code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
if not isspmatrix(matrix):
# cast to sparse so that we don't need to handle different
# matrix types
matrix = csc_matrix(matrix)
# get the attractors - non-zero elements of the matrix diagonal
attractors = matrix.diagonal().nonzero()[0]
# somewhere to put the clusters
clusters = set()
# the nodes in the same row as each attractor form a cluster
for attractor in attractors:
cluster = tuple(matrix.getrow(attractor).nonzero()[1].tolist())
clusters.add(cluster)
return sorted(list(clusters)) | def get_clusters(matrix) | Retrieve the clusters from the matrix
:param matrix: The matrix produced by the MCL algorithm
:returns: A list of tuples where each tuple represents a cluster and
contains the indices of the nodes belonging to the cluster | 4.992376 | 5.290568 | 0.943637 |
assert expansion > 1, "Invalid expansion parameter"
assert inflation > 1, "Invalid inflation parameter"
assert loop_value >= 0, "Invalid loop_value"
assert iterations > 0, "Invalid number of iterations"
assert pruning_threshold >= 0, "Invalid pruning_threshold"
assert pruning_frequency > 0, "Invalid pruning_frequency"
assert convergence_check_frequency > 0, "Invalid convergence_check_frequency"
printer = MessagePrinter(verbose)
printer.print("-" * 50)
printer.print("MCL Parameters")
printer.print("Expansion: {}".format(expansion))
printer.print("Inflation: {}".format(inflation))
if pruning_threshold > 0:
printer.print("Pruning threshold: {}, frequency: {} iteration{}".format(
pruning_threshold, pruning_frequency, "s" if pruning_frequency > 1 else ""))
else:
printer.print("No pruning")
printer.print("Convergence check: {} iteration{}".format(
convergence_check_frequency, "s" if convergence_check_frequency > 1 else ""))
printer.print("Maximum iterations: {}".format(iterations))
printer.print("{} matrix mode".format("Sparse" if isspmatrix(matrix) else "Dense"))
printer.print("-" * 50)
# Initialize self-loops
if loop_value > 0:
matrix = add_self_loops(matrix, loop_value)
# Normalize
matrix = normalize(matrix)
# iterations
for i in range(iterations):
printer.print("Iteration {}".format(i + 1))
# store current matrix for convergence checking
last_mat = matrix.copy()
# perform MCL expansion and inflation
matrix = iterate(matrix, expansion, inflation)
# prune
if pruning_threshold > 0 and i % pruning_frequency == pruning_frequency - 1:
printer.print("Pruning")
matrix = prune(matrix, pruning_threshold)
# Check for convergence
if i % convergence_check_frequency == convergence_check_frequency - 1:
printer.print("Checking for convergence")
if converged(matrix, last_mat):
printer.print("Converged after {} iteration{}".format(i + 1, "s" if i > 0 else ""))
break
printer.print("-" * 50)
return matrix | def run_mcl(matrix, expansion=2, inflation=2, loop_value=1,
iterations=100, pruning_threshold=0.001, pruning_frequency=1,
convergence_check_frequency=1, verbose=False) | Perform MCL on the given similarity matrix
:param matrix: The similarity matrix to cluster
:param expansion: The cluster expansion factor
:param inflation: The cluster inflation factor
:param loop_value: Initialization value for self-loops
:param iterations: Maximum number of iterations
(actual number of iterations will be less if convergence is reached)
:param pruning_threshold: Threshold below which matrix elements will be set
set to 0
:param pruning_frequency: Perform pruning every 'pruning_frequency'
iterations.
:param convergence_check_frequency: Perform the check for convergence
every convergence_check_frequency iterations
:param verbose: Print extra information to the console
:returns: The final matrix | 1.922698 | 1.903716 | 1.009971 |
return {
type(u''): u''.join,
type(b''): concat_bytes,
}.get(type(data), list) | def _guess_concat(data) | Guess concat function from given data | 7.919831 | 7.212847 | 1.098017 |
out.write(u'bits code (value) symbol\n')
for symbol, (bitsize, value) in sorted(self._table.items()):
out.write(u'{b:4d} {c:10} ({v:5d}) {s!r}\n'.format(
b=bitsize, v=value, s=symbol, c=bin(value)[2:].rjust(bitsize, '0')
)) | def print_code_table(self, out=sys.stdout) | Print code table overview | 4.230495 | 3.983809 | 1.061922 |
# Buffer value and size
buffer = 0
size = 0
for s in data:
b, v = self._table[s]
# Shift new bits in the buffer
buffer = (buffer << b) + v
size += b
while size >= 8:
byte = buffer >> (size - 8)
yield to_byte(byte)
buffer = buffer - (byte << (size - 8))
size -= 8
# Handling of the final sub-byte chunk.
# The end of the encoded bit stream does not align necessarily with byte boundaries,
# so we need an "end of file" indicator symbol (_EOF) to guard against decoding
# the non-data trailing bits of the last byte.
# As an optimization however, while encoding _EOF, it is only necessary to encode up to
# the end of the current byte and cut off there.
# No new byte has to be started for the remainder, saving us one (or more) output bytes.
if size > 0:
b, v = self._table[_EOF]
buffer = (buffer << b) + v
size += b
if size >= 8:
byte = buffer >> (size - 8)
else:
byte = buffer << (8 - size)
yield to_byte(byte) | def encode_streaming(self, data) | Encode given data in streaming fashion.
:param data: sequence of symbols (e.g. byte string, unicode string, list, iterator)
:return: generator of bytes (single character strings in Python2, ints in Python 3) | 6.21517 | 6.279108 | 0.989817 |
return self._concat(self.decode_streaming(data)) | def decode(self, data, as_list=False) | Decode given data.
:param data: sequence of bytes (string, list or generator of bytes)
:param as_list: whether to return as a list instead of
:return: | 29.326363 | 54.265423 | 0.540424 |
# Reverse lookup table: map (bitsize, value) to symbols
lookup = dict(((b, v), s) for (s, (b, v)) in self._table.items())
buffer = 0
size = 0
for byte in data:
for m in [128, 64, 32, 16, 8, 4, 2, 1]:
buffer = (buffer << 1) + bool(from_byte(byte) & m)
size += 1
if (size, buffer) in lookup:
symbol = lookup[size, buffer]
if symbol == _EOF:
return
yield symbol
buffer = 0
size = 0 | def decode_streaming(self, data) | Decode given data in streaming fashion
:param data: sequence of bytes (string, list or generator of bytes)
:return: generator of symbols | 3.671222 | 3.75753 | 0.977031 |
concat = concat or _guess_concat(next(iter(frequencies)))
# Heap consists of tuples: (frequency, [list of tuples: (symbol, (bitsize, value))])
heap = [(f, [(s, (0, 0))]) for s, f in frequencies.items()]
# Add EOF symbol.
# TODO: argument to set frequency of EOF?
heap.append((1, [(_EOF, (0, 0))]))
# Use heapq approach to build the encodings of the huffman tree leaves.
heapify(heap)
while len(heap) > 1:
# Pop the 2 smallest items from heap
a = heappop(heap)
b = heappop(heap)
# Merge nodes (update codes for each symbol appropriately)
merged = (
a[0] + b[0],
[(s, (n + 1, v)) for (s, (n, v)) in a[1]]
+ [(s, (n + 1, (1 << n) + v)) for (s, (n, v)) in b[1]]
)
heappush(heap, merged)
# Code table is dictionary mapping symbol to (bitsize, value)
table = dict(heappop(heap)[1])
return cls(table, concat=concat, check=False) | def from_frequencies(cls, frequencies, concat=None) | Build Huffman code table from given symbol frequencies
:param frequencies: symbol to frequency mapping
:param concat: function to concatenate symbols | 4.455069 | 4.427739 | 1.006173 |
frequencies = collections.Counter(data)
return cls.from_frequencies(frequencies, concat=_guess_concat(data)) | def from_data(cls, data) | Build Huffman code table from symbol sequence
:param data: sequence of symbols (e.g. byte string, unicode string, list, iterator)
:return: HuffmanCoder | 14.885896 | 15.543967 | 0.957664 |
self._uuid = None
self._columns = None
self._rownumber = 0
# Internal helper state
self._state = self._STATE_NONE
self._data = None
self._columns = None | def _reset_state(self) | Reset state about the previous query in preparation for running another query | 8.318041 | 7.199523 | 1.15536 |
# Sleep until we're done or we got the columns
if self._columns is None:
return []
return [
# name, type_code, display_size, internal_size, precision, scale, null_ok
(col[0], col[1], None, None, None, None, True) for col in self._columns
] | def description(self) | This read-only attribute is a sequence of 7-item sequences.
Each of these sequences contains information describing one result column:
- name
- type_code
- display_size (None in current implementation)
- internal_size (None in current implementation)
- precision (None in current implementation)
- scale (None in current implementation)
- null_ok (always True in current implementation)
The ``type_code`` can be interpreted by comparing it to the Type Objects specified in the
section below. | 5.127356 | 4.229885 | 1.212174 |
if parameters is None or not parameters:
sql = operation
else:
sql = operation % _escaper.escape_args(parameters)
self._reset_state()
self._state = self._STATE_RUNNING
self._uuid = uuid.uuid1()
if is_response:
response = self._db.select(sql, settings={'query_id': self._uuid})
self._process_response(response)
else:
self._db.raw(sql) | def execute(self, operation, parameters=None, is_response=True) | Prepare and execute a database operation (query or command). | 4.613877 | 4.431314 | 1.041199 |
values_list = []
RE_INSERT_VALUES = re.compile(
r"\s*((?:INSERT|REPLACE)\s.+\sVALUES?\s*)" +
r"(\(\s*(?:%s|%\(.+\)s)\s*(?:,\s*(?:%s|%\(.+\)s)\s*)*\))" +
r"(\s*(?:ON DUPLICATE.*)?);?\s*\Z",
re.IGNORECASE | re.DOTALL)
m = RE_INSERT_VALUES.match(operation)
if m:
q_prefix = m.group(1) % ()
q_values = m.group(2).rstrip()
for parameters in seq_of_parameters[:-1]:
values_list.append(q_values % _escaper.escape_args(parameters))
query = '{} {};'.format(q_prefix, ','.join(values_list))
return self._db.raw(query)
for parameters in seq_of_parameters[:-1]:
self.execute(operation, parameters, is_response=False) | def executemany(self, operation, seq_of_parameters) | Prepare a database operation (query or command) and then execute it against all parameter
sequences or mappings found in the sequence ``seq_of_parameters``.
Only the final result set is retained.
Return values are not defined. | 3.936556 | 4.193134 | 0.93881 |
if self._state == self._STATE_NONE:
raise Exception("No query yet")
if not self._data:
return None
else:
self._rownumber += 1
return self._data.pop(0) | def fetchone(self) | Fetch the next row of a query result set, returning a single sequence, or ``None`` when
no more data is available. | 4.407143 | 4.410436 | 0.999253 |
if self._state == self._STATE_NONE:
raise Exception("No query yet")
if size is None:
size = 1
if not self._data:
return []
else:
if len(self._data) > size:
result, self._data = self._data[:size], self._data[size:]
else:
result, self._data = self._data, []
self._rownumber += len(result)
return result | def fetchmany(self, size=None) | Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a
list of tuples). An empty sequence is returned when no more rows are available.
The number of rows to fetch per call is specified by the parameter. If it is not given, the
cursor's arraysize determines the number of rows to be fetched. The method should try to
fetch as many rows as indicated by the size parameter. If this is not possible due to the
specified number of rows not being available, fewer rows may be returned. | 2.68893 | 3.031264 | 0.887066 |
if self._state == self._STATE_NONE:
raise Exception("No query yet")
if not self._data:
return []
else:
result, self._data = self._data, []
self._rownumber += len(result)
return result | def fetchall(self) | Fetch all (remaining) rows of a query result, returning them as a sequence of sequences
(e.g. a list of tuples). | 4.629742 | 4.396096 | 1.053149 |
assert self._state == self._STATE_RUNNING, "Should be running if processing response"
cols = None
data = []
for r in response:
if not cols:
cols = [(f, r._fields[f].db_type) for f in r._fields]
data.append([getattr(r, f) for f in r._fields])
self._data = data
self._columns = cols
self._state = self._STATE_FINISHED | def _process_response(self, response) | Update the internal state with the data from the response | 4.095018 | 3.754002 | 1.090841 |
logging.debug("Applying frequency order transform on tokens...")
counts = reversed(Counter(token for s in sets for token in s).most_common())
order = dict((token, i) for i, (token, _) in enumerate(counts))
sets = [np.sort([order[token] for token in s]) for s in sets]
logging.debug("Done applying frequency order.")
return sets, order | def _frequency_order_transform(sets) | Transform tokens to integers according to global frequency order.
This step replaces all original tokens in the sets with integers, and
helps to speed up subsequent prefix filtering and similarity computation.
See Section 4.3.2 in the paper "A Primitive Operator for Similarity Joins
in Data Cleaning" by Chaudhuri et al..
Args:
sets (list): a list of sets, each entry is an iterable representing a
set.
Returns:
sets (list): a list of sets, each entry is a sorted Numpy array with
integer tokens replacing the tokens in the original set.
order (dict): a dictionary that maps token to its integer representation
in the frequency order. | 3.581961 | 3.080801 | 1.162672 |
if not isinstance(sets, list) or len(sets) == 0:
raise ValueError("Input parameter sets must be a non-empty list.")
if similarity_func_name not in _similarity_funcs:
raise ValueError("Similarity function {} is not supported.".format(
similarity_func_name))
if similarity_threshold < 0 or similarity_threshold > 1.0:
raise ValueError("Similarity threshold must be in the range [0, 1].")
if similarity_func_name not in _symmetric_similarity_funcs:
raise ValueError("The similarity function must be symmetric "
"({})".format(", ".join(_symmetric_similarity_funcs)))
similarity_func = _similarity_funcs[similarity_func_name]
overlap_threshold_func = _overlap_threshold_funcs[similarity_func_name]
position_filter_func = _position_filter_funcs[similarity_func_name]
sets, _ = _frequency_order_transform(sets)
index = defaultdict(list)
logging.debug("Find all pairs with similarities >= {}...".format(
similarity_threshold))
count = 0
for x1 in np.argsort([len(s) for s in sets]):
s1 = sets[x1]
t = overlap_threshold_func(len(s1), similarity_threshold)
prefix_size = len(s1) - t + 1
prefix = s1[:prefix_size]
# Find candidates using tokens in the prefix.
candidates = set([x2 for p1, token in enumerate(prefix)
for x2, p2 in index[token]
if position_filter_func(s1, sets[x2], p1, p2,
similarity_threshold)])
for x2 in candidates:
s2 = sets[x2]
sim = similarity_func(s1, s2)
if sim < similarity_threshold:
continue
# Output reverse-ordered set index pair (larger first).
yield tuple(sorted([x1, x2], reverse=True) + [sim,])
count += 1
# Insert this prefix into index.
for j, token in enumerate(prefix):
index[token].append((x1, j))
logging.debug("{} pairs found.".format(count)) | def all_pairs(sets, similarity_func_name="jaccard",
similarity_threshold=0.5) | Find all pairs of sets with similarity greater than a threshold.
This is an implementation of the All-Pair-Binary algorithm in the paper
"Scaling Up All Pairs Similarity Search" by Bayardo et al., with
position filter enhancement.
Args:
sets (list): a list of sets, each entry is an iterable representing a
set.
similarity_func_name (str): the name of the similarity function used;
this function currently supports `"jaccard"` and `"cosine"`.
similarity_threshold (float): the threshold used, must be a float
between 0 and 1.0.
Returns:
pairs (Iterator[tuple]): an iterator of tuples `(x, y, similarity)`
where `x` and `y` are the indices of sets in the input list `sets`. | 2.914356 | 2.922982 | 0.997049 |
s1 = np.sort([self.order[token] for token in s if token in self.order])
logging.debug("{} original tokens and {} tokens after applying "
"frequency order.".format(len(s), len(s1)))
prefix = self._get_prefix(s1)
candidates = set([i for p1, token in enumerate(prefix)
for i, p2 in self.index[token]
if self.position_filter_func(s1, self.sets[i], p1, p2,
self.similarity_threshold)])
logging.debug("{} candidates found.".format(len(candidates)))
results = deque([])
for i in candidates:
s2 = self.sets[i]
sim = self.similarity_func(s1, s2)
if sim < self.similarity_threshold:
continue
results.append((i, sim))
logging.debug("{} verified sets found.".format(len(results)))
return list(results) | def query(self, s) | Query the search index for sets similar to the query set.
