wilwork commited on
Commit
0e17055
·
verified ·
1 Parent(s): 7f50308

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -27
app.py CHANGED
@@ -6,10 +6,10 @@ import torch
6
  model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2"
7
  tokenizer = AutoTokenizer.from_pretrained(model_name)
8
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
9
- model.eval() # Set the model to evaluation mode
10
 
11
  # Function to compute relevance score and dynamically adjust threshold
12
- def get_relevance_score_and_excerpt(query, paragraph):
13
  if not query.strip() or not paragraph.strip():
14
  return "Please provide both a query and a document paragraph.", ""
15
 
@@ -17,32 +17,29 @@ def get_relevance_score_and_excerpt(query, paragraph):
17
  inputs = tokenizer(query, paragraph, return_tensors="pt", truncation=True, padding=True)
18
 
19
  with torch.no_grad():
20
- output = model(**inputs, output_attentions=True) # Get attention scores
21
 
22
  # Extract logits and calculate base relevance score
23
  logit = output.logits.squeeze().item()
24
  base_relevance_score = torch.sigmoid(torch.tensor(logit)).item()
25
 
26
- # Dynamically adjust the attention threshold based on relevance score
27
- dynamic_threshold = max(0.02, base_relevance_score * 0.1) # Example formula
28
 
29
  # Extract attention scores (last layer)
30
- attention = output.attentions[-1] # Shape: (batch_size, num_heads, seq_len, seq_len)
31
- attention_scores = attention.mean(dim=1).mean(dim=0) # Average over heads and batch
32
 
33
- # Tokenize query and paragraph separately
34
  query_tokens = tokenizer.tokenize(query)
35
  paragraph_tokens = tokenizer.tokenize(paragraph)
36
 
37
  query_len = len(query_tokens) + 2 # +2 for special tokens [CLS] and first [SEP]
38
  para_start_idx = query_len
39
- para_end_idx = len(inputs["input_ids"][0]) - 1 # Ignore final [SEP] token
40
 
41
- # Handle potential indexing issues
42
  if para_end_idx <= para_start_idx:
43
  return round(base_relevance_score, 4), "No relevant tokens extracted."
44
 
45
- # Extract paragraph attention scores and apply dynamic threshold
46
  para_attention_scores = attention_scores[para_start_idx:para_end_idx, para_start_idx:para_end_idx].mean(dim=0)
47
 
48
  if para_attention_scores.numel() == 0:
@@ -51,39 +48,32 @@ def get_relevance_score_and_excerpt(query, paragraph):
51
  # Get indices of relevant tokens above dynamic threshold
52
  relevant_indices = (para_attention_scores > dynamic_threshold).nonzero(as_tuple=True)[0].tolist()
53
 
54
- # Compute attention-weighted relevance score
55
- if relevant_indices:
56
- relevant_attention_values = para_attention_scores[relevant_indices]
57
- attention_weighted_score = relevant_attention_values.mean().item() * base_relevance_score
58
- else:
59
- attention_weighted_score = base_relevance_score # No relevant tokens found
60
-
61
- # Reconstruct paragraph with bolded relevant tokens
62
  highlighted_text = ""
63
  for idx, token in enumerate(paragraph_tokens):
64
  if idx in relevant_indices:
65
- highlighted_text += f"**{token}** "
66
  else:
67
  highlighted_text += f"{token} "
68
 
69
- # Convert tokens back to readable format
70
  highlighted_text = tokenizer.convert_tokens_to_string(highlighted_text.split())
71
 
72
- return round(attention_weighted_score, 4), highlighted_text
73
 
74
- # Define Gradio interface
75
  interface = gr.Interface(
76
  fn=get_relevance_score_and_excerpt,
77
  inputs=[
78
  gr.Textbox(label="Query", placeholder="Enter your search query..."),
79
- gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match...")
 
80
  ],
81
  outputs=[
82
- gr.Textbox(label="Attention-Weighted Relevance Score"),
83
  gr.HTML(label="Highlighted Document Paragraph")
84
  ],
85
- title="Cross-Encoder with Dynamic Attention Threshold",
86
- description="Enter a query and document paragraph to get a relevance score with relevant tokens in bold.",
87
  allow_flagging="never",
88
  live=True
89
  )
 
6
  model_name = "cross-encoder/ms-marco-MiniLM-L-12-v2"
7
  tokenizer = AutoTokenizer.from_pretrained(model_name)
8
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
9
+ model.eval()
10
 
11
  # Function to compute relevance score and dynamically adjust threshold
12
+ def get_relevance_score_and_excerpt(query, paragraph, threshold_weight):
13
  if not query.strip() or not paragraph.strip():
14
  return "Please provide both a query and a document paragraph.", ""
15
 
 
17
  inputs = tokenizer(query, paragraph, return_tensors="pt", truncation=True, padding=True)
18
 
19
  with torch.no_grad():
20
+ output = model(**inputs, output_attentions=True)
21
 
22
  # Extract logits and calculate base relevance score
23
  logit = output.logits.squeeze().item()
24
  base_relevance_score = torch.sigmoid(torch.tensor(logit)).item()
25
 
26
+ # Dynamically adjust the attention threshold based on user weight (no relevance score influence)
27
+ dynamic_threshold = max(0.02, threshold_weight)
28
 
29
  # Extract attention scores (last layer)
30
+ attention = output.attentions[-1]
31
+ attention_scores = attention.mean(dim=1).mean(dim=0)
32
 
 
33
  query_tokens = tokenizer.tokenize(query)
34
  paragraph_tokens = tokenizer.tokenize(paragraph)
35
 
36
  query_len = len(query_tokens) + 2 # +2 for special tokens [CLS] and first [SEP]
37
  para_start_idx = query_len
38
+ para_end_idx = len(inputs["input_ids"][0]) - 1
39
 
 
40
  if para_end_idx <= para_start_idx:
41
  return round(base_relevance_score, 4), "No relevant tokens extracted."
42
 
 
43
  para_attention_scores = attention_scores[para_start_idx:para_end_idx, para_start_idx:para_end_idx].mean(dim=0)
44
 
45
  if para_attention_scores.numel() == 0:
 
48
  # Get indices of relevant tokens above dynamic threshold
49
  relevant_indices = (para_attention_scores > dynamic_threshold).nonzero(as_tuple=True)[0].tolist()
50
 
51
+ # Reconstruct paragraph with bolded relevant tokens using HTML tags
 
 
 
 
 
 
 
52
  highlighted_text = ""
53
  for idx, token in enumerate(paragraph_tokens):
54
  if idx in relevant_indices:
55
+ highlighted_text += f"<b>{token}</b> "
56
  else:
57
  highlighted_text += f"{token} "
58
 
 
59
  highlighted_text = tokenizer.convert_tokens_to_string(highlighted_text.split())
60
 
61
+ return round(base_relevance_score, 4), highlighted_text
62
 
63
+ # Define Gradio interface with a slider for threshold adjustment
64
  interface = gr.Interface(
65
  fn=get_relevance_score_and_excerpt,
66
  inputs=[
67
  gr.Textbox(label="Query", placeholder="Enter your search query..."),
68
+ gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match..."),
69
+ gr.Slider(minimum=0.02, maximum=0.5, value=0.1, step=0.01, label="Attention Threshold")
70
  ],
71
  outputs=[
72
+ gr.Textbox(label="Relevance Score"),
73
  gr.HTML(label="Highlighted Document Paragraph")
74
  ],
75
+ title="Cross-Encoder Attention Highlighting",
76
+ description="Adjust the attention threshold to control token highlighting sensitivity.",
77
  allow_flagging="never",
78
  live=True
79
  )