Update app.py
Browse files
app.py
CHANGED
@@ -104,12 +104,501 @@ if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
|
104 |
|
105 |
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
|
106 |
|
107 |
+
st.subheader("Candidate Profile 2, divider = "green")
|
108 |
+
|
109 |
+
txt = st.text_area("Job description", key = "text 2")
|
110 |
+
job = pd.Series(txt, name="Text")
|
111 |
+
if 'upload_count' not in st.session_state:
|
112 |
+
st.session_state['upload_count'] = 0
|
113 |
+
max_attempts = 2
|
114 |
+
if st.session_state['upload_count'] < max_attempts:
|
115 |
+
uploaded_files = st.file_uploader(
|
116 |
+
"Upload your resume in .pdf format", type="pdf", key="candidate 2"
|
117 |
+
)
|
118 |
+
if uploaded_files:
|
119 |
+
st.session_state['upload_count'] += 1
|
120 |
+
for uploaded_file in uploaded_files:
|
121 |
+
pdf_reader = PdfReader(uploaded_file)
|
122 |
+
text_data = ""
|
123 |
+
for page in pdf_reader.pages:
|
124 |
+
text_data += page.extract_text()
|
125 |
+
data = pd.Series(text_data, name = 'Text')
|
126 |
+
frames = [job, data]
|
127 |
+
result = pd.concat(frames)
|
128 |
+
|
129 |
+
|
130 |
+
model = GLiNER.from_pretrained("urchade/gliner_base")
|
131 |
+
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
132 |
+
entities = model.predict_entities(text_data, labels)
|
133 |
+
df = pd.DataFrame(entities)
|
134 |
+
|
135 |
+
|
136 |
+
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
137 |
+
values='score', color='label')
|
138 |
+
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
139 |
+
st.plotly_chart(fig1, key = "figure 3")
|
140 |
+
|
141 |
+
vectorizer = TfidfVectorizer()
|
142 |
+
tfidf_matrix = vectorizer.fit_transform(result)
|
143 |
+
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
144 |
+
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
145 |
+
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
146 |
+
|
147 |
+
|
148 |
+
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
|
149 |
+
x=['Resume 1', 'Jon Description'],
|
150 |
+
y=['Resume 1', 'Job Description'])
|
151 |
+
st.plotly_chart(fig2, key = "figure 4")
|
152 |
+
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
153 |
+
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
154 |
+
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
155 |
+
else:
|
156 |
+
st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
|
157 |
+
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
158 |
+
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
st.subheader("Candidate Profile 3, divider = "green")
|
166 |
+
|
167 |
+
txt = st.text_area("Job description", key = "text 3")
|
168 |
+
job = pd.Series(txt, name="Text")
|
169 |
+
if 'upload_count' not in st.session_state:
|
170 |
+
st.session_state['upload_count'] = 0
|
171 |
+
max_attempts = 2
|
172 |
+
if st.session_state['upload_count'] < max_attempts:
|
173 |
+
uploaded_files = st.file_uploader(
|
174 |
+
"Upload your resume in .pdf format", type="pdf", key="candidate 3"
|
175 |
+
)
|
176 |
+
if uploaded_files:
|
177 |
+
st.session_state['upload_count'] += 1
|
178 |
+
for uploaded_file in uploaded_files:
|
179 |
+
pdf_reader = PdfReader(uploaded_file)
|
180 |
+
text_data = ""
|
181 |
+
for page in pdf_reader.pages:
|
182 |
+
text_data += page.extract_text()
|
183 |
+
data = pd.Series(text_data, name = 'Text')
|
184 |
+
frames = [job, data]
|
185 |
+
result = pd.concat(frames)
|
186 |
+
|
187 |
+
|
188 |
+
model = GLiNER.from_pretrained("urchade/gliner_base")
|
189 |
+
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
190 |
+
entities = model.predict_entities(text_data, labels)
|
191 |
+
df = pd.DataFrame(entities)
|
192 |
+
|
193 |
+
|
194 |
+
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
195 |
+
values='score', color='label')
|
196 |
+
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
197 |
+
st.plotly_chart(fig1, key = "figure 5")
|
198 |
+
|
199 |
+
vectorizer = TfidfVectorizer()
|
200 |
+
tfidf_matrix = vectorizer.fit_transform(result)
|
201 |
+
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
202 |
+
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
203 |
+
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
204 |
+
|
205 |
+
|
206 |
+
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