Args:
s (Iterable): the query set.
Returns (list): a list of tuples `(index, similarity)` where the index
is the index of the matching sets in the original list of sets. | 4.277056 | 4.166536 | 1.026526 |
values = tuple(bqm.vartype.value)
def _itersample():
for __ in range(num_reads):
sample = {v: choice(values) for v in bqm.linear}
energy = bqm.energy(sample)
yield sample, energy
samples, energies = zip(*_itersample())
return SampleSet.from_samples(samples, bqm.vartype, energies) | def sample(self, bqm, num_reads=10) | Give random samples for a binary quadratic model.
Variable assignments are chosen by coin flip.
Args:
bqm (:obj:`.BinaryQuadraticModel`):
Binary quadratic model to be sampled from.
num_reads (int, optional, default=10):
Number of reads.
Returns:
:obj:`.SampleSet` | 3.50657 | 3.968147 | 0.883679 |
r
if isinstance(n, abc.Sized) and isinstance(n, abc.Iterable):
# what we actually want is abc.Collection but that doesn't exist in
# python2
variables = n
else:
try:
variables = range(n)
except TypeError:
raise TypeError('n should be a collection or an integer')
if k > len(variables) or k < 0:
raise ValueError("cannot select k={} from {} variables".format(k, len(variables)))
# (\sum_i x_i - k)^2
# = \sum_i x_i \sum_j x_j - 2k\sum_i x_i + k^2
# = \sum_i,j x_ix_j + (1 - 2k)\sim_i x_i + k^2
lbias = float(strength*(1 - 2*k))
qbias = float(2*strength)
bqm = BinaryQuadraticModel.empty(vartype)
bqm.add_variables_from(((v, lbias) for v in variables), vartype=BINARY)
bqm.add_interactions_from(((u, v, qbias)
for u, v in itertools.combinations(variables, 2)),
vartype=BINARY)
bqm.add_offset(strength*(k**2))
return bqm | def combinations(n, k, strength=1, vartype=BINARY) | r"""Generate a bqm that is minimized when k of n variables are selected.
More fully, we wish to generate a binary quadratic model which is minimized
for each of the k-combinations of its variables.
The energy for the binary quadratic model is given by
:math:`(\sum_{i} x_i - k)^2`.
Args:
n (int/list/set):
If n is an integer, variables are labelled [0, n-1]. If n is list or
set then the variables are labelled accordingly.
k (int):
The generated binary quadratic model will have 0 energy when any k
of the variables are 1.
strength (number, optional, default=1):
The energy of the first excited state of the binary quadratic model.
vartype (:class:`.Vartype`/str/set):
Variable type for the binary quadratic model. Accepted input values:
* :class:`.Vartype.SPIN`, ``'SPIN'``, ``{-1, 1}``
* :class:`.Vartype.BINARY`, ``'BINARY'``, ``{0, 1}``
Returns:
:obj:`.BinaryQuadraticModel`
Examples:
>>> bqm = dimod.generators.combinations(['a', 'b', 'c'], 2)
>>> bqm.energy({'a': 1, 'b': 0, 'c': 1})
0.0
>>> bqm.energy({'a': 1, 'b': 1, 'c': 1})
1.0
>>> bqm = dimod.generators.combinations(5, 1)
>>> bqm.energy({0: 0, 1: 0, 2: 1, 3: 0, 4: 0})
0.0
>>> bqm.energy({0: 0, 1: 0, 2: 1, 3: 1, 4: 0})
1.0
>>> bqm = dimod.generators.combinations(['a', 'b', 'c'], 2, strength=3.0)
>>> bqm.energy({'a': 1, 'b': 0, 'c': 1})
0.0
>>> bqm.energy({'a': 1, 'b': 1, 'c': 1})
3.0 | 3.972084 | 3.95309 | 1.004805 |
if seed is None:
seed = numpy.random.randint(2**32, dtype=np.uint32)
r = numpy.random.RandomState(seed)
variables, edges = graph
index = {v: idx for idx, v in enumerate(variables)}
if edges:
irow, icol = zip(*((index[u], index[v]) for u, v in edges))
else:
irow = icol = tuple()
ldata = r.uniform(low, high, size=len(variables))
qdata = r.uniform(low, high, size=len(irow))
offset = r.uniform(low, high)
return cls.from_numpy_vectors(ldata, (irow, icol, qdata), offset, vartype,
variable_order=variables) | def uniform(graph, vartype, low=0.0, high=1.0, cls=BinaryQuadraticModel,
seed=None) | Generate a bqm with random biases and offset.
Biases and offset are drawn from a uniform distribution range (low, high).
Args:
graph (int/tuple[nodes, edges]/:obj:`~networkx.Graph`):
The graph to build the bqm loops on. Either an integer n, interpreted as a
complete graph of size n, or a nodes/edges pair, or a NetworkX graph.
vartype (:class:`.Vartype`/str/set):
Variable type for the binary quadratic model. Accepted input values:
* :class:`.Vartype.SPIN`, ``'SPIN'``, ``{-1, 1}``
* :class:`.Vartype.BINARY`, ``'BINARY'``, ``{0, 1}``
low (float, optional, default=0.0):
The low end of the range for the random biases.
high (float, optional, default=1.0):
The high end of the range for the random biases.
cls (:class:`.BinaryQuadraticModel`):
Binary quadratic model class to build from.
seed (int, optional, default=None):
Random seed.
Returns:
:obj:`.BinaryQuadraticModel` | 2.971577 | 2.929465 | 1.014375 |
if not isinstance(r, int):
raise TypeError("r should be a positive integer")
if r < 1:
raise ValueError("r should be a positive integer")
if seed is None:
seed = numpy.random.randint(2**32, dtype=np.uint32)
rnd = numpy.random.RandomState(seed)
variables, edges = graph
index = {v: idx for idx, v in enumerate(variables)}
if edges:
irow, icol = zip(*((index[u], index[v]) for u, v in edges))
else:
irow = icol = tuple()
ldata = np.zeros(len(variables))
rvals = np.empty(2*r)
rvals[0:r] = range(-r, 0)
rvals[r:] = range(1, r+1)
qdata = rnd.choice(rvals, size=len(irow))
offset = 0
return cls.from_numpy_vectors(ldata, (irow, icol, qdata), offset, vartype='SPIN',
variable_order=variables) | def ran_r(r, graph, cls=BinaryQuadraticModel, seed=None) | Generate an Ising model for a RANr problem.
In RANr problems all linear biases are zero and quadratic values are uniformly
selected integers between -r to r, excluding zero. This class of problems is relevant
for binary quadratic models (BQM) with spin variables (Ising models).
This generator of RANr problems follows the definition in [Kin2015]_\ .
Args:
r (int):
Order of the RANr problem.
graph (int/tuple[nodes, edges]/:obj:`~networkx.Graph`):
The graph to build the BQM for. Either an
integer n, interpreted as a complete graph of size n, or
a nodes/edges pair, or a NetworkX graph.
cls (:class:`.BinaryQuadraticModel`):
Binary quadratic model class to build from.
seed (int, optional, default=None):
Random seed.
Returns:
:obj:`.BinaryQuadraticModel`.
Examples:
>>> import networkx as nx
>>> K_7 = nx.complete_graph(7)
>>> bqm = dimod.generators.random.ran_r(1, K_7)
.. [Kin2015] James King, Sheir Yarkoni, Mayssam M. Nevisi, Jeremy P. Hilton,
Catherine C. McGeoch. Benchmarking a quantum annealing processor with the
time-to-target metric. https://arxiv.org/abs/1508.05087 | 3.026956 | 3.15199 | 0.960332 |
@wraps(f)
def _index_label(sampler, bqm, **kwargs):
if not hasattr(bqm, 'linear'):
raise TypeError('expected input to be a BinaryQuadraticModel')
linear = bqm.linear
# if already index-labelled, just continue
if all(v in linear for v in range(len(bqm))):
return f(sampler, bqm, **kwargs)
try:
inverse_mapping = dict(enumerate(sorted(linear)))
except TypeError:
# in python3 unlike types cannot be sorted
inverse_mapping = dict(enumerate(linear))
mapping = {v: i for i, v in iteritems(inverse_mapping)}
response = f(sampler, bqm.relabel_variables(mapping, inplace=False), **kwargs)
# unapply the relabeling
return response.relabel_variables(inverse_mapping, inplace=True)
return _index_label | def bqm_index_labels(f) | Decorator to convert a bqm to index-labels and relabel the sample set
output.
Designed to be applied to :meth:`.Sampler.sample`. Expects the wrapped
function or method to accept a :obj:`.BinaryQuadraticModel` as the second
input and to return a :obj:`.SampleSet`. | 3.60963 | 3.330365 | 1.083854 |
def index_label_decorator(f):
@wraps(f)
def _index_label(sampler, bqm, **kwargs):
if not hasattr(bqm, 'linear'):
raise TypeError('expected input to be a BinaryQuadraticModel')
linear = bqm.linear
var_labels = kwargs.get(var_labels_arg_name, None)
has_samples_input = any(kwargs.get(arg_name, None) is not None
for arg_name in samples_arg_names)
if var_labels is None:
# if already index-labelled, just continue
if all(v in linear for v in range(len(bqm))):
return f(sampler, bqm, **kwargs)
if has_samples_input:
err_str = ("Argument `{}` must be provided if any of the"
" samples arguments {} are provided and the "
"bqm is not already index-labelled".format(
var_labels_arg_name,
samples_arg_names))
raise ValueError(err_str)
try:
inverse_mapping = dict(enumerate(sorted(linear)))
except TypeError:
# in python3 unlike types cannot be sorted
inverse_mapping = dict(enumerate(linear))
var_labels = {v: i for i, v in iteritems(inverse_mapping)}
else:
inverse_mapping = {i: v for v, i in iteritems(var_labels)}
response = f(sampler,
bqm.relabel_variables(var_labels, inplace=False),
**kwargs)
# unapply the relabeling
return response.relabel_variables(inverse_mapping, inplace=True)
return _index_label
return index_label_decorator | def bqm_index_labelled_input(var_labels_arg_name, samples_arg_names) | Returns a decorator which ensures bqm variable labeling and all other
specified sample-like inputs are index labeled and consistent.
Args:
var_labels_arg_name (str):
The name of the argument that the user should use to pass in an
index labeling for the bqm.
samples_arg_names (list[str]):
The names of the expected sample-like inputs which should be
indexed according to the labels passed to the argument
`var_labels_arg_name`.
Returns:
Function decorator. | 2.915395 | 2.920727 | 0.998175 |
@wraps(f)
def new_f(sampler, bqm, **kwargs):
try:
structure = sampler.structure
adjacency = structure.adjacency
except AttributeError:
if isinstance(sampler, Structured):
raise RuntimeError("something is wrong with the structured sampler")
else:
raise TypeError("sampler does not have a structure property")
if not all(v in adjacency for v in bqm.linear):
# todo: better error message
raise BinaryQuadraticModelStructureError("given bqm does not match the sampler's structure")
if not all(u in adjacency[v] for u, v in bqm.quadratic):
# todo: better error message
raise BinaryQuadraticModelStructureError("given bqm does not match the sampler's structure")
return f(sampler, bqm, **kwargs)
return new_f | def bqm_structured(f) | Decorator to raise an error if the given bqm does not match the sampler's
structure.
Designed to be applied to :meth:`.Sampler.sample`. Expects the wrapped
function or method to accept a :obj:`.BinaryQuadraticModel` as the second
input and for the :class:`.Sampler` to also be :class:`.Structured`. | 2.969151 | 2.531555 | 1.172856 |
# by default, constrain only one argument, the 'vartype`
if not arg_names:
arg_names = ['vartype']
def _vartype_arg(f):
argspec = getargspec(f)
def _enforce_single_arg(name, args, kwargs):
try:
vartype = kwargs[name]
except KeyError:
raise TypeError('vartype argument missing')
kwargs[name] = as_vartype(vartype)
@wraps(f)
def new_f(*args, **kwargs):
# bound actual f arguments (including defaults) to f argument names
# (note: if call arguments don't match actual function signature,
# we'll fail here with the standard `TypeError`)
bound_args = inspect.getcallargs(f, *args, **kwargs)
# `getcallargs` doesn't merge additional positional/keyword arguments,
# so do it manually
final_args = list(bound_args.pop(argspec.varargs, ()))
final_kwargs = bound_args.pop(argspec.keywords, {})
final_kwargs.update(bound_args)
for name in arg_names:
_enforce_single_arg(name, final_args, final_kwargs)
return f(*final_args, **final_kwargs)
return new_f
return _vartype_arg | def vartype_argument(*arg_names) | Ensures the wrapped function receives valid vartype argument(s). One
or more argument names can be specified (as a list of string arguments).
Args:
*arg_names (list[str], argument names, optional, default='vartype'):
The names of the constrained arguments in function decorated.
Returns:
Function decorator.
Examples:
>>> from dimod.decorators import vartype_argument
>>> @vartype_argument()
... def f(x, vartype):
... print(vartype)
...
>>> f(1, 'SPIN')
Vartype.SPIN
>>> f(1, vartype='SPIN')
Vartype.SPIN
>>> @vartype_argument('y')
... def f(x, y):
... print(y)
...
>>> f(1, 'SPIN')
Vartype.SPIN
>>> f(1, y='SPIN')
Vartype.SPIN
>>> @vartype_argument('z')
... def f(x, **kwargs):
... print(kwargs['z'])
...
>>> f(1, z='SPIN')
Vartype.SPIN
Note:
The function decorated can explicitly list (name) vartype arguments
constrained by :func:`vartype_argument`, or it can use a keyword
arguments `dict`.
See also:
:func:`~dimod.as_vartype` | 3.679456 | 3.795559 | 0.969411 |
# by default, constrain only one argument, the 'G`
if not arg_names:
arg_names = ['G']
# we only allow one option allow_None
allow_None = options.pop("allow_None", False)
if options:
# to keep it consistent with python3
# behaviour like graph_argument(*arg_names, allow_None=False)
key, _ = options.popitem()
msg = "graph_argument() for an unexpected keyword argument '{}'".format(key)
raise TypeError(msg)
def _graph_arg(f):
argspec = getargspec(f)
def _enforce_single_arg(name, args, kwargs):
try:
G = kwargs[name]
except KeyError:
raise TypeError('Graph argument missing')
if hasattr(G, 'edges') and hasattr(G, 'nodes'):
# networkx or perhaps a named tuple
kwargs[name] = (list(G.nodes), list(G.edges))
elif _is_integer(G):
# an integer, cast to a complete graph
kwargs[name] = (list(range(G)), list(itertools.combinations(range(G), 2)))
elif isinstance(G, abc.Sequence) and len(G) == 2:
# is a pair nodes/edges
if isinstance(G[0], integer_types):
# if nodes is an int
kwargs[name] = (list(range(G[0])), G[1])
elif allow_None and G is None:
# allow None to be passed through
return G
else:
raise ValueError('Unexpected graph input form')
return
@wraps(f)
def new_f(*args, **kwargs):
# bound actual f arguments (including defaults) to f argument names
# (note: if call arguments don't match actual function signature,
# we'll fail here with the standard `TypeError`)
bound_args = inspect.getcallargs(f, *args, **kwargs)
# `getcallargs` doesn't merge additional positional/keyword arguments,
# so do it manually
final_args = list(bound_args.pop(argspec.varargs, ()))
final_kwargs = bound_args.pop(argspec.keywords, {})
final_kwargs.update(bound_args)
for name in arg_names:
_enforce_single_arg(name, final_args, final_kwargs)
return f(*final_args, **final_kwargs)
return new_f
return _graph_arg | def graph_argument(*arg_names, **options) | Decorator to coerce given graph arguments into a consistent form.
The wrapped function will accept either an integer n, interpreted as a
complete graph of size n, or a nodes/edges pair, or a NetworkX graph. The
argument will then be converted into a nodes/edges 2-tuple.
Args:
*arg_names (optional, default='G'):
The names of the arguments for input graphs.
allow_None (bool, optional, default=False):
Allow None as an input graph in which case it is passed through as
None. | 4.297855 | 3.944737 | 1.089516 |
bio = io.BytesIO()
np.save(bio, arr, allow_pickle=False)
return bytes_type(bio.getvalue()) | def array2bytes(arr, bytes_type=bytes) | Wraps NumPy's save function to return bytes.
We use :func:`numpy.save` rather than :meth:`numpy.ndarray.tobytes` because
it encodes endianness and order.
