Update app.py
Browse files
app.py
CHANGED
@@ -40,20 +40,18 @@ with st.sidebar:
|
|
40 |
''')
|
41 |
|
42 |
|
43 |
-
|
44 |
-
|
45 |
txt = st.text_area("Job description", key = "text 1")
|
46 |
job = pd.Series(txt, name="Text")
|
47 |
-
|
48 |
|
49 |
if 'upload_count' not in st.session_state:
|
50 |
st.session_state['upload_count'] = 0
|
51 |
|
52 |
-
max_attempts =
|
53 |
|
54 |
if st.session_state['upload_count'] < max_attempts:
|
55 |
uploaded_files = st.file_uploader(
|
56 |
-
"Choose a PDF file", accept_multiple_files=True, type="pdf", key="
|
57 |
)
|
58 |
|
59 |
if uploaded_files:
|
@@ -64,18 +62,17 @@ for uploaded_file in uploaded_files:
|
|
64 |
for page in pdf_reader.pages:
|
65 |
text_data += page.extract_text()
|
66 |
data = pd.Series(text_data, name = 'Text')
|
67 |
-
|
68 |
|
69 |
frames = [job, data]
|
70 |
result = pd.concat(frames)
|
71 |
-
|
72 |
|
73 |
-
model = GLiNER.from_pretrained("
|
74 |
-
labels = ["person", "country",
|
75 |
entities = model.predict_entities(text_data, labels)
|
76 |
df = pd.DataFrame(entities)
|
77 |
-
|
78 |
-
st.dataframe(df)
|
79 |
|
80 |
import plotly.express as px
|
81 |
fig = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
@@ -89,15 +86,13 @@ for uploaded_file in uploaded_files:
|
|
89 |
tfidf_matrix = vectorizer.fit_transform(result)
|
90 |
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
91 |
st.subheader("TF-IDF Values:")
|
92 |
-
|
93 |
|
94 |
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
95 |
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
96 |
-
|
97 |
-
st.dataframe(cosine_sim_df)
|
98 |
|
99 |
-
|
100 |
-
st.subheader("A score closer to 1 means closer match")
|
101 |
|
102 |
fig = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Cosine similarity", y="Text", color="Productivity"),
|
103 |
x=['text1', 'Jon Description'],
|
@@ -114,6 +109,3 @@ else:
|
|
114 |
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
115 |
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
40 |
''')
|
41 |
|
42 |
|
|
|
|
|
43 |
txt = st.text_area("Job description", key = "text 1")
|
44 |
job = pd.Series(txt, name="Text")
|
45 |
+
|
46 |
|
47 |
if 'upload_count' not in st.session_state:
|
48 |
st.session_state['upload_count'] = 0
|
49 |
|
50 |
+
max_attempts = 3
|
51 |
|
52 |
if st.session_state['upload_count'] < max_attempts:
|
53 |
uploaded_files = st.file_uploader(
|
54 |
+
"Choose a PDF file", accept_multiple_files=True, type="pdf", key="candidate 1"
|
55 |
)
|
56 |
|
57 |
if uploaded_files:
|
|
|
62 |
for page in pdf_reader.pages:
|
63 |
text_data += page.extract_text()
|
64 |
data = pd.Series(text_data, name = 'Text')
|
65 |
+
|
66 |
|
67 |
frames = [job, data]
|
68 |
result = pd.concat(frames)
|
69 |
+
|
70 |
|
71 |
+
model = GLiNER.from_pretrained("urchade/gliner_base")
|
72 |
+
labels = ["person", "country","organization", "date", "time", "role", "skills", "year"]
|
73 |
entities = model.predict_entities(text_data, labels)
|
74 |
df = pd.DataFrame(entities)
|
75 |
+
|
|
|
76 |
|
77 |
import plotly.express as px
|
78 |
fig = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
|
|
|
86 |
tfidf_matrix = vectorizer.fit_transform(result)
|
87 |
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
|
88 |
st.subheader("TF-IDF Values:")
|
89 |
+
|
90 |
|
91 |
cosine_sim_matrix = cosine_similarity(tfidf_matrix)
|
92 |
cosine_sim_df = pd.DataFrame(cosine_sim_matrix)
|
93 |
+
|
|
|
94 |
|
95 |
+
|
|
|
96 |
|
97 |
fig = px.imshow(cosine_sim_df, text_auto=True, labels=dict(x="Cosine similarity", y="Text", color="Productivity"),
|
98 |
x=['text1', 'Jon Description'],
|
|
|
109 |
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
|
110 |
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|
111 |
|
|
|
|
|
|