Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load model and tokenizer
|
6 |
+
model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Function to compute relevance score
|
11 |
+
def get_relevance_score(query, paragraph):
|
12 |
+
inputs = tokenizer(query, paragraph, return_tensors="pt", truncation=True, padding=True)
|
13 |
+
with torch.no_grad():
|
14 |
+
scores = model(**inputs).logits.squeeze().item()
|
15 |
+
return round(scores, 4)
|
16 |
+
|
17 |
+
# Gradio interface
|
18 |
+
interface = gr.Interface(
|
19 |
+
fn=get_relevance_score,
|
20 |
+
inputs=[
|
21 |
+
gr.Textbox(label="Query", placeholder="Enter your search query..."),
|
22 |
+
gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match...")
|
23 |
+
],
|
24 |
+
outputs=gr.Number(label="Relevance Score"),
|
25 |
+
title="Cross-Encoder Relevance Scoring",
|
26 |
+
description="Enter a query and a document paragraph to get a relevance score using the MS MARCO MiniLM L-12 v2 model."
|
27 |
+
)
|
28 |
+
|
29 |
+
if __name__ == "__main__":
|
30 |
+
interface.launch()
|