wilwork commited on
Commit
7f50308
·
verified ·
1 Parent(s): 5552636

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -20
app.py CHANGED
@@ -8,10 +8,7 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
9
  model.eval() # Set the model to evaluation mode
10
 
11
- # Threshold for attention relevance
12
- THRESHOLD = 0.02 # Adjust as needed based on observations
13
-
14
- # Function to get relevance score and relevant excerpt with bolded tokens
15
  def get_relevance_score_and_excerpt(query, paragraph):
16
  if not query.strip() or not paragraph.strip():
17
  return "Please provide both a query and a document paragraph.", ""
@@ -22,36 +19,44 @@ def get_relevance_score_and_excerpt(query, paragraph):
22
  with torch.no_grad():
23
  output = model(**inputs, output_attentions=True) # Get attention scores
24
 
25
- # Extract logits and calculate relevance score
26
  logit = output.logits.squeeze().item()
27
- relevance_score = torch.sigmoid(torch.tensor(logit)).item()
 
 
 
28
 
29
  # Extract attention scores (last layer)
30
  attention = output.attentions[-1] # Shape: (batch_size, num_heads, seq_len, seq_len)
31
-
32
- # Average across heads and batch dimension
33
- attention_scores = attention.mean(dim=1).mean(dim=0) # Shape: (seq_len, seq_len)
34
 
35
  # Tokenize query and paragraph separately
36
  query_tokens = tokenizer.tokenize(query)
37
  paragraph_tokens = tokenizer.tokenize(paragraph)
38
 
39
- query_len = len(query_tokens) + 2 # +2 for [CLS] and first [SEP]
40
  para_start_idx = query_len
41
  para_end_idx = len(inputs["input_ids"][0]) - 1 # Ignore final [SEP] token
42
 
43
  # Handle potential indexing issues
44
  if para_end_idx <= para_start_idx:
45
- return round(relevance_score, 4), "No relevant tokens extracted."
46
 
47
- # Extract paragraph attention scores
48
  para_attention_scores = attention_scores[para_start_idx:para_end_idx, para_start_idx:para_end_idx].mean(dim=0)
49
 
50
  if para_attention_scores.numel() == 0:
51
- return round(relevance_score, 4), "No relevant tokens extracted."
 
 
 
52
 
53
- # Filter tokens based on threshold and preserve order
54
- relevant_indices = (para_attention_scores > THRESHOLD).nonzero(as_tuple=True)[0].tolist()
 
 
 
 
55
 
56
  # Reconstruct paragraph with bolded relevant tokens
57
  highlighted_text = ""
@@ -61,10 +66,10 @@ def get_relevance_score_and_excerpt(query, paragraph):
61
  else:
62
  highlighted_text += f"{token} "
63
 
64
- # Convert tokens to readable format (handling special characters)
65
  highlighted_text = tokenizer.convert_tokens_to_string(highlighted_text.split())
66
 
67
- return round(relevance_score, 4), highlighted_text
68
 
69
  # Define Gradio interface
70
  interface = gr.Interface(
@@ -74,11 +79,11 @@ interface = gr.Interface(
74
  gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match...")
75
  ],
76
  outputs=[
77
- gr.Textbox(label="Relevance Score"),
78
  gr.HTML(label="Highlighted Document Paragraph")
79
  ],
80
- title="Cross-Encoder Relevance Scoring with Highlighted Excerpt",
81
- description="Enter a query and a document paragraph to get a relevance score and see relevant tokens in bold.",
82
  allow_flagging="never",
83
  live=True
84
  )
 
8
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
9
  model.eval() # Set the model to evaluation mode
10
 
11
+ # Function to compute relevance score and dynamically adjust threshold
 
 
 
12
  def get_relevance_score_and_excerpt(query, paragraph):
13
  if not query.strip() or not paragraph.strip():
14
  return "Please provide both a query and a document paragraph.", ""
 
19
  with torch.no_grad():
20
  output = model(**inputs, output_attentions=True) # Get attention scores
21
 
22
+ # Extract logits and calculate base relevance score
23
  logit = output.logits.squeeze().item()
24
+ base_relevance_score = torch.sigmoid(torch.tensor(logit)).item()
25
+
26
+ # Dynamically adjust the attention threshold based on relevance score
27
+ dynamic_threshold = max(0.02, base_relevance_score * 0.1) # Example formula
28
 
29
  # Extract attention scores (last layer)
30
  attention = output.attentions[-1] # Shape: (batch_size, num_heads, seq_len, seq_len)
31
+ attention_scores = attention.mean(dim=1).mean(dim=0) # Average over heads and batch
 
 
32
 
33
  # Tokenize query and paragraph separately
34
  query_tokens = tokenizer.tokenize(query)
35
  paragraph_tokens = tokenizer.tokenize(paragraph)
36
 
37
+ query_len = len(query_tokens) + 2 # +2 for special tokens [CLS] and first [SEP]
38
  para_start_idx = query_len
39
  para_end_idx = len(inputs["input_ids"][0]) - 1 # Ignore final [SEP] token
40
 
41
  # Handle potential indexing issues
42
  if para_end_idx <= para_start_idx:
43
+ return round(base_relevance_score, 4), "No relevant tokens extracted."
44
 
45
+ # Extract paragraph attention scores and apply dynamic threshold
46
  para_attention_scores = attention_scores[para_start_idx:para_end_idx, para_start_idx:para_end_idx].mean(dim=0)
47
 
48
  if para_attention_scores.numel() == 0:
49
+ return round(base_relevance_score, 4), "No relevant tokens extracted."
50
+
51
+ # Get indices of relevant tokens above dynamic threshold
52
+ relevant_indices = (para_attention_scores > dynamic_threshold).nonzero(as_tuple=True)[0].tolist()
53
 
54
+ # Compute attention-weighted relevance score
55
+ if relevant_indices:
56
+ relevant_attention_values = para_attention_scores[relevant_indices]
57
+ attention_weighted_score = relevant_attention_values.mean().item() * base_relevance_score
58
+ else:
59
+ attention_weighted_score = base_relevance_score # No relevant tokens found
60
 
61
  # Reconstruct paragraph with bolded relevant tokens
62
  highlighted_text = ""
 
66
  else:
67
  highlighted_text += f"{token} "
68
 
69
+ # Convert tokens back to readable format
70
  highlighted_text = tokenizer.convert_tokens_to_string(highlighted_text.split())
71
 
72
+ return round(attention_weighted_score, 4), highlighted_text
73
 
74
  # Define Gradio interface
75
  interface = gr.Interface(
 
79
  gr.Textbox(label="Document Paragraph", placeholder="Enter a paragraph to match...")
80
  ],
81
  outputs=[
82
+ gr.Textbox(label="Attention-Weighted Relevance Score"),
83
  gr.HTML(label="Highlighted Document Paragraph")
84
  ],
85
+ title="Cross-Encoder with Dynamic Attention Threshold",
86
+ description="Enter a query and document paragraph to get a relevance score with relevant tokens in bold.",
87
  allow_flagging="never",
88
  live=True
89
  )