|
207 |
+
x=['Resume 1', 'Jon Description'],
|
208 |
+
y=['Resume 1', 'Job Description'])
|
209 |
+
st.plotly_chart(fig2, key = "figure 6")
|
210 |
+
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
211 |
+
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
212 |
+
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
213 |
+
else:
|
214 |
+
st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
|
215 |
+
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
216 |
+
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
217 |
+
|
218 |
+
|
219 |
+
st.subheader("Candidate Profile 4, divider = "green")
|
220 |
+
|
221 |
+
txt = st.text_area("Job description", key = "text 4")
|
222 |
+
job = pd.Series(txt, name="Text")
|
223 |
+
if 'upload_count' not in st.session_state:
|
224 |
+
st.session_state['upload_count'] = 0
|
225 |
+
max_attempts = 2
|
226 |
+
if st.session_state['upload_count'] < max_attempts:
|
227 |
+
uploaded_files = st.file_uploader(
|
228 |
+
"Upload your resume in .pdf format", type="pdf", key="candidate 4"
|
229 |
+
)
|
230 |
+
if uploaded_files:
|
231 |
+
st.session_state['upload_count'] += 1
|
232 |
+
for uploaded_file in uploaded_files:
|
233 |
+
pdf_reader = PdfReader(uploaded_file)
|
234 |
+
text_data = ""
|
235 |
+
for page in pdf_reader.pages:
|
236 |
+
text_data += page.extract_text()
|
237 |
+
data = pd.Series(text_data, name = 'Text')
|
238 |
+
frames = [job, data]
|
239 |
+
result = pd.concat(frames)
|
240 |
+
|
241 |
+
|
242 |
+
model = GLiNER.from_pretrained("urchade/gliner_base")
|
243 |
+
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
244 |
+
entities = model.predict_entities(text_data, labels)
|
245 |
+
df = pd.DataFrame(entities)
|
246 |
+
|
247 |
+
|
248 |
+
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
249 |
+
values='score', color='label')
|
250 |
+
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
251 |
+
st.plotly_chart(fig1, key = "figure 7")
|
252 |
+
|
253 |
+
vectorizer = TfidfVectorizer()
|
254 |
+
tfidf_matrix = vectorizer.fit_transform(result)
|
255 |
+
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
256 |
+
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
257 |
+
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
258 |
+
|
259 |
+
|
260 |
+
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
|
261 |
+
x=['Resume 1', 'Jon Description'],
|
262 |
+
y=['Resume 1', 'Job Description'])
|
263 |
+
st.plotly_chart(fig2, key = "figure 8")
|
264 |
+
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
265 |
+
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
266 |
+
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
267 |
+
else:
|
268 |
+
st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
|
269 |
+
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
270 |
+
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
271 |
+
|
272 |
+
|
273 |
|
274 |
|
275 |
|
276 |
+
st.subheader("Candidate Profile 5, divider = "green")
|
277 |
+
|
278 |
+
txt = st.text_area("Job description", key = "text 5")
|
279 |
+
job = pd.Series(txt, name="Text")
|
280 |
+
if 'upload_count' not in st.session_state:
|
281 |
+
st.session_state['upload_count'] = 0
|
282 |
+
max_attempts = 2
|
283 |
+
if st.session_state['upload_count'] < max_attempts:
|
284 |
+
uploaded_files = st.file_uploader(
|
285 |
+
"Upload your resume in .pdf format", type="pdf", key="candidate 5"
|
286 |
+
)
|
287 |
+
if uploaded_files:
|
288 |
+
st.session_state['upload_count'] += 1
|
289 |
+
for uploaded_file in uploaded_files:
|
290 |
+
pdf_reader = PdfReader(uploaded_file)
|
291 |
+
text_data = ""
|
292 |
+
for page in pdf_reader.pages:
|
293 |
+
text_data += page.extract_text()
|
294 |
+
data = pd.Series(text_data, name = 'Text')
|
295 |
+
frames = [job, data]
|
296 |
+
result = pd.concat(frames)
|
297 |
+
|
298 |
+
|
299 |
+
model = GLiNER.from_pretrained("urchade/gliner_base")
|
300 |
+
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
301 |
+
entities = model.predict_entities(text_data, labels)
|
302 |
+
df = pd.DataFrame(entities)
|
303 |
+
|
304 |
+
|
305 |
+
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
306 |
+
values='score', color='label')
|
307 |
+
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
308 |
+
