Update app.py
Browse files
app.py
CHANGED
@@ -6,12 +6,68 @@ import torch
|
|
6 |
model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
-
model.eval() # Set model to evaluation mode
|
10 |
|
11 |
-
# Function to get relevance score and relevant excerpt
|
12 |
def get_relevance_score_and_excerpt(query, paragraph):
|
13 |
if not query.strip() or not paragraph.strip():
|
14 |
return "Please provide both a query and a document paragraph.", ""
|
15 |
|
16 |
# Tokenize the input
|
17 |
-
inputs =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
model.eval() # Set the model to evaluation mode
|
10 |
|
11 |
+
# Function to get relevance score and relevant excerpt while preserving order
|
12 |
def get_relevance_score_and_excerpt(query, paragraph):
|
13 |
if not query.strip() or not paragraph.strip():
|
14 |
return "Please provide both a query and a document paragraph.", ""
|
15 |
|
16 |
# Tokenize the input
|
17 |
+
inputs = tokenizer(query, paragraph, return_tensors="pt", truncation=True, padding=True, return_attention_mask=True)
|
18 |
+
|
19 |
+
with torch.no_grad():
|
20 |
+
output = model(**inputs, output_attentions=True) # Get attention scores
|
21 |
+
|
22 |
+
# Extract logits and calculate relevance score
|
23 |
+
logit = output.logits.squeeze().item()
|
24 |
+
relevance_score = torch.sigmoid(torch.tensor(logit)).item()
|
25 |
+
|
26 |
+
# Extract attention scores (use the last attention layer)
|
27 |
+
attention = output.attentions[-1] # Shape: (batch_size, num_heads, seq_len, seq_len)
|
28 |
+
|
29 |
+
# Average across attention heads to get token importance
|
30 |
+
attention_scores = attention.mean(dim=1).squeeze(0) # Shape: (seq_len, seq_len)
|
31 |
+
|
32 |
+
# Tokenize query and paragraph separately to get lengths
|
33 |
+
query_tokens = tokenizer.tokenize(query)
|
34 |
+
paragraph_tokens = tokenizer.tokenize(paragraph)
|
35 |
+
|
36 |
+
# Extract only paragraph-related attention scores
|
37 |
+
query_length = len(query_tokens) + 2 # +2 for special tokens like [CLS] and [SEP]
|
38 |
+
para_start_idx = query_length
|
39 |
+
para_end_idx = len(inputs["input_ids"][0]) - 1 # Ignore final [SEP] token
|
40 |
+
|
41 |
+
para_attention_scores = attention_scores[0, para_start_idx:para_end_idx].mean(dim=0)
|
42 |
+
|
43 |
+
# Get indices of top-k attended tokens while preserving order
|
44 |
+
top_k = min(5, len(paragraph_tokens)) # Extract top 5 tokens or fewer if short
|
45 |
+
top_indices = para_attention_scores.argsort(descending=True)[:top_k].sort().values # Sort to preserve order
|
46 |
+
|
47 |
+
# Extract top tokens based on original order
|
48 |
+
highlighted_tokens = [paragraph_tokens[i] for i in top_indices]
|
49 |
+
|
50 |
+
# Reconstruct the excerpt from ordered tokens
|
51 |
+
excerpt = tokenizer.convert_tokens_to_string(highlighted_tokens)
|
52 |
+
|
53 |
+
return round(relevance_score, 4), excerpt
|
54 |
+
|
55 |
+
# Define Gradio interface
|
56 |
+
interface = gr.Interface(
|
57 |
+
fn=get_relevance_score_and_excerpt,
|
58 |
+
inputs=[
|
59 |
+
gr.Textbox(label="Query", placeholder="Enter your search query..."),
|
60 |
+
gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match...")
|
61 |
+
],
|
62 |
+
outputs=[
|
63 |
+
gr.Textbox(label="Relevance Score"),
|
64 |
+
gr.Textbox(label="Most Relevant Excerpt")
|
65 |
+
],
|
66 |
+
title="Cross-Encoder Relevance Scoring with Ordered Excerpt Extraction",
|
67 |
+
description="Enter a query and a document paragraph to get a relevance score and a relevant excerpt in original order.",
|
68 |
+
allow_flagging="never",
|
69 |
+
live=True
|
70 |
+
)
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
interface.launch()
|