Update app.py
Browse files
app.py
CHANGED
@@ -40,11 +40,11 @@ with st.sidebar:
|
|
40 |
''')
|
41 |
|
42 |
|
43 |
-
|
44 |
|
45 |
txt = st.text_area("Job description", key = "text 1")
|
46 |
job = pd.Series(txt, name="Text")
|
47 |
-
|
48 |
|
49 |
if 'upload_count' not in st.session_state:
|
50 |
st.session_state['upload_count'] = 0
|
@@ -53,552 +53,67 @@ max_attempts = 2
|
|
53 |
|
54 |
if st.session_state['upload_count'] < max_attempts:
|
55 |
uploaded_files = st.file_uploader(
|
56 |
-
"
|
57 |
)
|
58 |
-
if uploaded_files:
|
59 |
-
st.session_state['upload_count'] += 1
|
60 |
-
for uploaded_file in uploaded_files:
|
61 |
-
pdf_reader = PdfReader(uploaded_file)
|
62 |
-
text_data = ""
|
63 |
-
for page in pdf_reader.pages:
|
64 |
-
text_data += page.extract_text()
|
65 |
-
data = pd.Series(text_data, name = 'Text')
|
66 |
-
frames = [job, data]
|
67 |
-
result = pd.concat(frames)
|
68 |
-
|
69 |
-
|
70 |
-
model = GLiNER.from_pretrained("urchade/gliner_base")
|
71 |
-
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
72 |
-
entities = model.predict_entities(text_data, labels)
|
73 |
-
df = pd.DataFrame(entities)
|
74 |
-
|
75 |
-
|
76 |
-
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
77 |
-
values='score', color='label')
|
78 |
-
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
79 |
-
st.plotly_chart(fig1, key = "figure 1")
|
80 |
-
|
81 |
-
vectorizer = TfidfVectorizer()
|
82 |
-
tfidf_matrix = vectorizer.fit_transform(result)
|
83 |
-
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
84 |
-
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
85 |
-
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
86 |
-
|
87 |
-
|
88 |
-
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
|
89 |
-
x=['Resume 1', 'Jon Description'],
|
90 |
-
y=['Resume 1', 'Job Description'])
|
91 |
-
st.plotly_chart(fig2, key = "figure 2")
|
92 |
-
|
93 |
-
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
94 |
-
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
95 |
-
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
96 |
-
|
97 |
-
else:
|
98 |
-
st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
|
99 |
|
100 |
-
if
|
101 |
-
st.
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
txt = st.text_area("Job description", key = "text 2")
|
110 |
-
job = pd.Series(txt, name="Text")
|
111 |
-
if 'upload_count' not in st.session_state:
|
112 |
-
st.session_state['upload_count'] = 0
|
113 |
-
max_attempts = 2
|
114 |
-
if st.session_state['upload_count'] < max_attempts:
|
115 |
-
uploaded_files = st.file_uploader(
|
116 |
-
"Upload your resume in .pdf format", type="pdf", key="candidate 2"
|
117 |
-
)
|
118 |
-
if uploaded_files:
|
119 |
-
st.session_state['upload_count'] += 1
|
120 |
-
for uploaded_file in uploaded_files:
|
121 |
-
pdf_reader = PdfReader(uploaded_file)
|
122 |
-
text_data = ""
|
123 |
-
for page in pdf_reader.pages:
|
124 |
-
text_data += page.extract_text()
|
125 |
-
data = pd.Series(text_data, name = 'Text')
|
126 |
-
frames = [job, data]
|
127 |
-
result = pd.concat(frames)
|
128 |
-
|
129 |
-
|
130 |
-
model = GLiNER.from_pretrained("urchade/gliner_base")
|
131 |
-
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
132 |
-
entities = model.predict_entities(text_data, labels)
|
133 |
-
df = pd.DataFrame(entities)
|
134 |
-
|
135 |
-
|
136 |
-
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
137 |
-
values='score', color='label')
|
138 |
-
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
139 |
-
st.plotly_chart(fig1, key = "figure 3")
|
140 |
-
|
141 |
-
vectorizer = TfidfVectorizer()
|
142 |
-
tfidf_matrix = vectorizer.fit_transform(result)
|
143 |
-
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
144 |
-
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
145 |
-
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
146 |
-
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
st.subheader("Candidate Profile 3", divider = "green")
|
166 |
-
|
167 |
-
txt = st.text_area("Job description", key = "text 3")
|
168 |
-
job = pd.Series(txt, name="Text")
|
