code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
n_f = self.partial_transform(traj).shape[1]
zippy=zip(itertools.repeat("N/A", n_f),
itertools.repeat("N/A", n_f),
itertools.repeat("N/A", n_f),
itertools.repeat(("N/A","N/A","N/A","N/A"), n_f))
return dict_maker(zippy) | def describe_features(self, traj) | Generic method for describing features.
Parameters
----------
traj : mdtraj.Trajectory
Trajectory to use
Returns
-------
feature_descs : list of dict
Dictionary describing each feature with the following information
about the atoms participating in each feature
- resnames: unique names of residues
- atominds: the four atom indicies
- resseqs: unique residue sequence ids (not necessarily
0-indexed)
- resids: unique residue ids (0-indexed)
- featurizer: Featurizer name
- featuregroup: Other information
Notes
-------
Method resorts to returning N/A for everything if describe_features in not
implemented in the sub_class | 4.524621 | 4.386999 | 1.03137 |
traj.superpose(self.reference_traj,
atom_indices=self.superpose_atom_indices)
diff2 = (traj.xyz[:, self.atom_indices] -
self.reference_traj.xyz[0, self.atom_indices]) ** 2
x = np.sqrt(np.sum(diff2, axis=2))
return x | def partial_transform(self, traj) | Featurize an MD trajectory into a vector space via distance
after superposition
Parameters
----------
traj : mdtraj.Trajectory
A molecular dynamics trajectory to featurize.
Returns
-------
features : np.ndarray, dtype=float, shape=(n_samples, n_features)
A featurized trajectory is a 2D array of shape
`(length_of_trajectory x n_features)` where each `features[i]`
vector is computed by applying the featurization function
to the `i`th snapshot of the input trajectory.
See Also
--------
transform : simultaneously featurize a collection of MD trajectories | 4.119519 | 4.471361 | 0.921312 |
if self.atom_indices is not None:
sliced_traj = traj.atom_slice(self.atom_indices)
else:
sliced_traj = traj
result = libdistance.cdist(
sliced_traj, self.sliced_reference_traj, 'rmsd'
)
return self._transform(result) | def partial_transform(self, traj) | Featurize an MD trajectory into a vector space via distance
after superposition
Parameters
----------
traj : mdtraj.Trajectory
A molecular dynamics trajectory to featurize.
Returns
-------
features : np.ndarray, shape=(n_frames, n_ref_frames)
The RMSD value of each frame of the input trajectory to be
featurized versus each frame in the reference trajectory. The
number of features is the number of reference frames.
See Also
--------
transform : simultaneously featurize a collection of MD trajectories | 4.755688 | 5.294437 | 0.898242 |
feature_descs = []
# fill in the atom indices using just the first frame
self.partial_transform(traj[0])
top = traj.topology
aind_tuples = [self.atom_indices for _ in range(self.sliced_reference_traj.n_frames)]
zippy = zippy_maker(aind_tuples, top)
zippy = itertools.product(["LandMarkFeaturizer"], ["RMSD"], [self.sigma], zippy)
feature_descs.extend(dict_maker(zippy))
return feature_descs | def describe_features(self, traj) | Return a list of dictionaries describing the LandmarkRMSD features.
Parameters
----------
traj : mdtraj.Trajectory
The trajectory to describe
Returns
-------
feature_descs : list of dict
Dictionary describing each feature with the following information
about the atoms participating in each feature
- resnames: unique names of residues
- atominds: the four atom indicies
- resseqs: unique residue sequence ids (not necessarily
0-indexed)
- resids: unique residue ids (0-indexed)
- featurizer: Alpha Angle
- featuregroup: the type of dihedral angle and whether sin or
cos has been applied. | 12.608794 | 11.000287 | 1.146224 |
d = md.geometry.compute_distances(traj, self.pair_indices,
periodic=self.periodic)
return d ** self.exponent | def partial_transform(self, traj) | Featurize an MD trajectory into a vector space via pairwise
atom-atom distances
Parameters
----------
traj : mdtraj.Trajectory
A molecular dynamics trajectory to featurize.
Returns
-------
features : np.ndarray, dtype=float, shape=(n_samples, n_features)
A featurized trajectory is a 2D array of shape
`(length_of_trajectory x n_features)` where each `features[i]`
vector is computed by applying the featurization function
to the `i`th snapshot of the input trajectory.
See Also
--------
transform : simultaneously featurize a collection of MD trajectories | 8.844834 | 12.62221 | 0.700736 |
feature_descs = []
top = traj.topology
residue_indices = [[top.atom(i[0]).residue.index, top.atom(i[1]).residue.index] \
for i in self.atom_indices]
aind = []
resseqs = []
resnames = []
for ind,resid_ids in enumerate(residue_indices):
aind += [[i for i in self.atom_indices[ind]]]
resseqs += [[top.residue(ri).resSeq for ri in resid_ids]]
resnames += [[top.residue(ri).name for ri in resid_ids]]
zippy = itertools.product(["AtomPairs"], ["Distance"],
["Exponent {}".format(self.exponent)],
zip(aind, resseqs, residue_indices, resnames))
feature_descs.extend(dict_maker(zippy))
return feature_descs | def describe_features(self, traj) | Return a list of dictionaries describing the atom pair features.
Parameters
----------
traj : mdtraj.Trajectory
The trajectory to describe
Returns
-------
feature_descs : list of dict
Dictionary describing each feature with the following information
about the atoms participating in each dihedral
- resnames: unique names of residues
- atominds: the two atom inds
- resseqs: unique residue sequence ids (not necessarily
0-indexed)
- resids: unique residue ids (0-indexed)
- featurizer: AtomPairsFeaturizer
- featuregroup: Distance.
- other info : Value of the exponent | 4.599507 | 3.796385 | 1.211549 |
feature_descs = []
for dihed_type in self.types:
# TODO: Don't recompute dihedrals, just get the indices
func = getattr(md, 'compute_%s' % dihed_type)
# ainds is a list of four-tuples of atoms participating
# in each dihedral
aind_tuples, _ = func(traj)
top = traj.topology
zippy = zippy_maker(aind_tuples, top)
if self.sincos:
zippy = itertools.product(['Dihedral'],[dihed_type], ['sin', 'cos'], zippy)
else:
zippy = itertools.product(['Dihedral'],[dihed_type], ['nosincos'], zippy)
feature_descs.extend(dict_maker(zippy))
return feature_descs | def describe_features(self, traj) | Return a list of dictionaries describing the dihderal features.
Parameters
----------
traj : mdtraj.Trajectory
The trajectory to describe
Returns
-------
feature_descs : list of dict
Dictionary describing each feature with the following information
about the atoms participating in each dihedral
- resnames: unique names of residues
- atominds: the four atom indicies
- resseqs: unique residue sequence ids (not necessarily
0-indexed)
- resids: unique residue ids (0-indexed)
- featurizer: Dihedral
- featuregroup: the type of dihedral angle and whether sin or
cos has been applied. | 6.474621 | 5.366882 | 1.206403 |
x = []
for a in self.types:
func = getattr(md, 'compute_%s' % a)
_, y = func(traj)
if self.sincos:
x.extend([np.sin(y), np.cos(y)])
else:
x.append(y)
return np.hstack(x) | def partial_transform(self, traj) | Featurize an MD trajectory into a vector space via calculation
of dihedral (torsion) angles
Parameters
----------
traj : mdtraj.Trajectory
A molecular dynamics trajectory to featurize.
Returns
-------
features : np.ndarray, dtype=float, shape=(n_samples, n_features)
A featurized trajectory is a 2D array of shape
`(length_of_trajectory x n_features)` where each `features[i]`
vector is computed by applying the featurization function
to the `i`th snapshot of the input trajectory.
See Also
--------
transform : simultaneously featurize a collection of MD trajectories | 4.489706 | 5.531665 | 0.811637 |
feature_descs = []
for dihed_type in self.types:
# TODO: Don't recompute dihedrals, just get the indices
func = getattr(md, 'compute_%s' % dihed_type)
# ainds is a list of four-tuples of atoms participating
# in each dihedral
aind_tuples, _ = func(traj)
top = traj.topology
bin_info =[]
resseqs = []
resids = []
resnames = []
all_aind = []
#its bin0---all phis bin1--all_phis
for bin_index in range(self.n_bins):
for ainds in aind_tuples:
resid = set(top.atom(ai).residue.index for ai in ainds)
all_aind.append(ainds)
bin_info += ["bin-%d"%bin_index]
resids += [list(resid)]
reseq = set(top.atom(ai).residue.resSeq for ai in ainds)
resseqs += [list(reseq)]
resname = set(top.atom(ai).residue.name for ai in ainds)
resnames += [list(resname)]
zippy = zip(all_aind, resseqs, resids, resnames)
#fast check to make sure we have the right number of features
assert len(bin_info) == len(aind_tuples) * self.n_bins
zippy = zip(["VonMises"]*len(bin_info),
[dihed_type]*len(bin_info),
bin_info,
zippy)
feature_descs.extend(dict_maker(zippy))
return feature_descs | def describe_features(self, traj) | Return a list of dictionaries describing the dihderal features.
Parameters
----------
traj : mdtraj.Trajectory
The trajectory to describe
Returns
-------
feature_descs : list of dict
Dictionary describing each feature with the following information
about the atoms participating in each dihedral
- resnames: unique names of residues
- atominds: the four atom indicies
- resseqs: unique residue sequence ids (not necessarily
0-indexed)
- resids: unique residue ids (0-indexed)
- featurizer: Dihedral
- featuregroup: The bin index(0..nbins-1)
and dihedral type(phi/psi/chi1 etc ) | 4.835691 | 4.215271 | 1.147184 |
x = []
for a in self.types:
func = getattr(md, 'compute_%s' % a)
_, y = func(traj)
res = vm.pdf(y[..., np.newaxis],
loc=self.loc, kappa=self.kappa)
#we reshape the results using a Fortran-like index order,
#so that it goes over the columns first. This should put the results
#phi dihedrals(all bin0 then all bin1), psi dihedrals(all_bin1)
x.extend(np.reshape(res, (1, -1, self.n_bins*y.shape[1]), order='F'))
return np.hstack(x) | def partial_transform(self, traj) | Featurize an MD trajectory into a vector space via calculation
of soft-bins over dihdral angle space.
Parameters
----------
traj : mdtraj.Trajectory
A molecular dynamics trajectory to featurize.
Returns
-------
features : np.ndarray, dtype=float, shape=(n_samples, n_features)
A featurized trajectory is a 2D array of shape
`(length_of_trajectory x n_features)` where each `features[i]`
vector is computed by applying the featurization function
to the `i`th snapshot of the input trajectory.
See Also
--------
transform : simultaneously featurize a collection of MD trajectories | 10.44646 | 11.608897 | 0.899867 |
ca = [a.index for a in traj.top.atoms if a.name == 'CA']
if len(ca) < 4:
return np.zeros((len(traj), 0), dtype=np.float32)
alpha_indices = np.array(
[(ca[i - 1], ca[i], ca[i + 1], ca[i + 2]) for i in range(1, len(ca) - 2)])
result = md.compute_dihedrals(traj, alpha_indices)
x = []
if self.atom_indices is None:
self.atom_indices = np.vstack(alpha_indices)
if self.sincos:
x.extend([np.cos(result), np.sin(result)])
else:
x.append(result)
return np.hstack(x) | def partial_transform(self, traj) | Featurize an MD trajectory into a vector space via calculation
of dihedral (torsion) angles of alpha carbon backbone
Parameters
----------
traj : mdtraj.Trajectory
A molecular dynamics trajectory to featurize.
Returns
-------
features : np.ndarray, dtype=float, shape=(n_samples, n_features)
A featurized trajectory is a 2D array of shape
`(length_of_trajectory x n_features)` where each `features[i]`
vector is computed by applying the featurization function
to the `i`th snapshot of the input trajectory. | 3.100617 | 2.899705 | 1.069287 |
feature_descs = []
# fill in the atom indices using just the first frame
self.partial_transform(traj[0])
top = traj.topology
if self.atom_indices is None:
raise ValueError("Cannot describe features for "
"trajectories with "
"fewer than 4 alpha carbon"
"using AlphaAngleFeaturizer.")
aind_tuples = self.atom_indices
zippy = zippy_maker(aind_tuples, top)
if self.sincos:
zippy = itertools.product(["AlphaAngle"], ["N/A"], ['cos', 'sin'], zippy)
else:
zippy = itertools.product(["AlphaAngle"], ["N/A"], ['nosincos'], zippy)
feature_descs.extend(dict_maker(zippy))
return feature_descs | def describe_features(self, traj) | Return a list of dictionaries describing the dihderal features.
