File size: 13,444 Bytes
3875c87
 
38fe9c5
3875c87
38fe9c5
3875c87
 
 
 
 
 
 
 
 
 
 
38fe9c5
 
 
 
3875c87
38fe9c5
 
 
3875c87
38fe9c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3875c87
38fe9c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3875c87
 
38fe9c5
 
 
 
 
 
 
 
 
 
 
3875c87
 
38fe9c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3875c87
38fe9c5
 
3875c87
38fe9c5
 
3875c87
38fe9c5
 
 
3875c87
38fe9c5
3875c87
 
 
 
 
 
38fe9c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3875c87
38fe9c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3875c87
 
38fe9c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3875c87
38fe9c5
 
 
 
709f6b7
 
3875c87
709f6b7
6ccf2cb
709f6b7
 
 
 
 
 
 
 
38fe9c5
3875c87
 
 
 
38fe9c5
 
 
 
 
 
3875c87
38fe9c5
3875c87
 
 
 
38fe9c5
709f6b7
38fe9c5
3875c87
38fe9c5
 
 
 
 
 
3875c87
38fe9c5
709f6b7
3875c87
709f6b7
3875c87
 
 
 
38fe9c5
3875c87
 
38fe9c5
 
3794b5e
38fe9c5
3794b5e
 
38fe9c5
3794b5e
38fe9c5
 
3875c87
 
38fe9c5
709f6b7
 
3875c87
 
 
709f6b7
3875c87
38fe9c5
 
 
3875c87
38fe9c5
3875c87
38fe9c5
709f6b7
38fe9c5
709f6b7
38fe9c5
 
709f6b7
3875c87
709f6b7
3875c87
709f6b7
 
 
 
 
 
3875c87
 
38fe9c5
3875c87
 
 
 
 
38fe9c5
 
3875c87
 
 
38fe9c5
 
 
 
3875c87
38fe9c5
709f6b7
38fe9c5
 
3875c87
38fe9c5
 
 
 
3875c87
38fe9c5
 
 
3875c87
 
 
 
 
38fe9c5
 
 
 
 
 
3875c87
38fe9c5
 
 
 
 
3875c87
38fe9c5
 
 
3875c87
38fe9c5
 
 
 
 
 
 
3875c87
 
38fe9c5
3875c87
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# import os
# import logging
# import math
# import streamlit as st
# import fitz  # PyMuPDF
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# from langchain_community.document_loaders import PDFMinerLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.embeddings import SentenceTransformerEmbeddings
# from langchain_community.vectorstores import Chroma
# from langchain_community.llms import HuggingFacePipeline
# from langchain.chains import RetrievalQA

# # Set up logging
# logging.basicConfig(level=logging.INFO)

# # Define global variables
# device = 'cpu'
# persist_directory = "db"
# uploaded_files_dir = "uploaded_files"

# # Streamlit app configuration
# st.set_page_config(page_title="Audit Assistant", layout="wide")
# st.title("Audit Assistant")

# # Load the model
# checkpoint = "MBZUAI/LaMini-T5-738M"
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)

# # Helper Functions

# def extract_text_from_pdf(file_path):
#     """Extract text from a PDF using PyMuPDF (fitz)."""
#     try:
#         doc = fitz.open(file_path)
#         text = ""
#         for page_num in range(doc.page_count):
#             page = doc.load_page(page_num)
#             text += page.get_text("text")
#         return text
#     except Exception as e:
#         logging.error(f"Error reading PDF {file_path}: {e}")
#         return None

# def data_ingestion():
#     """Function to load PDFs and create embeddings with improved error handling and efficiency."""
#     try:
#         logging.info("Starting data ingestion")

#         if not os.path.exists(uploaded_files_dir):
#             os.makedirs(uploaded_files_dir)

#         documents = []  
#         for filename in os.listdir(uploaded_files_dir):
#             if filename.endswith(".pdf"):
#                 file_path = os.path.join(uploaded_files_dir, filename)
#                 logging.info(f"Processing file: {file_path}")
                
#                 try:
#                     loader = PDFMinerLoader(file_path)
#                     loaded_docs = loader.load()
#                     if not loaded_docs:
#                         logging.warning(f"Skipping file with missing or invalid metadata: {file_path}")
#                         continue
                    
#                     for doc in loaded_docs:
#                         if hasattr(doc, 'page_content') and len(doc.page_content.strip()) > 0:
#                             documents.append(doc)
#                         else:
#                             logging.warning(f"Skipping invalid document structure in {file_path}")
#                 except ValueError as e:
#                     logging.error(f"Skipping {file_path}: {str(e)}")
#                     continue

