File size: 3,275 Bytes
7472a45
e64db30
a1e51f4
7472a45
 
 
 
a1e51f4
e64db30
5552636
0f56dc9
a1e51f4
 
0f56dc9
a1e51f4
 
 
43a9654
 
a1e51f4
 
0f56dc9
a1e51f4
0f56dc9
a1e51f4
0f56dc9
 
a1e51f4
 
 
 
 
 
 
 
 
 
 
 
 
0f56dc9
a1e51f4
 
 
 
0f56dc9
a1e51f4
 
 
 
 
5552636
a1e51f4
5552636
0e17055
5552636
 
43a9654
5552636
43a9654
0f56dc9
43a9654
a1e51f4
 
 
43a9654
a1e51f4
 
0f56dc9
43a9654
 
0f56dc9
5552636
a1e51f4
 
0f56dc9
a1e51f4
 
43a9654
 
a1e51f4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch

# Load model and tokenizer
model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval()

# Function to compute relevance score (in logits) and dynamically adjust threshold
def get_relevance_score_and_excerpt(query, paragraph, threshold_weight):
    if not query.strip() or not paragraph.strip():
        return "Please provide both a query and a document paragraph.", ""

    # Tokenize the input
    inputs = tokenizer(query, paragraph, return_tensors="pt", truncation=True, padding=True)
    
    with torch.no_grad():
        output = model(**inputs, output_attentions=True)

    # Extract logits (no sigmoid applied)
    logit = output.logits.squeeze().item()
    base_relevance_score = logit  # Relevance score in logits

    # Dynamically adjust the attention threshold based on user weight (no relevance score influence)
    dynamic_threshold = max(0.02, threshold_weight)

    # Extract attention scores (last layer)
    attention = output.attentions[-1]
    attention_scores = attention.mean(dim=1).mean(dim=0)

    query_tokens = tokenizer.tokenize(query)
    paragraph_tokens = tokenizer.tokenize(paragraph)

    query_len = len(query_tokens) + 2  # +2 for special tokens [CLS] and first [SEP]
    para_start_idx = query_len
    para_end_idx = len(inputs["input_ids"][0]) - 1

    if para_end_idx <= para_start_idx:
        return round(base_relevance_score, 4), "No relevant tokens extracted."

    para_attention_scores = attention_scores[para_start_idx:para_end_idx, para_start_idx:para_end_idx].mean(dim=0)

    if para_attention_scores.numel() == 0:
        return round(base_relevance_score, 4), "No relevant tokens extracted."

    # Get indices of relevant tokens above dynamic threshold
    relevant_indices = (para_attention_scores > dynamic_threshold).nonzero(as_tuple=True)[0].tolist()

    # Reconstruct paragraph with bolded relevant tokens using HTML tags
    highlighted_text = ""
    for idx, token in enumerate(paragraph_tokens):
        if idx in relevant_indices:
            highlighted_text += f"<b>{token}</b> "
        else:
            highlighted_text += f"{token} "

    highlighted_text = tokenizer.convert_tokens_to_string(highlighted_text.split())

    return round(base_relevance_score, 4), highlighted_text

# Define Gradio interface with a slider for threshold adjustment
interface = gr.Interface(
    fn=get_relevance_score_and_excerpt,
    inputs=[
        gr.Textbox(label="Query", placeholder="Enter your search query..."),
        gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match..."),
        gr.Slider(minimum=0.02, maximum=0.5, value=0.1, step=0.01, label="Attention Threshold")
    ],
    outputs=[
        gr.Textbox(label="Relevance Score (Logits)"),
        gr.HTML(label="Highlighted Document Paragraph")
    ],
    title="Cross-Encoder Attention Highlighting",
    description="Adjust the attention threshold to control token highlighting sensitivity.",
    allow_flagging="never",
    live=True
)

if __name__ == "__main__":
    interface.launch()