Parameters
----------
traj : mdtraj.Trajectory
The trajectory to describe
Returns
-------
feature_descs : list of dict
Dictionary describing each feature with the following information
about the atoms participating in each dihedral
- resnames: unique names of residues
- atominds: the four atom indicies
- resseqs: unique residue sequence ids (not necessarily
0-indexed)
- resids: unique residue ids (0-indexed)
- featurizer: Alpha Angle
- featuregroup: the type of dihedral angle and whether sin or
cos has been applied. | 9.269378 | 7.721204 | 1.200509 |
feature_descs = []
_, mapping = md.geometry.sasa.shrake_rupley(traj, mode=self.mode, get_mapping=True)
top = traj.topology
if self.mode == "residue":
resids = np.unique(mapping)
resseqs = [top.residue(ri).resSeq for ri in resids]
resnames = [top.residue(ri).name for ri in resids]
atoms_in_res = [res.atoms for res in top.residues]
aind_tuples = []
# For each resdiue...
for i,x in enumerate(atoms_in_res):
# For each atom in the residues, append it's index
aind_tuples.append([atom.index for atom in x])
zippy = itertools.product(['SASA'],['N/A'],[self.mode], zip(aind_tuples, resseqs, resids, resnames))
else:
resids = [top.atom(ai).residue.index for ai in mapping]
resseqs = [top.atom(ai).residue.resSeq for ai in mapping]
resnames = [top.atom(ai).residue.name for ai in mapping]
zippy = itertools.product(['SASA'],['N/A'],[self.mode], zip(mapping, resseqs, resids, resnames))
feature_descs.extend(dict_maker(zippy))
return feature_descs | def describe_features(self, traj) | Return a list of dictionaries describing the SASA features.
Parameters
----------
traj : mdtraj.Trajectory
The trajectory to describe
Returns
-------
feature_descs : list of dict
Dictionary describing each feature with the following information
about the atoms participating in each SASA feature
- resnames: names of residues
- atominds: atom index or atom indices in mode="residue"
- resseqs: residue ids (not necessarily 0-indexed)
- resids: unique residue ids (0-indexed)
- featurizer: SASA
- featuregroup: atom or residue | 3.450904 | 3.055352 | 1.129462 |
if self.soft_min:
distances, _ = md.compute_contacts(traj, self.contacts,
self.scheme, self.ignore_nonprotein,
soft_min=self.soft_min,
soft_min_beta=self.soft_min_beta,
periodic=self.periodic)
else:
distances, _ = md.compute_contacts(traj, self.contacts,
self.scheme, self.ignore_nonprotein,
periodic=self.periodic)
return self._transform(distances) | def partial_transform(self, traj) | Featurize an MD trajectory into a vector space derived from
residue-residue distances
Parameters
----------
traj : mdtraj.Trajectory
A molecular dynamics trajectory to featurize.
Returns
-------
features : np.ndarray, dtype=float, shape=(n_samples, n_features)
A featurized trajectory is a 2D array of shape
`(length_of_trajectory x n_features)` where each `features[i]`
vector is computed by applying the featurization function
to the `i`th snapshot of the input trajectory.
See Also
--------
transform : simultaneously featurize a collection of MD trajectories | 3.299571 | 3.680676 | 0.896458 |
feature_descs = []
# fill in the atom indices using just the first frame
if self.soft_min:
distances, residue_indices = md.compute_contacts(traj[0], self.contacts,
self.scheme,
self.ignore_nonprotein,
soft_min=self.soft_min,
soft_min_beta=self.soft_min_beta,
periodic=self.periodic)
else:
distances, residue_indices = md.compute_contacts(traj[0], self.contacts,
self.scheme,
self.ignore_nonprotein,
periodic=self.periodic)
top = traj.topology
aind = []
resseqs = []
resnames = []
if self.scheme=='ca':
atom_ind_list = [[j.index for j in i.atoms if j.name=='CA']
for i in top.residues]
elif self.scheme=='closest-heavy':
atom_ind_list = [[j.index for j in i.atoms if j.element.name!="hydrogen"]
for i in top.residues]
elif self.scheme=='closest':
atom_ind_list = [[j.index for j in i.atoms] for i in top.residues]
else:
atom_ind_list = [["N/A"] for i in top.residues]
for resid_ids in residue_indices:
aind += [[atom_ind_list[ri] for ri in resid_ids]]
resseqs += [[top.residue(ri).resSeq for ri in resid_ids]]
resnames += [[top.residue(ri).name for ri in resid_ids]]
zippy = itertools.product(["Contact"], [self.scheme],
["{}".format(self.soft_min_beta)],
zip(aind, resseqs, residue_indices, resnames))
feature_descs.extend(dict_maker(zippy))
return feature_descs | def describe_features(self, traj) | Return a list of dictionaries describing the contacts features.
Parameters
----------
traj : mdtraj.Trajectory
The trajectory to describe
Returns
-------
feature_descs : list of dict
Dictionary describing each feature with the following information
about the atoms participating in each dihedral
- resnames: unique names of residues
- atominds: atom indices(returns CA if scheme is ca_inds,otherwise
returns all atom_inds)
- resseqs: unique residue sequence ids (not necessarily
0-indexed)
- resids: unique residue ids (0-indexed)
- featurizer: Contact
- featuregroup: ca, heavy etc. | 3.376592 | 3.1327 | 1.077854 |
# The result vector
fingerprints = np.zeros((traj.n_frames, self.n_features))
atom_pairs = np.zeros((len(self.solvent_indices), 2))
sigma = self.sigma
for i, solute_i in enumerate(self.solute_indices):
# For each solute atom, calculate distance to all solvent
# molecules
atom_pairs[:, 0] = solute_i
atom_pairs[:, 1] = self.solvent_indices
distances = md.compute_distances(traj, atom_pairs, periodic=True)
distances = np.exp(-distances / (2 * sigma * sigma))
# Sum over water atoms for all frames
fingerprints[:, i] = np.sum(distances, axis=1)
return fingerprints | def partial_transform(self, traj) | Featurize an MD trajectory into a vector space via calculation
of solvent fingerprints
Parameters
----------
traj : mdtraj.Trajectory
A molecular dynamics trajectory to featurize.
Returns
-------
features : np.ndarray, dtype=float, shape=(n_samples, n_features)
A featurized trajectory is a 2D array of shape
`(length_of_trajectory x n_features)` where each `features[i]`
vector is computed by applying the featurization function
to the `i`th snapshot of the input trajectory.
See Also
--------
transform : simultaneously featurize a collection of MD trajectories | 3.737714 | 3.838824 | 0.973661 |
# Optionally take only certain atoms
if self.atom_indices is not None:
p_traj = traj.atom_slice(self.atom_indices)
else:
p_traj = traj
# Optionally superpose to a reference trajectory.
if self.ref_traj is not None:
p_traj.superpose(self.ref_traj, parallel=False)
# Get the positions and reshape.
value = p_traj.xyz.reshape(len(p_traj), -1)
return value | def partial_transform(self, traj) | Featurize an MD trajectory into a vector space with the raw
cartesian coordinates.
Parameters
----------
traj : mdtraj.Trajectory
A molecular dynamics trajectory to featurize.
Returns
-------
features : np.ndarray, dtype=float, shape=(n_samples, n_features)
A featurized trajectory is a 2D array of shape
`(length_of_trajectory x n_features)` where each `features[i]`
vector is computed by applying the featurization function
to the `i`th snapshot of the input trajectory.
Notes
-----
If you requested superposition (gave `ref_traj` in __init__) the
input trajectory will be modified.
See Also
--------
transform : simultaneously featurize a collection of MD trajectories | 3.655636 | 4.247855 | 0.860584 |
if self.index is not None:
return traj[:, self.index]
else:
return traj[:, :self.first] | def partial_transform(self, traj) | Slice a single input array along to select a subset of features.
Parameters
----------
traj : np.ndarray, shape=(n_samples, n_features)
A sample to slice.
Returns
-------
sliced_traj : np.ndarray shape=(n_samples, n_feature_subset)
Slice of traj | 5.570136 | 8.107821 | 0.687008 |
MultiSequenceClusterMixin.fit(self, sequences)
self.distances_ = self._split(self.distances_)
return self | def fit(self, sequences, y=None) | Fit the kcenters clustering on the data
Parameters
----------
sequences : list of array-like, each of shape [sequence_length, n_features]
A list of multivariate timeseries, or ``md.Trajectory``. Each
sequence may have a different length, but they all must have the
same number of features, or the same number of atoms if they are
``md.Trajectory``s.
Returns
-------
self | 10.580265 | 20.947176 | 0.505093 |
if isinstance(param_grid, dict):
param_grid = ParameterGrid(param_grid)
elif not isinstance(param_grid, ParameterGrid):
raise ValueError("param_grid must be a dict or ParamaterGrid instance")
# iterable with (model, sequence) as items
iter_args = ((clone(model).set_params(**params), sequences)
for params in param_grid)
models = Parallel(n_jobs=n_jobs, verbose=verbose)(
delayed(_param_sweep_helper)(args) for args in iter_args)
return models | def param_sweep(model, sequences, param_grid, n_jobs=1, verbose=0) | Fit a series of models over a range of parameters.
Parameters
----------
model : msmbuilder.BaseEstimator
An *instance* of an estimator to be used
to fit data.
sequences : list of array-like
List of sequences, or a single sequence. Each
sequence should be a 1D iterable of state
labels. Labels can be integers, strings, or
other orderable objects.
param_grid : dict or sklearn.grid_search.ParameterGrid
Parameter grid to specify models to fit. See
sklearn.grid_search.ParameterGrid for an explanation
n_jobs : int, optional
Number of jobs to run in parallel using joblib.Parallel
Returns
-------
models : list
List of models fit to the data according to
param_grid | 2.983254 | 3.249949 | 0.917939 |
if mode == 'r' and fmt is None:
fmt = _guess_format(path)
elif mode in 'wa' and fmt is None:
raise ValueError('mode="%s", but no fmt. fmt=%s' % (mode, fmt))
if fmt == 'dir-npy':
return NumpyDirDataset(path, mode=mode, verbose=verbose)
elif fmt == 'mdtraj':
return MDTrajDataset(path, mode=mode, verbose=verbose, **kwargs)
elif fmt == 'hdf5':
return HDF5Dataset(path, mode=mode, verbose=verbose)
elif fmt.endswith("-union"):
raise ValueError("union datasets have been removed. "
"Please use msmbuilder.featurizer.FeatureUnion")
else:
raise NotImplementedError("Unknown format fmt='%s'" % fmt) | def dataset(path, mode='r', fmt=None, verbose=False, **kwargs) | Open a dataset object
MSMBuilder supports several dataset 'formats' for storing
lists of sequences on disk.
This function can also be used as a context manager.
Parameters
----------
path : str
The path to the dataset on the filesystem
mode : {'r', 'w', 'a'}
Open a dataset for reading, writing, or appending. Note that
some formats only support a subset of these modes.
fmt : {'dir-npy', 'hdf5', 'mdtraj'}
The format of the data on disk
``dir-npy``
A directory of binary numpy files, one file per sequence
``hdf5``
A single hdf5 file with each sequence as an array node
``mdtraj``
A read-only set of trajectory files that can be loaded
with mdtraj
verbose : bool
Whether to print information about the dataset | 3.737693 | 3.246167 | 1.151417 |
if os.path.isdir(path):
return 'dir-npy'
if path.endswith('.h5') or path.endswith('.hdf5'):
# TODO: Check for mdtraj .h5 file
return 'hdf5'
# TODO: What about a list of trajectories, e.g. from command line nargs='+'
return 'mdtraj' | def _guess_format(path) | Guess the format of a dataset based on its filename / filenames. | 7.497886 | 6.837175 | 1.096635 |
r = []
for c in string:
if c.isdigit():
if r and isinstance(r[-1], int):
r[-1] = r[-1] * 10 + int(c)
else:
r.append(int(c))
else:
r.append(9 + ord(c))
return r | def _keynat(string) | A natural sort helper function for sort() and sorted()
without using regular expression. | 2.302766 | 2.290545 | 1.005335 |
if isinstance(out_ds, str):
out_ds = self.create_derived(out_ds, fmt=fmt)
elif isinstance(out_ds, _BaseDataset):
err = "Dataset must be opened in write mode."
assert out_ds.mode in ('w', 'a'), err
else:
err = "Please specify a dataset path or an existing dataset."
raise ValueError(err)
for key in self.keys():
out_ds[key] = estimator.partial_transform(self[key])
return out_ds | def transform_with(self, estimator, out_ds, fmt=None) | Call the partial_transform method of the estimator on this dataset
Parameters
----------
estimator : object with ``partial_fit`` method
This object will be used to transform this dataset into a new
dataset. The estimator should be fitted prior to calling
this method.
out_ds : str or Dataset
This dataset will be transformed and saved into out_ds. If
out_ds is a path, a new dataset will be created at that path.
fmt : str
The type of dataset to create if out_ds is a string.