st.plotly_chart(fig1, key = "figure 9")
|
309 |
+
|
310 |
+
vectorizer = TfidfVectorizer()
|
311 |
+
tfidf_matrix = vectorizer.fit_transform(result)
|
312 |
+
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
313 |
+
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
314 |
+
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
315 |
+
|
316 |
+
|
317 |
+
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
|
318 |
+
x=['Resume 1', 'Jon Description'],
|
319 |
+
y=['Resume 1', 'Job Description'])
|
320 |
+
st.plotly_chart(fig2, key = "figure 10")
|
321 |
+
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
322 |
+
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
323 |
+
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
324 |
+
else:
|
325 |
+
st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
|
326 |
+
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
327 |
+
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
328 |
+
|
329 |
+
|
330 |
|
331 |
+
st.subheader("Candidate Profile 6, divider = "green")
|
332 |
+
|
333 |
+
txt = st.text_area("Job description", key = "text 6")
|
334 |
+
job = pd.Series(txt, name="Text")
|
335 |
+
if 'upload_count' not in st.session_state:
|
336 |
+
st.session_state['upload_count'] = 0
|
337 |
+
max_attempts = 2
|
338 |
+
if st.session_state['upload_count'] < max_attempts:
|
339 |
+
uploaded_files = st.file_uploader(
|
340 |
+
"Upload your resume in .pdf format", type="pdf", key="candidate 6"
|
341 |
+
)
|
342 |
+
if uploaded_files:
|
343 |
+
st.session_state['upload_count'] += 1
|
344 |
+
for uploaded_file in uploaded_files:
|
345 |
+
pdf_reader = PdfReader(uploaded_file)
|
346 |
+
text_data = ""
|
347 |
+
for page in pdf_reader.pages:
|
348 |
+
text_data += page.extract_text()
|
349 |
+
data = pd.Series(text_data, name = 'Text')
|
350 |
+
frames = [job, data]
|
351 |
+
result = pd.concat(frames)
|
352 |
+
|
353 |
+
|
354 |
+
model = GLiNER.from_pretrained("urchade/gliner_base")
|
355 |
+
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
356 |
+
entities = model.predict_entities(text_data, labels)
|
357 |
+
df = pd.DataFrame(entities)
|
358 |
+
|
359 |
+
|
360 |
+
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
361 |
+
values='score', color='label')
|
362 |
+
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
363 |
+
st.plotly_chart(fig1, key = "figure 11")
|
364 |
+
|
365 |
+
vectorizer = TfidfVectorizer()
|
366 |
+
tfidf_matrix = vectorizer.fit_transform(result)
|
367 |
+
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
368 |
+
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
369 |
+
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
370 |
+
|
371 |
+
|
372 |
+
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
|
373 |
+
x=['Resume 1', 'Jon Description'],
|
374 |
+
y=['Resume 1', 'Job Description'])
|
375 |
+
st.plotly_chart(fig2, key = "figure 12")
|
376 |
+
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
377 |
+
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
378 |
+
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
379 |
+
else:
|
380 |
+
st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
|
381 |
+
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
382 |
+
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
383 |
+
|
384 |
+
|
385 |
|
386 |
+
st.subheader("Candidate Profile 7, divider = "green")
|
387 |
+
|
388 |
+
txt = st.text_area("Job description", key = "text 7")
|
389 |
+
job = pd.Series(txt, name="Text")
|
390 |
+
if 'upload_count' not in st.session_state:
|
391 |
+
st.session_state['upload_count'] = 0
|
392 |
+
max_attempts = 2
|
393 |
+
if st.session_state['upload_count'] < max_attempts:
|
394 |
+
uploaded_files = st.file_uploader(
|
395 |
+
"Upload your resume in .pdf format", type="pdf", key="candidate 7"
|
396 |
+
)
|
397 |
+
if uploaded_files:
|
398 |
+
st.session_state['upload_count'] += 1
|
399 |
+
for uploaded_file in uploaded_files:
|
400 |
+
pdf_reader = PdfReader(uploaded_file)
|
401 |
+
text_data = ""
|
402 |
+
for page in pdf_reader.pages:
|
403 |
+
text_data += page.extract_text()
|
404 |
+
data = pd.Series(text_data, name = 'Text')
|
405 |
+
frames = [job, data]
|
406 |
+
result = pd.concat(frames)
|
407 |
+
|
408 |
+
|
409 |
+
