File size: 4,222 Bytes
709f6b7
cb0ff81
528bb27
0b64652
709f6b7
 
 
0b64652
cb0ff81
0b64652
6b52351
0b64652
3875c87
0b64652
 
 
 
709f6b7
0b64652
 
 
 
bbd8a88
0b64652
bbd8a88
 
 
0b64652
bbd8a88
 
0b64652
 
3875c87
0b64652
 
528bb27
0b64652
 
3875c87
0b64652
bbd8a88
6956d92
0b64652
 
 
 
 
 
 
 
 
 
 
 
6b52351
0b64652
 
920b3d6
0b64652
 
 
cb0ff81
0b64652
 
cb0ff81
0b64652
 
 
 
 
 
 
 
 
 
 
528bb27
 
 
 
0b64652
528bb27
cb0ff81
0b64652
528bb27
7c797e6
0b64652
bbd8a88
528bb27
0b64652
bbd8a88
0b64652
 
 
 
bbd8a88
 
0b64652
 
bbd8a88
 
0b64652
 
dea11f3
0b64652
 
 
bbd8a88
 
0b64652
 
 
 
 
 
 
 
 
 
 
 
 
bbd8a88
0b64652
3875c87
0b64652
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import streamlit as st
import fitz  # PyMuPDF
import logging
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain_community.document_loaders import TextLoader

# --- Configuration ---
st.set_page_config(page_title="πŸ“š RAG PDF Chatbot", layout="wide")
st.title("πŸ“š RAG-based PDF Chatbot")
device = "cpu"

# --- Logging ---
logging.basicConfig(level=logging.INFO)

# --- Load LLM ---
@st.cache_resource
def load_model():
    checkpoint = "MBZUAI/LaMini-T5-738M"
    tokenizer = AutoTokenizer.from_pretrained(checkpoint)
    model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
    pipe = pipeline('text2text-generation', model=model, tokenizer=tokenizer, max_length=1024, do_sample=True, temperature=0.3, top_k=50, top_p=0.95)
    return HuggingFacePipeline(pipeline=pipe)

# --- Extract PDF Text ---
def read_pdf(file):
    try:
        doc = fitz.open(stream=file.read(), filetype="pdf")
        text = ""
        for page in doc:
            text += page.get_text()
        return text.strip()
    except Exception as e:
        logging.error(f"Failed to extract text: {e}")
        return ""

# --- Process Answer ---
def process_answer(question, full_text):
    # Save the full_text to a temporary file
    with open("temp_text.txt", "w") as f:
        f.write(full_text)

    loader = TextLoader("temp_text.txt")
    docs = loader.load()

    # Chunk the documents with increased size and overlap
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=300)
    splits = text_splitter.split_documents(docs)

    # Load embeddings
    embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")

    # Create Chroma in-memory vector store
    db = Chroma.from_documents(splits, embedding=embeddings)
    retriever = db.as_retriever()

    # Set up the model
    llm = load_model()

    # Create a custom prompt
    prompt_template = PromptTemplate.from_template("""
    You are a helpful assistant. Use the following context to answer the question as accurately and thoroughly as possible.

    Context: {context}

    Question: {question}

    Answer in detail:""")

    # Retrieval QA with custom prompt
    qa_chain = RetrievalQA.from_chain_type(
        llm=llm,
        retriever=retriever,
        chain_type="stuff",
        chain_type_kwargs={"prompt": prompt_template}
    )

    # Return the answer using the retrieval QA chain
    return qa_chain.run(question)

# --- UI Layout ---
with st.sidebar:
    st.header("πŸ“„ Upload PDF")
    uploaded_file = st.file_uploader("Choose a PDF", type=["pdf"])

# --- Main Interface ---
if uploaded_file:
    st.success(f"You uploaded: {uploaded_file.name}")
    full_text = read_pdf(uploaded_file)

    if full_text:
        st.subheader("πŸ“ PDF Preview")
        with st.expander("View Extracted Text"):
            st.write(full_text[:3000] + ("..." if len(full_text) > 3000 else ""))

        st.subheader("πŸ’¬ Ask a Question")
        user_question = st.text_input("Type your question about the PDF content")

        if user_question:
            with st.spinner("Thinking..."):
                answer = process_answer(user_question, full_text)
                st.markdown("### πŸ€– Answer")
                st.write(answer)

        with st.sidebar:
            st.markdown("---")
            st.markdown("**πŸ’‘ Suggestions:**")
            st.caption("Try: \"Summarize this document\" or \"What is the key idea?\"") 
        with st.expander("πŸ’‘ Suggestions", expanded=True):
            st.markdown("""
            - "Summarize this document"
            - "Give a quick summary"
            - "What are the main points?"
            - "Explain this document in short"
            """)

    else:
        st.error("⚠️ No text could be extracted from the PDF. Try another file.")
else:
    st.info("Upload a PDF to begin.")