Args:
arr (:obj:`numpy.ndarray`):
Array to be saved.
bytes_type (class, optional, default=bytes):
This class will be used to wrap the bytes objects in the
serialization if `use_bytes` is true. Useful for when using
Python 2 and using BSON encoding, which will not accept the raw
`bytes` type, so `bson.Binary` can be used instead.
Returns:
bytes_type | 2.552646 | 4.618453 | 0.552706 |
tkw = self._truncate_kwargs
if self._aggregate:
return self.child.sample(bqm, **kwargs).aggregate().truncate(**tkw)
else:
return self.child.sample(bqm, **kwargs).truncate(**tkw) | def sample(self, bqm, **kwargs) | Sample from the problem provided by bqm and truncate output.
Args:
bqm (:obj:`dimod.BinaryQuadraticModel`):
Binary quadratic model to be sampled from.
**kwargs:
Parameters for the sampling method, specified by the child
sampler.
Returns:
:obj:`dimod.SampleSet` | 5.244122 | 5.639841 | 0.929835 |
M = bqm.binary.to_numpy_matrix()
off = bqm.binary.offset
if M.shape == (0, 0):
return SampleSet.from_samples([], bqm.vartype, energy=[])
sample = np.zeros((len(bqm),), dtype=bool)
# now we iterate, flipping one bit at a time until we have
# traversed all samples. This is a Gray code.
# https://en.wikipedia.org/wiki/Gray_code
def iter_samples():
sample = np.zeros((len(bqm)), dtype=bool)
energy = 0.0
yield sample.copy(), energy + off
for i in range(1, 1 << len(bqm)):
v = _ffs(i)
# flip the bit in the sample
sample[v] = not sample[v]
# for now just calculate the energy, but there is a more clever way by calculating
# the energy delta for the single bit flip, don't have time, pull requests
# appreciated!
energy = sample.dot(M).dot(sample.transpose())
yield sample.copy(), float(energy) + off
samples, energies = zip(*iter_samples())
response = SampleSet.from_samples(np.array(samples, dtype='int8'), Vartype.BINARY, energies)
# make sure the response matches the given vartype, in-place.
response.change_vartype(bqm.vartype, inplace=True)
return response | def sample(self, bqm) | Sample from a binary quadratic model.
Args:
bqm (:obj:`~dimod.BinaryQuadraticModel`):
Binary quadratic model to be sampled from.
Returns:
:obj:`~dimod.SampleSet` | 4.793343 | 4.752664 | 1.008559 |
# use roof-duality to decide which variables to fix
parameters['fixed_variables'] = fix_variables(bqm, sampling_mode=sampling_mode)
return super(RoofDualityComposite, self).sample(bqm, **parameters) | def sample(self, bqm, sampling_mode=True, **parameters) | Sample from the provided binary quadratic model.
Uses the :func:`~dimod.roof_duality.fix_variables` function to determine
which variables to fix.
Args:
bqm (:obj:`dimod.BinaryQuadraticModel`):
Binary quadratic model to be sampled from.
sampling_mode (bool, optional, default=True):
In sampling mode, only roof-duality is used. When
`sampling_mode` is false, strongly connected components are used
to fix more variables, but in some optimal solutions these
variables may take different values.
**parameters:
Parameters for the child sampler.
Returns:
:obj:`dimod.SampleSet` | 7.366251 | 4.489199 | 1.640883 |
if isinstance(vartype, Vartype):
return vartype
try:
if isinstance(vartype, str):
vartype = Vartype[vartype]
elif isinstance(vartype, frozenset):
vartype = Vartype(vartype)
else:
vartype = Vartype(frozenset(vartype))
except (ValueError, KeyError):
raise TypeError(("expected input vartype to be one of: "
"Vartype.SPIN, 'SPIN', {-1, 1}, "
"Vartype.BINARY, 'BINARY', or {0, 1}."))
return vartype | def as_vartype(vartype) | Cast various inputs to a valid vartype object.
Args:
vartype (:class:`.Vartype`/str/set):
Variable type. Accepted input values:
* :class:`.Vartype.SPIN`, ``'SPIN'``, ``{-1, 1}``
* :class:`.Vartype.BINARY`, ``'BINARY'``, ``{0, 1}``
Returns:
:class:`.Vartype`: Either :class:`.Vartype.SPIN` or
:class:`.Vartype.BINARY`.
See also:
:func:`~dimod.decorators.vartype_argument` | 2.656172 | 2.454417 | 1.082201 |
energy, = self.energies(sample_like, dtype=dtype)
return energy | def energy(self, sample_like, dtype=np.float) | The energy of the given sample.
Args:
sample_like (samples_like):
A raw sample. `sample_like` is an extension of
NumPy's array_like structure. See :func:`.as_samples`.
dtype (:class:`numpy.dtype`, optional):
The data type of the returned energies. Defaults to float.
Returns:
The energy. | 6.090631 | 17.192669 | 0.354257 |
samples, labels = as_samples(samples_like)
if labels:
idx, label = zip(*enumerate(labels))
labeldict = dict(zip(label, idx))
else:
labeldict = {}
num_samples = samples.shape[0]
energies = np.zeros(num_samples, dtype=dtype)
for term, bias in self.items():
if len(term) == 0:
energies += bias
else:
energies += np.prod([samples[:, labeldict[v]] for v in term], axis=0) * bias
return energies | def energies(self, samples_like, dtype=np.float) | The energies of the given samples.
Args:
samples_like (samples_like):
A collection of raw samples. `samples_like` is an extension of
NumPy's array_like structure. See :func:`.as_samples`.
dtype (:class:`numpy.dtype`, optional):
The data type of the returned energies. Defaults to float.
Returns:
:obj:`numpy.ndarray`: The energies. | 3.354526 | 3.502929 | 0.957635 |
if not inplace:
return self.copy().relabel_variables(mapping, inplace=True)
try:
old_labels = set(mapping)
new_labels = set(mapping.values())
except TypeError:
raise ValueError("mapping targets must be hashable objects")
variables = self.variables
for v in new_labels:
if v in variables and v not in old_labels:
raise ValueError(('A variable cannot be relabeled "{}" without also relabeling '
"the existing variable of the same name").format(v))
shared = old_labels & new_labels
if shared:
old_to_intermediate, intermediate_to_new = resolve_label_conflict(mapping, old_labels, new_labels)
self.relabel_variables(old_to_intermediate, inplace=True)
self.relabel_variables(intermediate_to_new, inplace=True)
return self
for oldterm, bias in list(self.items()):
newterm = frozenset((mapping.get(v, v) for v in oldterm))
if newterm != oldterm:
self[newterm] = bias
del self[oldterm]
return self | def relabel_variables(self, mapping, inplace=True) | Relabel variables of a binary polynomial as specified by mapping.
Args:
mapping (dict):
Dict mapping current variable labels to new ones. If an
incomplete mapping is provided, unmapped variables retain their
current labels.
inplace (bool, optional, default=True):
If True, the binary polynomial is updated in-place; otherwise, a
new binary polynomial is returned.
Returns:
:class:`.BinaryPolynomial`: A binary polynomial with the variables
relabeled. If `inplace` is set to True, returns itself. | 3.262737 | 3.422833 | 0.953227 |
def parse_range(r):
if isinstance(r, Number):
return -abs(r), abs(r)
return r
if ignored_terms is None:
ignored_terms = set()
else:
ignored_terms = {asfrozenset(term) for term in ignored_terms}
if poly_range is None:
linear_range, poly_range = bias_range, bias_range
else:
linear_range = bias_range
lin_range, poly_range = map(parse_range, (linear_range, poly_range))
# determine the current ranges for linear, higherorder
lmin = lmax = 0
pmin = pmax = 0
for term, bias in self.items():
if term in ignored_terms:
# we don't use the ignored terms to calculate the scaling
continue
if len(term) == 1:
lmin = min(bias, lmin)
lmax = max(bias, lmax)
elif len(term) > 1:
pmin = min(bias, pmin)
pmax = max(bias, pmax)
inv_scalar = max(lmin / lin_range[0], lmax / lin_range[1],
pmin / poly_range[0], pmax / poly_range[1])
if inv_scalar != 0:
self.scale(1 / inv_scalar, ignored_terms=ignored_terms) | def normalize(self, bias_range=1, poly_range=None, ignored_terms=None) | Normalizes the biases of the binary polynomial such that they fall in
the provided range(s).
If `poly_range` is provided, then `bias_range` will be treated as
the range for the linear biases and `poly_range` will be used for
the range of the other biases.
Args:
bias_range (number/pair):
Value/range by which to normalize the all the biases, or if
`poly_range` is provided, just the linear biases.
poly_range (number/pair, optional):
Value/range by which to normalize the higher order biases.
ignored_terms (iterable, optional):
Biases associated with these terms are not scaled. | 2.719776 | 2.546298 | 1.06813 |
if ignored_terms is None:
ignored_terms = set()
else:
ignored_terms = {asfrozenset(term) for term in ignored_terms}
for term in self:
if term not in ignored_terms:
self[term] *= scalar | def scale(self, scalar, ignored_terms=None) | Multiply the polynomial by the given scalar.
Args:
scalar (number):
Value to multiply the polynomial by.
ignored_terms (iterable, optional):
Biases associated with these terms are not scaled. | 3.03316 | 3.113181 | 0.974296 |
poly = {(k,): v for k, v in h.items()}
poly.update(J)
if offset is not None:
poly[frozenset([])] = offset
return cls(poly, Vartype.SPIN) | def from_hising(cls, h, J, offset=None) | Construct a binary polynomial from a higher-order Ising problem.
Args:
h (dict):
The linear biases.
J (dict):
The higher-order biases.
offset (optional, default=0.0):
Constant offset applied to the model.
Returns:
:obj:`.BinaryPolynomial`
Examples:
>>> poly = dimod.BinaryPolynomial.from_hising({'a': 2}, {'ab': -1}, 0) | 5.117118 | 6.866802 | 0.745197 |
if self.vartype is Vartype.BINARY:
return self.to_spin().to_hising()
h = {}
J = {}
offset = 0
for term, bias in self.items():
if len(term) == 0:
offset += bias
elif len(term) == 1:
v, = term
h[v] = bias
else:
J[tuple(term)] = bias
return h, J, offset | def to_hising(self) | Construct a higher-order Ising problem from a binary polynomial.
Returns:
tuple: A 3-tuple of the form (`h`, `J`, `offset`) where `h` includes
the linear biases, `J` has the higher-order biases and `offset` is
the linear offset.
Examples:
>>> poly = dimod.BinaryPolynomial({'a': -1, 'ab': 1, 'abc': -1}, dimod.SPIN)
>>> h, J, off = poly.to_hising()
>>> h
{'a': -1} | 3.96428 | 2.905254 | 1.364521 |
poly = cls(H, Vartype.BINARY)
if offset is not None:
poly[()] = poly.get((), 0) + offset
return poly | def from_hubo(cls, H, offset=None) | Construct a binary polynomial from a higher-order unconstrained
binary optimization (HUBO) problem.
Args:
H (dict):
Coefficients of a higher-order unconstrained binary optimization
(HUBO) model.
Returns:
:obj:`.BinaryPolynomial`
Examples:
>>> poly = dimod.BinaryPolynomial.from_hubo({('a', 'b', 'c'): -1}) | 8.158825 | 14.866661 | 0.5488 |
if self.vartype is Vartype.SPIN:
return self.to_binary().to_hubo()
H = {tuple(term): bias for term, bias in self.items() if term}
offset = self[tuple()] if tuple() in self else 0
return H, offset | def to_hubo(self) | Construct a higher-order unconstrained binary optimization (HUBO)
problem from a binary polynomial.
Returns:
tuple: A 2-tuple of the form (`H`, `offset`) where `H` is the HUBO
and `offset` is the linear offset. | 6.665108 | 5.281325 | 1.262014 |
if self.vartype is Vartype.BINARY:
if copy:
return self.copy()
else:
return self
new = BinaryPolynomial({}, Vartype.BINARY)
# s = 2x - 1
for term, bias in self.items():
for t in map(frozenset, powerset(term)):
newbias = bias * 2**len(t) * (-1)**(len(term) - len(t))
if t in new:
new[t] += newbias
else:
new[t] = newbias
return new | def to_binary(self, copy=False) | Return a binary polynomial over `{0, 1}` variables.
Args:
copy (optional, default=False):
If True, the returned polynomial is always a copy. Otherwise,
if the polynomial is binary-valued already it returns itself.
Returns:
:obj:`.BinaryPolynomial` | 4.077989 | 4.220127 | 0.966319 |
# now let's start coloring
coloring = {}
colors = {}
possible_colors = {n: set(range(len(adj))) for n in adj}
while possible_colors:
# get the n with the fewest possible colors
n = min(possible_colors, key=lambda n: len(possible_colors[n]))
# assign that node the lowest color it can still have
color = min(possible_colors[n])
coloring[n] = color
if color not in colors:
colors[color] = {n}
else:
colors[color].add(n)
# also remove color from the possible colors for n's neighbors
for neighbor in adj[n]:
if neighbor in possible_colors and color in possible_colors[neighbor]:
possible_colors[neighbor].remove(color)
# finally remove n from nodes
del possible_colors[n]
return coloring, colors | def greedy_coloring(adj) | Determines a vertex coloring.
Args:
adj (dict): The edge structure of the graph to be colored.
`adj` should be of the form {node: neighbors, ...} where
neighbors is a set.
Returns:
dict: the coloring {node: color, ...}
dict: the colors {color: [node, ...], ...}
Note:
This is a greedy heuristic: the resulting coloring is not
necessarily minimal. | 2.765174 | 2.780173 | 0.994605 |
# input checking
# h, J are handled by the @ising decorator
# beta_range, sweeps are handled by ising_simulated_annealing
if not isinstance(num_reads, int):
raise TypeError("'samples' should be a positive integer")
if num_reads < 1:
raise ValueError("'samples' should be a positive integer")
h, J, offset = bqm.to_ising()
# run the simulated annealing algorithm
samples = []
energies = []
for __ in range(num_reads):
sample, energy = ising_simulated_annealing(h, J, beta_range, num_sweeps)
samples.append(sample)
energies.append(energy)
response = SampleSet.from_samples(samples, Vartype.SPIN, energies)
response.change_vartype(bqm.vartype, offset, inplace=True)
return response | def sample(self, bqm, beta_range=None, num_reads=10, num_sweeps=1000) | Sample from low-energy spin states using simulated annealing.
Args:
bqm (:obj:`.BinaryQuadraticModel`):
Binary quadratic model to be sampled from.
beta_range (tuple, optional): Beginning and end of the beta schedule
(beta is the inverse temperature) as a 2-tuple. The schedule is applied
linearly in beta. Default is chosen based on the total bias associated
with each node.
num_reads (int, optional, default=10):
Number of reads. Each sample is the result of a single run of
the simulated annealing algorithm.
num_sweeps (int, optional, default=1000):
Number of sweeps or steps.