169 |
-
if 'upload_count' not in st.session_state:
|
170 |
-
st.session_state['upload_count'] = 0
|
171 |
-
max_attempts = 2
|
172 |
-
if st.session_state['upload_count'] < max_attempts:
|
173 |
-
uploaded_files = st.file_uploader(
|
174 |
-
"Upload your resume in .pdf format", type="pdf", key="candidate 3"
|
175 |
-
)
|
176 |
-
if uploaded_files:
|
177 |
-
st.session_state['upload_count'] += 1
|
178 |
-
for uploaded_file in uploaded_files:
|
179 |
-
pdf_reader = PdfReader(uploaded_file)
|
180 |
-
text_data = ""
|
181 |
-
for page in pdf_reader.pages:
|
182 |
-
text_data += page.extract_text()
|
183 |
-
data = pd.Series(text_data, name = 'Text')
|
184 |
-
frames = [job, data]
|
185 |
-
result = pd.concat(frames)
|
186 |
-
|
187 |
-
|
188 |
-
model = GLiNER.from_pretrained("urchade/gliner_base")
|
189 |
-
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
190 |
-
entities = model.predict_entities(text_data, labels)
|
191 |
-
df = pd.DataFrame(entities)
|
192 |
-
|
193 |
-
|
194 |
-
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
195 |
values='score', color='label')
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
tfidf_matrix = vectorizer.fit_transform(result)
|
201 |
-
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
202 |
-
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
203 |
-
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
204 |
-
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
212 |
-
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
213 |
-
else:
|
214 |
-
st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
|
215 |
-
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
216 |
-
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
217 |
-
|
218 |
-
|
219 |
-
st.subheader("Candidate Profile 4", divider = "green")
|
220 |
-
|
221 |
-
txt = st.text_area("Job description", key = "text 4")
|
222 |
-
job = pd.Series(txt, name="Text")
|
223 |
-
if 'upload_count' not in st.session_state:
|
224 |
-
st.session_state['upload_count'] = 0
|
225 |
-
max_attempts = 2
|
226 |
-
if st.session_state['upload_count'] < max_attempts:
|
227 |
-
uploaded_files = st.file_uploader(
|
228 |
-
"Upload your resume in .pdf format", type="pdf", key="candidate 4"
|
229 |
-
)
|
230 |
-
if uploaded_files:
|
231 |
-
st.session_state['upload_count'] += 1
|
232 |
-
for uploaded_file in uploaded_files:
|
233 |
-
pdf_reader = PdfReader(uploaded_file)
|
234 |
-
text_data = ""
|
235 |
-
for page in pdf_reader.pages:
|
236 |
-
text_data += page.extract_text()
|
237 |
-
data = pd.Series(text_data, name = 'Text')
|
238 |
-
frames = [job, data]
|
239 |
-
result = pd.concat(frames)
|
240 |
-
|
241 |
-
|
242 |
-
model = GLiNER.from_pretrained("urchade/gliner_base")
|
243 |
-
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
244 |
-
entities = model.predict_entities(text_data, labels)
|
245 |
-
df = pd.DataFrame(entities)
|
246 |
-
|
247 |
-
|
248 |
-
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
249 |
-
values='score', color='label')
|
250 |
-
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
251 |
-
st.plotly_chart(fig1, key = "figure 7")
|
252 |
-
|
253 |
-
vectorizer = TfidfVectorizer()
|
254 |
-
tfidf_matrix = vectorizer.fit_transform(result)
|
255 |
-
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
256 |
-
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
257 |
-
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
258 |
-
|
259 |
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
265 |
-
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
266 |
-
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
267 |
-
else:
|
268 |
-
st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
|
269 |
-
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
270 |
-
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
|
276 |
-
|
277 |
-
|
278 |
-
txt = st.text_area("Job description", key = "text 5")
|
279 |
-
job = pd.Series(txt, name="Text")
|
280 |
-
if 'upload_count' not in st.session_state:
|
281 |
-
st.session_state['upload_count'] = 0
|
282 |
-
max_attempts = 2
|
283 |
-
