File size: 6,597 Bytes
9ac410d
 
 
 
 
88d066d
b65c592
2955054
b1ed479
 
 
 
2955054
b1ed479
 
 
 
 
 
 
2955054
b1ed479
 
2955054
b1ed479
 
2955054
b1ed479
 
 
 
 
 
 
 
 
 
 
 
 
 
eea17f0
b1ed479
99f18bc
5929cca
7b3f010
5196b87
caf704e
 
ebf4966
7b3f010
ebf4966
caf704e
 
99f18bc
caf704e
674df9a
9770541
 
 
 
 
 
 
 
7b3f010
e1fae35
9770541
 
7b3f010
9770541
7b3f010
 
9770541
 
7b3f010
9770541
99f18bc
9770541
e1fae35
9770541
99f18bc
9770541
 
e1fae35
9770541
 
 
99f18bc
9770541
 
7b3f010
5196b87
7b3f010
e1fae35
99f18bc
 
 
 
34d0e07
99f18bc
9770541
99f18bc
34d0e07
e1fae35
9770541
e1fae35
 
 
34d0e07
99f18bc
 
 
 
eea17f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99f18bc
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import streamlit as st
from PyPDF2 import PdfReader
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from gliner import GLiNER
import plotly.express as px

with st.sidebar:
    st.button("DEMO APP", type="primary")
   

    expander = st.expander("**Important notes on the AI Resume Analysis based on Keywords App**")
    expander.write('''
    
    
     **Supported File Formats**
    This app accepts files in .pdf formats.
    
    **How to Use**
    Paste the job description first. Then, upload your resume to retrieve the results. You can upload up to 10 resumes in total.
    
    **Usage Limits**
    You can request results up to 10 times in total.
    
     **Subscription Management**
    This demo app offers a one-day subscription, expiring after 24 hours. If you are interested in building your own AI Resume Analysis based on Keywords Web App, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app within five business days. If you wish to delete your Account with us, please contact us at [email protected]
    
    **Customization**
    To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
    
    **File Handling and Errors**
    The app may display an error message if your file is corrupt, or has other errors.
    
    
    For any errors or inquiries, please contact us at [email protected]
   
    
    
''')

st.subheader ("Candidate Profile 1, divider = "green")

txt = st.text_area("Paste the job description and then press Ctrl + Enter", key = "text 1")
job = pd.Series(txt, name="Text")


if 'upload_count' not in st.session_state:
    st.session_state['upload_count'] = 0

max_attempts = 3

if st.session_state['upload_count'] < max_attempts:
    uploaded_files = st.file_uploader(
        "Upload your resume in .pdf format", accept_multiple_files=True, type="pdf", key="candidate 1"
    )

if uploaded_files:
    st.session_state['upload_count'] += 1
for uploaded_file in uploaded_files:
    pdf_reader = PdfReader(uploaded_file)
    text_data = ""
    for page in pdf_reader.pages:
        text_data += page.extract_text()
        data = pd.Series(text_data, name = 'Text')
        
        
        frames = [job, data]
        result = pd.concat(frames)
        

        model = GLiNER.from_pretrained("urchade/gliner_base")
        labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
        entities = model.predict_entities(text_data, labels)
        df = pd.DataFrame(entities)
        

        
        fig = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
                values='score', color='label')
        fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
        st.plotly_chart(fig, key = "figure 1")
       
            
        
        vectorizer = TfidfVectorizer()
        tfidf_matrix = vectorizer.fit_transform(result)
        tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
    
        cosine_sim_matrix = cosine_similarity(tfidf_matrix)
        cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
        

        
        
        fig = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
                        x=['Resume 1', 'Jon Description'],
                        y=['Resume 1', 'Job Description'])
        st.plotly_chart(fig, key = "figure 2")

        
        for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
            st.write(f"Similarity with Candidate Profile. A score closer to 1 means higher similarity. {i + 1}: {similarity_score:.4f}")

else:
    st.warning(f"You have reached the maximum URL attempts ({max_attempts}).")
    
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
    st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")





st.subheader ("Candidate Profile 2, divider = "green")



if 'upload_count' not in st.session_state:
    st.session_state['upload_count'] = 0

max_attempts = 3

if st.session_state['upload_count'] < max_attempts:
    uploaded_files = st.file_uploader(
        "Upload your resume in .pdf format", accept_multiple_files=True, type="pdf", key="candidate 2"
    )

if uploaded_files:
    st.session_state['upload_count'] += 1
for uploaded_file in uploaded_files:
    pdf_reader = PdfReader(uploaded_file)
    text_data = ""
    for page in pdf_reader.pages:
        text_data += page.extract_text()
        data = pd.Series(text_data, name = 'Text')
        
        
        frames = [job, data]
        result = pd.concat(frames)
        

        model = GLiNER.from_pretrained("urchade/gliner_base")
        labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
        entities = model.predict_entities(text_data, labels)
        df = pd.DataFrame(entities)
        

        
        fig = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
                values='score', color='label')
        fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
        st.plotly_chart(fig, key = "figure 3")
       
            
        
        vectorizer = TfidfVectorizer()
        tfidf_matrix = vectorizer.fit_transform(result)
        tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
    
        cosine_sim_matrix = cosine_similarity(tfidf_matrix)
        cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
        

        
        
        fig = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
                        x=['Resume 2', 'Jon Description'],
                        y=['Resume 2', 'Job Description'])
        st.plotly_chart(fig, key = "figure 4")

        
        for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
            st.write(f"Similarity with Candidate Profile. A score closer to 1 means higher similarity. {i + 1}: {similarity_score:.4f}")

else:
    st.warning(f"You have reached the maximum URL attempts ({max_attempts}).")
    
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
    st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")