Returns:
:obj:`.SampleSet`
Note:
This is a reference implementation, not optimized for speed
and therefore not an appropriate sampler for benchmarking. | 3.492303 | 3.627219 | 0.962804 |
if len(ignored_interactions) + len(
ignored_variables) + ignore_offset == 0:
response.record.energy = np.divide(response.record.energy, scalar)
else:
response.record.energy = bqm.energies((response.record.sample,
response.variables))
return response | def _scale_back_response(bqm, response, scalar, ignored_interactions,
ignored_variables, ignore_offset) | Helper function to scale back the response of sample method | 3.942761 | 3.666744 | 1.075276 |
if ignored_variables is None:
ignored_variables = set()
elif not isinstance(ignored_variables, abc.Container):
ignored_variables = set(ignored_variables)
if ignored_interactions is None:
ignored_interactions = set()
elif not isinstance(ignored_interactions, abc.Container):
ignored_interactions = set(ignored_interactions)
return ignored_variables, ignored_interactions | def _check_params(ignored_variables, ignored_interactions) | Helper for sample methods | 1.634309 | 1.577022 | 1.036326 |
if ignored_variables is None or ignored_interactions is None:
raise ValueError('ignored interactions or variables cannot be None')
def parse_range(r):
if isinstance(r, Number):
return -abs(r), abs(r)
return r
def min_and_max(iterable):
if not iterable:
return 0, 0
return min(iterable), max(iterable)
if quadratic_range is None:
linear_range, quadratic_range = bias_range, bias_range
else:
linear_range = bias_range
lin_range, quad_range = map(parse_range, (linear_range,
quadratic_range))
lin_min, lin_max = min_and_max([v for k, v in h.items()
if k not in ignored_variables])
quad_min, quad_max = min_and_max([v for k, v in J.items()
if not check_isin(k,
ignored_interactions)])
inv_scalar = max(lin_min / lin_range[0], lin_max / lin_range[1],
quad_min / quad_range[0], quad_max / quad_range[1])
if inv_scalar != 0:
return 1. / inv_scalar
else:
return 1. | def _calc_norm_coeff(h, J, bias_range, quadratic_range, ignored_variables,
ignored_interactions) | Helper function to calculate normalization coefficient | 2.465653 | 2.383372 | 1.034523 |
bqm_copy = bqm.copy()
if scalar is None:
scalar = _calc_norm_coeff(bqm_copy.linear, bqm_copy.quadratic,
bias_range, quadratic_range,
ignored_variables, ignored_interactions)
bqm_copy.scale(scalar, ignored_variables=ignored_variables,
ignored_interactions=ignored_interactions,
ignore_offset=ignore_offset)
bqm_copy.info.update({'scalar': scalar})
return bqm_copy | def _scaled_bqm(bqm, scalar, bias_range, quadratic_range,
ignored_variables, ignored_interactions,
ignore_offset) | Helper function of sample for scaling | 2.329872 | 2.23814 | 1.040986 |
ignored_variables, ignored_interactions = _check_params(
ignored_variables, ignored_interactions)
child = self.child
bqm_copy = _scaled_bqm(bqm, scalar, bias_range, quadratic_range,
ignored_variables, ignored_interactions,
ignore_offset)
response = child.sample(bqm_copy, **parameters)
return _scale_back_response(bqm, response, bqm_copy.info['scalar'],
ignored_variables, ignored_interactions,
ignore_offset) | def sample(self, bqm, scalar=None, bias_range=1, quadratic_range=None,
ignored_variables=None, ignored_interactions=None,
ignore_offset=False, **parameters) | Scale and sample from the provided binary quadratic model.
if scalar is not given, problem is scaled based on bias and quadratic
ranges. See :meth:`.BinaryQuadraticModel.scale` and
:meth:`.BinaryQuadraticModel.normalize`
Args:
bqm (:obj:`dimod.BinaryQuadraticModel`):
Binary quadratic model to be sampled from.
scalar (number):
Value by which to scale the energy range of the binary quadratic model.
bias_range (number/pair):
Value/range by which to normalize the all the biases, or if
`quadratic_range` is provided, just the linear biases.
quadratic_range (number/pair):
Value/range by which to normalize the quadratic biases.
ignored_variables (iterable, optional):
Biases associated with these variables are not scaled.
ignored_interactions (iterable[tuple], optional):
As an iterable of 2-tuples. Biases associated with these interactions are not scaled.
ignore_offset (bool, default=False):
If True, the offset is not scaled.
**parameters:
Parameters for the sampling method, specified by the child sampler.
Returns:
:obj:`dimod.SampleSet` | 3.026464 | 3.138264 | 0.964375 |
if any(len(inter) > 2 for inter in J):
# handle HUBO
import warnings
msg = ("Support for higher order Ising models in ScaleComposite is "
"deprecated and will be removed in dimod 0.9.0. Please use "
"PolyScaleComposite.sample_hising instead.")
warnings.warn(msg, DeprecationWarning)
from dimod.reference.composites.higherordercomposites import PolyScaleComposite
from dimod.higherorder.polynomial import BinaryPolynomial
poly = BinaryPolynomial.from_hising(h, J, offset=offset)
ignored_terms = set()
if ignored_variables is not None:
ignored_terms.update(frozenset(v) for v in ignored_variables)
if ignored_interactions is not None:
ignored_terms.update(frozenset(inter) for inter in ignored_interactions)
if ignore_offset:
ignored_terms.add(frozenset())
return PolyScaleComposite(self.child).sample_poly(poly, scalar=scalar,
bias_range=bias_range,
poly_range=quadratic_range,
ignored_terms=ignored_terms,
**parameters)
bqm = BinaryQuadraticModel.from_ising(h, J, offset=offset)
return self.sample(bqm, scalar=scalar,
bias_range=bias_range,
quadratic_range=quadratic_range,
ignored_variables=ignored_variables,
ignored_interactions=ignored_interactions,
ignore_offset=ignore_offset, **parameters) | def sample_ising(self, h, J, offset=0, scalar=None,
bias_range=1, quadratic_range=None,
ignored_variables=None, ignored_interactions=None,
ignore_offset=False, **parameters) | Scale and sample from the problem provided by h, J, offset
if scalar is not given, problem is scaled based on bias and quadratic
ranges.
Args:
h (dict): linear biases
J (dict): quadratic or higher order biases
offset (float, optional): constant energy offset
scalar (number):
Value by which to scale the energy range of the binary quadratic model.
bias_range (number/pair):
Value/range by which to normalize the all the biases, or if
`quadratic_range` is provided, just the linear biases.
quadratic_range (number/pair):
Value/range by which to normalize the quadratic biases.
ignored_variables (iterable, optional):
Biases associated with these variables are not scaled.
ignored_interactions (iterable[tuple], optional):
As an iterable of 2-tuples. Biases associated with these interactions are not scaled.
ignore_offset (bool, default=False):
If True, the offset is not scaled.
**parameters:
Parameters for the sampling method, specified by the child sampler.
Returns:
:obj:`dimod.SampleSet` | 2.917559 | 2.88554 | 1.011096 |
if seed is None:
seed = numpy.random.randint(2**32, dtype=np.uint32)
r = numpy.random.RandomState(seed)
m = int(m)
if n is None:
n = m
else:
n = int(n)
t = int(t)
ldata = np.zeros(m*n*t*2) # number of nodes
if m and n and t:
inrow, incol = zip(*_iter_chimera_tile_edges(m, n, t))
if m > 1 or n > 1:
outrow, outcol = zip(*_iter_chimera_intertile_edges(m, n, t))
else:
outrow = outcol = tuple()
qdata = r.choice((-1., 1.), size=len(inrow)+len(outrow))
qdata[len(inrow):] *= multiplier
irow = inrow + outrow
icol = incol + outcol
else:
irow = icol = qdata = tuple()
bqm = cls.from_numpy_vectors(ldata, (irow, icol, qdata), 0.0, SPIN)
if subgraph is not None:
nodes, edges = subgraph
subbqm = cls.empty(SPIN)
try:
subbqm.add_variables_from((v, bqm.linear[v]) for v in nodes)
except KeyError:
msg = "given 'subgraph' contains nodes not in Chimera({}, {}, {})".format(m, n, t)
raise ValueError(msg)
try:
subbqm.add_interactions_from((u, v, bqm.adj[u][v]) for u, v in edges)
except KeyError:
msg = "given 'subgraph' contains edges not in Chimera({}, {}, {})".format(m, n, t)
raise ValueError(msg)
bqm = subbqm
return bqm | def chimera_anticluster(m, n=None, t=4, multiplier=3.0,
cls=BinaryQuadraticModel, subgraph=None, seed=None) | Generate an anticluster problem on a Chimera lattice.
An anticluster problem has weak interactions within a tile and strong
interactions between tiles.
Args:
m (int):
Number of rows in the Chimera lattice.
n (int, optional, default=m):
Number of columns in the Chimera lattice.
t (int, optional, default=t):
Size of the shore within each Chimera tile.
multiplier (number, optional, default=3.0):
Strength of the intertile edges.
cls (class, optional, default=:class:`.BinaryQuadraticModel`):
Binary quadratic model class to build from.
subgraph (int/tuple[nodes, edges]/:obj:`~networkx.Graph`):
A subgraph of a Chimera(m, n, t) graph to build the anticluster
problem on.
seed (int, optional, default=None):
Random seed.
Returns:
:obj:`.BinaryQuadraticModel`: spin-valued binary quadratic model. | 2.791713 | 2.668818 | 1.046049 |
for triplet in _iter_triplets(bqm, vartype_header):
fp.write('%s\n' % triplet) | def dump(bqm, fp, vartype_header=False) | Dump a binary quadratic model to a string in COOrdinate format. | 3.662037 | 3.651886 | 1.00278 |
return load(s.split('\n'), cls=cls, vartype=vartype) | def loads(s, cls=BinaryQuadraticModel, vartype=None) | Load a COOrdinate formatted binary quadratic model from a string. | 3.907978 | 3.985777 | 0.980481 |
pattern = re.compile(_LINE_REGEX)
vartype_pattern = re.compile(_VARTYPE_HEADER_REGEX)
triplets = []
for line in fp:
triplets.extend(pattern.findall(line))
vt = vartype_pattern.findall(line)
if vt:
if vartype is None:
vartype = vt[0]
else:
if isinstance(vartype, str):
vartype = Vartype[vartype]
else:
vartype = Vartype(vartype)
if Vartype[vt[0]] != vartype:
raise ValueError("vartypes from headers and/or inputs do not match")
if vartype is None:
raise ValueError("vartype must be provided either as a header or as an argument")
bqm = cls.empty(vartype)
for u, v, bias in triplets:
if u == v:
bqm.add_variable(int(u), float(bias))
else:
bqm.add_interaction(int(u), int(v), float(bias))
return bqm | def load(fp, cls=BinaryQuadraticModel, vartype=None) | Load a COOrdinate formatted binary quadratic model from a file. | 2.468081 | 2.437902 | 1.012379 |
# NB: The existence of the _spin property implies that it is up to date, methods that
# invalidate it will erase the property
try:
spin = self._spin
if spin is not None:
return spin
except AttributeError:
pass
if self.vartype is Vartype.SPIN:
self._spin = spin = self
else:
self._counterpart = self._spin = spin = self.change_vartype(Vartype.SPIN, inplace=False)
# we also want to go ahead and set spin.binary to refer back to self
spin._binary = self
return spin | def spin(self) | :class:`.BinaryQuadraticModel`: An instance of the Ising model subclass
of the :class:`.BinaryQuadraticModel` superclass, corresponding to
a binary quadratic model with spins as its variables.
Enables access to biases for the spin-valued binary quadratic model
regardless of the :class:`vartype` set when the model was created.
If the model was created with the :attr:`.binary` vartype,
the Ising model subclass is instantiated upon the first use of the
:attr:`.spin` property and used in any subsequent reads.
Examples:
This example creates a QUBO model and uses the :attr:`.spin` property
to instantiate the corresponding Ising model.
>>> import dimod
...
>>> bqm_qubo = dimod.BinaryQuadraticModel({0: -1, 1: -1}, {(0, 1): 2}, 0.0, dimod.BINARY)
>>> bqm_spin = bqm_qubo.spin
>>> bqm_spin # doctest: +SKIP
BinaryQuadraticModel({0: 0.0, 1: 0.0}, {(0, 1): 0.5}, -0.5, Vartype.SPIN)
>>> bqm_spin.spin is bqm_spin
True
Note:
Methods like :meth:`.add_variable`, :meth:`.add_variables_from`,
:meth:`.add_interaction`, etc. should only be used on the base model. | 6.740547 | 6.228312 | 1.082243 |
# NB: The existence of the _binary property implies that it is up to date, methods that
# invalidate it will erase the property
try:
binary = self._binary
if binary is not None:
return binary
except AttributeError:
pass
if self.vartype is Vartype.BINARY:
self._binary = binary = self
else:
self._counterpart = self._binary = binary = self.change_vartype(Vartype.BINARY, inplace=False)
# we also want to go ahead and set binary.spin to refer back to self
binary._spin = self
return binary | def binary(self) | :class:`.BinaryQuadraticModel`: An instance of the QUBO model subclass of
the :class:`.BinaryQuadraticModel` superclass, corresponding to a binary quadratic
model with binary variables.
Enables access to biases for the binary-valued binary quadratic model
regardless of the :class:`vartype` set when the model was created. If the model
was created with the :attr:`.spin` vartype, the QUBO model subclass is instantiated
upon the first use of the :attr:`.binary` property and used in any subsequent reads.
Examples:
This example creates an Ising model and uses the :attr:`.binary` property
to instantiate the corresponding QUBO model.
>>> import dimod
...
>>> bqm_spin = dimod.BinaryQuadraticModel({0: 0.0, 1: 0.0}, {(0, 1): 0.5}, -0.5, dimod.SPIN)
>>> bqm_qubo = bqm_spin.binary
>>> bqm_qubo # doctest: +SKIP
BinaryQuadraticModel({0: -1.0, 1: -1.0}, {(0, 1): 2.0}, 0.0, Vartype.BINARY)
>>> bqm_qubo.binary is bqm_qubo
True
Note:
Methods like :meth:`.add_variable`, :meth:`.add_variables_from`,
:meth:`.add_interaction`, etc. should only be used on the base model. | 7.414647 | 6.549386 | 1.132113 |
# handle the case that a different vartype is provided
if vartype is not None and vartype is not self.vartype:
if self.vartype is Vartype.SPIN and vartype is Vartype.BINARY:
# convert from binary to spin
bias /= 2
self.offset += bias
elif self.vartype is Vartype.BINARY and vartype is Vartype.SPIN:
# convert from spin to binary
self.offset -= bias
bias *= 2
else:
raise ValueError("unknown vartype")
# we used to do this using self.linear but working directly with _adj
# is much faster
_adj = self._adj
if v in _adj:
if v in _adj[v]:
_adj[v][v] += bias
else:
_adj[v][v] = bias
else:
_adj[v] = {v: bias}
try:
self._counterpart.add_variable(v, bias, vartype=self.vartype)
except AttributeError:
pass | def add_variable(self, v, bias, vartype=None) | Add variable v and/or its bias to a binary quadratic model.
Args:
v (variable):
The variable to add to the model. Can be any python object
that is a valid dict key.
bias (bias):
Linear bias associated with v. If v is already in the model, this value is added
to its current linear bias. Many methods and functions expect `bias` to be a number
but this is not explicitly checked.
vartype (:class:`.Vartype`, optional, default=None):
Vartype of the given bias. If None, the vartype of the binary
quadratic model is used. Valid values are :class:`.Vartype.SPIN` or
:class:`.Vartype.BINARY`.
Examples:
This example creates an Ising model with two variables, adds a third,
and adds to the linear biases of the initial two.
>>> import dimod
...
>>> bqm = dimod.BinaryQuadraticModel({0: 0.0, 1: 1.0}, {(0, 1): 0.5}, -0.5, dimod.SPIN)
>>> len(bqm.linear)
2
>>> bqm.add_variable(2, 2.0, vartype=dimod.SPIN) # Add a new variable
>>> bqm.add_variable(1, 0.33, vartype=dimod.SPIN)
>>> bqm.add_variable(0, 0.33, vartype=dimod.BINARY) # Binary value is converted to spin value
>>> len(bqm.linear)
3
>>> bqm.linear[1]
1.33 | 2.826842 | 2.748036 | 1.028677 |
if isinstance(linear, abc.Mapping):
for v, bias in iteritems(linear):
self.add_variable(v, bias, vartype=vartype)
else:
try:
for v, bias in linear:
self.add_variable(v, bias, vartype=vartype)
except TypeError:
raise TypeError("expected 'linear' to be a dict or an iterable of 2-tuples.") | def add_variables_from(self, linear, vartype=None) | Add variables and/or linear biases to a binary quadratic model.
Args:
linear (dict[variable, bias]/iterable[(variable, bias)]):
A collection of variables and their linear biases to add to the model.
If a dict, keys are variables in the binary quadratic model and
values are biases. Alternatively, an iterable of (variable, bias) pairs.
Variables can be any python object that is a valid dict key.
Many methods and functions expect the biases
to be numbers but this is not explicitly checked.
If any variable already exists in the model, its bias is added to
the variable's current linear bias.
vartype (:class:`.Vartype`, optional, default=None):
Vartype of the given bias. If None, the vartype of the binary
quadratic model is used. Valid values are :class:`.Vartype.SPIN` or
:class:`.Vartype.BINARY`.
Examples:
This example creates creates an empty Ising model, adds two variables,
and subsequently adds to the bias of the one while adding a new, third,
variable.
>>> import dimod
...