Returns
-------
out_ds : Dataset
The tranformed dataset. | 3.219316 | 3.186921 | 1.010165 |
self.fit_with(estimator)
return self.transform_with(estimator, out_ds, fmt=fmt) | def fit_transform_with(self, estimator, out_ds, fmt=None) | Create a new dataset with the given estimator.
The estimator will be fit by this dataset, and then each trajectory
will be transformed by the estimator.
Parameters
----------
estimator : BaseEstimator
This object will be fit and used to transform this dataset
into a new dataset.
out_ds : str or Dataset
This dataset will be transformed and saved into out_ds. If
out_ds is a path, a new dataset will be created at that path.
fmt : str
The type of dataset to create if out_ds is a string.
Returns
-------
out_ds : Dataset
The transformed dataset.
Examples
--------
diheds = dataset("diheds")
tica = diheds.fit_transform_with(tICA(), 'tica')
kmeans = tica.fit_transform_with(KMeans(), 'kmeans')
msm = kmeans.fit_with(MarkovStateModel()) | 2.77322 | 5.707515 | 0.485889 |
if self.max_landmarks is not None:
if self.n_clusters > self.n_landmarks:
self.n_landmarks = self.max_landmarks
if self.n_landmarks is None:
distances = pdist(X, self.metric)
tree = linkage(distances, method=self.linkage)
self.landmark_labels_ = fcluster(tree, criterion='maxclust',
t=self.n_clusters) - 1
self.cardinality_ = np.bincount(self.landmark_labels_)
self.squared_distances_within_cluster_ = np.zeros(self.n_clusters)
n = len(X)
for k in range(len(distances)):
i = int(n - 2 - np.floor(np.sqrt(-8*k + 4*n*(n-1)-7)/2.0 - 0.5))
j = int(k + i + 1 - n*(n-1)/2 + (n-i)*((n-i)-1)/2)
if self.landmark_labels_[i] == self.landmark_labels_[j]:
self.squared_distances_within_cluster_[
self.landmark_labels_[i]] += distances[k] ** 2
self.landmarks_ = X
else:
if self.landmark_strategy == 'random':
land_indices = check_random_state(self.random_state).randint(
len(X), size=self.n_landmarks)
else:
land_indices = np.arange(len(X))[::(len(X) //
self.n_landmarks)][:self.n_landmarks]
distances = pdist(X[land_indices], self.metric)
tree = linkage(distances, method=self.linkage)
self.landmark_labels_ = fcluster(tree, criterion='maxclust',
t=self.n_clusters) - 1
self.cardinality_ = np.bincount(self.landmark_labels_)
self.squared_distances_within_cluster_ = np.zeros(self.n_clusters)
n = len(X[land_indices])
for k in range(len(distances)):
i = int(n - 2 - np.floor(np.sqrt(-8*k + 4*n*(n-1)-7)/2.0 - 0.5))
j = int(k + i + 1 - n*(n-1)/2 + (n-i)*((n-i)-1)/2)
if self.landmark_labels_[i] == self.landmark_labels_[j]:
self.squared_distances_within_cluster_[
self.landmark_labels_[i]] += distances[k] ** 2
self.landmarks_ = X[land_indices]
if self.metric != 'rmsd':
cluster_centers_ = []
for i in range(self.n_clusters):
temp = list(np.mean(self.landmarks_[self.landmark_labels_==i], axis=0))
cluster_centers_.append(temp)
self.cluster_centers_ = np.array(cluster_centers_)
return self | def fit(self, X, y=None) | Compute agglomerative clustering.
Parameters
----------
X : array-like, shape=(n_samples, n_features)
Returns
-------
self | 1.980719 | 2.004216 | 0.988276 |
dists = cdist(X, self.landmarks_, self.metric)
pfunc_name = self.ward_predictor if self.linkage == 'ward' else self.linkage
try:
pooling_func = POOLING_FUNCTIONS[pfunc_name]
except KeyError:
raise ValueError("linkage {} is not supported".format(pfunc_name))
pooled_distances = np.empty(len(X))
pooled_distances.fill(np.infty)
labels = np.zeros(len(X), dtype=int)
for i in range(self.n_clusters):
if np.any(self.landmark_labels_ == i):
d = pooling_func(dists[:, self.landmark_labels_ == i],
self.cardinality_[i],
self.squared_distances_within_cluster_[i])
if np.any(d < 0):
warnings.warn("Distance shouldn't be negative.")
mask = (d < pooled_distances)
pooled_distances[mask] = d[mask]
labels[mask] = i
else:
print("No data points were assigned to cluster {}".format(i))
return labels | def predict(self, X) | Predict the closest cluster each sample in X belongs to.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
New data to predict.
Returns
-------
labels : array, shape [n_samples,]
Index of the cluster each sample belongs to. | 3.621857 | 3.657675 | 0.990207 |
return_vect = np.zeros(mdl1.n_states_)
for i in range(mdl1.n_states_):
try:
#there has to be a better way to do this
mdl1_unmapped = mdl1.inverse_transform([i])[0][0]
mdl2_mapped = mdl2.mapping_[mdl1_unmapped]
return_vect[i] = mdl2.populations_[mdl2_mapped]
except:
pass
return return_vect | def _mapped_populations(mdl1, mdl2) | Method to get the populations for states in mdl 1
from populations inferred in mdl 2. Resorts to 0
if population is not present. | 3.362734 | 3.350452 | 1.003666 |
net_flux = copy.copy(net_flux)
bottleneck_ind = net_flux[path[:-1], path[1:]].argmin()
net_flux[path[bottleneck_ind], path[bottleneck_ind + 1]] = 0.0
return net_flux | def _remove_bottleneck(net_flux, path) | Internal function for modifying the net flux matrix by removing
a particular edge, corresponding to the bottleneck of a particular
path. | 3.19778 | 2.754642 | 1.160869 |
net_flux = copy.copy(net_flux)
net_flux[path[:-1], path[1:]] -= net_flux[path[:-1], path[1:]].min()
# The above *should* make the bottleneck have zero flux, but
# numerically that may not be the case, so just set it to zero
# to be sure.
bottleneck_ind = net_flux[path[:-1], path[1:]].argmin()
net_flux[path[bottleneck_ind], path[bottleneck_ind + 1]] = 0.0
return net_flux | def _subtract_path_flux(net_flux, path) | Internal function for modifying the net flux matrix by subtracting
a path's flux from every edge in the path. | 3.590731 | 3.450504 | 1.04064 |
p = len(S)
assert S.shape == (p, p)
alpha = (n-2)/(n*(n+2))
beta = ((p+1)*n - 2) / (n*(n+2))
trace_S2 = np.sum(S*S) # np.trace(S.dot(S))
U = ((p * trace_S2 / np.trace(S)**2) - 1)
rho = min(alpha + beta/U, 1)
F = (np.trace(S) / p) * np.eye(p)
return (1-rho)*S + rho*F, rho | def rao_blackwell_ledoit_wolf(S, n) | Rao-Blackwellized Ledoit-Wolf shrinkaged estimator of the covariance
matrix.
Parameters
----------
S : array, shape=(n, n)
Sample covariance matrix (e.g. estimated with np.cov(X.T))
n : int
Number of data points.
Returns
-------
sigma : array, shape=(n, n)
shrinkage : float
References
----------
.. [1] Chen, Yilun, Ami Wiesel, and Alfred O. Hero III. "Shrinkage
estimation of high dimensional covariance matrices" ICASSP (2009) | 4.764742 | 5.327794 | 0.894318 |
self._initialized = False
check_iter_of_sequences(sequences, max_iter=3) # we might be lazy-loading
for X in sequences:
self._fit(X)
if self.n_sequences_ == 0:
raise ValueError('All sequences were shorter than '
'the lag time, %d' % self.lag_time)
return self | def fit(self, sequences, y=None) | Fit the model with a collection of sequences.
This method is not online. Any state accumulated from previous calls to
fit() or partial_fit() will be cleared. For online learning, use
`partial_fit`.
Parameters
----------
sequences: list of array-like, each of shape (n_samples_i, n_features)
Training data, where n_samples_i in the number of samples
in sequence i and n_features is the number of features.
y : None
Ignored
Returns
-------
self : object
Returns the instance itself. | 8.946213 | 10.825713 | 0.826386 |
check_iter_of_sequences(sequences, max_iter=3) # we might be lazy-loading
sequences_new = []
for X in sequences:
X = array2d(X)
if self.means_ is not None:
X = X - self.means_
X_transformed = np.dot(X, self.components_.T)
if self.kinetic_mapping:
X_transformed *= self.eigenvalues_
if self.commute_mapping:
# thanks to @maxentile and @jchodera for providing/directing to a
# reference implementation in pyemma
#(markovmodel/PyEMMA#963)
# dampening smaller timescales based recommendtion of [7]
#
# some timescales are NaNs and regularized timescales will
# be negative when they are less than the lag time; all these
# are set to zero using nan_to_num before returning
regularized_timescales = 0.5 * self.timescales_ *\
np.tanh( np.pi *((self.timescales_ - self.lag_time)
/self.lag_time) + 1)
X_transformed *= np.sqrt(regularized_timescales / 2)
X_transformed = np.nan_to_num(X_transformed)
sequences_new.append(X_transformed)
return sequences_new | def transform(self, sequences) | Apply the dimensionality reduction on X.
Parameters
----------
sequences: list of array-like, each of shape (n_samples_i, n_features)
Training data, where n_samples_i in the number of samples
in sequence i and n_features is the number of features.
Returns
-------
sequence_new : list of array-like, each of shape (n_samples_i, n_components) | 9.223295 | 9.525697 | 0.968254 |
# force shrinkage to be calculated
self.covariance_
return .format(n_components=self.n_components, lag_time=self.lag_time,
shrinkage=self.shrinkage_, kinetic_mapping=self.kinetic_mapping,
timescales=self.timescales_[:5], eigenvalues=self.eigenvalues_[:5]) | def summarize(self) | Some summary information. | 8.894125 | 8.545626 | 1.040781 |
if self._sliding_window:
return [X[k::self._lag_time] for k in range(self._lag_time) for X in X_all]
else:
return [X[::self._lag_time] for X in X_all] | def transform(self, X_all, y=None) | Subsample several time series.
Parameters
----------
X_all : list(np.ndarray)
List of feature time series
Returns
-------
features : list(np.ndarray), length = len(X_all)
The subsampled trajectories. | 3.303708 | 3.127441 | 1.056362 |
us, lvs, rvs = self._get_eigensystem()
# make sure to leave off equilibrium distribution
timescales = - self.lag_time / np.log(us[:, 1:])
return timescales | def all_timescales_(self) | Implied relaxation timescales each sample in the ensemble
Returns
-------
timescales : array-like, shape = (n_samples, n_timescales,)
The longest implied relaxation timescales of the each sample in
the ensemble of transition matrices, expressed in units of
time-step between indices in the source data supplied
to ``fit()``.
