Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,127 +1,118 @@
|
|
1 |
import os
|
2 |
-
import shutil
|
3 |
-
import tempfile
|
4 |
-
import fitz # PyMuPDF
|
5 |
import streamlit as st
|
6 |
-
import
|
7 |
-
|
|
|
8 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
10 |
from langchain_community.vectorstores import Chroma
|
11 |
-
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
12 |
from langchain.chains import RetrievalQA
|
13 |
from langchain_community.llms import HuggingFacePipeline
|
14 |
from langchain.prompts import PromptTemplate
|
15 |
-
from langchain_community.document_loaders import TextLoader
|
16 |
-
|
17 |
-
# --- Streamlit Config ---
|
18 |
-
st.set_page_config(page_title="π RAG PDF Chatbot", layout="wide")
|
19 |
-
st.title("π RAG-based PDF Chatbot")
|
20 |
|
21 |
-
# ---
|
22 |
-
|
|
|
23 |
|
24 |
-
# --- Load
|
25 |
@st.cache_resource
|
26 |
-
def
|
27 |
checkpoint = "MBZUAI/LaMini-T5-738M"
|
28 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
29 |
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
30 |
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, max_length=512)
|
31 |
return HuggingFacePipeline(pipeline=pipe)
|
32 |
|
33 |
-
# ---
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
try:
|
36 |
-
doc = fitz.open(stream=
|
37 |
-
|
|
|
|
|
|
|
38 |
except Exception as e:
|
39 |
-
|
40 |
return ""
|
41 |
|
42 |
-
# ---
|
43 |
-
def
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
input_variables=["context", "question"],
|
52 |
-
template=
|
53 |
-
You are a helpful assistant.
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
Question:
|
59 |
-
{question}
|
60 |
-
|
61 |
-
Helpful Answer:
|
62 |
-
"""
|
63 |
)
|
64 |
-
return RetrievalQA.from_chain_type(llm=llm, retriever=retriever, chain_type_kwargs={"prompt": prompt_template})
|
65 |
|
66 |
-
# ---
|
67 |
-
def
|
68 |
-
|
69 |
-
|
70 |
-
f.write(full_text)
|
71 |
|
72 |
-
|
73 |
-
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
chunks = text_splitter.split_documents(docs)
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
qa = build_qa_chain(retriever, llm)
|
84 |
-
return qa.run(question)
|
85 |
|
86 |
-
# ---
|
87 |
with st.sidebar:
|
88 |
-
st.header("π Upload
|
89 |
-
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
full_text = extract_text_from_pdf(uploaded_file)
|
95 |
|
96 |
if full_text:
|
97 |
-
with st.expander("π
|
98 |
st.write(full_text[:3000] + ("..." if len(full_text) > 3000 else ""))
|
99 |
|
100 |
-
st.
|
101 |
-
user_question = st.text_input("Ask a question about the document")
|
102 |
|
103 |
-
if
|
104 |
-
with st.spinner("
|
105 |
-
|
106 |
-
answer = process_question(user_question, full_text)
|
107 |
-
except Exception as e:
|
108 |
-
st.error("β οΈ Something went wrong. Try re-uploading the PDF.")
|
109 |
-
st.stop()
|
110 |
st.markdown("### π€ Answer")
|
111 |
st.write(answer)
|
112 |
-
|
113 |
-
with st.sidebar:
|
114 |
-
st.markdown("---")
|
115 |
-
st.caption("π‘ Sample Questions")
|
116 |
-
st.markdown("""
|
117 |
-
- "Summarize the document"
|
118 |
-
- "What is the experience of Pradeep Singh Sengar?"
|
119 |
-
- "What are the key points?"