>>> bqm = dimod.BinaryQuadraticModel({}, {}, 0.0, dimod.SPIN)
>>> len(bqm.linear)
0
>>> bqm.add_variables_from({'a': .5, 'b': -1.})
>>> 'b' in bqm
True
>>> bqm.add_variables_from({'b': -1., 'c': 2.0})
>>> bqm.linear['b']
-2.0 | 2.557387 | 2.86397 | 0.892952 |
if u == v:
raise ValueError("no self-loops allowed, therefore ({}, {}) is not an allowed interaction".format(u, v))
_adj = self._adj
if vartype is not None and vartype is not self.vartype:
if self.vartype is Vartype.SPIN and vartype is Vartype.BINARY:
# convert from binary to spin
bias /= 4
self.add_offset(bias)
self.add_variable(u, bias)
self.add_variable(v, bias)
elif self.vartype is Vartype.BINARY and vartype is Vartype.SPIN:
# convert from spin to binary
self.add_offset(bias)
self.add_variable(u, -2 * bias)
self.add_variable(v, -2 * bias)
bias *= 4
else:
raise ValueError("unknown vartype")
else:
# so that they exist.
if u not in self:
_adj[u] = {}
if v not in self:
_adj[v] = {}
if u in _adj[v]:
_adj[u][v] = _adj[v][u] = _adj[u][v] + bias
else:
_adj[u][v] = _adj[v][u] = bias
try:
self._counterpart.add_interaction(u, v, bias, vartype=self.vartype)
except AttributeError:
pass | def add_interaction(self, u, v, bias, vartype=None) | Add an interaction and/or quadratic bias to a binary quadratic model.
Args:
v (variable):
One of the pair of variables to add to the model. Can be any python object
that is a valid dict key.
u (variable):
One of the pair of variables to add to the model. Can be any python object
that is a valid dict key.
bias (bias):
Quadratic bias associated with u, v. If u, v is already in the model, this value
is added to the current quadratic bias. Many methods and functions expect `bias` to
be a number but this is not explicitly checked.
vartype (:class:`.Vartype`, optional, default=None):
Vartype of the given bias. If None, the vartype of the binary
quadratic model is used. Valid values are :class:`.Vartype.SPIN` or
:class:`.Vartype.BINARY`.
Examples:
This example creates an Ising model with two variables, adds a third,
adds to the bias of the initial interaction, and creates
a new interaction.
>>> import dimod
...
>>> bqm = dimod.BinaryQuadraticModel({0: 0.0, 1: 1.0}, {(0, 1): 0.5}, -0.5, dimod.SPIN)
>>> len(bqm.quadratic)
1
>>> bqm.add_interaction(0, 2, 2) # Add new variable 2
>>> bqm.add_interaction(0, 1, .25)
>>> bqm.add_interaction(1, 2, .25, vartype=dimod.BINARY) # Binary value is converted to spin value
>>> len(bqm.quadratic)
3
>>> bqm.quadratic[(0, 1)]
0.75 | 2.507573 | 2.64303 | 0.948749 |
if isinstance(quadratic, abc.Mapping):
for (u, v), bias in iteritems(quadratic):
self.add_interaction(u, v, bias, vartype=vartype)
else:
try:
for u, v, bias in quadratic:
self.add_interaction(u, v, bias, vartype=vartype)
except TypeError:
raise TypeError("expected 'quadratic' to be a dict or an iterable of 3-tuples.") | def add_interactions_from(self, quadratic, vartype=None) | Add interactions and/or quadratic biases to a binary quadratic model.
Args:
quadratic (dict[(variable, variable), bias]/iterable[(variable, variable, bias)]):
A collection of variables that have an interaction and their quadratic
bias to add to the model. If a dict, keys are 2-tuples of variables
in the binary quadratic model and values are their corresponding
bias. Alternatively, an iterable of 3-tuples. Each interaction in `quadratic` should be
unique; that is, if `(u, v)` is a key, `(v, u)` should not be.
Variables can be any python object that is a valid dict key.
Many methods and functions expect the biases to be numbers but this is not
explicitly checked.
vartype (:class:`.Vartype`, optional, default=None):
Vartype of the given bias. If None, the vartype of the binary
quadratic model is used. Valid values are :class:`.Vartype.SPIN` or
:class:`.Vartype.BINARY`.
Examples:
This example creates creates an empty Ising model, adds an interaction
for two variables, adds to its bias while adding a new variable,
then adds another interaction.
>>> import dimod
...
>>> bqm = dimod.BinaryQuadraticModel.empty(dimod.SPIN)
>>> bqm.add_interactions_from({('a', 'b'): -.5})
>>> bqm.quadratic[('a', 'b')]
-0.5
>>> bqm.add_interactions_from({('a', 'b'): -.5, ('a', 'c'): 2})
>>> bqm.add_interactions_from({('b', 'c'): 2}, vartype=dimod.BINARY) # Binary value is converted to spin value
>>> len(bqm.quadratic)
3
>>> bqm.quadratic[('a', 'b')]
-1.0 | 2.231702 | 2.450882 | 0.910571 |
if v not in self:
return
adj = self.adj
# first remove all the interactions associated with v
while adj[v]:
self.remove_interaction(v, next(iter(adj[v])))
# remove the variable
del self.linear[v]
try:
# invalidates counterpart
del self._counterpart
if self.vartype is not Vartype.BINARY and hasattr(self, '_binary'):
del self._binary
elif self.vartype is not Vartype.SPIN and hasattr(self, '_spin'):
del self._spin
except AttributeError:
pass | def remove_variable(self, v) | Remove variable v and all its interactions from a binary quadratic model.
Args:
v (variable):
The variable to be removed from the binary quadratic model.
Notes:
If the specified variable is not in the binary quadratic model, this function does nothing.
Examples:
This example creates an Ising model and then removes one variable.
>>> import dimod
...
>>> bqm = dimod.BinaryQuadraticModel({'a': 0.0, 'b': 1.0, 'c': 2.0},
... {('a', 'b'): 0.25, ('a','c'): 0.5, ('b','c'): 0.75},
... -0.5, dimod.SPIN)
>>> bqm.remove_variable('a')
>>> 'a' in bqm.linear
False
>>> ('b','c') in bqm.quadratic
True | 4.599473 | 4.222111 | 1.089378 |
try:
del self.quadratic[(u, v)]
except KeyError:
return # no interaction with that name
try:
# invalidates counterpart
del self._counterpart
if self.vartype is not Vartype.BINARY and hasattr(self, '_binary'):
del self._binary
elif self.vartype is not Vartype.SPIN and hasattr(self, '_spin'):
del self._spin
except AttributeError:
pass | def remove_interaction(self, u, v) | Remove interaction of variables u, v from a binary quadratic model.
Args:
u (variable):
One of the pair of variables in the binary quadratic model that
has an interaction.
v (variable):
One of the pair of variables in the binary quadratic model that
has an interaction.
Notes:
Any interaction not in the binary quadratic model is ignored.
Examples:
This example creates an Ising model with three variables that has interactions
between two, and then removes an interaction.
>>> import dimod
...
>>> bqm = dimod.BinaryQuadraticModel({}, {('a', 'b'): -1.0, ('b', 'c'): 1.0}, 0.0, dimod.SPIN)
>>> bqm.remove_interaction('b', 'c')
>>> ('b', 'c') in bqm.quadratic
False
>>> bqm.remove_interaction('a', 'c') # not an interaction, so ignored
>>> len(bqm.quadratic)
1 | 5.123085 | 4.99189 | 1.026282 |
for u, v in interactions:
self.remove_interaction(u, v) | def remove_interactions_from(self, interactions) | Remove all specified interactions from the binary quadratic model.
Args:
interactions (iterable[[variable, variable]]):
A collection of interactions. Each interaction should be a 2-tuple of variables
in the binary quadratic model.
Notes:
Any interaction not in the binary quadratic model is ignored.
Examples:
This example creates an Ising model with three variables that has interactions
between two, and then removes an interaction.
>>> import dimod
...
>>> bqm = dimod.BinaryQuadraticModel({}, {('a', 'b'): -1.0, ('b', 'c'): 1.0}, 0.0, dimod.SPIN)
>>> bqm.remove_interactions_from([('b', 'c'), ('a', 'c')]) # ('a', 'c') is not an interaction, so ignored
>>> len(bqm.quadratic)
1 | 4.761947 | 16.889858 | 0.281941 |
self.offset += offset
try:
self._counterpart.add_offset(offset)
except AttributeError:
pass | def add_offset(self, offset) | Add specified value to the offset of a binary quadratic model.
Args:
offset (number):
Value to be added to the constant energy offset of the binary quadratic model.
Examples:
This example creates an Ising model with an offset of -0.5 and then
adds to it.
>>> import dimod
...
>>> bqm = dimod.BinaryQuadraticModel({0: 0.0, 1: 0.0}, {(0, 1): 0.5}, -0.5, dimod.SPIN)
>>> bqm.add_offset(1.0)
>>> bqm.offset
0.5 | 6.97748 | 13.665574 | 0.510588 |
if ignored_variables is None:
ignored_variables = set()
elif not isinstance(ignored_variables, abc.Container):
ignored_variables = set(ignored_variables)
if ignored_interactions is None:
ignored_interactions = set()
elif not isinstance(ignored_interactions, abc.Container):
ignored_interactions = set(ignored_interactions)
linear = self.linear
for v in linear:
if v in ignored_variables:
continue
linear[v] *= scalar
quadratic = self.quadratic
for u, v in quadratic:
if (u, v) in ignored_interactions or (v, u) in ignored_interactions:
continue
quadratic[(u, v)] *= scalar
if not ignore_offset:
self.offset *= scalar
try:
self._counterpart.scale(scalar, ignored_variables=ignored_variables,
ignored_interactions=ignored_interactions)
except AttributeError:
pass | def scale(self, scalar, ignored_variables=None, ignored_interactions=None,
ignore_offset=False) | Multiply by the specified scalar all the biases and offset of a binary quadratic model.
Args:
scalar (number):
Value by which to scale the energy range of the binary quadratic model.
ignored_variables (iterable, optional):
Biases associated with these variables are not scaled.
ignored_interactions (iterable[tuple], optional):
As an iterable of 2-tuples. Biases associated with these interactions are not scaled.
ignore_offset (bool, default=False):
If True, the offset is not scaled.
Examples:
This example creates a binary quadratic model and then scales it to half
the original energy range.
>>> import dimod
...
>>> bqm = dimod.BinaryQuadraticModel({'a': -2.0, 'b': 2.0}, {('a', 'b'): -1.0}, 1.0, dimod.SPIN)
>>> bqm.scale(0.5)
>>> bqm.linear['a']
-1.0
>>> bqm.quadratic[('a', 'b')]
-0.5
>>> bqm.offset
0.5 | 1.783 | 1.821931 | 0.978632 |
def parse_range(r):
if isinstance(r, Number):
return -abs(r), abs(r)
return r
def min_and_max(iterable):
if not iterable:
return 0, 0
return min(iterable), max(iterable)
if ignored_variables is None:
ignored_variables = set()
elif not isinstance(ignored_variables, abc.Container):
ignored_variables = set(ignored_variables)
if ignored_interactions is None:
ignored_interactions = set()
elif not isinstance(ignored_interactions, abc.Container):
ignored_interactions = set(ignored_interactions)
if quadratic_range is None:
linear_range, quadratic_range = bias_range, bias_range
else:
linear_range = bias_range
lin_range, quad_range = map(parse_range, (linear_range,
quadratic_range))
lin_min, lin_max = min_and_max([v for k, v in self.linear.items()
if k not in ignored_variables])
quad_min, quad_max = min_and_max([v for (a, b), v in self.quadratic.items()
if ((a, b) not in ignored_interactions
and (b, a) not in
ignored_interactions)])
inv_scalar = max(lin_min / lin_range[0], lin_max / lin_range[1],
quad_min / quad_range[0], quad_max / quad_range[1])
if inv_scalar != 0:
self.scale(1 / inv_scalar, ignored_variables=ignored_variables,
ignored_interactions=ignored_interactions,
ignore_offset=ignore_offset) | def normalize(self, bias_range=1, quadratic_range=None,
ignored_variables=None, ignored_interactions=None,
ignore_offset=False) | Normalizes the biases of the binary quadratic model such that they
fall in the provided range(s), and adjusts the offset appropriately.
If `quadratic_range` is provided, then `bias_range` will be treated as
the range for the linear biases and `quadratic_range` will be used for
the range of the quadratic biases.
Args:
bias_range (number/pair):
Value/range by which to normalize the all the biases, or if
`quadratic_range` is provided, just the linear biases.
quadratic_range (number/pair):
Value/range by which to normalize the quadratic biases.
ignored_variables (iterable, optional):
Biases associated with these variables are not scaled.
ignored_interactions (iterable[tuple], optional):
As an iterable of 2-tuples. Biases associated with these interactions are not scaled.
ignore_offset (bool, default=False):
If True, the offset is not scaled.
Examples:
>>> bqm = dimod.BinaryQuadraticModel({'a': -2.0, 'b': 1.5},
... {('a', 'b'): -1.0},
... 1.0, dimod.SPIN)
>>> max(abs(bias) for bias in bqm.linear.values())
2.0
>>> max(abs(bias) for bias in bqm.quadratic.values())
1.0
>>> bqm.normalize([-1.0, 1.0])
>>> max(abs(bias) for bias in bqm.linear.values())
1.0
>>> max(abs(bias) for bias in bqm.quadratic.values())
0.5 | 1.912195 | 1.848851 | 1.034261 |
adj = self.adj
linear = self.linear
if value not in self.vartype.value:
raise ValueError("expected value to be in {}, received {} instead".format(self.vartype.value, value))
removed_interactions = []
for u in adj[v]:
self.add_variable(u, value * adj[v][u])
removed_interactions.append((u, v))
self.remove_interactions_from(removed_interactions)
self.add_offset(value * linear[v])
self.remove_variable(v) | def fix_variable(self, v, value) | Fix the value of a variable and remove it from a binary quadratic model.
Args:
v (variable):
Variable in the binary quadratic model to be fixed.
value (int):
Value assigned to the variable. Values must match the :class:`.Vartype` of the binary
quadratic model.
Examples:
This example creates a binary quadratic model with one variable and fixes
its value.
>>> import dimod
...
>>> bqm = dimod.BinaryQuadraticModel({'a': -.5, 'b': 0.}, {('a', 'b'): -1}, 0.0, dimod.SPIN)
>>> bqm.fix_variable('a', -1)
>>> bqm.offset
0.5
>>> bqm.linear['b']
1.0
>>> 'a' in bqm
False | 3.92488 | 3.807022 | 1.030958 |
for v, val in fixed.items():
self.fix_variable(v, val) | def fix_variables(self, fixed) | Fix the value of the variables and remove it from a binary quadratic model.
Args:
fixed (dict):
A dictionary of variable assignments.
Examples:
>>> bqm = dimod.BinaryQuadraticModel({'a': -.5, 'b': 0., 'c': 5}, {('a', 'b'): -1}, 0.0, dimod.SPIN)
>>> bqm.fix_variables({'a': -1, 'b': +1}) | 4.956192 | 9.074707 | 0.546154 |
adj = self.adj
linear = self.linear
quadratic = self.quadratic
if v not in adj:
return
if self.vartype is Vartype.SPIN:
# in this case we just multiply by -1
linear[v] *= -1.
for u in adj[v]:
adj[v][u] *= -1.
adj[u][v] *= -1.
if (u, v) in quadratic:
quadratic[(u, v)] *= -1.
elif (v, u) in quadratic:
quadratic[(v, u)] *= -1.
else:
raise RuntimeError("quadratic is missing an interaction")
elif self.vartype is Vartype.BINARY:
self.offset += linear[v]
linear[v] *= -1
for u in adj[v]:
bias = adj[v][u]
adj[v][u] *= -1.
adj[u][v] *= -1.
linear[u] += bias
if (u, v) in quadratic:
quadratic[(u, v)] *= -1.
elif (v, u) in quadratic:
quadratic[(v, u)] *= -1.
else:
raise RuntimeError("quadratic is missing an interaction")
else:
raise RuntimeError("Unexpected vartype")
try:
self._counterpart.flip_variable(v)
except AttributeError:
pass | def flip_variable(self, v) | Flip variable v in a binary quadratic model.
Args:
v (variable):
Variable in the binary quadratic model. If v is not in the binary
quadratic model, it is ignored.
Examples:
This example creates a binary quadratic model with two variables and inverts
the value of one.
>>> import dimod
...
>>> bqm = dimod.BinaryQuadraticModel({1: 1, 2: 2}, {(1, 2): 0.5}, 0.5, dimod.SPIN)
>>> bqm.flip_variable(1)
>>> bqm.linear[1], bqm.linear[2], bqm.quadratic[(1, 2)]
(-1.0, 2, -0.5) | 2.168379 | 2.169607 | 0.999434 |
self.add_variables_from(bqm.linear, vartype=bqm.vartype)
self.add_interactions_from(bqm.quadratic, vartype=bqm.vartype)
self.add_offset(bqm.offset)
if not ignore_info:
self.info.update(bqm.info) | def update(self, bqm, ignore_info=True) | Update one binary quadratic model from another.
