File size: 7,368 Bytes
a9cc853
9652314
2fb63bf
be53c78
91f2f92
426b33e
b174bd4
91f2f92
83ec4f2
426b33e
83ec4f2
b174bd4
9652314
 
87af3eb
 
 
0a795e1
 
 
b174bd4
9652314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fb63bf
9652314
 
 
 
 
 
 
 
 
 
b174bd4
 
 
426b33e
b174bd4
 
426b33e
8e36e52
426b33e
8e36e52
d3ef10a
 
8e36e52
d3ef10a
da342d0
 
8e36e52
da342d0
426b33e
 
 
 
 
 
 
230a441
 
8e36e52
d3ef10a
b174bd4
d3ef10a
acbaa45
da342d0
d3ef10a
 
91515a1
 
 
9029ade
87af3eb
91515a1
 
 
 
 
87af3eb
91515a1
da342d0
 
bb48904
2fb63bf
 
 
 
 
 
 
 
 
 
 
 
 
bb48904
 
 
 
 
 
 
 
 
51f63ae
bb48904
 
da342d0
6641473
da342d0
bbae7a9
6641473
da342d0
d3ef10a
87af3eb
bbae7a9
 
da342d0
91f2f92
ada166c
426b33e
83ec4f2
 
426b33e
83ec4f2
 
 
 
8e36e52
83ec4f2
 
426b33e
83ec4f2
91f2f92
83ec4f2
 
c4d5641
b174bd4
c4d5641
83ec4f2
 
da342d0
bbae7a9
83ec4f2
 
 
 
1f2d72c
83ec4f2
d3ef10a
c4d5641
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#%%
from dataclasses import dataclass
import math
import time
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast, BatchEncoding
from transformers.generation.utils import GenerateOutput

from models import ApiWord, Word

type Tokenizer = PreTrainedTokenizer | PreTrainedTokenizerFast

from combine import combine

def starts_with_space(token: str) -> bool:
    return token.startswith(chr(9601)) or token.startswith(chr(288))

def is_newline(token: str) -> bool:
    return len(token) == 1 and ord(token[0]) == 266

def split_into_words(token_probs: list[tuple[int, float]], tokenizer: Tokenizer) -> list[Word]:

    @dataclass
    class Tok:
        index: int
        ids: list[int]
        str: str
        logprob: float

    def is_beginning_of_word(s: str) -> bool:
        return (s[0] == " " and s[1:].isalpha()) or s.isalpha()

    def is_continuation_of_word(s: str) -> bool:
        return s.isalpha()

    def merge_tokens(a: Tok, b: Tok) -> Tok | None:
        if is_beginning_of_word(a.str) and is_continuation_of_word(b.str):
            return Tok(a.index, a.ids + b.ids, a.str + b.str, a.logprob + b.logprob)
        return None

    converted = [Tok(i, [token_id], tokenizer.decode([token_id]), logprob)
                 for i, (token_id, logprob) in enumerate(token_probs)]

    combined = combine(converted, merge_tokens)

    ts = [t[0] for t in token_probs]

    words = [Word(tok.ids, tok.str, tok.logprob, ts[:tok.index]) for tok in combined]

    return words

def load_model_and_tokenizer(model_name: str, device: torch.device) -> tuple[PreTrainedModel, Tokenizer]:
    tokenizer: Tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
    tokenizer.pad_token = tokenizer.eos_token
    model: PreTrainedModel = AutoModelForCausalLM.from_pretrained(model_name)
    model.to(device)
    return model, tokenizer

def tokenize(input_text: str, tokenizer: Tokenizer, device: torch.device) -> BatchEncoding:
    return tokenizer(input_text, return_tensors="pt").to(device)

def calculate_log_probabilities(model: PreTrainedModel, tokenizer: Tokenizer, inputs: BatchEncoding) -> list[tuple[int, float]]:
    input_ids = inputs["input_ids"]
    attention_mask = inputs["attention_mask"]
    with torch.no_grad():
        outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=input_ids)
    # B x T x V
    logits: torch.Tensor = outputs.logits[:, :-1, :]
    # B x T x V
    log_probs: torch.Tensor = torch.log_softmax(logits, dim=-1)
    # T - 1
    token_log_probs: torch.Tensor = log_probs[0, range(log_probs.shape[1]), input_ids[0][1:]]
    # T - 1
    tokens: torch.Tensor = input_ids[0][1:]
    return list(zip(tokens.tolist(), token_log_probs.tolist()))