if st.session_state['upload_count'] < max_attempts:
|
284 |
-
uploaded_files = st.file_uploader(
|
285 |
-
"Upload your resume in .pdf format", type="pdf", key="candidate 5"
|
286 |
-
)
|
287 |
-
if uploaded_files:
|
288 |
-
st.session_state['upload_count'] += 1
|
289 |
-
for uploaded_file in uploaded_files:
|
290 |
-
pdf_reader = PdfReader(uploaded_file)
|
291 |
-
text_data = ""
|
292 |
-
for page in pdf_reader.pages:
|
293 |
-
text_data += page.extract_text()
|
294 |
-
data = pd.Series(text_data, name = 'Text')
|
295 |
-
frames = [job, data]
|
296 |
-
result = pd.concat(frames)
|
297 |
-
|
298 |
-
|
299 |
-
model = GLiNER.from_pretrained("urchade/gliner_base")
|
300 |
-
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
301 |
-
entities = model.predict_entities(text_data, labels)
|
302 |
-
df = pd.DataFrame(entities)
|
303 |
-
|
304 |
-
|
305 |
-
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
306 |
-
values='score', color='label')
|
307 |
-
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
308 |
-
st.plotly_chart(fig1, key = "figure 9")
|
309 |
-
|
310 |
-
vectorizer = TfidfVectorizer()
|
311 |
-
tfidf_matrix = vectorizer.fit_transform(result)
|
312 |
-
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
313 |
-
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
314 |
-
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
315 |
-
|
316 |
|
317 |
-
|
318 |
-
x=['
|
319 |
-
y=['
|
320 |
-
|
321 |
-
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
322 |
-
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
323 |
-
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
324 |
-
else:
|
325 |
-
st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
|
326 |
-
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
327 |
-
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
328 |
-
|
329 |
-
|
330 |
|
331 |
-
st.subheader("
|
332 |
-
|
333 |
-
|
334 |
-
job = pd.Series(txt, name="Text")
|
335 |
-
if 'upload_count' not in st.session_state:
|
336 |
-
st.session_state['upload_count'] = 0
|
337 |
-
max_attempts = 2
|
338 |
-
if st.session_state['upload_count'] < max_attempts:
|
339 |
-
uploaded_files = st.file_uploader(
|
340 |
-
"Upload your resume in .pdf format", type="pdf", key="candidate 6"
|
341 |
-
)
|
342 |
-
if uploaded_files:
|
343 |
-
st.session_state['upload_count'] += 1
|
344 |
-
for uploaded_file in uploaded_files:
|
345 |
-
pdf_reader = PdfReader(uploaded_file)
|
346 |
-
text_data = ""
|
347 |
-
for page in pdf_reader.pages:
|
348 |
-
text_data += page.extract_text()
|
349 |
-
data = pd.Series(text_data, name = 'Text')
|
350 |
-
frames = [job, data]
|
351 |
-
result = pd.concat(frames)
|
352 |
-
|
353 |
-
|
354 |
-
model = GLiNER.from_pretrained("urchade/gliner_base")
|
355 |
-
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
356 |
-
entities = model.predict_entities(text_data, labels)
|
357 |
-
df = pd.DataFrame(entities)
|
358 |
-
|
359 |
-
|
360 |
-
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
361 |
-
values='score', color='label')
|
362 |
-
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
363 |
-
st.plotly_chart(fig1, key = "figure 11")
|
364 |
-
|
365 |
-
vectorizer = TfidfVectorizer()
|
366 |
-
tfidf_matrix = vectorizer.fit_transform(result)
|
367 |
-
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
368 |
-
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
369 |
-
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
370 |
-
|
371 |
-
|
372 |
-
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
|
373 |
-
x=['Resume 1', 'Jon Description'],
|
374 |
-
y=['Resume 1', 'Job Description'])
|
375 |
-
st.plotly_chart(fig2, key = "figure 12")
|
376 |
-
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
377 |
-
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
378 |
-
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
379 |
-
else:
|
380 |
-
st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
|
381 |
-
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
382 |
-
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
383 |
-
|
384 |
-
|
385 |
|