Args:
bqm (:class:`.BinaryQuadraticModel`):
The updating binary quadratic model. Any variables in the updating
model are added to the updated model. Values of biases and the offset
in the updating model are added to the corresponding values in
the updated model.
ignore_info (bool, optional, default=True):
If True, info in the given binary quadratic model is ignored, otherwise
:attr:`.BinaryQuadraticModel.info` is updated with the given binary quadratic
model's info, potentially overwriting values.
Examples:
This example creates two binary quadratic models and updates the first
from the second.
>>> import dimod
...
>>> linear1 = {1: 1, 2: 2}
>>> quadratic1 = {(1, 2): 12}
>>> bqm1 = dimod.BinaryQuadraticModel(linear1, quadratic1, 0.5, dimod.SPIN)
>>> bqm1.info = {'BQM number 1'}
>>> linear2 = {2: 0.25, 3: 0.35}
>>> quadratic2 = {(2, 3): 23}
>>> bqm2 = dimod.BinaryQuadraticModel(linear2, quadratic2, 0.75, dimod.SPIN)
>>> bqm2.info = {'BQM number 2'}
>>> bqm1.update(bqm2)
>>> bqm1.offset
1.25
>>> 'BQM number 2' in bqm1.info
False
>>> bqm1.update(bqm2, ignore_info=False)
>>> 'BQM number 2' in bqm1.info
True
>>> bqm1.offset
2.0 | 2.118931 | 2.615862 | 0.810031 |
adj = self.adj
if u not in adj:
raise ValueError("{} is not a variable in the binary quadratic model".format(u))
if v not in adj:
raise ValueError("{} is not a variable in the binary quadratic model".format(v))
# if there is an interaction between u, v it becomes linear for u
if v in adj[u]:
if self.vartype is Vartype.BINARY:
self.add_variable(u, adj[u][v])
elif self.vartype is Vartype.SPIN:
self.add_offset(adj[u][v])
else:
raise RuntimeError("unexpected vartype")
self.remove_interaction(u, v)
# all of the interactions that v has become interactions for u
neighbors = list(adj[v])
for w in neighbors:
self.add_interaction(u, w, adj[v][w])
self.remove_interaction(v, w)
# finally remove v
self.remove_variable(v) | def contract_variables(self, u, v) | Enforce u, v being the same variable in a binary quadratic model.
The resulting variable is labeled 'u'. Values of interactions between `v` and
variables that `u` interacts with are added to the corresponding interactions
of `u`.
Args:
u (variable):
Variable in the binary quadratic model.
v (variable):
Variable in the binary quadratic model.
Examples:
This example creates a binary quadratic model representing the K4 complete graph
and contracts node (variable) 3 into node 2. The interactions between
3 and its neighbors 1 and 4 are added to the corresponding interactions
between 2 and those same neighbors.
>>> import dimod
...
>>> linear = {1: 1, 2: 2, 3: 3, 4: 4}
>>> quadratic = {(1, 2): 12, (1, 3): 13, (1, 4): 14,
... (2, 3): 23, (2, 4): 24,
... (3, 4): 34}
>>> bqm = dimod.BinaryQuadraticModel(linear, quadratic, 0.5, dimod.SPIN)
>>> bqm.contract_variables(2, 3)
>>> 3 in bqm.linear
False
>>> bqm.quadratic[(1, 2)]
25 | 3.129669 | 3.017884 | 1.037041 |
try:
old_labels = set(mapping)
new_labels = set(itervalues(mapping))
except TypeError:
raise ValueError("mapping targets must be hashable objects")
for v in new_labels:
if v in self.linear and v not in old_labels:
raise ValueError(('A variable cannot be relabeled "{}" without also relabeling '
"the existing variable of the same name").format(v))
if inplace:
shared = old_labels & new_labels
if shared:
old_to_intermediate, intermediate_to_new = resolve_label_conflict(mapping, old_labels, new_labels)
self.relabel_variables(old_to_intermediate, inplace=True)
self.relabel_variables(intermediate_to_new, inplace=True)
return self
linear = self.linear
quadratic = self.quadratic
adj = self.adj
# rebuild linear and adj with the new labels
for old in list(linear):
if old not in mapping:
continue
new = mapping[old]
# get the new interactions that need to be added
new_interactions = [(new, v, adj[old][v]) for v in adj[old]]
self.add_variable(new, linear[old])
self.add_interactions_from(new_interactions)
self.remove_variable(old)
return self
else:
return BinaryQuadraticModel({mapping.get(v, v): bias for v, bias in iteritems(self.linear)},
{(mapping.get(u, u), mapping.get(v, v)): bias
for (u, v), bias in iteritems(self.quadratic)},
self.offset, self.vartype) | def relabel_variables(self, mapping, inplace=True) | Relabel variables of a binary quadratic model as specified by mapping.
Args:
mapping (dict):
Dict mapping current variable labels to new ones. If an incomplete mapping is
provided, unmapped variables retain their current labels.
inplace (bool, optional, default=True):
If True, the binary quadratic model is updated in-place; otherwise, a new binary
quadratic model is returned.
Returns:
:class:`.BinaryQuadraticModel`: A binary quadratic model
with the variables relabeled. If `inplace` is set to True, returns
itself.
Examples:
This example creates a binary quadratic model with two variables and relables one.
>>> import dimod
...
>>> model = dimod.BinaryQuadraticModel({0: 0., 1: 1.}, {(0, 1): -1}, 0.0, vartype=dimod.SPIN)
>>> model.relabel_variables({0: 'a'}) # doctest: +SKIP
BinaryQuadraticModel({1: 1.0, 'a': 0.0}, {('a', 1): -1}, 0.0, Vartype.SPIN)
This example creates a binary quadratic model with two variables and returns a new
model with relabled variables.
>>> import dimod
...
>>> model = dimod.BinaryQuadraticModel({0: 0., 1: 1.}, {(0, 1): -1}, 0.0, vartype=dimod.SPIN)
>>> new_model = model.relabel_variables({0: 'a', 1: 'b'}, inplace=False) # doctest: +SKIP
>>> new_model.quadratic # doctest: +SKIP
{('a', 'b'): -1} | 3.305525 | 3.044308 | 1.085805 |
if not inplace:
# create a new model of the appropriate type, then add self's biases to it
new_model = BinaryQuadraticModel({}, {}, 0.0, vartype)
new_model.add_variables_from(self.linear, vartype=self.vartype)
new_model.add_interactions_from(self.quadratic, vartype=self.vartype)
new_model.add_offset(self.offset)
return new_model
# in this case we are doing things in-place, if the desired vartype matches self.vartype,
# then we don't need to do anything
if vartype is self.vartype:
return self
if self.vartype is Vartype.SPIN and vartype is Vartype.BINARY:
linear, quadratic, offset = self.spin_to_binary(self.linear, self.quadratic, self.offset)
elif self.vartype is Vartype.BINARY and vartype is Vartype.SPIN:
linear, quadratic, offset = self.binary_to_spin(self.linear, self.quadratic, self.offset)
else:
raise RuntimeError("something has gone wrong. unknown vartype conversion.")
# drop everything
for v in linear:
self.remove_variable(v)
self.add_offset(-self.offset)
self.vartype = vartype
self.add_variables_from(linear)
self.add_interactions_from(quadratic)
self.add_offset(offset)
return self | def change_vartype(self, vartype, inplace=True) | Create a binary quadratic model with the specified vartype.
Args:
vartype (:class:`.Vartype`/str/set, optional):
Variable type for the changed model. Accepted input values:
* :class:`.Vartype.SPIN`, ``'SPIN'``, ``{-1, 1}``
* :class:`.Vartype.BINARY`, ``'BINARY'``, ``{0, 1}``
inplace (bool, optional, default=True):
If True, the binary quadratic model is updated in-place; otherwise, a new binary
quadratic model is returned.
Returns:
:class:`.BinaryQuadraticModel`. A new binary quadratic model with
vartype matching input 'vartype'.
Examples:
This example creates an Ising model and then creates a QUBO from it.
>>> import dimod
...
>>> bqm_spin = dimod.BinaryQuadraticModel({1: 1, 2: 2}, {(1, 2): 0.5}, 0.5, dimod.SPIN)
>>> bqm_qubo = bqm_spin.change_vartype('BINARY', inplace=False)
>>> bqm_spin.offset, bqm_spin.vartype
(0.5, <Vartype.SPIN: frozenset({1, -1})>)
>>> bqm_qubo.offset, bqm_qubo.vartype
(-2.0, <Vartype.BINARY: frozenset({0, 1})>) | 2.612703 | 2.409536 | 1.084318 |
# the linear biases are the easiest
new_linear = {v: 2. * bias for v, bias in iteritems(linear)}
# next the quadratic biases
new_quadratic = {}
for (u, v), bias in iteritems(quadratic):
new_quadratic[(u, v)] = 4. * bias
new_linear[u] -= 2. * bias
new_linear[v] -= 2. * bias
# finally calculate the offset
offset += sum(itervalues(quadratic)) - sum(itervalues(linear))
return new_linear, new_quadratic, offset | def spin_to_binary(linear, quadratic, offset) | convert linear, quadratic, and offset from spin to binary.
Does no checking of vartype. Copies all of the values into new objects. | 3.016407 | 2.938989 | 1.026342 |
h = {}
J = {}
linear_offset = 0.0
quadratic_offset = 0.0
for u, bias in iteritems(linear):
h[u] = .5 * bias
linear_offset += bias
for (u, v), bias in iteritems(quadratic):
J[(u, v)] = .25 * bias
h[u] += .25 * bias
h[v] += .25 * bias
quadratic_offset += bias
offset += .5 * linear_offset + .25 * quadratic_offset
return h, J, offset | def binary_to_spin(linear, quadratic, offset) | convert linear, quadratic and offset from binary to spin.
Does no checking of vartype. Copies all of the values into new objects. | 2.625826 | 2.594205 | 1.012189 |
# new objects are constructed for each, so we just need to pass them in
return BinaryQuadraticModel(self.linear, self.quadratic, self.offset, self.vartype, **self.info) | def copy(self) | Create a copy of a BinaryQuadraticModel.
Returns:
:class:`.BinaryQuadraticModel`
Examples:
>>> bqm = dimod.BinaryQuadraticModel({1: 1, 2: 2}, {(1, 2): 0.5}, 0.5, dimod.SPIN)
>>> bqm2 = bqm.copy() | 11.703104 | 11.526476 | 1.015324 |
linear = self.linear
quadratic = self.quadratic
if isinstance(sample, SampleView):
# because the SampleView object simply reads from an underlying matrix, each read
# is relatively expensive.
# However, sample.items() is ~10x faster than {sample[v] for v in sample}, therefore
# it is much more efficient to dump sample into a dictionary for repeated reads
sample = dict(sample)
en = self.offset
en += sum(linear[v] * sample[v] for v in linear)
en += sum(sample[u] * sample[v] * quadratic[(u, v)] for u, v in quadratic)
return en | def energy(self, sample) | Determine the energy of the specified sample of a binary quadratic model.
Energy of a sample for a binary quadratic model is defined as a sum, offset
by the constant energy offset associated with the binary quadratic model, of
the sample multipled by the linear bias of the variable and
all its interactions; that is,
.. math::
E(\mathbf{s}) = \sum_v h_v s_v + \sum_{u,v} J_{u,v} s_u s_v + c
where :math:`s_v` is the sample, :math:`h_v` is the linear bias, :math:`J_{u,v}`
the quadratic bias (interactions), and :math:`c` the energy offset.
Code for the energy calculation might look like the following::
energy = model.offset # doctest: +SKIP
for v in model: # doctest: +SKIP
energy += model.linear[v] * sample[v]
for u, v in model.quadratic: # doctest: +SKIP
energy += model.quadratic[(u, v)] * sample[u] * sample[v]
Args:
sample (dict):
Sample for which to calculate the energy, formatted as a dict where keys
are variables and values are the value associated with each variable.
Returns:
float: Energy for the sample.
Examples:
This example creates a binary quadratic model and returns the energies for
a couple of samples.
>>> import dimod
>>> bqm = dimod.BinaryQuadraticModel({1: 1, 2: 1}, {(1, 2): 1}, 0.5, dimod.SPIN)
>>> bqm.energy({1: -1, 2: -1})
-0.5
>>> bqm.energy({1: 1, 2: 1})
3.5 | 6.433684 | 5.705369 | 1.127654 |
samples, labels = as_samples(samples_like)
if all(v == idx for idx, v in enumerate(labels)):
ldata, (irow, icol, qdata), offset = self.to_numpy_vectors(dtype=dtype)
else:
ldata, (irow, icol, qdata), offset = self.to_numpy_vectors(variable_order=labels, dtype=dtype)
energies = samples.dot(ldata) + (samples[:, irow]*samples[:, icol]).dot(qdata) + offset
return np.asarray(energies, dtype=dtype) | def energies(self, samples_like, dtype=np.float) | Determine the energies of the given samples.
Args:
samples_like (samples_like):
A collection of raw samples. `samples_like` is an extension of NumPy's array_like
structure. See :func:`.as_samples`.
dtype (:class:`numpy.dtype`):
The data type of the returned energies.
Returns:
:obj:`numpy.ndarray`: The energies. | 4.677588 | 5.132651 | 0.91134 |
import dimod.serialization.coo as coo
if fp is None:
return coo.dumps(self, vartype_header)
else:
coo.dump(self, fp, vartype_header) | def to_coo(self, fp=None, vartype_header=False) | Serialize the binary quadratic model to a COOrdinate_ format encoding.
.. _COOrdinate: https://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_(COO)
Args:
fp (file, optional):
`.write()`-supporting `file object`_ to save the linear and quadratic biases
of a binary quadratic model to. The model is stored as a list of 3-tuples,
(i, j, bias), where :math:`i=j` for linear biases. If not provided,
returns a string.
vartype_header (bool, optional, default=False):
If true, the binary quadratic model's variable type as prepended to the
string or file as a header.
.. _file object: https://docs.python.org/3/glossary.html#term-file-object
.. note:: Variables must use index lables (numeric lables). Binary quadratic
models saved to COOrdinate format encoding do not preserve offsets.
Examples:
This is an example of a binary quadratic model encoded in COOrdinate format.
.. code-block:: none
0 0 0.50000
0 1 0.50000
1 1 -1.50000
The Coordinate format with a header
.. code-block:: none
# vartype=SPIN
0 0 0.50000
0 1 0.50000
1 1 -1.50000
This is an example of writing a binary quadratic model to a COOrdinate-format
file.
>>> bqm = dimod.BinaryQuadraticModel({0: -1.0, 1: 1.0}, {(0, 1): -1.0}, 0.0, dimod.SPIN)
>>> with open('tmp.ising', 'w') as file: # doctest: +SKIP
... bqm.to_coo(file)
This is an example of writing a binary quadratic model to a COOrdinate-format string.
>>> bqm = dimod.BinaryQuadraticModel({0: -1.0, 1: 1.0}, {(0, 1): -1.0}, 0.0, dimod.SPIN)
>>> bqm.to_coo() # doctest: +SKIP
0 0 -1.000000
0 1 -1.000000
1 1 1.000000 | 2.97892 | 3.594123 | 0.828831 |
import dimod.serialization.coo as coo
if isinstance(obj, str):
return coo.loads(obj, cls=cls, vartype=vartype)
return coo.load(obj, cls=cls, vartype=vartype) | def from_coo(cls, obj, vartype=None) | Deserialize a binary quadratic model from a COOrdinate_ format encoding.
.. _COOrdinate: https://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_(COO)
Args:
obj: (str/file):
Either a string or a `.read()`-supporting `file object`_ that represents
linear and quadratic biases for a binary quadratic model. This data
is stored as a list of 3-tuples, (i, j, bias), where :math:`i=j`
for linear biases.
vartype (:class:`.Vartype`/str/set, optional):
Variable type for the binary quadratic model. Accepted input values:
* :class:`.Vartype.SPIN`, ``'SPIN'``, ``{-1, 1}``
* :class:`.Vartype.BINARY`, ``'BINARY'``, ``{0, 1}``
If not provided, the vartype must be specified with a header in the
file.
.. _file object: https://docs.python.org/3/glossary.html#term-file-object
.. note:: Variables must use index lables (numeric lables). Binary quadratic
models created from COOrdinate format encoding have offsets set to
zero.
Examples:
An example of a binary quadratic model encoded in COOrdinate format.