References
----------
.. [1] Prinz, Jan-Hendrik, et al. "Markov models of molecular kinetics:
Generation and validation." J. Chem. Phys. 134.17 (2011): 174105. | 23.120064 | 20.610544 | 1.121759 |
last_hash = None
last_hash_count = 0
arr = yield
for i in xrange(maxiter):
arr = yield i
if arr is not None:
hsh = hashlib.sha1(arr.view(np.uint8)).hexdigest()
if last_hash == hsh:
last_hash_count += 1
else:
last_hash = hsh
last_hash_count = 1
if last_hash_count >= max_nc:
if verbose:
print('Termination. Over %d iterations without '
'change.' % max_nc)
break | def iterate_tracker(maxiter, max_nc, verbose=False) | Generator that breaks after maxiter, or after the same
array has been sent in more max_nc times in a row. | 3.455852 | 3.309603 | 1.044189 |
assert self._initialized
V = self.eigenvectors_
# Note: How do we deal with regularization parameters like gamma
# here? I'm not sure. Should C and S be estimated using self's
# regularization parameters?
m2 = self.__class__(shrinkage=self.shrinkage, n_components=self.n_components, lag_time=self.lag_time,
landmarks=self.landmarks, kernel_params=self.kernel_params)
m2.fit(sequences)
numerator = V.T.dot(m2.offset_correlation_).dot(V)
denominator = V.T.dot(m2.covariance_).dot(V)
try:
trace = np.trace(numerator.dot(np.linalg.inv(denominator)))
except np.linalg.LinAlgError:
trace = np.nan
return trace | def score(self, sequences, y=None) | Score the model on new data using the generalized matrix Rayleigh quotient
Parameters
----------
sequences : list of array, each of shape (n_samples_i, n_features)
Test data. A list of sequences in afeature space, each of which is a 2D
array of possibily different lengths, but the same number of features.
Returns
-------
gmrq : float
Generalized matrix Rayleigh quotient. This number indicates how
well the top ``n_timescales+1`` eigenvectors of this tICA model perform
as slowly decorrelating collective variables for the new data in
``sequences``.
References
----------
.. [1] McGibbon, R. T. and V. S. Pande, "Variational cross-validation
of slow dynamical modes in molecular kinetics" J. Chem. Phys. 142,
124105 (2015) | 5.296618 | 4.94315 | 1.071507 |
super(PCCA, self).fit(sequences, y=y)
self._do_lumping()
return self | def fit(self, sequences, y=None) | Fit a PCCA lumping model using a sequence of cluster assignments.
Parameters
----------
sequences : list(np.ndarray(dtype='int'))
List of arrays of cluster assignments
y : None
Unused, present for sklearn compatibility only.
Returns
-------
self | 10.40243 | 7.308234 | 1.423385 |
# Extract non-perron eigenvectors
right_eigenvectors = self.right_eigenvectors_[:, 1:]
assert self.n_states_ > 0
microstate_mapping = np.zeros(self.n_states_, dtype=int)
def spread(x):
return x.max() - x.min()
for i in range(self.n_macrostates - 1):
v = right_eigenvectors[:, i]
all_spreads = np.array([spread(v[microstate_mapping == k])
for k in range(i + 1)])
state_to_split = np.argmax(all_spreads)
inds = ((microstate_mapping == state_to_split) &
(v >= self.pcca_tolerance))
microstate_mapping[inds] = i + 1
self.microstate_mapping_ = microstate_mapping | def _do_lumping(self) | Do the PCCA lumping.
Notes
-------
1. Iterate over the eigenvectors, starting with the slowest.
2. Calculate the spread of that eigenvector within each existing
macrostate.
3. Pick the macrostate with the largest eigenvector spread.
4. Split the macrostate based on the sign of the eigenvector. | 4.352676 | 3.579731 | 1.215922 |
params = msm.get_params()
lumper = cls(n_macrostates=n_macrostates,
objective_function=objective_function, **params)
lumper.transmat_ = msm.transmat_
lumper.populations_ = msm.populations_
lumper.mapping_ = msm.mapping_
lumper.countsmat_ = msm.countsmat_
lumper.n_states_ = msm.n_states_
lumper._do_lumping()
return lumper | def from_msm(cls, msm, n_macrostates, objective_function=None) | Create and fit lumped model from pre-existing MSM.
Parameters
----------
msm : MarkovStateModel
The input microstate msm to use.
n_macrostates : int
The number of macrostates
Returns
-------
lumper : cls
The fit PCCA(+) object. | 2.73164 | 2.841434 | 0.96136 |
num_micro, num_eigen = right_eigenvectors.shape
A, chi, mapping = calculate_fuzzy_chi(alpha, square_map,
right_eigenvectors)
# If current point is infeasible or leads to degenerate lumping.
if (len(np.unique(mapping)) != right_eigenvectors.shape[1] or
has_constraint_violation(A, right_eigenvectors)):
return -1.0 * np.inf
obj = 0.0
# Calculate metastabilty of the lumped model. Eqn 4.20 in LAA.
for i in range(num_eigen):
obj += np.dot(T.dot(chi[:, i]), pi * chi[:, i]) / np.dot(chi[:, i], pi)
return obj | def metastability(alpha, T, right_eigenvectors, square_map, pi) | Return the metastability PCCA+ objective function.
Parameters
----------
alpha : ndarray
Parameters of objective function (e.g. flattened A)
T : csr sparse matrix
Transition matrix
right_eigenvectors : ndarray
The right eigenvectors.
square_map : ndarray
Mapping from square indices (i,j) to flat indices (k).
pi : ndarray
Equilibrium Populations of transition matrix.
Returns
-------
obj : float
The objective function
Notes
-------
metastability: try to make metastable fuzzy state decomposition.
Defined in ref. [2]. | 7.069219 | 7.248174 | 0.97531 |
A, chi, mapping = calculate_fuzzy_chi(alpha, square_map,
right_eigenvectors)
# If current point is infeasible or leads to degenerate lumping.
if (len(np.unique(mapping)) != right_eigenvectors.shape[1] or
has_constraint_violation(A, right_eigenvectors)):
return -1.0 * np.inf
obj = tr(dot(diag(1. / A[0]), dot(A.transpose(), A)))
return obj | def crispness(alpha, T, right_eigenvectors, square_map, pi) | Return the crispness PCCA+ objective function.
Parameters
----------
alpha : ndarray
Parameters of objective function (e.g. flattened A)
T : csr sparse matrix
Transition matrix
right_eigenvectors : ndarray
The right eigenvectors.
square_map : ndarray
Mapping from square indices (i,j) to flat indices (k).
pi : ndarray
Equilibrium Populations of transition matrix.
Returns
-------
obj : float
The objective function
Notes
-------
Tries to make crisp state decompostion. This function is
defined in [3]. | 8.769701 | 9.164303 | 0.956941 |
N = A.shape[0]
flat_map = []
for i in range(1, N):
for j in range(1, N):
flat_map.append([i, j])
flat_map = np.array(flat_map)
square_map = np.zeros(A.shape, 'int')
for k in range((N - 1) ** 2):
i, j = flat_map[k]
square_map[i, j] = k
return flat_map, square_map | def get_maps(A) | Get mappings from the square array A to the flat vector of parameters
alpha.
Helper function for PCCA+ optimization.
Parameters
----------
A : ndarray
The transformation matrix A.
Returns
-------
flat_map : ndarray
Mapping from flat indices (k) to square (i,j) indices.
square map : ndarray
Mapping from square indices (i,j) to flat indices (k). | 2.493094 | 2.155917 | 1.156396 |
lhs = 1 - A[0, 1:].sum()
rhs = dot(right_eigenvectors[:, 1:], A[1:, 0])
rhs = -1 * rhs.min()
if abs(lhs - rhs) > epsilon:
return True
else:
return False | def has_constraint_violation(A, right_eigenvectors, epsilon=1E-8) | Check for constraint violations in transformation matrix.
Parameters
----------
A : ndarray
The transformation matrix.
right_eigenvectors : ndarray
The right eigenvectors.
epsilon : float, optional
Tolerance of constraint violation.
Returns
-------
truth : bool
Whether or not the violation exists
Notes
-------
Checks constraints using Eqn 4.25 in [1].
References
----------
.. [1] Deuflhard P, Weber, M., "Robust perron cluster analysis in
conformation dynamics,"
Linear Algebra Appl., vol 398 pp 161-184 2005. | 3.997733 | 4.294612 | 0.930872 |
num_micro, num_eigen = right_eigenvectors.shape
index = np.zeros(num_eigen, 'int')
# first vertex: row with largest norm
index[0] = np.argmax(
[norm(right_eigenvectors[i]) for i in range(num_micro)])
ortho_sys = right_eigenvectors - np.outer(np.ones(num_micro),
right_eigenvectors[index[0]])
for j in range(1, num_eigen):
temp = ortho_sys[index[j - 1]].copy()
for l in range(num_micro):
ortho_sys[l] -= temp * dot(ortho_sys[l], temp)
dist_list = np.array([norm(ortho_sys[l]) for l in range(num_micro)])
index[j] = np.argmax(dist_list)
ortho_sys /= dist_list.max()
return index | def index_search(right_eigenvectors) | Find simplex structure in eigenvectors to begin PCCA+.
Parameters
----------
right_eigenvectors : ndarray
Right eigenvectors of transition matrix
Returns
-------
index : ndarray
Indices of simplex | 3.197362 | 3.246283 | 0.98493 |
num_micro, num_eigen = right_eigenvectors.shape
A = A.copy()
# compute 1st column of A by row sum condition
A[1:, 0] = -1 * A[1:, 1:].sum(1)
# compute 1st row of A by maximum condition
A[0] = -1 * dot(right_eigenvectors[:, 1:].real, A[1:]).min(0)
# rescale A to be in the feasible set
A /= A[0].sum()
return A | def fill_A(A, right_eigenvectors) | Construct feasible initial guess for transformation matrix A.
Parameters
----------
A : ndarray
Possibly non-feasible transformation matrix.
right_eigenvectors : ndarray
Right eigenvectors of transition matrix
Returns
-------
A : ndarray
Feasible transformation matrix. | 5.217433 | 5.523253 | 0.94463 |
# Convert parameter vector into matrix A
A = to_square(alpha, square_map)
# Make A feasible.
A = fill_A(A, right_eigenvectors)
# Calculate the fuzzy membership matrix.
chi_fuzzy = np.dot(right_eigenvectors, A)
# Calculate the microstate mapping.
mapping = np.argmax(chi_fuzzy, 1)
return A, chi_fuzzy, mapping | def calculate_fuzzy_chi(alpha, square_map, right_eigenvectors) | Calculate the membership matrix (chi) from parameters alpha.
Parameters
----------
alpha : ndarray
Parameters of objective function (e.g. flattened A)
square_map : ndarray
Mapping from square indices (i,j) to flat indices (k).
right_eigenvectors : ndarray
The right eigenvectors.
Returns
-------
A : ndarray
The transformation matrix A
chi_fuzzy : ndarray
The (fuzzy) membership matrix.
mapping: ndarray
The mapping from microstates to macrostates. | 5.440626 | 3.635806 | 1.496402 |
right_eigenvectors = self.right_eigenvectors_[:, :self.n_macrostates]
index = index_search(right_eigenvectors)
# compute transformation matrix A as initial guess for local
# optimization (maybe not feasible)
A = right_eigenvectors[index, :]
A = inv(A)
A = fill_A(A, right_eigenvectors)
if self.do_minimization:
A = self._optimize_A(A)
self.A_ = fill_A(A, right_eigenvectors)
self.chi_ = dot(right_eigenvectors, self.A_)
self.microstate_mapping_ = np.argmax(self.chi_, 1) | def _do_lumping(self) | Perform PCCA+ algorithm by optimizing transformation matrix A.
Creates the following member variables:
-------
A : ndarray
The transformation matrix.
chi : ndarray
The membership matrix
microstate_mapping : ndarray
Mapping from microstates to macrostates. | 5.591986 | 4.613251 | 1.212157 |
right_eigenvectors = self.right_eigenvectors_[:, :self.n_macrostates]
flat_map, square_map = get_maps(A)
alpha = to_flat(1.0 * A, flat_map)
def obj(x):
return -1 * self._objective_function(
x, self.transmat_, right_eigenvectors, square_map,
self.populations_
)
alpha = scipy.optimize.basinhopping(
obj, alpha, niter_success=1000,
)['x']
alpha = scipy.optimize.fmin(
obj, alpha, full_output=True, xtol=1E-4, ftol=1E-4,
maxfun=5000, maxiter=100000
)[0]
if np.isneginf(obj(alpha)):
raise ValueError(
"Error: minimization has not located a feasible point.")
A = to_square(alpha, square_map)
return A | def _optimize_A(self, A) | Find optimal transformation matrix A by minimization.
Parameters
----------
A : ndarray
The transformation matrix A.