386 |
-
st.subheader("Candidate Profile 7", divider = "green")
|
387 |
-
|
388 |
-
txt = st.text_area("Job description", key = "text 7")
|
389 |
-
job = pd.Series(txt, name="Text")
|
390 |
-
if 'upload_count' not in st.session_state:
|
391 |
-
st.session_state['upload_count'] = 0
|
392 |
-
max_attempts = 2
|
393 |
-
if st.session_state['upload_count'] < max_attempts:
|
394 |
-
uploaded_files = st.file_uploader(
|
395 |
-
"Upload your resume in .pdf format", type="pdf", key="candidate 7"
|
396 |
-
)
|
397 |
-
if uploaded_files:
|
398 |
-
st.session_state['upload_count'] += 1
|
399 |
-
for uploaded_file in uploaded_files:
|
400 |
-
pdf_reader = PdfReader(uploaded_file)
|
401 |
-
text_data = ""
|
402 |
-
for page in pdf_reader.pages:
|
403 |
-
text_data += page.extract_text()
|
404 |
-
data = pd.Series(text_data, name = 'Text')
|
405 |
-
frames = [job, data]
|
406 |
-
result = pd.concat(frames)
|
407 |
-
|
408 |
-
|
409 |
-
model = GLiNER.from_pretrained("urchade/gliner_base")
|
410 |
-
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
411 |
-
entities = model.predict_entities(text_data, labels)
|
412 |
-
df = pd.DataFrame(entities)
|
413 |
-
|
414 |
-
|
415 |
-
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
416 |
-
values='score', color='label')
|
417 |
-
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
418 |
-
st.plotly_chart(fig1, key = "figure 13")
|
419 |
-
|
420 |
-
vectorizer = TfidfVectorizer()
|
421 |
-
tfidf_matrix = vectorizer.fit_transform(result)
|
422 |
-
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
423 |
-
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
424 |
-
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
425 |
-
|
426 |
-
|
427 |
-
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
|
428 |
-
x=['Resume 1', 'Jon Description'],
|
429 |
-
y=['Resume 1', 'Job Description'])
|
430 |
-
st.plotly_chart(fig2, key = "figure 14")
|
431 |
-
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
432 |
-
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
433 |
-
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
434 |
else:
|
435 |
-
st.warning(f"You have reached the maximum
|
436 |
-
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
437 |
-
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
438 |
|
439 |
-
|
440 |
-
|
441 |
-
st.subheader("Candidate Profile 8", divider = "green")
|
442 |
-
|
443 |
-
txt = st.text_area("Job description", key = "text 8")
|
444 |
-
job = pd.Series(txt, name="Text")
|
445 |
-
if 'upload_count' not in st.session_state:
|
446 |
-
st.session_state['upload_count'] = 0
|
447 |
-
max_attempts = 2
|
448 |
-
if st.session_state['upload_count'] < max_attempts:
|
449 |
-
uploaded_files = st.file_uploader(
|
450 |
-
"Upload your resume in .pdf format", type="pdf", key="candidate 8"
|
451 |
-
)
|
452 |
-
if uploaded_files:
|
453 |
-
st.session_state['upload_count'] += 1
|
454 |
-
for uploaded_file in uploaded_files:
|
455 |
-
pdf_reader = PdfReader(uploaded_file)
|
456 |
-
text_data = ""
|
457 |
-
for page in pdf_reader.pages:
|
458 |
-
text_data += page.extract_text()
|
459 |
-
data = pd.Series(text_data, name = 'Text')
|
460 |
-
frames = [job, data]
|
461 |
-
result = pd.concat(frames)
|
462 |
-
|
463 |
-
|
464 |
-
model = GLiNER.from_pretrained("urchade/gliner_base")
|
465 |
-
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
466 |
-
entities = model.predict_entities(text_data, labels)
|
467 |
-
df = pd.DataFrame(entities)
|
468 |
-
|
469 |
-
|
470 |
-
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
471 |
-
values='score', color='label')
|
472 |
-
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
473 |
-
st.plotly_chart(fig1, key = "figure 16")
|
474 |
-
|
475 |
-
vectorizer = TfidfVectorizer()
|
476 |
-
tfidf_matrix = vectorizer.fit_transform(result)
|
477 |
-
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
478 |
-
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
479 |
-
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
480 |
-
|
481 |
-
|
482 |
-
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
|