model = GLiNER.from_pretrained("urchade/gliner_base")
|
410 |
+
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
411 |
+
entities = model.predict_entities(text_data, labels)
|
412 |
+
df = pd.DataFrame(entities)
|
413 |
+
|
414 |
+
|
415 |
+
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
416 |
+
values='score', color='label')
|
417 |
+
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
418 |
+
st.plotly_chart(fig1, key = "figure 13")
|
419 |
+
|
420 |
+
vectorizer = TfidfVectorizer()
|
421 |
+
tfidf_matrix = vectorizer.fit_transform(result)
|
422 |
+
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
423 |
+
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
424 |
+
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
425 |
+
|
426 |
+
|
427 |
+
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
|
428 |
+
x=['Resume 1', 'Jon Description'],
|
429 |
+
y=['Resume 1', 'Job Description'])
|
430 |
+
st.plotly_chart(fig2, key = "figure 14")
|
431 |
+
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
432 |
+
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
433 |
+
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
434 |
+
else:
|
435 |
+
st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
|
436 |
+
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
437 |
+
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
438 |
+
|
439 |
|
440 |
|
441 |
+
st.subheader("Candidate Profile 8, divider = "green")
|
442 |
+
|
443 |
+
txt = st.text_area("Job description", key = "text 8")
|
444 |
+
job = pd.Series(txt, name="Text")
|
445 |
+
if 'upload_count' not in st.session_state:
|
446 |
+
st.session_state['upload_count'] = 0
|
447 |
+
max_attempts = 2
|
448 |
+
if st.session_state['upload_count'] < max_attempts:
|
449 |
+
uploaded_files = st.file_uploader(
|
450 |
+
"Upload your resume in .pdf format", type="pdf", key="candidate 8"
|
451 |
+
)
|
452 |
+
if uploaded_files:
|
453 |
+
st.session_state['upload_count'] += 1
|
454 |
+
for uploaded_file in uploaded_files:
|
455 |
+
pdf_reader = PdfReader(uploaded_file)
|
456 |
+
text_data = ""
|
457 |
+
for page in pdf_reader.pages:
|
458 |
+
text_data += page.extract_text()
|
459 |
+
data = pd.Series(text_data, name = 'Text')
|
460 |
+
frames = [job, data]
|
461 |
+
result = pd.concat(frames)
|
462 |
+
|
463 |
+
|
464 |
+
model = GLiNER.from_pretrained("urchade/gliner_base")
|
465 |
+
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
466 |
+
entities = model.predict_entities(text_data, labels)
|
467 |
+
df = pd.DataFrame(entities)
|
468 |
+
|
469 |
+
|
470 |
+
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
471 |
+
values='score', color='label')
|
472 |
+
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
473 |
+
st.plotly_chart(fig1, key = "figure 16")
|
474 |
+
|
475 |
+
vectorizer = TfidfVectorizer()
|
476 |
+
tfidf_matrix = vectorizer.fit_transform(result)
|
477 |
+
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
478 |
+
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
479 |
+
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
480 |
+
|
481 |
+
|
482 |
+
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
|
483 |
+
x=['Resume 1', 'Jon Description'],
|
484 |
+
y=['Resume 1', 'Job Description'])
|
485 |
+
st.plotly_chart(fig2, key = "figure 18")
|
486 |
+
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
487 |
+
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
488 |
+
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
489 |
+
else:
|
490 |
+
st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
|
491 |
+
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
492 |
+
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
493 |
+
|
494 |
+
|
495 |
|
496 |
+
st.subheader("Candidate Profile 9, divider = "green")
|
497 |
+
|
498 |
+
txt = st.text_area("Job description", key = "text 9")
|
499 |
+
job = pd.Series(txt, name="Text")
|
500 |
+
if 'upload_count' not in st.session_state:
|
501 |
+
st.session_state['upload_count'] = 0
|
502 |
+
max_attempts = 2
|
503 |
+
if st.session_state['upload_count'] < max_attempts:
|
504 |
+
uploaded_files = st.file_uploader(
|
505 |
+
"Upload your resume in .pdf format", type="pdf", key="candidate 9"
|
506 |
+
)
|
507 |
+
if uploaded_files:
|
508 |
+