Returns
-------
A : ndarray
The transformation matrix. | 5.091238 | 5.065453 | 1.00509 |
S = np.zeros((n, n))
pi = np.exp(theta[-n:])
pi = pi / pi.sum()
_ratematrix.build_ratemat(theta, n, S, which='S')
u, lv, rv = map(np.asarray, _ratematrix.eig_K(S, n, pi, 'S'))
order = np.argsort(-u)
u = u[order[:k]]
lv = lv[:, order[:k]]
rv = rv[:, order[:k]]
return _normalize_eigensystem(u, lv, rv) | def _solve_ratemat_eigensystem(theta, k, n) | Find the dominant eigenpairs of a reversible rate matrix (master
equation)
Parameters
----------
theta : ndarray, shape=(n_params,)
The free parameters of the rate matrix
k : int
The number of eigenpairs to find
n : int
The number of states
Notes
-----
Normalize the left (:math:`\phi`) and right (:math:``\psi``) eigenfunctions
according to the following criteria.
* The first left eigenvector, \phi_1, _is_ the stationary
distribution, and thus should be normalized to sum to 1.
* The left-right eigenpairs should be biorthonormal:
<\phi_i, \psi_j> = \delta_{ij}
* The left eigenvectors should satisfy
<\phi_i, \phi_i>_{\mu^{-1}} = 1
* The right eigenvectors should satisfy <\psi_i, \psi_i>_{\mu} = 1
Returns
-------
eigvals : np.ndarray, shape=(k,)
The largest `k` eigenvalues
lv : np.ndarray, shape=(n_states, k)
The normalized left eigenvectors (:math:`\phi`) of the rate matrix.
rv : np.ndarray, shape=(n_states, k)
The normalized right eigenvectors (:math:`\psi`) of the rate matrix. | 4.907184 | 5.116841 | 0.959026 |
u, lv, rv = scipy.linalg.eig(transmat, left=True, right=True)
order = np.argsort(-np.real(u))
u = np.real_if_close(u[order[:k]])
lv = np.real_if_close(lv[:, order[:k]])
rv = np.real_if_close(rv[:, order[:k]])
return _normalize_eigensystem(u, lv, rv) | def _solve_msm_eigensystem(transmat, k) | Find the dominant eigenpairs of an MSM transition matrix
Parameters
----------
transmat : np.ndarray, shape=(n_states, n_states)
The transition matrix
k : int
The number of eigenpairs to find.
Notes
-----
Normalize the left (:math:`\phi`) and right (:math:``\psi``) eigenfunctions
according to the following criteria.
* The first left eigenvector, \phi_1, _is_ the stationary
distribution, and thus should be normalized to sum to 1.
* The left-right eigenpairs should be biorthonormal:
<\phi_i, \psi_j> = \delta_{ij}
* The left eigenvectors should satisfy
<\phi_i, \phi_i>_{\mu^{-1}} = 1
* The right eigenvectors should satisfy <\psi_i, \psi_i>_{\mu} = 1
Returns
-------
eigvals : np.ndarray, shape=(k,)
The largest `k` eigenvalues
lv : np.ndarray, shape=(n_states, k)
The normalized left eigenvectors (:math:`\phi`) of ``transmat``
rv : np.ndarray, shape=(n_states, k)
The normalized right eigenvectors (:math:`\psi`) of ``transmat`` | 2.326972 | 2.361149 | 0.985526 |
# first normalize the stationary distribution separately
lv[:, 0] = lv[:, 0] / np.sum(lv[:, 0])
for i in range(1, lv.shape[1]):
# the remaining left eigenvectors to satisfy
# <\phi_i, \phi_i>_{\mu^{-1}} = 1
lv[:, i] = lv[:, i] / np.sqrt(np.dot(lv[:, i], lv[:, i] / lv[:, 0]))
for i in range(rv.shape[1]):
# the right eigenvectors to satisfy <\phi_i, \psi_j> = \delta_{ij}
rv[:, i] = rv[:, i] / np.dot(lv[:, i], rv[:, i])
return u, lv, rv | def _normalize_eigensystem(u, lv, rv) | Normalize the eigenvectors of a reversible Markov state model according
to our preferred scheme. | 3.562584 | 3.3977 | 1.048528 |
n_states_input = counts.shape[0]
n_components, component_assignments = csgraph.connected_components(
csr_matrix(counts >= weight), connection="strong")
populations = np.array(counts.sum(0)).flatten()
component_pops = np.array([populations[component_assignments == i].sum() for
i in range(n_components)])
which_component = component_pops.argmax()
def cpop(which):
csum = component_pops.sum()
return 100 * component_pops[which] / csum if csum != 0 else np.nan
percent_retained = cpop(which_component)
if verbose:
print("MSM contains %d strongly connected component%s "
"above weight=%.2f. Component %d selected, with "
"population %f%%" % (
n_components, 's' if (n_components != 1) else '',
weight, which_component, percent_retained))
# keys are all of the "input states" which have a valid mapping to the output.
keys = np.arange(n_states_input)[component_assignments == which_component]
if n_components == n_states_input and counts[np.ix_(keys, keys)] == 0:
# if we have a completely disconnected graph with no self-transitions
return np.zeros((0, 0)), {}, percent_retained
# values are the "output" state that these guys are mapped to
values = np.arange(len(keys))
mapping = dict(zip(keys, values))
n_states_output = len(mapping)
trimmed_counts = np.zeros((n_states_output, n_states_output),
dtype=counts.dtype)
trimmed_counts[np.ix_(values, values)] = counts[np.ix_(keys, keys)]
return trimmed_counts, mapping, percent_retained | def _strongly_connected_subgraph(counts, weight=1, verbose=True) | Trim a transition count matrix down to its maximal
strongly ergodic subgraph.
From the counts matrix, we define a graph where there exists
a directed edge between two nodes, `i` and `j` if
`counts[i][j] > weight`. We then find the nodes belonging to the largest
strongly connected subgraph of this graph, and return a new counts
matrix formed by these rows and columns of the input `counts` matrix.
Parameters
----------
counts : np.array, shape=(n_states_in, n_states_in)
Input set of directed counts.
weight : float
Threshold by which ergodicity is judged in the input data. Greater or
equal to this many transition counts in both directions are required
to include an edge in the ergodic subgraph.
verbose : bool
Print a short statement
Returns
-------
counts_component :
"Trimmed" version of ``counts``, including only states in the
maximal strongly ergodic subgraph.
mapping : dict
Mapping from "input" states indices to "output" state indices
The semantics of ``mapping[i] = j`` is that state ``i`` from the
"input space" for the counts matrix is represented by the index
``j`` in counts_component | 3.847552 | 3.705092 | 1.03845 |
return {k: dict2.get(v) for k, v in dict1.items() if v in dict2} | def _dict_compose(dict1, dict2) | Example
-------
>>> dict1 = {'a': 0, 'b': 1, 'c': 2}
>>> dict2 = {0: 'A', 1: 'B'}
>>> _dict_compose(dict1, dict2)
{'a': 'A', 'b': 'b'} | 2.982762 | 3.333877 | 0.894683 |
if mode not in ['clip', 'fill']:
raise ValueError('mode must be one of ["clip", "fill"]: %s' % mode)
sequence = np.asarray(sequence)
if sequence.ndim != 1:
raise ValueError("Each sequence must be 1D")
f = np.vectorize(lambda k: self.mapping_.get(k, np.nan),
otypes=[np.float])
a = f(sequence)
if mode == 'fill':
if np.all(np.mod(a, 1) == 0):
result = a.astype(int)
else:
result = a
elif mode == 'clip':
result = [a[s].astype(int) for s in
np.ma.clump_unmasked(np.ma.masked_invalid(a))]
else:
raise RuntimeError()
return result | def partial_transform(self, sequence, mode='clip') | Transform a sequence to internal indexing
Recall that `sequence` can be arbitrary labels, whereas ``transmat_``
and ``countsmat_`` are indexed with integers between 0 and
``n_states - 1``. This methods maps a set of sequences from the labels
onto this internal indexing.
Parameters
----------
sequence : array-like
A 1D iterable of state labels. Labels can be integers, strings, or
other orderable objects.
mode : {'clip', 'fill'}
Method by which to treat labels in `sequence` which do not have
a corresponding index. This can be due, for example, to the ergodic
trimming step.
``clip``
Unmapped labels are removed during transform. If they occur
at the beginning or end of a sequence, the resulting transformed
sequence will be shorted. If they occur in the middle of a
sequence, that sequence will be broken into two (or more)
sequences. (Default)
``fill``
Unmapped labels will be replaced with NaN, to signal missing
data. [The use of NaN to signal missing data is not fantastic,
but it's consistent with current behavior of the ``pandas``
library.]
Returns
-------
mapped_sequence : list or ndarray
If mode is "fill", return an ndarray in internal indexing.
If mode is "clip", return a list of ndarrays each in internal
indexing. | 3.064626 | 2.876623 | 1.065355 |
if mode not in ['clip', 'fill']:
raise ValueError('mode must be one of ["clip", "fill"]: %s' % mode)
sequences = list_of_1d(sequences)
result = []
for y in sequences:
if mode == 'fill':
result.append(self.partial_transform(y, mode))
elif mode == 'clip':
result.extend(self.partial_transform(y, mode))
else:
raise RuntimeError()
return result | def transform(self, sequences, mode='clip') | Transform a list of sequences to internal indexing
Recall that `sequences` can be arbitrary labels, whereas ``transmat_``
and ``countsmat_`` are indexed with integers between 0 and
``n_states - 1``. This methods maps a set of sequences from the labels
onto this internal indexing.
Parameters
----------
sequences : list of array-like
List of sequences, or a single sequence. Each sequence should be a
1D iterable of state labels. Labels can be integers, strings, or
other orderable objects.
mode : {'clip', 'fill'}
Method by which to treat labels in `sequences` which do not have
a corresponding index. This can be due, for example, to the ergodic
trimming step.
``clip``
Unmapped labels are removed during transform. If they occur
at the beginning or end of a sequence, the resulting transformed
sequence will be shorted. If they occur in the middle of a
sequence, that sequence will be broken into two (or more)
sequences. (Default)
``fill``
Unmapped labels will be replaced with NaN, to signal missing
data. [The use of NaN to signal missing data is not fantastic,
but it's consistent with current behavior of the ``pandas``
library.]
Returns
-------
mapped_sequences : list
List of sequences in internal indexing | 3.265855 | 4.025589 | 0.811274 |
ec_is_str = isinstance(self.ergodic_cutoff, str)
if ec_is_str and self.ergodic_cutoff.lower() == 'on':
if self.sliding_window:
return 1.0 / self.lag_time
else:
return 1.0
elif ec_is_str and self.ergodic_cutoff.lower() == 'off':
return 0.0
else:
return self.ergodic_cutoff | def _parse_ergodic_cutoff(self) | Get a numeric value from the ergodic_cutoff input,
which can be 'on' or 'off'. | 2.653208 | 2.237772 | 1.185647 |
sequences = list_of_1d(sequences)
inverse_mapping = {v: k for k, v in self.mapping_.items()}
f = np.vectorize(inverse_mapping.get)
result = []
for y in sequences:
uq = np.unique(y)
if not np.all(np.logical_and(0 <= uq, uq < self.n_states_)):
raise ValueError('sequence must be between 0 and n_states-1')
result.append(f(y))
return result | def inverse_transform(self, sequences) | Transform a list of sequences from internal indexing into
labels
Parameters
----------
sequences : list
List of sequences, each of which is one-dimensional array of
integers in ``0, ..., n_states_ - 1``.
Returns
-------
sequences : list
List of sequences, each of which is one-dimensional array
of labels. | 3.588136 | 3.687976 | 0.972928 |
r
random = check_random_state(random_state)
r = random.rand(1 + n_steps)
if state is None:
initial = np.sum(np.cumsum(self.populations_) < r[0])
elif hasattr(state, '__len__') and len(state) == self.n_states_:
initial = np.sum(np.cumsum(state) < r[0])
else:
initial = self.mapping_[state]
cstr = np.cumsum(self.transmat_, axis=1)
chain = [initial]
for i in range(1, n_steps):
chain.append(np.sum(cstr[chain[i - 1], :] < r[i]))
return self.inverse_transform([chain])[0] | def sample_discrete(self, state=None, n_steps=100, random_state=None) | r"""Generate a random sequence of states by propagating the model
using discrete time steps given by the model lagtime.
Parameters
----------
state : {None, ndarray, label}
Specify the starting state for the chain.
``None``
Choose the initial state by randomly drawing from the model's
stationary distribution.
``array-like``
If ``state`` is a 1D array with length equal to ``n_states_``,
then it is is interpreted as an initial multinomial
distribution from which to draw the chain's initial state.
