File size: 3,295 Bytes
7472a45 43a9654 7472a45 43a9654 6e70d21 691416f 6e70d21 a39d1e7 43a9654 a39d1e7 43a9654 a39d1e7 43a9654 a39d1e7 43a9654 a39d1e7 43a9654 a39d1e7 43a9654 a39d1e7 43a9654 a39d1e7 43a9654 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
# Load model and tokenizer
model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval() # Set the model to evaluation mode
# Function to get relevance score and relevant excerpt while preserving order
def get_relevance_score_and_excerpt(query, paragraph):
if not query.strip() or not paragraph.strip():
return "Please provide both a query and a document paragraph.", ""
# Tokenize the input
inputs = tokenizer(query, paragraph, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
output = model(**inputs, output_attentions=True) # Get attention scores
# Extract logits and calculate relevance score
logit = output.logits.squeeze().item()
relevance_score = torch.sigmoid(torch.tensor(logit)).item()
# Extract attention scores (last attention layer)
attention = output.attentions[-1] # Shape: (batch_size, num_heads, seq_len, seq_len)
# Average attention across heads and batch dimension
attention_scores = attention.mean(dim=1).mean(dim=0) # Shape: (seq_len, seq_len)
# Get tokenized query and paragraph separately
query_tokens = tokenizer.tokenize(query)
paragraph_tokens = tokenizer.tokenize(paragraph)
query_len = len(query_tokens) + 2 # +2 for special tokens [CLS] and [SEP]
para_start_idx = query_len
para_end_idx = len(inputs["input_ids"][0]) - 1 # Ignore final [SEP] token
# Handle potential indexing issues
if para_end_idx <= para_start_idx:
return round(relevance_score, 4), "No relevant tokens extracted."
para_attention_scores = attention_scores[para_start_idx:para_end_idx, para_start_idx:para_end_idx].mean(dim=0)
if para_attention_scores.numel() == 0:
return round(relevance_score, 4), "No relevant tokens extracted."
# Get indices of top-k attended tokens while preserving order
top_k = min(5, para_attention_scores.size(0)) # Ensure top-k does not exceed available tokens
top_indices = para_attention_scores.topk(top_k).indices.sort().values # Sort indices to preserve order
# Extract highlighted tokens from the paragraph
highlighted_tokens = [paragraph_tokens[i] for i in top_indices.tolist()]
# Convert tokens back to a readable string
excerpt = tokenizer.convert_tokens_to_string(highlighted_tokens)
return round(relevance_score, 4), excerpt
# Define Gradio interface
interface = gr.Interface(
fn=get_relevance_score_and_excerpt,
inputs=[
gr.Textbox(label="Query", placeholder="Enter your search query..."),
gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match...")
],
outputs=[
gr.Textbox(label="Relevance Score"),
gr.Textbox(label="Most Relevant Excerpt")
],
title="Cross-Encoder Relevance Scoring with Ordered Excerpt Extraction",
description="Enter a query and a document paragraph to get a relevance score and a relevant excerpt in original order.",
allow_flagging="never",
live=True
)
if __name__ == "__main__":
interface.launch() |