483 |
-
x=['Resume 1', 'Jon Description'],
|
484 |
-
y=['Resume 1', 'Job Description'])
|
485 |
-
st.plotly_chart(fig2, key = "figure 18")
|
486 |
-
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
487 |
-
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
488 |
-
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
489 |
-
else:
|
490 |
-
st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
|
491 |
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
492 |
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
493 |
-
|
494 |
-
|
495 |
|
496 |
-
st.subheader("Candidate Profile 9", divider = "green")
|
497 |
-
|
498 |
-
txt = st.text_area("Job description", key = "text 9")
|
499 |
-
job = pd.Series(txt, name="Text")
|
500 |
-
if 'upload_count' not in st.session_state:
|
501 |
-
st.session_state['upload_count'] = 0
|
502 |
-
max_attempts = 2
|
503 |
-
if st.session_state['upload_count'] < max_attempts:
|
504 |
-
uploaded_files = st.file_uploader(
|
505 |
-
"Upload your resume in .pdf format", type="pdf", key="candidate 9"
|
506 |
-
)
|
507 |
-
if uploaded_files:
|
508 |
-
st.session_state['upload_count'] += 1
|
509 |
-
for uploaded_file in uploaded_files:
|
510 |
-
pdf_reader = PdfReader(uploaded_file)
|
511 |
-
text_data = ""
|
512 |
-
for page in pdf_reader.pages:
|
513 |
-
text_data += page.extract_text()
|
514 |
-
data = pd.Series(text_data, name = 'Text')
|
515 |
-
frames = [job, data]
|
516 |
-
result = pd.concat(frames)
|
517 |
-
|
518 |
-
|
519 |
-
model = GLiNER.from_pretrained("urchade/gliner_base")
|
520 |
-
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
521 |
-
entities = model.predict_entities(text_data, labels)
|
522 |
-
df = pd.DataFrame(entities)
|
523 |
-
|
524 |
-
|
525 |
-
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
526 |
-
values='score', color='label')
|
527 |
-
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
528 |
-
st.plotly_chart(fig1, key = "figure 17")
|
529 |
-
|
530 |
-
vectorizer = TfidfVectorizer()
|
531 |
-
tfidf_matrix = vectorizer.fit_transform(result)
|
532 |
-
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
533 |
-
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
534 |
-
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
535 |
-
|
536 |
-
|
537 |
-
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
|
538 |
-
x=['Resume 1', 'Jon Description'],
|
539 |
-
y=['Resume 1', 'Job Description'])
|
540 |
-
st.plotly_chart(fig2, key = "figure 18")
|
541 |
-
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
542 |
-
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
543 |
-
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
544 |
-
else:
|
545 |
-
st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
|
546 |
-
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
547 |
-
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
548 |
-
|
549 |
-
|
550 |
|
551 |
-
st.subheader("Candidate Profile 10", divider = "green")
|
552 |
-
|
553 |
-
txt = st.text_area("Job description", key = "text 10")
|
554 |
-
job = pd.Series(txt, name="Text")
|
555 |
-
if 'upload_count' not in st.session_state:
|
556 |
-
st.session_state['upload_count'] = 0
|
557 |
-
max_attempts = 2
|
558 |
-
if st.session_state['upload_count'] < max_attempts:
|
559 |
-
uploaded_files = st.file_uploader(
|
560 |
-
"Upload your resume in .pdf format", type="pdf", key="candidate 10"
|
561 |
-
)
|
562 |
-
if uploaded_files:
|
563 |
-
st.session_state['upload_count'] += 1
|
564 |
-
for uploaded_file in uploaded_files:
|
565 |
-
pdf_reader = PdfReader(uploaded_file)
|
566 |
-
text_data = ""
|
567 |
-
for page in pdf_reader.pages:
|
568 |
-
text_data += page.extract_text()
|
569 |
-
data = pd.Series(text_data, name = 'Text')
|
570 |
-
frames = [job, data]
|
571 |
-
result = pd.concat(frames)
|
572 |
-
|
573 |
-
|
574 |
-
model = GLiNER.from_pretrained("urchade/gliner_base")
|
575 |
-
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
576 |
-
entities = model.predict_entities(text_data, labels)
|
577 |
-
df = pd.DataFrame(entities)
|
578 |
-
|
579 |
-
|
580 |
-
