression not supported in Python bz2') try: with bz2.BZ2File(archive, 'wb') as bz2file: filename = filenames[0] with open(filename, 'rb') as srcfile: data = srcfile.read(READ_SIZE_BYTES) while data: bz2file.write(data) data = srcfile.read(READ_SIZE_BYTES) except Exception as err: msg = "error creating %s: %s" % (archive, err) raise util.PatoolError(msg) return None
def create_bzip2 (archive, compression, cmd, verbosity, interactive, filenames)
Create a BZIP2 archive with the bz2 Python module.
2.73223
2.669788
1.023389
return [cmd, os.path.abspath(archive), outdir]
def extract_chm (archive, compression, cmd, verbosity, interactive, outdir)
Extract a CHM archive.
12.110789
14.009627
0.864462
opts = 'x' if verbosity > 1: opts += 'v' opts += "w=%s" % outdir return [cmd, opts, archive]
def extract_lzh (archive, compression, cmd, verbosity, interactive, outdir)
Extract a LZH archive.
6.695606
6.621155
1.011244