Note that the indexing semantics of this array must match the
_internal_ indexing of this model.
otherwise
Otherwise, ``state`` is interpreted as a particular
deterministic state label from which to begin the trajectory.
n_steps : int
Lengths of the resulting trajectory
random_state : int or RandomState instance or None (default)
Pseudo Random Number generator seed control. If None, use the
numpy.random singleton.
Returns
-------
sequence : array of length n_steps
A randomly sampled label sequence | 3.401778 | 3.441306 | 0.988514 |
if not any([isinstance(seq, collections.Iterable)
for seq in sequences]):
sequences = [sequences]
random = check_random_state(random_state)
selected_pairs_by_state = []
for state in range(self.n_states_):
all_frames = [np.where(a == state)[0] for a in sequences]
pairs = [(trj, frame) for (trj, frames) in enumerate(all_frames)
for frame in frames]
if pairs:
selected_pairs_by_state.append(
[pairs[random.choice(len(pairs))]
for i in range(n_samples)])
else:
selected_pairs_by_state.append([])
return np.array(selected_pairs_by_state) | def draw_samples(self, sequences, n_samples, random_state=None) | Sample conformations for a sequences of states.
Parameters
----------
sequences : list or list of lists
A sequence or list of sequences, in which each element corresponds
to a state label.
n_samples : int
How many samples to return for any given state.
Returns
-------
selected_pairs_by_state : np.array, dtype=int,
shape=(n_states, n_samples, 2) selected_pairs_by_state[state] gives
an array of randomly selected (trj, frame) pairs from the specified
state.
See Also
--------
utils.map_drawn_samples : Extract conformations from MD trajectories by
index. | 3.000938 | 2.607856 | 1.15073 |
model = LandmarkAgglomerative(linkage='ward',
n_clusters=self.n_macrostates,
metric=self.metric,
n_landmarks=self.n_landmarks,
landmark_strategy=self.landmark_strategy,
random_state=self.random_state)
model.fit([self.transmat_])
if self.fit_only:
microstate_mapping_ = model.landmark_labels_
else:
microstate_mapping_ = model.transform([self.transmat_])[0]
self.microstate_mapping_ = microstate_mapping_ | def _do_lumping(self) | Do the MVCA lumping. | 4.487997 | 4.345141 | 1.032877 |
params = msm.get_params()
lumper = cls(n_macrostates, metric=metric, fit_only=fit_only,
n_landmarks=n_landmarks, landmark_strategy=landmark_strategy,
random_state=random_state, **params)
lumper.transmat_ = msm.transmat_
lumper.populations_ = msm.populations_
lumper.mapping_ = msm.mapping_
lumper.countsmat_ = msm.countsmat_
lumper.n_states_ = msm.n_states_
if n_macrostates is not None:
lumper._do_lumping()
if get_linkage:
p = pdist(msm.transmat_, metric=metric)
l = scipy.cluster.hierarchy.linkage(p, 'ward')
lumper.pairwise_dists = p
lumper.linkage = l
lumper.elbow_data = l[:, 2][::-1]
else:
lumper.pairwise_dists = None
lumper.linkage = None
lumper.elbow_data = None
return lumper | def from_msm(cls, msm, n_macrostates, metric=js_metric_array,
n_landmarks=None, landmark_strategy='stride',
random_state=None, get_linkage=False, fit_only=False) | Create and fit lumped model from pre-existing MSM.
Parameters
----------
msm : MarkovStateModel
The input microstate msm to use.
n_macrostates : int
The number of macrostates
get_linkage : boolean, default=False
Whether to return linkage and elbow data objects. Warning:
This will compute n choose 2 pairwise distances
Returns
-------
lumper : cls
The fit MVCA object.
pairwise_dists : if get_linkage is True, np.array,
[number of microstates choose 2]
linkage : if get_linkage is True, scipy linkage object
elbow_data : if get_linkage is True, np.array,
[number of microstates - 1]. Change in updated Ward
objective function, indexed by n_macrostates - 1
Example
-------
plt.figure()
scipy.cluster.hierarchy.dendrogram(mvca.linkage)
scatter(arange(1,n_microstates), mvca.elbow_data) | 2.491796 | 2.340312 | 1.064728 |
''' given a vector x, leave its top-k absolute-value entries alone, and set the rest to 0 '''
not_F = np.argsort(np.abs(x))[:-k]
x[not_F] = 0
return x | def _truncate(self, x, k) | given a vector x, leave its top-k absolute-value entries alone, and set the rest to 0 | 8.112921 | 3.435658 | 2.361387 |
'''
given a matrix A, an initial guess x0, and a maximum cardinality k,
find the best k-sparse approximation to its dominant eigenvector
References
----------
[1] Yuan, X-T. and Zhang, T. "Truncated Power Method for Sparse Eigenvalue Problems."
Journal of Machine Learning Research. Vol. 14. 2013.
http://www.jmlr.org/papers/volume14/yuan13a/yuan13a.pdf
'''
xts = [x0]
for t in range(max_iter):
xts.append(self._normalize(self._truncate(np.dot(A, xts[-1]), k)))
if np.linalg.norm(xts[-1] - xts[-2]) < thresh: break
return xts[-1] | def _truncated_power_method(self, A, x0, k, max_iter=10000, thresh=1e-8) | given a matrix A, an initial guess x0, and a maximum cardinality k,
find the best k-sparse approximation to its dominant eigenvector
References
----------
[1] Yuan, X-T. and Zhang, T. "Truncated Power Method for Sparse Eigenvalue Problems."
Journal of Machine Learning Research. Vol. 14. 2013.
http://www.jmlr.org/papers/volume14/yuan13a/yuan13a.pdf | 3.806417 | 1.665096 | 2.286004 |
nonzeros = np.sum(np.abs(self.eigenvectors_) > 0, axis=0)
active = '[%s]' % ', '.join(['%d/%d' % (n, self.n_features) for n in nonzeros[:n_timescales_to_report]])
return .format(n_components=self.n_components, shrinkage=self.shrinkage_, lag_time=self.lag_time,
kinetic_mapping=self.kinetic_mapping,
timescales=self.timescales_[:n_timescales_to_report], eigenvalues=self.eigenvalues_[:n_timescales_to_report],
n_features=self.n_features, active=active, n_timescales_to_report=n_timescales_to_report) | def summarize(self, n_timescales_to_report=5) | Some summary information. | 3.435649 | 3.374477 | 1.018128 |
labels, inertia = libdistance.assign_nearest(
X, self.cluster_centers_, metric=self.metric)
return labels | def predict(self, X) | Predict the closest cluster each sample in X belongs to.
In the vector quantization literature, `cluster_centers_` is called
the code book and each value returned by `predict` is the index of
the closest code in the code book.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
New data to predict.
Returns
-------
Y : array, shape [n_samples,]
Index of the closest center each sample belongs to. | 14.765899 | 18.474138 | 0.799274 |
MultiSequenceClusterMixin.fit(self, sequences)
self.cluster_center_indices_ = self._split_indices(self.cluster_center_indices_)
return self | def fit(self, sequences, y=None) | Fit the kcenters clustering on the data
Parameters
----------
sequences : list of array-like, each of shape [sequence_length, n_features]
A list of multivariate timeseries, or ``md.Trajectory``. Each
sequence may have a different length, but they all must have the
same number of features, or the same number of atoms if they are
``md.Trajectory``s.
Returns
-------
self | 6.911815 | 10.889477 | 0.634724 |
# X = check_array(X)
t0 = time.time()
self.X = X
self._run()
t1 = time.time()
# print("APM clustering Time Cost:", t1 - t0)
return self | def fit(self, X, y=None) | Perform clustering.
Parameters
-----------
X : array-like, shape=[n_samples, n_features]
Samples to cluster. | 5.942219 | 6.567494 | 0.904792 |
# print("Doing APM Clustering...")
# Start looping for maxIter times
n_macrostates = 1 # initialized as 1 because no macrostate exist in loop 0
metaQ = -1.0
prevQ = -1.0
global_maxQ = -1.0
local_maxQ = -1.0
for iter in range(self.max_iter):
self.__max_state = -1
self.__micro_stack = []
for k in range(n_macrostates):
self._do_split(micro_state=k, sub_clus=self.sub_clus)
self._do_time_clustering(macro_state=k)
# do Lumping
n_micro_states = np.amax(self.__temp_labels_) + 1
if n_micro_states > self.n_macrostates:
# print("PCCA Lumping...", n_micro_states, "microstates")
self.__temp_MacroAssignments_ = self._do_lumping(
n_macrostates=n_macrostates)
#self.__temp_labels_ = [copy.copy(element) for element in self.__temp_MacroAssignments_]
#Calculate Metastabilty
prevQ = metaQ
metaQ = self.__temp_transmat_.diagonal().sum()
metaQ /= len(self.__temp_transmat_)
else:
self.__temp_MacroAssignments_ = [
copy.copy(element) for element in self.__temp_labels_
]
# Optimization / Monte-Carlo
acceptedMove = False
MCacc = np.exp(metaQ * metaQ - prevQ * prevQ)
if MCacc > 1.0:
MCacc = 1.0
optLim = 0.95
if MCacc > optLim:
acceptedMove = True
if acceptedMove:
local_maxQ = metaQ
if metaQ > global_maxQ:
global_maxQ = metaQ
self.MacroAssignments_ = [
copy.copy(element)
for element in self.__temp_MacroAssignments_
]
self.labels_ = [copy.copy(element)
for element in self.__temp_labels_]
self.transmat_ = self.__temp_transmat_
# print("Loop:", iter, "AcceptedMove?", acceptedMove, "metaQ:",
# metaQ, "prevQ:", prevQ, "global_maxQ:", global_maxQ,
# "local_maxQ:", local_maxQ, "macroCount:", n_macrostates)
#set n_macrostates
n_macrostates = self.n_macrostates
self.__temp_labels_ = [copy.copy(element)
for element in self.__temp_MacroAssignments_
] | def _run(self) | Do the APM lumping. | 4.241953 | 4.036024 | 1.051023 |
if pbar.currval == 0:
return 'ETA: --:--:--'
elif pbar.finished:
return 'Time: %s' % self.format_time(pbar.seconds_elapsed)
else:
elapsed = pbar.seconds_elapsed
currval1, elapsed1 = self._update_samples(pbar.currval, elapsed)
eta = self._eta(pbar.maxval, pbar.currval, elapsed)
if pbar.currval > currval1:
etasamp = self._eta(pbar.maxval - currval1,
pbar.currval - currval1,
elapsed - elapsed1)
weight = (pbar.currval / float(pbar.maxval)) ** 0.5
eta = (1 - weight) * eta + weight * etasamp
return 'ETA: %s' % self.format_time(eta) | def update(self, pbar) | Updates the widget to show the ETA or total time when finished. | 3.250688 | 3.062123 | 1.06158 |
if pbar.seconds_elapsed < 2e-6 or pbar.currval < 2e-6: # =~ 0
scaled = power = 0
else:
speed = pbar.currval / pbar.seconds_elapsed
power = int(math.log(speed, 1000))
scaled = speed / 1000.**power
return self.FORMAT % (scaled, self.PREFIXES[power], self.unit) | def update(self, pbar) | Updates the widget with the current SI prefixed speed. | 6.134021 | 5.130699 | 1.195553 |
if keep_atoms is None:
keep_atoms = ATOM_NAMES
top, bonds = reference_traj.top.to_dataframe()
if keep_atoms is not None:
atom_indices = top[top.name.isin(keep_atoms) == True].index.values
if exclude_atoms is not None:
atom_indices = top[top.name.isin(exclude_atoms) == False].index.values
pair_indices = np.array(list(itertools.combinations(atom_indices, 2)))
if reject_bonded:
a_list = bonds.min(1)
b_list = bonds.max(1)
n = atom_indices.max() + 1
bond_hashes = a_list + b_list * n
pair_hashes = pair_indices[:, 0] + pair_indices[:, 1] * n
not_bonds = ~np.in1d(pair_hashes, bond_hashes)
pair_indices = np.array([(a, b) for k, (a, b)
in enumerate(pair_indices)
if not_bonds[k]])
return atom_indices, pair_indices | def get_atompair_indices(reference_traj, keep_atoms=None,
exclude_atoms=None, reject_bonded=True) | Get a list of acceptable atom pairs.
