Update app.py
Browse files
app.py
CHANGED
@@ -4,47 +4,64 @@ import torch
|
|
4 |
|
5 |
# Load model and tokenizer
|
6 |
model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2"
|
7 |
-
|
8 |
-
print("Loading model and tokenizer...")
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
11 |
model.eval() # Set model to evaluation mode
|
12 |
-
print("Model and tokenizer loaded successfully.")
|
13 |
|
14 |
-
# Function to
|
15 |
-
def
|
16 |
if not query.strip() or not paragraph.strip():
|
17 |
-
return "Please provide both a query and a document paragraph."
|
|
|
|
|
|
|
18 |
|
19 |
-
|
|
|
20 |
|
21 |
-
#
|
22 |
-
|
|
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
return f"Received query: {query}, paragraph: {paragraph}"
|
34 |
|
35 |
# Define Gradio interface
|
36 |
interface = gr.Interface(
|
37 |
-
fn=
|
38 |
inputs=[
|
39 |
gr.Textbox(label="Query", placeholder="Enter your search query..."),
|
40 |
gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match...")
|
41 |
],
|
42 |
-
outputs=
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
45 |
)
|
46 |
|
47 |
-
|
48 |
if __name__ == "__main__":
|
49 |
-
print("Launching Gradio app...")
|
50 |
interface.launch()
|
|
|
4 |
|
5 |
# Load model and tokenizer
|
6 |
model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2"
|
|
|
|
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
model.eval() # Set model to evaluation mode
|
|
|
10 |
|
11 |
+
# Function to get relevance score and relevant excerpt based on attention scores
|
12 |
+
def get_relevance_score_and_excerpt(query, paragraph):
|
13 |
if not query.strip() or not paragraph.strip():
|
14 |
+
return "Please provide both a query and a document paragraph.", ""
|
15 |
+
|
16 |
+
# Tokenize the input
|
17 |
+
inputs = tokenizer(query, paragraph, return_tensors="pt", truncation=True, padding=True, return_attention_mask=True)
|
18 |
|
19 |
+
with torch.no_grad():
|
20 |
+
output = model(**inputs, output_attentions=True) # Get attention scores
|
21 |
|
22 |
+
# Extract logits and calculate relevance score
|
23 |
+
logit = output.logits.squeeze().item()
|
24 |
+
relevance_score = torch.sigmoid(torch.tensor(logit)).item()
|
25 |
|
26 |
+
# Extract attention scores (use the last attention layer)
|
27 |
+
attention = output.attentions[-1] # Shape: (batch_size, num_heads, seq_len, seq_len)
|
28 |
+
|
29 |
+
# Average across attention heads to get token importance
|
30 |
+
attention_scores = attention.mean(dim=1).squeeze(0) # Shape: (seq_len, seq_len)
|
31 |
|
32 |
+
# Focus on the paragraph part only (ignore query tokens)
|
33 |
+
input_tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"].squeeze())
|
34 |
+
query_length = len(tokenizer.tokenize(query))
|
35 |
+
|
36 |
+
# Extract attention for the paragraph tokens only
|
37 |
+
paragraph_tokens = input_tokens[query_length + 2 : -1] # Skip query and special tokens like [SEP]
|
38 |
+
paragraph_attention = attention_scores[query_length + 2 : -1, query_length + 2 : -1].mean(dim=0)
|
39 |
+
|
40 |
+
# Get the top tokens with highest attention scores
|
41 |
+
top_token_indices = torch.argsort(paragraph_attention, descending=True)[:5] # Top 5 tokens
|
42 |
+
highlighted_tokens = [paragraph_tokens[i] for i in top_token_indices]
|
43 |
|
44 |
+
# Reconstruct the excerpt from top attention tokens
|
45 |
+
excerpt = tokenizer.convert_tokens_to_string(highlighted_tokens)
|
46 |
|
47 |
+
return round(relevance_score, 4), excerpt
|
|
|
48 |
|
49 |
# Define Gradio interface
|
50 |
interface = gr.Interface(
|
51 |
+
fn=get_relevance_score_and_excerpt,
|
52 |
inputs=[
|
53 |
gr.Textbox(label="Query", placeholder="Enter your search query..."),
|
54 |
gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match...")
|
55 |
],
|
56 |
+
outputs=[
|
57 |
+
gr.Textbox(label="Relevance Score"),
|
58 |
+
gr.Textbox(label="Most Relevant Excerpt")
|
59 |
+
],
|
60 |
+
title="Cross-Encoder Relevance Scoring with Attention-Based Excerpt Extraction",
|
61 |
+
description="Enter a query and a document paragraph to get a relevance score and a relevant excerpt using attention scores.",
|
62 |
+
allow_flagging="never",
|
63 |
+
live=True
|
64 |
)
|
65 |
|
|
|
66 |
if __name__ == "__main__":
|
|
|
67 |
interface.launch()
|