st.session_state['upload_count'] += 1
|
509 |
+
for uploaded_file in uploaded_files:
|
510 |
+
pdf_reader = PdfReader(uploaded_file)
|
511 |
+
text_data = ""
|
512 |
+
for page in pdf_reader.pages:
|
513 |
+
text_data += page.extract_text()
|
514 |
+
data = pd.Series(text_data, name = 'Text')
|
515 |
+
frames = [job, data]
|
516 |
+
result = pd.concat(frames)
|
517 |
+
|
518 |
+
|
519 |
+
model = GLiNER.from_pretrained("urchade/gliner_base")
|
520 |
+
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
521 |
+
entities = model.predict_entities(text_data, labels)
|
522 |
+
df = pd.DataFrame(entities)
|
523 |
+
|
524 |
+
|
525 |
+
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
526 |
+
values='score', color='label')
|
527 |
+
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
528 |
+
st.plotly_chart(fig1, key = "figure 17")
|
529 |
+
|
530 |
+
vectorizer = TfidfVectorizer()
|
531 |
+
tfidf_matrix = vectorizer.fit_transform(result)
|
532 |
+
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
533 |
+
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
534 |
+
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
535 |
+
|
536 |
+
|
537 |
+
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
|
538 |
+
x=['Resume 1', 'Jon Description'],
|
539 |
+
y=['Resume 1', 'Job Description'])
|
540 |
+
st.plotly_chart(fig2, key = "figure 18")
|
541 |
+
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
542 |
+
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
543 |
+
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
544 |
+
else:
|
545 |
+
st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
|
546 |
+
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
547 |
+
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
548 |
+
|
549 |
+
|
550 |
|
551 |
+
st.subheader("Candidate Profile 10, divider = "green")
|
552 |
+
|
553 |
+
txt = st.text_area("Job description", key = "text 10")
|
554 |
+
job = pd.Series(txt, name="Text")
|
555 |
+
if 'upload_count' not in st.session_state:
|
556 |
+
st.session_state['upload_count'] = 0
|
557 |
+
max_attempts = 2
|
558 |
+
if st.session_state['upload_count'] < max_attempts:
|
559 |
+
uploaded_files = st.file_uploader(
|
560 |
+
"Upload your resume in .pdf format", type="pdf", key="candidate 10"
|
561 |
+
)
|
562 |
+
if uploaded_files:
|
563 |
+
st.session_state['upload_count'] += 1
|
564 |
+
for uploaded_file in uploaded_files:
|
565 |
+
pdf_reader = PdfReader(uploaded_file)
|
566 |
+
text_data = ""
|
567 |
+
for page in pdf_reader.pages:
|
568 |
+
text_data += page.extract_text()
|
569 |
+
data = pd.Series(text_data, name = 'Text')
|
570 |
+
frames = [job, data]
|
571 |
+
result = pd.concat(frames)
|
572 |
+
|
573 |
+
|
574 |
+
model = GLiNER.from_pretrained("urchade/gliner_base")
|
575 |
+
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
576 |
+
entities = model.predict_entities(text_data, labels)
|
577 |
+
df = pd.DataFrame(entities)
|
578 |
+
|
579 |
+
|
580 |
+
fig1 = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
581 |
+
values='score', color='label')
|
582 |
+
fig1.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
583 |
+
st.plotly_chart(fig1, key = "figure 19")
|
584 |
+
|
585 |
+
vectorizer = TfidfVectorizer()
|
586 |
+
tfidf_matrix = vectorizer.fit_transform(result)
|
587 |
+
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
588 |
+
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
589 |
+
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
590 |
+
|
591 |
+
|
592 |
+
fig2 = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Keyword similarity", y="Resumes", color="Productivity"),
|
593 |
+
x=['Resume 1', 'Jon Description'],
|
594 |
+
y=['Resume 1', 'Job Description'])
|
595 |
+
st.plotly_chart(fig2, key = "figure 20")
|
596 |
+
st.subheader("Cosine Similarity Scores (Job Description vs. Resumes):")
|
597 |
+
for i, similarity_score in enumerate(cosine_sim_matrix[0][1:]):
|
598 |
+
st.write(f"Similarity with Candidate Profile {i + 1}: {similarity_score:.4f}")
|
599 |
+
else:
|
600 |
+
st.warning(f"You have reached the maximum upload attempts ({max_attempts})")
|
601 |
+
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
602 |
+
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
603 |
+
|
604 |
+
|