.. code-block:: none
0 0 0.50000
0 1 0.50000
1 1 -1.50000
The Coordinate format with a header
.. code-block:: none
# vartype=SPIN
0 0 0.50000
0 1 0.50000
1 1 -1.50000
This example saves a binary quadratic model to a COOrdinate-format file
and creates a new model by reading the saved file.
>>> import dimod
>>> bqm = dimod.BinaryQuadraticModel({0: -1.0, 1: 1.0}, {(0, 1): -1.0}, 0.0, dimod.BINARY)
>>> with open('tmp.qubo', 'w') as file: # doctest: +SKIP
... bqm.to_coo(file)
>>> with open('tmp.qubo', 'r') as file: # doctest: +SKIP
... new_bqm = dimod.BinaryQuadraticModel.from_coo(file, dimod.BINARY)
>>> any(new_bqm) # doctest: +SKIP
True | 3.031063 | 3.661472 | 0.827826 |
if obj.get("version", {"bqm_schema": "1.0.0"})["bqm_schema"] != "2.0.0":
return cls._from_serializable_v1(obj)
variables = [tuple(v) if isinstance(v, list) else v
for v in obj["variable_labels"]]
if obj["use_bytes"]:
ldata = bytes2array(obj["linear_biases"])
qdata = bytes2array(obj["quadratic_biases"])
irow = bytes2array(obj["quadratic_head"])
icol = bytes2array(obj["quadratic_tail"])
else:
ldata = obj["linear_biases"]
qdata = obj["quadratic_biases"]
irow = obj["quadratic_head"]
icol = obj["quadratic_tail"]
offset = obj["offset"]
vartype = obj["variable_type"]
bqm = cls.from_numpy_vectors(ldata,
(irow, icol, qdata),
offset,
str(vartype), # handle unicode for py2
variable_order=variables)
bqm.info.update(obj["info"])
return bqm | def from_serializable(cls, obj) | Deserialize a binary quadratic model.
Args:
obj (dict):
A binary quadratic model serialized by :meth:`~.BinaryQuadraticModel.to_serializable`.
Returns:
:obj:`.BinaryQuadraticModel`
Examples:
Encode and decode using JSON
>>> import dimod
>>> import json
...
>>> bqm = dimod.BinaryQuadraticModel({'a': -1.0, 'b': 1.0}, {('a', 'b'): -1.0}, 0.0, dimod.SPIN)
>>> s = json.dumps(bqm.to_serializable())
>>> new_bqm = dimod.BinaryQuadraticModel.from_serializable(json.loads(s))
See also:
:meth:`~.BinaryQuadraticModel.to_serializable`
:func:`json.loads`, :func:`json.load` JSON deserialization functions | 3.216671 | 3.225291 | 0.997328 |
import networkx as nx
BQM = nx.Graph()
# add the linear biases
BQM.add_nodes_from(((v, {node_attribute_name: bias, 'vartype': self.vartype})
for v, bias in iteritems(self.linear)))
# add the quadratic biases
BQM.add_edges_from(((u, v, {edge_attribute_name: bias}) for (u, v), bias in iteritems(self.quadratic)))
# set the offset and vartype properties for the graph
BQM.offset = self.offset
BQM.vartype = self.vartype
return BQM | def to_networkx_graph(self, node_attribute_name='bias', edge_attribute_name='bias') | Convert a binary quadratic model to NetworkX graph format.
Args:
node_attribute_name (hashable, optional, default='bias'):
Attribute name for linear biases.
edge_attribute_name (hashable, optional, default='bias'):
Attribute name for quadratic biases.
Returns:
:class:`networkx.Graph`: A NetworkX graph with biases stored as
node/edge attributes.
Examples:
This example converts a binary quadratic model to a NetworkX graph, using first
the default attribute name for quadratic biases then "weight".
>>> import networkx as nx
>>> bqm = dimod.BinaryQuadraticModel({0: 1, 1: -1, 2: .5},
... {(0, 1): .5, (1, 2): 1.5},
... 1.4,
... dimod.SPIN)
>>> BQM = bqm.to_networkx_graph()
>>> BQM[0][1]['bias']
0.5
>>> BQM.node[0]['bias']
1
>>> BQM_w = bqm.to_networkx_graph(edge_attribute_name='weight')
>>> BQM_w[0][1]['weight']
0.5 | 2.625476 | 2.406676 | 1.090914 |
if vartype is None:
if not hasattr(G, 'vartype'):
msg = ("either 'vartype' argument must be provided or "
"the given graph should have a vartype attribute.")
raise ValueError(msg)
vartype = G.vartype
linear = G.nodes(data=node_attribute_name, default=0)
quadratic = G.edges(data=edge_attribute_name, default=0)
offset = getattr(G, 'offset', 0)
return cls(linear, quadratic, offset, vartype) | def from_networkx_graph(cls, G, vartype=None, node_attribute_name='bias',
edge_attribute_name='bias') | Create a binary quadratic model from a NetworkX graph.
Args:
G (:obj:`networkx.Graph`):
A NetworkX graph with biases stored as node/edge attributes.
vartype (:class:`.Vartype`/str/set, optional):
Variable type for the binary quadratic model. Accepted input
values:
* :class:`.Vartype.SPIN`, ``'SPIN'``, ``{-1, 1}``
* :class:`.Vartype.BINARY`, ``'BINARY'``, ``{0, 1}``
If not provided, the `G` should have a vartype attribute. If
`vartype` is provided and `G.vartype` exists then the argument
overrides the property.
node_attribute_name (hashable, optional, default='bias'):
Attribute name for linear biases. If the node does not have a
matching attribute then the bias defaults to 0.
edge_attribute_name (hashable, optional, default='bias'):
Attribute name for quadratic biases. If the edge does not have a
matching attribute then the bias defaults to 0.
Returns:
:obj:`.BinaryQuadraticModel`
Examples:
>>> import networkx as nx
...
>>> G = nx.Graph()
>>> G.add_node('a', bias=.5)
>>> G.add_edge('a', 'b', bias=-1)
>>> bqm = dimod.BinaryQuadraticModel.from_networkx_graph(G, 'SPIN')
>>> bqm.adj['a']['b']
-1 | 2.607971 | 3.033738 | 0.859656 |
# cast to a dict
return dict(self.spin.linear), dict(self.spin.quadratic), self.spin.offset | def to_ising(self) | Converts a binary quadratic model to Ising format.
If the binary quadratic model's vartype is not :class:`.Vartype.SPIN`,
values are converted.
Returns:
tuple: 3-tuple of form (`linear`, `quadratic`, `offset`), where `linear`
is a dict of linear biases, `quadratic` is a dict of quadratic biases,
and `offset` is a number that represents the constant offset of the
binary quadratic model.
Examples:
This example converts a binary quadratic model to an Ising problem.
>>> import dimod
>>> model = dimod.BinaryQuadraticModel({0: 1, 1: -1, 2: .5},
... {(0, 1): .5, (1, 2): 1.5},
... 1.4,
... dimod.SPIN)
>>> model.to_ising() # doctest: +SKIP
({0: 1, 1: -1, 2: 0.5}, {(0, 1): 0.5, (1, 2): 1.5}, 1.4) | 12.248668 | 13.767109 | 0.889705 |
if isinstance(h, abc.Sequence):
h = dict(enumerate(h))
return cls(h, J, offset, Vartype.SPIN) | def from_ising(cls, h, J, offset=0.0) | Create a binary quadratic model from an Ising problem.
Args:
h (dict/list):
Linear biases of the Ising problem. If a dict, should be of the
form `{v: bias, ...}` where v is a spin-valued variable and `bias`
is its associated bias. If a list, it is treated as a list of
biases where the indices are the variable labels.
J (dict[(variable, variable), bias]):
Quadratic biases of the Ising problem.
offset (optional, default=0.0):
Constant offset applied to the model.
Returns:
:class:`.BinaryQuadraticModel`: Binary quadratic model with vartype set to
:class:`.Vartype.SPIN`.
Examples:
This example creates a binary quadratic model from an Ising problem.
>>> import dimod
>>> h = {1: 1, 2: 2, 3: 3, 4: 4}
>>> J = {(1, 2): 12, (1, 3): 13, (1, 4): 14,
... (2, 3): 23, (2, 4): 24,
... (3, 4): 34}
>>> model = dimod.BinaryQuadraticModel.from_ising(h, J, offset = 0.0)
>>> model # doctest: +SKIP
BinaryQuadraticModel({1: 1, 2: 2, 3: 3, 4: 4}, {(1, 2): 12, (1, 3): 13, (1, 4): 14, (2, 3): 23, (3, 4): 34, (2, 4): 24}, 0.0, Vartype.SPIN) | 5.25548 | 8.82514 | 0.595512 |
qubo = dict(self.binary.quadratic)
qubo.update(((v, v), bias) for v, bias in iteritems(self.binary.linear))
return qubo, self.binary.offset | def to_qubo(self) | Convert a binary quadratic model to QUBO format.
If the binary quadratic model's vartype is not :class:`.Vartype.BINARY`,
values are converted.
Returns:
tuple: 2-tuple of form (`biases`, `offset`), where `biases` is a dict
in which keys are pairs of variables and values are the associated linear or
quadratic bias and `offset` is a number that represents the constant offset
of the binary quadratic model.
Examples:
This example converts a binary quadratic model with spin variables to QUBO format
with binary variables.
>>> import dimod
>>> model = dimod.BinaryQuadraticModel({0: 1, 1: -1, 2: .5},
... {(0, 1): .5, (1, 2): 1.5},
... 1.4,
... dimod.SPIN)
>>> model.to_qubo() # doctest: +SKIP
({(0, 0): 1.0, (0, 1): 2.0, (1, 1): -6.0, (1, 2): 6.0, (2, 2): -2.0}, 2.9) | 5.054 | 5.22394 | 0.967469 |
linear = {}
quadratic = {}
for (u, v), bias in iteritems(Q):
if u == v:
linear[u] = bias
else:
quadratic[(u, v)] = bias
return cls(linear, quadratic, offset, Vartype.BINARY) | def from_qubo(cls, Q, offset=0.0) | Create a binary quadratic model from a QUBO model.
Args:
Q (dict):
Coefficients of a quadratic unconstrained binary optimization
(QUBO) problem. Should be a dict of the form `{(u, v): bias, ...}`
where `u`, `v`, are binary-valued variables and `bias` is their
associated coefficient.
offset (optional, default=0.0):
Constant offset applied to the model.
Returns:
:class:`.BinaryQuadraticModel`: Binary quadratic model with vartype set to
:class:`.Vartype.BINARY`.
Examples:
This example creates a binary quadratic model from a QUBO model.
>>> import dimod
>>> Q = {(0, 0): -1, (1, 1): -1, (0, 1): 2}
>>> model = dimod.BinaryQuadraticModel.from_qubo(Q, offset = 0.0)
>>> model.linear # doctest: +SKIP
{0: -1, 1: -1}
>>> model.vartype
<Vartype.BINARY: frozenset({0, 1})> | 2.619609 | 3.798105 | 0.689715 |
import numpy as np
if variable_order is None:
# just use the existing variable labels, assuming that they are [0, N)
num_variables = len(self)
mat = np.zeros((num_variables, num_variables), dtype=float)
try:
for v, bias in iteritems(self.binary.linear):
mat[v, v] = bias
except IndexError:
raise ValueError(("if 'variable_order' is not provided, binary quadratic model must be "
"index labeled [0, ..., N-1]"))
for (u, v), bias in iteritems(self.binary.quadratic):
if u < v:
mat[u, v] = bias
else:
mat[v, u] = bias
else:
num_variables = len(variable_order)
idx = {v: i for i, v in enumerate(variable_order)}
mat = np.zeros((num_variables, num_variables), dtype=float)
try:
for v, bias in iteritems(self.binary.linear):
mat[idx[v], idx[v]] = bias
except KeyError as e:
raise ValueError(("variable {} is missing from variable_order".format(e)))
for (u, v), bias in iteritems(self.binary.quadratic):
iu, iv = idx[u], idx[v]
if iu < iv:
mat[iu, iv] = bias
else:
mat[iv, iu] = bias
return mat | def to_numpy_matrix(self, variable_order=None) | Convert a binary quadratic model to NumPy 2D array.
Args:
variable_order (list, optional):
If provided, indexes the rows/columns of the NumPy array. If `variable_order` includes
any variables not in the binary quadratic model, these are added to the NumPy array.
Returns:
:class:`numpy.ndarray`: The binary quadratic model as a NumPy 2D array. Note that the
binary quadratic model is converted to :class:`~.Vartype.BINARY` vartype.
Notes:
The matrix representation of a binary quadratic model only makes sense for binary models.
For a binary sample x, the energy of the model is given by:
.. math::
E(x) = x^T Q x
The offset is dropped when converting to a NumPy array.
Examples:
This example converts a binary quadratic model to NumPy array format while
ordering variables and adding one ('d').
>>> import dimod
>>> import numpy as np
...
>>> model = dimod.BinaryQuadraticModel({'a': 1, 'b': -1, 'c': .5},
... {('a', 'b'): .5, ('b', 'c'): 1.5},
... 1.4,
... dimod.BINARY)
>>> model.to_numpy_matrix(variable_order=['d', 'c', 'b', 'a'])
array([[ 0. , 0. , 0. , 0. ],
[ 0. , 0.5, 1.5, 0. ],
[ 0. , 0. , -1. , 0.5],
[ 0. , 0. , 0. , 1. ]]) | 2.447825 | 2.366129 | 1.034527 |
import numpy as np
if mat.ndim != 2:
raise ValueError("expected input mat to be a square 2D numpy array")
num_row, num_col = mat.shape
if num_col != num_row:
raise ValueError("expected input mat to be a square 2D numpy array")
if variable_order is None:
variable_order = list(range(num_row))
if interactions is None:
interactions = []
bqm = cls({}, {}, offset, Vartype.BINARY)
for (row, col), bias in np.ndenumerate(mat):
if row == col:
bqm.add_variable(variable_order[row], bias)
elif bias:
bqm.add_interaction(variable_order[row], variable_order[col], bias)
for u, v in interactions:
bqm.add_interaction(u, v, 0.0)
return bqm | def from_numpy_matrix(cls, mat, variable_order=None, offset=0.0, interactions=None) | Create a binary quadratic model from a NumPy array.
Args:
mat (:class:`numpy.ndarray`):
Coefficients of a quadratic unconstrained binary optimization (QUBO)
model formatted as a square NumPy 2D array.
variable_order (list, optional):
If provided, labels the QUBO variables; otherwise, row/column indices are used.
If `variable_order` is longer than the array, extra values are ignored.
offset (optional, default=0.0):
Constant offset for the binary quadratic model.
interactions (iterable, optional, default=[]):
Any additional 0.0-bias interactions to be added to the binary quadratic model.
Returns:
:class:`.BinaryQuadraticModel`: Binary quadratic model with vartype set to
:class:`.Vartype.BINARY`.
Examples:
This example creates a binary quadratic model from a QUBO in NumPy format while
adding an interaction with a new variable ('f'), ignoring an extra variable
('g'), and setting an offset.
>>> import dimod
>>> import numpy as np
>>> Q = np.array([[1, 0, 0, 10, 11],
... [0, 2, 0, 12, 13],
... [0, 0, 3, 14, 15],
... [0, 0, 0, 4, 0],
... [0, 0, 0, 0, 5]]).astype(np.float32)
>>> model = dimod.BinaryQuadraticModel.from_numpy_matrix(Q,
... variable_order = ['a', 'b', 'c', 'd', 'e', 'f', 'g'],
... offset = 2.5,
... interactions = {('a', 'f')})
>>> model.linear # doctest: +SKIP
{'a': 1.0, 'b': 2.0, 'c': 3.0, 'd': 4.0, 'e': 5.0, 'f': 0.0}
>>> model.quadratic[('a', 'd')]
10.0
>>> model.quadratic[('a', 'f')]
0.0
>>> model.offset
2.5 | 2.191611 | 2.210897 | 0.991277 |
linear = self.linear
quadratic = self.quadratic
num_variables = len(linear)
num_interactions = len(quadratic)
irow = np.empty(num_interactions, dtype=index_dtype)
icol = np.empty(num_interactions, dtype=index_dtype)
qdata = np.empty(num_interactions, dtype=dtype)
if variable_order is None:
try:
ldata = np.fromiter((linear[v] for v in range(num_variables)), count=num_variables, dtype=dtype)
except KeyError:
raise ValueError(("if 'variable_order' is not provided, binary quadratic model must be "
"index labeled [0, ..., N-1]"))
# we could speed this up a lot with cython
for idx, ((u, v), bias) in enumerate(quadratic.items()):
irow[idx] = u
icol[idx] = v
qdata[idx] = bias
else:
try:
ldata = np.fromiter((linear[v] for v in variable_order), count=num_variables, dtype=dtype)
except KeyError:
raise ValueError("provided 'variable_order' does not match binary quadratic model")
label_to_idx = {v: idx for idx, v in enumerate(variable_order)}
# we could speed this up a lot with cython
for idx, ((u, v), bias) in enumerate(quadratic.items()):
irow[idx] = label_to_idx[u]
icol[idx] = label_to_idx[v]
qdata[idx] = bias
if sort_indices:
# row index should be less than col index, this handles upper-triangular vs lower-triangular
swaps = irow > icol
if swaps.any():
# in-place
irow[swaps], icol[swaps] = icol[swaps], irow[swaps]
# sort lexigraphically
order = np.lexsort((irow, icol))
if not (order == range(len(order))).all():
# copy
irow = irow[order]
icol = icol[order]
qdata = qdata[order]
return ldata, (irow, icol, qdata), ldata.dtype.type(self.offset) | def to_numpy_vectors(self, variable_order=None, dtype=np.float, index_dtype=np.int64, sort_indices=False) | Convert a binary quadratic model to numpy arrays.