Parameters
----------
reference_traj : mdtraj.Trajectory
Trajectory to grab atom pairs from
keep_atoms : np.ndarray, dtype=string, optional
Select only these atom names. Defaults to N, CA, CB, C, O, H
exclude_atoms : np.ndarray, dtype=string, optional
Exclude these atom names
reject_bonded : bool, default=True
If True, exclude bonded atompairs.
Returns
-------
atom_indices : np.ndarray, dtype=int
The atom indices that pass your criteria
pair_indices : np.ndarray, dtype=int, shape=(N, 2)
Pairs of atom indices that pass your criteria.
Notes
-----
This function has been optimized for speed. A naive implementation
can be slow (~minutes) for large proteins. | 2.646785 | 2.549942 | 1.037979 |
fixed_indices = list(trajs.keys())
trajs = [trajs[k][:, [dimension]] for k in fixed_indices]
txx = np.concatenate([traj[:,0] for traj in trajs])
if scheme == "linear":
spaced_points = np.linspace(np.min(txx), np.max(txx), n_frames)
spaced_points = spaced_points[:, np.newaxis]
elif scheme == "random":
spaced_points = np.sort(np.random.choice(txx, n_frames))
spaced_points = spaced_points[:, np.newaxis]
elif scheme == "edge":
_cut_point = n_frames // 2
txx = np.sort(txx)
spaced_points = np.hstack((txx[:_cut_point],
txx[-_cut_point:]))
spaced_points = np.reshape(spaced_points, newshape=(len(spaced_points), 1))
else:
raise ValueError("Scheme has be to one of linear, random or edge")
tree = KDTree(trajs)
dists, inds = tree.query(spaced_points)
return [(fixed_indices[i], j) for i, j in inds] | def sample_dimension(trajs, dimension, n_frames, scheme="linear") | Sample a dimension of the data.
This method uses one of 3 schemes. All other dimensions are ignored, so
this might result in a really "jumpy" sampled trajectory.
Parameters
----------
trajs : dictionary of np.ndarray
Dictionary of tica-transformed trajectories, keyed by arbitrary keys.
The resulting trajectory indices will use these keys.
dimension : int
dimension to sample on
n_frames : int
Number of frames requested
scheme : {'linear', 'random', 'edges'}
'linear' samples the tic linearly, 'random' samples randomly
(thereby taking approximate free energies into account),
and 'edges' samples the edges of the tic only.
Returns
-------
inds : list of tuples
Tuples of (trajectory_index, frame_index), where trajectory_index is
in the domain of the keys of the input dictionary. | 2.554786 | 2.624496 | 0.973439 |
X = array2d(X)
self.n_features = X.shape[1]
self.n_bins = self.n_bins_per_feature ** self.n_features
if self.min is None:
min = np.min(X, axis=0)
elif isinstance(self.min, numbers.Number):
min = self.min * np.ones(self.n_features)
else:
min = np.asarray(self.min)
if not min.shape == (self.n_features,):
raise ValueError('min shape error')
if self.max is None:
max = np.max(X, axis=0)
elif isinstance(self.max, numbers.Number):
max = self.max * np.ones(self.n_features)
else:
max = np.asarray(self.max)
if not max.shape == (self.n_features,):
raise ValueError('max shape error')
self.grid = np.array(
[np.linspace(min[i] - EPS, max[i] + EPS, self.n_bins_per_feature + 1)
for i in range(self.n_features)])
return self | def fit(self, X, y=None) | Fit the grid
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Data points
Returns
-------
self | 1.777171 | 1.884676 | 0.942959 |
if np.any(X < self.grid[:, 0]) or np.any(X > self.grid[:, -1]):
raise ValueError('data out of min/max bounds')
binassign = np.zeros((self.n_features, len(X)), dtype=int)
for i in range(self.n_features):
binassign[i] = np.digitize(X[:, i], self.grid[i]) - 1
labels = np.dot(self.n_bins_per_feature ** np.arange(self.n_features), binassign)
assert np.max(labels) < self.n_bins
return labels | def predict(self, X) | Get the index of the grid cell containing each sample in X
Parameters
----------
X : array-like, shape = [n_samples, n_features]
New data
Returns
-------
y : array, shape = [n_samples,]
Index of the grid cell containing each sample | 3.155688 | 3.526485 | 0.894854 |
return np.concatenate([self._dim_match(traj) / norm
for traj, norm in zip(traj_zip, self._norms)],
axis=1) | def partial_transform(self, traj_zip) | Featurize an MD trajectory into a vector space.
Parameters
----------
traj : mdtraj.Trajectory
A molecular dynamics trajectory to featurize.
Returns
-------
features : np.ndarray, dtype=float, shape=(n_samples, n_features)
A featurized trajectory is a 2D array of shape
`(length_of_trajectory x n_features)` where each `features[i]`
vector is computed by applying the featurization function
to the `i`th snapshot of the input trajectory.
See Also
--------
transform : simultaneously featurize a collection of MD trajectories | 7.646486 | 12.839734 | 0.595533 |
lens = [len(trajs) for trajs in trajs_tuple]
if len(set(lens)) > 1:
err = "Each dataset must be the same length. You gave: {}"
err = err.format(lens)
raise ValueError(err) | def _check_same_length(self, trajs_tuple) | Check that the datasets are the same length | 3.168447 | 2.774047 | 1.142175 |
return [self.partial_transform(traj_zip)
for traj_zip in zip(*trajs_tuple)] | def transform(self, trajs_tuple, y=None) | Featurize a several trajectories.
Parameters
----------
traj_list : list(mdtraj.Trajectory)
Trajectories to be featurized.
Returns
-------
features : list(np.ndarray), length = len(traj_list)
The featurized trajectories. features[i] is the featurized
version of traj_list[i] and has shape
(n_samples_i, n_features) | 7.48658 | 9.87602 | 0.758056 |
n_states = np.shape(populations)[0]
if sinks is None:
# Use Thm 11.16 in [1]
limiting_matrix = np.vstack([populations] * n_states)
# Fundamental matrix
fund_matrix = scipy.linalg.inv(np.eye(n_states) - tprob +
limiting_matrix)
# mfpt[i,j] = (fund_matrix[j,j] - fund_matrix[i,j]) / populations[j]
mfpts = fund_matrix * -1
for j in xrange(n_states):
mfpts[:, j] += fund_matrix[j, j]
mfpts[:, j] /= populations[j]
mfpts *= lag_time
else:
# See section 11.5, and use Thm 11.5
# Turn our ergodic MSM into an absorbing one (all sink
# states are absorbing). Then calculate the mean time
# to absorption.
# Note: we are slightly modifying the description in
# 11.5 so that we also get the mfpts[sink] = 0.0
sinks = np.array(sinks, dtype=int).reshape((-1,))
absorb_tprob = copy.copy(tprob)
for state in sinks:
absorb_tprob[state, :] = 0.0
absorb_tprob[state, state] = 2.0
# note it has to be 2 because we subtract
# the identity below.
lhs = np.eye(n_states) - absorb_tprob
rhs = np.ones(n_states)
for state in sinks:
rhs[state] = 0.0
mfpts = lag_time * np.linalg.solve(lhs, rhs)
return mfpts | def _mfpts(tprob, populations, sinks, lag_time) | Gets the Mean First Passage Time (MFPT) for all states to a *set*
of sinks.
Parameters
----------
tprob : np.ndarray
Transition matrix
populations : np.ndarray, (n_states,)
MSM populations
sinks : array_like, int, optional
Indices of the sink states. There are two use-cases:
- None [default] : All MFPTs will be calculated, and the
result is a matrix of the MFPT from state i to state j.
This uses the fundamental matrix formalism.
- list of ints or int : Only the MFPTs into these sink
states will be computed. The result is a vector, with
entry i corresponding to the average time it takes to
first get to *any* sink state from state i
lag_time : float, optional
Lag time for the model. The MFPT will be reported in whatever
units are given here. Default is (1) which is in units of the
lag time of the MSM.
Returns
-------
mfpts : np.ndarray, float
MFPT in time units of lag_time, which depends on the input
value of sinks:
- If sinks is None, then mfpts's shape is (n_states, n_states).
Where mfpts[i, j] is the mean first passage time to state j
from state i.
- If sinks contains one or more states, then mfpts's shape
is (n_states,). Where mfpts[i] is the mean first passage
time from state i to any state in sinks.
References
----------
.. [1] Grinstead, C. M. and Snell, J. L. Introduction to
Probability. American Mathematical Soc., 1998.
As of November 2014, this chapter was available for free online:
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf | 4.642923 | 4.168859 | 1.113716 |
def inner(s):
if s == '':
return s
first, last = os.path.splitext(s)
return first + suffix
return inner | def exttype(suffix) | Type for use with argument(... type=) that will force a specific suffix
Especially for output files, so that we can enforce the use of appropriate
file-type specific suffixes | 5.289034 | 6.477236 | 0.816557 |
if hasattr(klass, '_init_argspec'):
return _shim_argspec(klass._init_argspec())
elif PY2:
return _shim_argspec(inspect.getargspec(klass.__init__))
else:
return inspect.signature(klass.__init__) | def get_init_argspec(klass) | Wrapper around inspect.getargspec(klass.__init__) which, for cython
classes uses an auxiliary '_init_argspec' method, since they don't play
nice with the inspect module.
By convention, a cython class should define the classmethod _init_argspec
that, when called, returns what ``inspect.getargspec`` would be expected
to return when called on that class's __init__ method. | 3.100283 | 3.368975 | 0.920245 |
assert cls.klass is not None
sig = get_init_argspec(cls.klass)
doc = numpydoc.docscrape.ClassDoc(cls.klass)
# mapping from the name of the argument to the helptext
helptext = {d[0]: ' '.join(d[2]) for d in doc['Parameters']}
# mapping from the name of the argument to the type
typemap = {d[0]: d[1].replace(',', ' ').split() for d in doc['Parameters']}
# put all of these arguments into an argument group, to separate them
# from other arguments on the subcommand
group = argument_group('Parameters')
for i, arg in enumerate(sig.parameters):
if i == 0 and arg == 'self':
continue
# get default value
kwargs = {}
if sig.parameters[arg].default != Parameter.empty:
kwargs['default'] = sig.parameters[arg].default
else:
kwargs['required'] = True
if arg in helptext:
# try to get some helptext
kwargs['help'] = helptext[arg]
# obviously this isn't an exaustive list, but try to make
# reasonable argparse decisions based on the docstring.
if arg in typemap:
if 'list' in typemap[arg]:
kwargs['nargs'] = '+'
if 'bool' in typemap[arg]:
kwargs['action'] = FlagAction
if hasattr(cls, '_{}_type'.format(arg)):
# If the docstring *contains* the word float or int,
# parsing will fail for things not of that type
# even if a custom loader will eventually be used.
# Let's check for custom loaders here and set the type
# to str.
kwargs['type'] = str
else:
basic_types = {'str': str, 'float': float, 'int': int}
for basic_type in basic_types:
if basic_type in typemap[arg]:
kwargs['type'] = basic_types[basic_type]
break
group.add_argument('--{}'.format(arg), **kwargs)
group.register(subparser) | def _register_arguments(cls, subparser) | this is a special method that gets called to construct the argparse
parser. it uses the python inspect module to introspect the __init__ method
of `klass`, and add an argument for each parameter. it also uses numpydoc
to read the class docstring of klass (which is supposed to be in numpydoc
format) to get the help-text and type for each argument, as well as a
description of the class. | 4.271119 | 4.133193 | 1.03337 |
if not os.path.exists(fn):
return
backnum = 1
backfmt = "{fn}.bak.{backnum}"
trial_fn = backfmt.format(fn=fn, backnum=backnum)
while os.path.exists(trial_fn):
backnum += 1
trial_fn = backfmt.format(fn=fn, backnum=backnum)
warnings.warn("{fn} exists. Moving it to {newfn}"
.format(fn=fn, newfn=trial_fn),
BackupWarning)
shutil.move(fn, trial_fn) | def backup(fn) | If ``fn`` exists, rename it and issue a warning
This function will rename an existing filename {fn}.bak.{i} where
i is the smallest integer that gives a filename that doesn't exist.
This naively uses a while loop to find such a filename, so there
shouldn't be too many existing backups or performance will degrade.