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
581 |
-
values='score', color='label')
|
582 |
-
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
583 |
-
st.plotly_chart(fig1, key = "figure 19")
|
584 |
|
585 |
-
vectorizer = TfidfVectorizer()
|
586 |
-
tfidf_matrix = vectorizer.fit_transform(result)
|
587 |
-
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
588 |
-
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
589 |
-
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
590 |
-
|
591 |
-
|
592 |
-
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
|
593 |
-
x=['Resume 1', 'Jon Description'],
|
594 |
-
y=['Resume 1', 'Job Description'])
|
595 |
-
st.plotly_chart(fig2, key = "figure 20")
|
596 |
-
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
597 |
-
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
598 |
-
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
599 |
-
else:
|
600 |
-
st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
|
601 |
-
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
602 |
-
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
603 |
-
|
604 |
|
|
|
40 |
''')
|
41 |
|
42 |
|
43 |
+
|
44 |
|
45 |
txt = st.text_area("Job description", key = "text 1")
|
46 |
job = pd.Series(txt, name="Text")
|
47 |
+
st.dataframe(job)
|
48 |
|
49 |
if 'upload_count' not in st.session_state:
|
50 |
st.session_state['upload_count'] = 0
|
|
|
53 |
|
54 |
if st.session_state['upload_count'] < max_attempts:
|
55 |
uploaded_files = st.file_uploader(
|
56 |
+
"Choose a PDF file", accept_multiple_files=True, type="pdf", key="candidate_upload"
|
57 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
if uploaded_files:
|
60 |
+
st.session_state['upload_count'] += 1
|
61 |
+
for uploaded_file in uploaded_files:
|
62 |
+
pdf_reader = PdfReader(uploaded_file)
|
63 |
+
text_data = ""
|
64 |
+
for page in pdf_reader.pages:
|
65 |
+
text_data += page.extract_text()
|
66 |
+
data = pd.Series(text_data, name = 'Text')
|
67 |
+
st.dataframe(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
frames = [job, data]
|
70 |
+
result = pd.concat(frames)
|
71 |
+
st.dataframe(result)
|
72 |
+
|
73 |
+
model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0")
|
74 |
+
labels = ["person", "country", "city", "organization", "date", "money", "percent value", "position"]
|
75 |
+
entities = model.predict_entities(text_data, labels)
|
76 |
+
df = pd.DataFrame(entities)
|
77 |
+
st.dataframe(entities)
|
78 |
+
st.dataframe(df)
|
79 |
+
|
80 |
+
import plotly.express as px
|
81 |
+
fig = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
values='score', color='label')
|
83 |
+
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
84 |
+
st.plotly_chart(fig)
|
85 |
+
|
86 |
+
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
vectorizer = TfidfVectorizer()
|
89 |
+
tfidf_matrix = vectorizer.fit_transform(result)
|
90 |
+
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
91 |
+
st.subheader("TF-IDF Values:")
|
92 |
+
st.dataframe(tfidf_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
95 |
+
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
96 |
+
st.subheader("Cosine Similarity Matrix:")
|
97 |
+
st.dataframe(cosine_sim_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
import plotly.express as px
|
100 |
+
st.subheader("A score closer to 1 means closer match")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
fig = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Cosine similarity", y="Text", color="Productivity"),
|
103 |
+
x=['text1', 'Jon Description'],
|
104 |
+
y=['text1', 'Job Description'])
|
105 |
+
st.plotly_chart(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
108 |
+
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
109 |
+
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
else:
|
112 |
+
st.warning(f"You have reached the maximum URL attempts ({max_attempts}).")
|
|
|
|
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
115 |
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
|
|
|
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|