|
120 |
-
- "Explain in short"
|
121 |
-
""")
|
122 |
else:
|
123 |
-
st.error("
|
124 |
else:
|
125 |
-
st.info("Upload a PDF to
|
126 |
-
|
127 |
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
import streamlit as st
|
3 |
+
import fitz # PyMuPDF
|
4 |
+
import tempfile
|
5 |
+
import shutil
|
6 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
from langchain_community.vectorstores import Chroma
|
|
|
10 |
from langchain.chains import RetrievalQA
|
11 |
from langchain_community.llms import HuggingFacePipeline
|
12 |
from langchain.prompts import PromptTemplate
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# --- Streamlit Setup ---
|
15 |
+
st.set_page_config(page_title="π Accurate RAG PDF Chatbot", layout="wide")
|
16 |
+
st.title("π Accurate RAG-based PDF Chatbot")
|
17 |
|
18 |
+
# --- Load LLM (You can swap with Phi-2 or Mistral 7B later) ---
|
19 |
@st.cache_resource
|
20 |
+
def load_llm():
|
21 |
checkpoint = "MBZUAI/LaMini-T5-738M"
|
22 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
23 |
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
24 |
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, max_length=512)
|
25 |
return HuggingFacePipeline(pipeline=pipe)
|
26 |
|
27 |
+
# --- Load Embeddings ---
|
28 |
+
@st.cache_resource
|
29 |
+
def load_embeddings():
|
30 |
+
return HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5")
|
31 |
+
|
32 |
+
# --- PDF Text Extraction ---
|
33 |
+
def extract_text_from_pdf(uploaded_file):
|
34 |
try:
|
35 |
+
doc = fitz.open(stream=uploaded_file.read(), filetype="pdf")
|
36 |
+
full_text = ""
|
37 |
+
for page in doc:
|
38 |
+
full_text += page.get_text()
|
39 |
+
return full_text.strip()
|
40 |
except Exception as e:
|
41 |
+
st.error(f"β Error reading PDF: {e}")
|
42 |
return ""
|
43 |
|
44 |
+
# --- Text Chunking ---
|
45 |
+
def chunk_text(full_text):
|
46 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=300)
|
47 |
+
return splitter.create_documents([full_text])
|
48 |
+
|
49 |
+
# --- Vectorstore Setup (with in-memory temp directory) ---
|
50 |
+
def build_vectorstore(chunks, embeddings):
|
51 |
+
temp_dir = os.path.join(tempfile.gettempdir(), "chromadb-rag")
|
52 |
+
if os.path.exists(temp_dir):
|
53 |
+
shutil.rmtree(temp_dir)
|
54 |
+
os.makedirs(temp_dir, exist_ok=True)
|
55 |
+
return Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=temp_dir)
|
56 |
+
|
57 |
+
# --- Prompt Template ---
|
58 |
+
def get_prompt_template():
|
59 |
+
return PromptTemplate(
|
60 |
input_variables=["context", "question"],
|
61 |
+
template=(
|
62 |
+
"You are a helpful assistant. Answer the question based only on the following context.\n\n"
|
63 |
+
"Context:\n{context}\n\n"
|
64 |
+
"Question: {question}\n\n"
|
65 |
+
"Answer (Be accurate and concise):"
|
66 |
+
)
|
|
|
|
|
|
|
|
|
|
|
67 |
)
|
|
|
68 |
|
69 |
+
# --- Answering Logic ---
|
70 |
+
def get_answer(question, full_text):
|
71 |
+
if not question or not full_text:
|
72 |
+
return "β οΈ Please provide both PDF and a question."
|
|
|
73 |
|
74 |
+
chunks = chunk_text(full_text)
|
75 |
+
embeddings = load_embeddings()
|
76 |
+
vectorstore = build_vectorstore(chunks, embeddings)
|
77 |
+
retriever = vectorstore.as_retriever()
|
78 |
|
79 |
+
llm = load_llm()
|
|
|
80 |
|
81 |
+
qa_chain = RetrievalQA.from_chain_type(
|
82 |
+
llm=llm,
|
83 |
+
retriever=retriever,
|
84 |
+
chain_type="stuff",
|
85 |
+
chain_type_kwargs={"prompt": get_prompt_template()}
|
86 |
+
)
|
87 |
|
88 |
+
return qa_chain.run(question)
|
|
|
|
|
89 |
|
90 |
+
# --- UI ---
|
91 |
with st.sidebar:
|
92 |
+
st.header("π Upload PDF")
|
93 |
+
uploaded_pdf = st.file_uploader("Upload your PDF", type=["pdf"])
|
94 |
|
95 |
+
if uploaded_pdf:
|
96 |
+
st.success(f"β
Uploaded: {uploaded_pdf.name}")
|
97 |
+
full_text = extract_text_from_pdf(uploaded_pdf)
|
|
|
98 |
|
99 |
if full_text:
|
100 |
+
with st.expander("π Preview PDF Text", expanded=False):
|
101 |
st.write(full_text[:3000] + ("..." if len(full_text) > 3000 else ""))
|
102 |
|
103 |
+
question = st.text_input("β Ask a question about this PDF")
|
|
|
104 |
|
105 |
+
if question:
|
106 |
+
with st.spinner("π Generating answer..."):
|
107 |
+
answer = get_answer(question, full_text)
|
|
|
|
|
|
|
|
|
108 |
st.markdown("### π€ Answer")
|
109 |
st.write(answer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
else:
|
111 |
+
st.error("β οΈ Could not extract any text from the PDF.")
|
112 |
else:
|
113 |
+
st.info("π₯ Upload a PDF to start.")
|
|
|
114 |
|
115 |
+
with st.sidebar:
|
116 |
+
st.markdown("---")
|
117 |
+
st.markdown("π‘ Try questions like:")
|
118 |
+
st.caption("β’ What are the key ideas?\nβ’ Summarize the document\nβ’ What is Pradeep Singh Sengar's experience?")
|