Parameters
----------
fn : str
The filename to check. | 2.632516 | 2.458804 | 1.070649 |
if isinstance(key, tuple):
paths = [dfmt.format(k) for k in key[:-1]]
paths += [ffmt.format(key[-1])]
return os.path.join(*paths)
else:
return ffmt.format(key) | def default_key_to_path(key, dfmt="{}", ffmt="{}.npy") | Turn an arbitrary python object into a filename
This uses string formatting, so make sure your keys map
to unique strings. If the key is a tuple, it will join each
element of the tuple with '/', resulting in a filesystem
hierarchy of files. | 2.017959 | 2.179191 | 0.926013 |
top_fns = set(meta['top_fn'])
tops = {}
for tfn in top_fns:
tops[tfn] = md.load_topology(tfn)
return tops | def preload_tops(meta) | Load all topology files into memory.
This might save some performance compared to re-parsing the topology
file for each trajectory you try to load in. Typically, you have far
fewer (possibly 1) topologies than trajectories
Parameters
----------
meta : pd.DataFrame
The DataFrame of metadata with a column named 'top_fn'
Returns
-------
tops : dict
Dictionary of ``md.Topology`` objects, keyed by "top_fn"
values. | 3.983028 | 2.841919 | 1.401527 |
top_fns = set(meta['top_fn'])
if len(top_fns) != 1:
raise ValueError("More than one topology is used in this project!")
return md.load_topology(top_fns.pop()) | def preload_top(meta) | Load one topology file into memory.
This function checks to make sure there's only one topology file
in play. When sampling frames, you have to have all the same
topology to concatenate.
Parameters
----------
meta : pd.DataFrame
The DataFrame of metadata with a column named 'top_fn'
Returns
-------
top : md.Topology
The one topology file that can be used for all trajectories. | 5.92475 | 3.842821 | 1.541771 |
tops = preload_tops(meta)
for i, row in meta.iterrows():
yield i, md.join(md.iterload(row['traj_fn'],
top=tops[row['top_fn']],
stride=stride),
discard_overlapping_frames=False,
check_topology=False) | def itertrajs(meta, stride=1) | Load one mdtraj trajectory at a time and yield it.
MDTraj does striding badly. It reads in the whole trajectory and
then performs a stride. We join(iterload) to conserve memory. | 8.97506 | 6.679388 | 1.343695 |
if pandas_kwargs is None:
pandas_kwargs = {}
kwargs_with_defaults = {
'classes': ('table', 'table-condensed', 'table-hover'),
}
kwargs_with_defaults.update(**pandas_kwargs)
env = Environment(loader=PackageLoader('msmbuilder', 'io_templates'))
templ = env.get_template("twitter-bootstrap.html")
rendered = templ.render(
title=title,
content=meta.to_html(**kwargs_with_defaults)
)
# Ugh, pandas hardcodes border="1"
rendered = re.sub(r' border="1"', '', rendered)
backup(fn)
with open(fn, 'w') as f:
f.write(rendered) | def render_meta(meta, fn="meta.pandas.html",
title="Project Metadata - MSMBuilder", pandas_kwargs=None) | Render a metadata dataframe as an html webpage for inspection.
Parameters
----------
meta : pd.Dataframe
The DataFrame of metadata
fn : str
Output filename (should end in html)
title : str
Page title
pandas_kwargs : dict
Arguments to be passed to pandas | 3.354024 | 3.5604 | 0.942036 |
backup(fn)
with open(fn, 'wb') as f:
pickle.dump(obj, f) | def save_generic(obj, fn) | Save Python objects, including msmbuilder Estimators.
This is a convenience wrapper around Python's ``pickle``
serialization scheme. This protocol is backwards-compatible
among Python versions, but may not be "forwards-compatible".
A file saved with Python 3 won't be able to be opened under Python 2.
Please read the pickle docs (specifically related to the ``protocol``
parameter) to specify broader compatibility.
If a file already exists at the given filename, it will be backed
up.
Parameters
----------
obj : object
A Python object to serialize (save to disk)
fn : str
Filename to save the object. We recommend using the '.pickl'
extension, but don't do anything to enforce that convention. | 3.152029 | 6.550192 | 0.481212 |
if key_to_path is None:
key_to_path = default_key_to_path
validate_keys(meta.index, key_to_path)
backup(fn)
os.mkdir(fn)
for k in meta.index:
v = trajs[k]
npy_fn = os.path.join(fn, key_to_path(k))
os.makedirs(os.path.dirname(npy_fn), exist_ok=True)
np.save(npy_fn, v) | def save_trajs(trajs, fn, meta, key_to_path=None) | Save trajectory-like data
Data is stored in individual numpy binary files in the
directory given by ``fn``.
This method will automatically back up existing files named ``fn``.
Parameters
----------
trajs : dict of (key, np.ndarray)
Dictionary of trajectory-like ndarray's keyed on ``meta.index``
values.
fn : str
Where to save the data. This will be a directory containing
one file per trajectory
meta : pd.DataFrame
The DataFrame of metadata | 2.530778 | 2.486887 | 1.017649 |
if key_to_path is None:
key_to_path = default_key_to_path
if isinstance(meta, str):
meta = load_meta(meta_fn=meta)
trajs = {}
for k in meta.index:
trajs[k] = np.load(os.path.join(fn, key_to_path(k)))
return meta, trajs | def load_trajs(fn, meta='meta.pandas.pickl', key_to_path=None) | Load trajectory-like data
Data is expected to be stored as if saved by ``save_trajs``.
This method finds trajectories based on the ``meta`` dataframe.
If you remove a file (trajectory) from disk, be sure to remove
its row from the dataframe. If you remove a row from the dataframe,
be aware that that trajectory (file) will not be loaded, even if
it exists on disk.
Parameters
----------
fn : str
Where the data is saved. This should be a directory containing
one file per trajectory.
meta : pd.DataFrame or str
The DataFrame of metadata. If this is a string, it is interpreted
as a filename and the dataframe is loaded from disk.
Returns
-------
meta : pd.DataFrame
The DataFrame of metadata. If you passed in a string (filename)
to the ``meta`` input, this will be the loaded DataFrame. If
you gave a DataFrame object, this will just be a reference back
to that object
trajs : dict
Dictionary of trajectory-like np.ndarray's keyed on the values
of ``meta.index``. | 2.234631 | 2.434287 | 0.917982 |
cdists, cinds = self._kdtree.query(x, k, p, distance_upper_bound)
return cdists, self._split_indices(cinds) | def query(self, x, k=1, p=2, distance_upper_bound=np.inf) | Query the kd-tree for nearest neighbors
Parameters
----------
x : array_like, last dimension self.m
An array of points to query.
k : int, optional
The number of nearest neighbors to return.
eps : nonnegative float, optional
Return approximate nearest neighbors; the kth returned value
is guaranteed to be no further than (1+eps) times the
distance to the real kth nearest neighbor.
p : float, 1<=p<=infinity, optional
Which Minkowski p-norm to use.
1 is the sum-of-absolute-values "Manhattan" distance
2 is the usual Euclidean distance
infinity is the maximum-coordinate-difference distance
distance_upper_bound : nonnegative float, optional
Return only neighbors within this distance. This is used to prune
tree searches, so if you are doing a series of nearest-neighbor
queries, it may help to supply the distance to the nearest neighbor
of the most recent point.
Returns
-------
d : float or array of floats
The distances to the nearest neighbors.
If x has shape tuple+(self.m,), then d has shape tuple if
k is one, or tuple+(k,) if k is larger than one. Missing
neighbors (e.g. when k > n or distance_upper_bound is
given) are indicated with infinite distances. If k is None,
then d is an object array of shape tuple, containing lists
of distances. In either case the hits are sorted by distance
(nearest first).
i : tuple(int, int) or array of tuple(int, int)
The locations of the neighbors in self.data. Locations are
given by tuples of (traj_i, frame_i)
Examples
--------
>>> from msmbuilder.utils import KDTree
>>> X1 = 0.3 * np.random.RandomState(0).randn(500, 2)
>>> X2 = 0.3 * np.random.RandomState(1).randn(1000, 2) + 10
>>> tree = KDTree([X1, X2])
>>> pts = np.array([[0, 0], [10, 10]])
>>> tree.query(pts)
(array([ 0.0034, 0.0102]), array([[ 0, 410], [ 1, 670]]))
>>> tree.query(pts[0])
(0.0034, array([ 0, 410])) | 4.434827 | 7.900272 | 0.561351 |
clengths = np.append([0], np.cumsum(self.__lengths))
mapping = np.zeros((clengths[-1], 2), dtype=int)
for traj_i, (start, end) in enumerate(zip(clengths[:-1], clengths[1:])):
mapping[start:end, 0] = traj_i
mapping[start:end, 1] = np.arange(end - start)
return mapping[concat_inds] | def _split_indices(self, concat_inds) | Take indices in 'concatenated space' and return as pairs
of (traj_i, frame_i) | 2.782436 | 2.362219 | 1.177891 |
check_iter_of_sequences(sequences)
transforms = []
for X in sequences:
transforms.append(self.partial_transform(X))
return transforms | def transform(self, sequences) | Apply dimensionality reduction to sequences
Parameters
----------
sequences: list of array-like, each of shape (n_samples_i, n_features)
Sequence data to transform, where n_samples_i in the number of samples
in sequence i and n_features is the number of features.
Returns
-------
sequence_new : list of array-like, each of shape (n_samples_i, n_components) | 6.775969 | 12.116138 | 0.559251 |
self.fit(sequences)
transforms = self.transform(sequences)
return transforms | def fit_transform(self, sequences, y=None) | Fit the model and apply dimensionality reduction
Parameters
----------
sequences: list of array-like, each of shape (n_samples_i, n_features)
Training data, where n_samples_i in the number of samples
in sequence i and n_features is the number of features.
y : None
Ignored
Returns
-------
sequence_new : list of array-like, each of shape (n_samples_i, n_components) | 5.872624 | 10.201693 | 0.575652 |
check_iter_of_sequences(sequences, allow_trajectory=self._allow_trajectory)
super(MultiSequenceClusterMixin, self).fit(self._concat(sequences))
if hasattr(self, 'labels_'):
self.labels_ = self._split(self.labels_)
return self | def fit(self, sequences, y=None) | Fit the clustering on the data
Parameters
----------
sequences : list of array-like, each of shape [sequence_length, n_features]
A list of multivariate timeseries. Each sequence may have
a different length, but they all must have the same number
of features.
Returns
-------
self | 7.917976 | 10.099009 | 0.784035 |
predictions = []
check_iter_of_sequences(sequences, allow_trajectory=self._allow_trajectory)
for X in sequences:
predictions.append(self.partial_predict(X))
return predictions | def predict(self, sequences, y=None) | Predict the closest cluster each sample in each sequence in
sequences belongs to.
In the vector quantization literature, `cluster_centers_` is called
the code book and each value returned by `predict` is the index of
the closest code in the code book.
Parameters
----------
sequences : list of array-like, each of shape [sequence_length, n_features]
A list of multivariate timeseries. Each sequence may have
a different length, but they all must have the same number
of features.
Returns
-------
Y : list of arrays, each of shape [sequence_length,]
Index of the closest center each sample belongs to. | 7.541344 | 13.767659 | 0.547758 |
if isinstance(X, md.Trajectory):
X.center_coordinates()
return super(MultiSequenceClusterMixin, self).predict(X) | def partial_predict(self, X, y=None) | Predict the closest cluster each sample in X belongs to.
In the vector quantization literature, `cluster_centers_` is called
the code book and each value returned by `predict` is the index of
the closest code in the code book.
Parameters
----------
X : array-like shape=(n_samples, n_features)
A single timeseries.
Returns
-------
Y : array, shape=(n_samples,)
Index of the cluster that each sample belongs to | 14.953556 | 27.606785 | 0.541662 |
if hasattr(super(MultiSequenceClusterMixin, self), 'fit_predict'):
check_iter_of_sequences(sequences, allow_trajectory=self._allow_trajectory)
labels = super(MultiSequenceClusterMixin, self).fit_predict(sequences)
else:
self.fit(sequences)
labels = self.predict(sequences)
if not isinstance(labels, list):
labels = self._split(labels)
return labels | def fit_predict(self, sequences, y=None) | Performs clustering on X and returns cluster labels.
Parameters
----------
sequences : list of array-like, each of shape [sequence_length, n_features]
A list of multivariate timeseries. Each sequence may have
a different length, but they all must have the same number
of features.
Returns
-------
Y : list of ndarray, each of shape [sequence_length, ]
Cluster labels | 4.636979 | 5.20788 | 0.890377 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.