Args:
variable_order (iterable, optional):
If provided, labels the variables; otherwise, row/column indices are used.
dtype (:class:`numpy.dtype`, optional):
Data-type of the biases. By default, the data-type is inferred from the biases.
index_dtype (:class:`numpy.dtype`, optional):
Data-type of the indices. By default, the data-type is inferred from the labels.
sort_indices (bool, optional, default=False):
If True, the indices are sorted, first by row then by column. Otherwise they
match :attr:`~.BinaryQuadraticModel.quadratic`.
Returns:
:obj:`~numpy.ndarray`: A numpy array of the linear biases.
tuple: The quadratic biases in COOrdinate format.
:obj:`~numpy.ndarray`: A numpy array of the row indices of the quadratic matrix
entries
:obj:`~numpy.ndarray`: A numpy array of the column indices of the quadratic matrix
entries
:obj:`~numpy.ndarray`: A numpy array of the values of the quadratic matrix
entries
The offset
Examples:
>>> bqm = dimod.BinaryQuadraticModel({}, {(0, 1): .5, (3, 2): -1, (0, 3): 1.5}, 0.0, dimod.SPIN)
>>> lin, (i, j, vals), off = bqm.to_numpy_vectors(sort_indices=True)
>>> lin
array([0., 0., 0., 0.])
>>> i
array([0, 0, 2])
>>> j
array([1, 3, 3])
>>> vals
array([ 0.5, 1.5, -1. ]) | 2.344794 | 2.304714 | 1.01739 |
try:
heads, tails, values = quadratic
except ValueError:
raise ValueError("quadratic should be a 3-tuple")
if not len(heads) == len(tails) == len(values):
raise ValueError("row, col, and bias should be of equal length")
if variable_order is None:
variable_order = list(range(len(linear)))
linear = {v: float(bias) for v, bias in zip(variable_order, linear)}
quadratic = {(variable_order[u], variable_order[v]): float(bias)
for u, v, bias in zip(heads, tails, values)}
return cls(linear, quadratic, offset, vartype) | def from_numpy_vectors(cls, linear, quadratic, offset, vartype, variable_order=None) | Create a binary quadratic model from vectors.
Args:
linear (array_like):
A 1D array-like iterable of linear biases.
quadratic (tuple[array_like, array_like, array_like]):
A 3-tuple of 1D array_like vectors of the form (row, col, bias).
offset (numeric, optional):
Constant offset for the binary quadratic model.
vartype (:class:`.Vartype`/str/set):
Variable type for the binary quadratic model. Accepted input values:
* :class:`.Vartype.SPIN`, ``'SPIN'``, ``{-1, 1}``
* :class:`.Vartype.BINARY`, ``'BINARY'``, ``{0, 1}``
variable_order (iterable, optional):
If provided, labels the variables; otherwise, indices are used.
Returns:
:obj:`.BinaryQuadraticModel`
Examples:
>>> import dimod
>>> import numpy as np
...
>>> linear_vector = np.asarray([-1, 1])
>>> quadratic_vectors = (np.asarray([0]), np.asarray([1]), np.asarray([-1.0]))
>>> bqm = dimod.BinaryQuadraticModel.from_numpy_vectors(linear_vector, quadratic_vectors, 0.0, dimod.SPIN)
>>> print(bqm.quadratic)
{(0, 1): -1.0} | 2.497309 | 2.497252 | 1.000023 |
import pandas as pd
try:
variable_order = sorted(self.linear)
except TypeError:
variable_order = list(self.linear)
return pd.DataFrame(self.to_numpy_matrix(variable_order=variable_order),
index=variable_order,
columns=variable_order) | def to_pandas_dataframe(self) | Convert a binary quadratic model to pandas DataFrame format.
Returns:
:class:`pandas.DataFrame`: The binary quadratic model as a DataFrame. The DataFrame has
binary vartype. The rows and columns are labeled by the variables in the binary quadratic
model.
Notes:
The DataFrame representation of a binary quadratic model only makes sense for binary models.
For a binary sample x, the energy of the model is given by:
.. math::
E(x) = x^T Q x
The offset is dropped when converting to a pandas DataFrame.
Examples:
This example converts a binary quadratic model to pandas DataFrame format.
>>> import dimod
>>> model = dimod.BinaryQuadraticModel({'a': 1.1, 'b': -1., 'c': .5},
... {('a', 'b'): .5, ('b', 'c'): 1.5},
... 1.4,
... dimod.BINARY)
>>> model.to_pandas_dataframe() # doctest: +SKIP
a b c
a 1.1 0.5 0.0
b 0.0 -1.0 1.5
c 0.0 0.0 0.5 | 3.928429 | 4.013398 | 0.978829 |
if interactions is None:
interactions = []
bqm = cls({}, {}, offset, Vartype.BINARY)
for u, row in bqm_df.iterrows():
for v, bias in row.iteritems():
if u == v:
bqm.add_variable(u, bias)
elif bias:
bqm.add_interaction(u, v, bias)
for u, v in interactions:
bqm.add_interaction(u, v, 0.0)
return bqm | def from_pandas_dataframe(cls, bqm_df, offset=0.0, interactions=None) | Create a binary quadratic model from a QUBO model formatted as a pandas DataFrame.
Args:
bqm_df (:class:`pandas.DataFrame`):
Quadratic unconstrained binary optimization (QUBO) model formatted
as a pandas DataFrame. Row and column indices label the QUBO variables;
values are QUBO coefficients.
offset (optional, default=0.0):
Constant offset for the binary quadratic model.
interactions (iterable, optional, default=[]):
Any additional 0.0-bias interactions to be added to the binary quadratic model.
Returns:
:class:`.BinaryQuadraticModel`: Binary quadratic model with vartype set to
:class:`vartype.BINARY`.
Examples:
This example creates a binary quadratic model from a QUBO in pandas DataFrame format
while adding an interaction and setting a constant offset.
>>> import dimod
>>> import pandas as pd
>>> pd_qubo = pd.DataFrame(data={0: [-1, 0], 1: [2, -1]})
>>> pd_qubo
0 1
0 -1 2
1 0 -1
>>> model = dimod.BinaryQuadraticModel.from_pandas_dataframe(pd_qubo,
... offset = 2.5,
... interactions = {(0,2), (1,2)})
>>> model.linear # doctest: +SKIP
{0: -1, 1: -1.0, 2: 0.0}
>>> model.quadratic # doctest: +SKIP
{(0, 1): 2, (0, 2): 0.0, (1, 2): 0.0}
>>> model.offset
2.5
>>> model.vartype
<Vartype.BINARY: frozenset({0, 1})> | 2.45648 | 3.386976 | 0.725273 |
# solve the problem on the child system
child = self.child
bqm_copy = bqm.copy()
if fixed_variables is None:
fixed_variables = {}
bqm_copy.fix_variables(fixed_variables)
sampleset = child.sample(bqm_copy, **parameters)
if len(sampleset):
return sampleset.append_variables(fixed_variables)
elif fixed_variables:
return type(sampleset).from_samples_bqm(fixed_variables, bqm=bqm)
else:
# no fixed variables and sampleset is empty
return sampleset | def sample(self, bqm, fixed_variables=None, **parameters) | Sample from the provided binary quadratic model.
Args:
bqm (:obj:`dimod.BinaryQuadraticModel`):
Binary quadratic model to be sampled from.
fixed_variables (dict):
A dictionary of variable assignments.
**parameters:
Parameters for the sampling method, specified by the child sampler.
Returns:
:obj:`dimod.SampleSet` | 3.390697 | 3.515661 | 0.964455 |
# add the contribution from the linear biases
for v in h:
offset += h[v] * sample[v]
# add the contribution from the quadratic biases
for v0, v1 in J:
offset += J[(v0, v1)] * sample[v0] * sample[v1]
return offset | def ising_energy(sample, h, J, offset=0.0) | Calculate the energy for the specified sample of an Ising model.
Energy of a sample for a binary quadratic model is defined as a sum, offset
by the constant energy offset associated with the model, of
the sample multipled by the linear bias of the variable and
all its interactions. For an Ising model,
.. math::
E(\mathbf{s}) = \sum_v h_v s_v + \sum_{u,v} J_{u,v} s_u s_v + c
where :math:`s_v` is the sample, :math:`h_v` is the linear bias, :math:`J_{u,v}`
the quadratic bias (interactions), and :math:`c` the energy offset.
Args:
sample (dict[variable, spin]):
Sample for a binary quadratic model as a dict of form {v: spin, ...},
where keys are variables of the model and values are spins (either -1 or 1).
h (dict[variable, bias]):
Linear biases as a dict of the form {v: bias, ...}, where keys are variables of
the model and values are biases.
J (dict[(variable, variable), bias]):
Quadratic biases as a dict of the form {(u, v): bias, ...}, where keys
are 2-tuples of variables of the model and values are quadratic biases
associated with the pair of variables (the interaction).
offset (numeric, optional, default=0):
Constant offset to be applied to the energy. Default 0.
Returns:
float: The induced energy.
Notes:
No input checking is performed.
Examples:
This example calculates the energy of a sample representing two down spins for
an Ising model of two variables that have positive biases of value 1 and
are positively coupled with an interaction of value 1.
>>> import dimod
>>> sample = {1: -1, 2: -1}
>>> h = {1: 1, 2: 1}
>>> J = {(1, 2): 1}
>>> dimod.ising_energy(sample, h, J, 0.5)
-0.5
References
----------
`Ising model on Wikipedia <https://en.wikipedia.org/wiki/Ising_model>`_ | 2.899018 | 3.698531 | 0.78383 |
for v0, v1 in Q:
offset += sample[v0] * sample[v1] * Q[(v0, v1)]
return offset | def qubo_energy(sample, Q, offset=0.0) | Calculate the energy for the specified sample of a QUBO model.
Energy of a sample for a binary quadratic model is defined as a sum, offset
by the constant energy offset associated with the model, of
the sample multipled by the linear bias of the variable and
all its interactions. For a quadratic unconstrained binary optimization (QUBO)
model,
.. math::
E(\mathbf{x}) = \sum_{u,v} Q_{u,v} x_u x_v + c
where :math:`x_v` is the sample, :math:`Q_{u,v}`
a matrix of biases, and :math:`c` the energy offset.
Args:
sample (dict[variable, spin]):
Sample for a binary quadratic model as a dict of form {v: bin, ...},
where keys are variables of the model and values are binary (either 0 or 1).
Q (dict[(variable, variable), coefficient]):
QUBO coefficients in a dict of form {(u, v): coefficient, ...}, where keys
are 2-tuples of variables of the model and values are biases
associated with the pair of variables. Tuples (u, v) represent interactions
and (v, v) linear biases.
offset (numeric, optional, default=0):
Constant offset to be applied to the energy. Default 0.
Returns:
float: The induced energy.
Notes:
No input checking is performed.
Examples:
This example calculates the energy of a sample representing two zeros for
a QUBO model of two variables that have positive biases of value 1 and
are positively coupled with an interaction of value 1.
>>> import dimod
>>> sample = {1: 0, 2: 0}
>>> Q = {(1, 1): 1, (2, 2): 1, (1, 2): 1}
>>> dimod.qubo_energy(sample, Q, 0.5)
0.5
References
----------
`QUBO model on Wikipedia <https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization>`_ | 3.600541 | 10.444696 | 0.344724 |
# the linear biases are the easiest
q = {(v, v): 2. * bias for v, bias in iteritems(h)}
# next the quadratic biases
for (u, v), bias in iteritems(J):
if bias == 0.0:
continue
q[(u, v)] = 4. * bias
q[(u, u)] -= 2. * bias
q[(v, v)] -= 2. * bias
# finally calculate the offset
offset += sum(itervalues(J)) - sum(itervalues(h))
return q, offset | def ising_to_qubo(h, J, offset=0.0) | Convert an Ising problem to a QUBO problem.
Map an Ising model defined on spins (variables with {-1, +1} values) to quadratic
unconstrained binary optimization (QUBO) formulation :math:`x' Q x` defined over
binary variables (0 or 1 values), where the linear term is contained along the diagonal of Q.
Return matrix Q that defines the model as well as the offset in energy between the two
problem formulations:
.. math::
s' J s + h' s = offset + x' Q x
See :meth:`~dimod.utilities.qubo_to_ising` for the inverse function.
Args:
h (dict[variable, bias]):
Linear biases as a dict of the form {v: bias, ...}, where keys are variables of
the model and values are biases.
J (dict[(variable, variable), bias]):
Quadratic biases as a dict of the form {(u, v): bias, ...}, where keys
are 2-tuples of variables of the model and values are quadratic biases
associated with the pair of variables (the interaction).
offset (numeric, optional, default=0):
Constant offset to be applied to the energy. Default 0.
Returns:
(dict, float): A 2-tuple containing:
dict: QUBO coefficients.
float: New energy offset.
Examples:
This example converts an Ising problem of two variables that have positive
biases of value 1 and are positively coupled with an interaction of value 1
to a QUBO problem.
>>> import dimod
>>> h = {1: 1, 2: 1}
>>> J = {(1, 2): 1}
>>> dimod.ising_to_qubo(h, J, 0.5) # doctest: +SKIP
({(1, 1): 0.0, (1, 2): 4.0, (2, 2): 0.0}, -0.5) | 3.235246 | 3.988032 | 0.811239 |
h = {}
J = {}
linear_offset = 0.0
quadratic_offset = 0.0
for (u, v), bias in iteritems(Q):
if u == v:
if u in h:
h[u] += .5 * bias
else:
h[u] = .5 * bias
linear_offset += bias
else:
if bias != 0.0:
J[(u, v)] = .25 * bias
if u in h:
h[u] += .25 * bias
else:
h[u] = .25 * bias
if v in h:
h[v] += .25 * bias
else:
h[v] = .25 * bias
quadratic_offset += bias
offset += .5 * linear_offset + .25 * quadratic_offset
return h, J, offset | def qubo_to_ising(Q, offset=0.0) | Convert a QUBO problem to an Ising problem.
Map a quadratic unconstrained binary optimization (QUBO) problem :math:`x' Q x`
defined over binary variables (0 or 1 values), where the linear term is contained along
the diagonal of Q, to an Ising model defined on spins (variables with {-1, +1} values).
Return h and J that define the Ising model as well as the offset in energy
between the two problem formulations:
.. math::
x' Q x = offset + s' J s + h' s
See :meth:`~dimod.utilities.ising_to_qubo` for the inverse function.
Args:
Q (dict[(variable, variable), coefficient]):
QUBO coefficients in a dict of form {(u, v): coefficient, ...}, where keys
are 2-tuples of variables of the model and values are biases
associated with the pair of variables. Tuples (u, v) represent interactions
and (v, v) linear biases.
offset (numeric, optional, default=0):
Constant offset to be applied to the energy. Default 0.
Returns:
(dict, dict, float): A 3-tuple containing:
dict: Linear coefficients of the Ising problem.
dict: Quadratic coefficients of the Ising problem.
float: New energy offset.
Examples:
This example converts a QUBO problem of two variables that have positive
biases of value 1 and are positively coupled with an interaction of value 1
to an Ising problem.
>>> import dimod
>>> Q = {(1, 1): 1, (2, 2): 1, (1, 2): 1}
>>> dimod.qubo_to_ising(Q, 0.5) # doctest: +SKIP
({1: 0.75, 2: 0.75}, {(1, 2): 0.25}, 1.75) | 1.95767 | 2.14102 | 0.914363 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.