def prepare_inputs(contexts: list[list[int]], tokenizer: Tokenizer, device: torch.device) -> BatchEncoding:
    texts = [tokenizer.decode(context, skip_special_tokens=True) for context in contexts]
    return tokenizer(texts, return_tensors="pt", padding=True).to(device)

def generate_outputs(model: PreTrainedModel, inputs: BatchEncoding, num_samples: int = 5) -> GenerateOutput | torch.LongTensor:
    input_ids = inputs["input_ids"]
    attention_mask = inputs["attention_mask"]
    with torch.no_grad():
        outputs = model.generate(
            input_ids=input_ids,
            attention_mask=attention_mask,
            max_new_tokens=4,
            num_return_sequences=num_samples,
            temperature=1.0,
            top_k=50,
            top_p=0.95,
            do_sample=True
            # num_beams=num_samples
        )
    return outputs

def find_next_tokens_0(model: PreTrainedModel, inputs: BatchEncoding, tokenizer: Tokenizer, min_p: float) -> list[list[tuple[int, str, float]]]:
    input_ids = inputs["input_ids"]
    attention_mask = inputs["attention_mask"]
    with torch.no_grad():
        outputs = model(input_ids=input_ids, attention_mask=attention_mask)
    logits: torch.Tensor = outputs.logits[:, -1, :]
    log_probs: torch.Tensor = torch.log_softmax(logits, dim=-1)
    # for every batch item, find all tokens with log prob greater than min_p, and return their ids and log probs
    result = []
    print(f"{log_probs.shape=}")
    for probs in log_probs:
        result.append([(i, tokenizer.convert_ids_to_tokens([i])[0], p) for i, p in enumerate(probs) if p > min_p])
    return result

def find_next_tokens(model: PreTrainedModel, inputs: BatchEncoding, tokenizer: Tokenizer) -> list[list[tuple[int, float]]]:
    input_ids = inputs["input_ids"]
    attention_mask = inputs["attention_mask"]
    with torch.no_grad():
        outputs = model(input_ids=input_ids, attention_mask=attention_mask)
    logits: torch.Tensor = outputs.logits[:, -1, :]
    log_probs: torch.Tensor = torch.log_softmax(logits, dim=-1)
    result = []
    for probs in log_probs:
        result.append([(i, p.item()) for i, p in enumerate(probs)])
    return result

def extract_replacements(outputs: GenerateOutput | torch.LongTensor, tokenizer: Tokenizer, num_inputs: int, input_len: int, num_samples: int = 5) -> list[list[str]]:
    all_new_words = []
    for i in range(num_inputs):
        replacements = set()
        for j in range(num_samples):
            generated_ids = outputs[i * num_samples + j][input_len:]
            new_word = tokenizer.convert_ids_to_tokens(generated_ids.tolist())[0]
            if starts_with_space(new_word):
                replacements.add(" " +new_word[1:])
        all_new_words.append(sorted(list(replacements)))
    return all_new_words

#%%

def load_model() -> tuple[PreTrainedModel, Tokenizer, torch.device]:
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # model_name = "mistralai/Mistral-7B-v0.1"
    model_name = "unsloth/Llama-3.2-1B"
    model, tokenizer = load_model_and_tokenizer(model_name, device)
    return model, tokenizer, device

def check_text(input_text: str, model: PreTrainedModel, tokenizer: Tokenizer, device: torch.device) -> list[ApiWord]:
    inputs: BatchEncoding = tokenize(input_text, tokenizer, device)

    token_probs: list[tuple[int, float]] = calculate_log_probabilities(model, tokenizer, inputs)

    words = split_into_words(token_probs, tokenizer)
    log_prob_threshold = -5.0
    low_prob_words = [(i, word) for i, word in enumerate(words) if word.logprob < log_prob_threshold]

    contexts = [word.context for _, word in low_prob_words]
    inputs = prepare_inputs(contexts, tokenizer, device)
    input_ids = inputs["input_ids"]

    num_samples = 10
    start_time = time.time()
    outputs = generate_outputs(model, inputs, num_samples)
    end_time = time.time()
    print(f"Total time taken for replacements: {end_time - start_time:.4f} seconds")

    replacements = extract_replacements(outputs, tokenizer, input_ids.shape[0], input_ids.shape[1], num_samples)

    low_prob_words_with_replacements = { i: (w, r) for (i, w), r in zip(low_prob_words, replacements) }

    result = []
    for i, word in enumerate(words):
        if i in low_prob_words_with_replacements:
            result.append(ApiWord(text=word.text, logprob=word.logprob, replacements=low_prob_words_with_replacements[i][1]))
        else:
            result.append(ApiWord(text=word.text, logprob=word.logprob, replacements=[]))
    return result