#         if not documents:
#             logging.error("No valid documents found to process.")
#             return

#         logging.info(f"Total valid documents: {len(documents)}")

#         # Proceed with splitting and embedding documents
#         text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
#         texts = text_splitter.split_documents(documents)

#         logging.info(f"Total text chunks created: {len(texts)}")
        
#         if not texts:
#             logging.error("No valid text chunks to create embeddings.")
#             return

#         embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
        
#         # Proceed to split and embed the documents
#         MAX_BATCH_SIZE = 5461  
#         total_batches = math.ceil(len(texts) / MAX_BATCH_SIZE)
        
#         logging.info(f"Processing {len(texts)} text chunks in {total_batches} batches...")

#         db = None
#         for i in range(total_batches):
#             batch_start = i * MAX_BATCH_SIZE
#             batch_end = min((i + 1) * MAX_BATCH_SIZE, len(texts))
#             text_batch = texts[batch_start:batch_end]
            
#             logging.info(f"Processing batch {i + 1}/{total_batches}, size: {len(text_batch)}")

#             if db is None:
#                 db = Chroma.from_documents(text_batch, embeddings, persist_directory=persist_directory)
#             else:
#                 db.add_documents(text_batch)

#         db.persist()
#         logging.info("Data ingestion completed successfully")
        
#     except Exception as e:
#         logging.error(f"Error during data ingestion: {str(e)}")
#         raise

# def llm_pipeline():
#     """Set up the language model pipeline."""
#     logging.info("Setting up LLM pipeline")
#     pipe = pipeline(
#         'text2text-generation',
#         model=base_model,
#         tokenizer=tokenizer,
#         max_length=256,
#         do_sample=True,
#         temperature=0.3,
#         top_p=0.95,
#         device=device
#     )
#     local_llm = HuggingFacePipeline(pipeline=pipe)
#     logging.info("LLM pipeline setup complete")
#     return local_llm

# def qa_llm():
#     """Set up the question-answering chain."""
#     logging.info("Setting up QA model")
#     llm = llm_pipeline()
#     embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
#     db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
#     retriever = db.as_retriever()  # Set up the retriever for the vector store
#     qa = RetrievalQA.from_chain_type(
#         llm=llm,
#         chain_type="stuff",
#         retriever=retriever,
#         return_source_documents=True
#     )
#     logging.info("QA model setup complete")
#     return qa

# def process_answer(user_question):
#     """Generate an answer to the user’s question."""
#     try:
#         logging.info("Processing user question")
#         qa = qa_llm() 

#         tailored_prompt = f"""
#         You are an expert chatbot designed to assist Chartered Accountants (CAs) in the field of audits. 
#         Your goal is to provide accurate and comprehensive answers to any questions related to audit policies, procedures, 
#         and accounting standards based on the provided PDF documents. 
#         Please respond effectively and refer to the relevant standards and policies whenever applicable.

#         User question: {user_question}
#         """

#         generated_text = qa({"query": tailored_prompt})
#         answer = generated_text['result']

#         if "not provide" in answer or "no information" in answer:
#             return "The document does not provide sufficient information to answer your question."

#         logging.info("Answer generated successfully")
#         return answer

#     except Exception as e:
#         logging.error(f"Error during answer generation: {str(e)}")
#         return "Error processing the question."

# # Streamlit UI Setup
# st.sidebar.header("File Upload")
# uploaded_files = st.sidebar.file_uploader("Upload your PDF files", type=["pdf"], accept_multiple_files=True)

# if uploaded_files:
#     # Save uploaded files
#     if not os.path.exists(uploaded_files_dir):
#         os.makedirs(uploaded_files_dir)

#     for uploaded_file in uploaded_files:
#         file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
#         with open(file_path, "wb") as f:
#             f.write(uploaded_file.getbuffer())
    
#     st.sidebar.success(f"Uploaded {len(uploaded_files)} file(s) successfully!")

#     # Run data ingestion when files are uploaded
#     data_ingestion()

#     # Display UI for Q&A
#     st.header("Ask a Question")
#     user_question = st.text_input("Enter your question here:")

#     if user_question:
#         answer = process_answer(user_question)
#         st.write(answer)

# else:
#     st.sidebar.info("Upload PDF files to get started!")

# -------
import os
import logging
import math
import streamlit as st
import fitz  # PyMuPDF
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain_community.document_loaders import PDFMinerLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA

# Configuration
device = 'cpu'
persist_directory = "db"
uploaded_files_dir = "uploaded_files"

# Setup logging
logging.basicConfig(level=logging.INFO)

# Streamlit Page Setup
st.set_page_config(page_title="RAG Chatbot", layout="wide")
st.title("πŸ“š RAG-based PDF Assistant")

# Load LLM model
checkpoint = "MBZUAI/LaMini-T5-738M"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)

# ---------------- HELPER FUNCTIONS ---------------- #

def extract_outline_from_pdf(path):
    try:
        doc = fitz.open(path)
        outline_text = ""
        for page_num in range(len(doc)):
            page = doc[page_num]
            outline_text += f"### Page {page_num+1}:\n{page.get_text('text')[:500]}\n---\n"
        return outline_text if outline_text else "No preview available."
    except Exception as e:
        return f"Could not preview PDF: {e}"

def data_ingestion():
    try:
        logging.info("Starting data ingestion")
        if not os.path.exists(uploaded_files_dir):
            os.makedirs(uploaded_files_dir)

        documents = []
        for filename in os.listdir(uploaded_files_dir):
            if filename.endswith(".pdf"):
                path = os.path.join(uploaded_files_dir, filename)
                logging.info(f"Loading: {filename}")
                try:
                    loader = PDFMinerLoader(path)
                    loaded_docs = loader.load()
                    for doc in loaded_docs:
                        if hasattr(doc, 'page_content'):
                            documents.append(doc)
                except Exception as e:
                    logging.warning(f"Skipping {filename}: {str(e)}")

        if not documents:
            st.error("⚠️ No valid documents found. Check the PDF content.")
            return

        text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
        texts = text_splitter.split_documents(documents)

        embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
        db = None
        MAX_BATCH_SIZE = 5461
        for i in range(0, len(texts), MAX_BATCH_SIZE):
            batch = texts[i:i + MAX_BATCH_SIZE]
            if db is None:
                db = Chroma.from_documents(batch, embeddings, persist_directory=persist_directory)
            else:
                db.add_documents(batch)
        db.persist()
        logging.info("Data ingestion completed.")
    except Exception as e:
        logging.error(f"Ingestion error: {e}")
        st.error(f"Ingestion failed: {e}")

def llm_pipeline():
    pipe = pipeline(
        'text2text-generation',
        model=base_model,
        tokenizer=tokenizer,
        max_length=256,
        do_sample=True,
        temperature=0.3,
        top_p=0.95,
        device=device
    )
    return HuggingFacePipeline(pipeline=pipe)

def qa_llm():
    llm = llm_pipeline()
    embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
    db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
    retriever = db.as_retriever()
    return RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)

def process_answer(user_question):
    try:
        qa = qa_llm()
        prompt = f"""
        You are a helpful and accurate RAG-based chatbot. Your role is to analyze the content from uploaded PDF documents and 
        provide informative and detailed answers to any questions asked by the user. Use the uploaded knowledge to answer precisely.

        Question: {user_question}
        """
        output = qa({"query": prompt})
        return output['result']
    except Exception as e:
        logging.error(f"QA failed: {e}")
        return "❌ Could not generate a valid answer."

# ---------------- STREAMLIT UI ---------------- #

# Sidebar Upload
st.sidebar.header("πŸ“€ Upload PDF Files")
uploaded_files = st.sidebar.file_uploader("Select one or more PDF files", type="pdf", accept_multiple_files=True)

if uploaded_files:
    if not os.path.exists(uploaded_files_dir):
        os.makedirs(uploaded_files_dir)

    for file in uploaded_files:
        path = os.path.join(uploaded_files_dir, file.name)
        with open(path, "wb") as f:
            f.write(file.getbuffer())

    st.sidebar.success(f"{len(uploaded_files)} file(s) uploaded.")

    # Display previews
    st.subheader("πŸ“„ Uploaded PDF Previews")
    for file in uploaded_files:
        with st.expander(file.name):
            st.text(extract_outline_from_pdf(os.path.join(uploaded_files_dir, file.name)))

    # Trigger ingestion
    with st.spinner("πŸ”„ Ingesting uploaded documents..."):
        data_ingestion()

    # Ask a question
    st.header("❓ Ask a Question from Your Documents")
    user_input = st.text_input("Enter your question:")
    if user_input:
        with st.spinner("πŸ’¬ Generating response..."):
            response = process_answer(user_input)
        st.success(response)

else:
    st.sidebar.info("Upload PDFs to begin your QA journey.")