Snapshot
Browse files- app.py +25 -23
- text_processing.py +13 -12
app.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
#%%
|
2 |
import time
|
3 |
-
from tqdm import tqdm
|
4 |
from text_processing import split_into_words, Word
|
5 |
import torch
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast, BatchEncoding
|
7 |
-
from tokenizers import Encoding
|
8 |
from typing import cast
|
9 |
|
10 |
type Tokenizer = PreTrainedTokenizer | PreTrainedTokenizerFast
|
@@ -35,10 +33,9 @@ def calculate_log_probabilities(model: PreTrainedModel, tokenizer: Tokenizer, in
|
|
35 |
return list(zip(tokens.tolist(), token_log_probs.tolist()))
|
36 |
|
37 |
|
38 |
-
def generate_replacements(model: PreTrainedModel, tokenizer:
|
39 |
-
|
40 |
-
|
41 |
-
attention_mask = input_context["attention_mask"]
|
42 |
with torch.no_grad():
|
43 |
outputs = model.generate(
|
44 |
input_ids=input_ids,
|
@@ -50,12 +47,15 @@ def generate_replacements(model: PreTrainedModel, tokenizer: PreTrainedTokenizer
|
|
50 |
top_p=0.95,
|
51 |
do_sample=True
|
52 |
)
|
53 |
-
|
54 |
-
for i in range(
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
#%%
|
61 |
|
@@ -71,11 +71,17 @@ input_ids, attention_mask = tokenize(input_text, tokenizer, device)
|
|
71 |
|
72 |
#%%
|
73 |
|
74 |
-
token_probs: list[tuple[
|
75 |
|
76 |
#%%
|
77 |
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
log_prob_threshold = -5.0
|
80 |
low_prob_words = [word for word in words if word.logprob < log_prob_threshold]
|
81 |
|
@@ -83,18 +89,14 @@ low_prob_words = [word for word in words if word.logprob < log_prob_threshold]
|
|
83 |
|
84 |
start_time = time.time()
|
85 |
|
86 |
-
for word in
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
replacements = generate_replacements(model, tokenizer, prefix_tokens, device)
|
91 |
print(f"Original word: {word.text}, Log Probability: {word.logprob:.4f}")
|
92 |
print(f"Proposed replacements: {replacements}")
|
93 |
-
print()
|
94 |
-
iteration_end_time = time.time()
|
95 |
-
print(f"Time taken for this iteration: {iteration_end_time - iteration_start_time:.4f} seconds")
|
96 |
|
97 |
end_time = time.time()
|
98 |
-
print(f"Total time taken for
|
99 |
|
100 |
# %%
|
|
|
1 |
#%%
|
2 |
import time
|
|
|
3 |
from text_processing import split_into_words, Word
|
4 |
import torch
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast, BatchEncoding
|
|
|
6 |
from typing import cast
|
7 |
|
8 |
type Tokenizer = PreTrainedTokenizer | PreTrainedTokenizerFast
|
|
|
33 |
return list(zip(tokens.tolist(), token_log_probs.tolist()))
|
34 |
|
35 |
|
36 |
+
def generate_replacements(model: PreTrainedModel, tokenizer: Tokenizer, contexts: list[list[int]], device: torch.device, num_samples: int = 5) -> list[list[str]]:
|
37 |
+
input_ids = torch.tensor(contexts).to(device)
|
38 |
+
attention_mask = torch.ones_like(input_ids)
|
|
|
39 |
with torch.no_grad():
|
40 |
outputs = model.generate(
|
41 |
input_ids=input_ids,
|
|
|
47 |
top_p=0.95,
|
48 |
do_sample=True
|
49 |
)
|
50 |
+
all_new_words = []
|
51 |
+
for i in range(len(contexts)):
|
52 |
+
replacements = []
|
53 |
+
for j in range(num_samples):
|
54 |
+
generated_ids = outputs[i * num_samples + j][input_ids.shape[-1]:]
|
55 |
+
new_word = tokenizer.decode(generated_ids, skip_special_tokens=True).split()[0]
|
56 |
+
replacements.append(new_word)
|
57 |
+
all_new_words.append(replacements)
|
58 |
+
return all_new_words
|
59 |
|
60 |
#%%
|
61 |
|
|
|
71 |
|
72 |
#%%
|
73 |
|
74 |
+
token_probs: list[tuple[int, float]] = calculate_log_probabilities(model, tokenizer, input_ids, attention_mask)
|
75 |
|
76 |
#%%
|
77 |
|
78 |
+
import importlib
|
79 |
+
import text_processing
|
80 |
+
|
81 |
+
importlib.reload(text_processing)
|
82 |
+
from text_processing import split_into_words, Word
|
83 |
+
|
84 |
+
words = split_into_words(token_probs, tokenizer)
|
85 |
log_prob_threshold = -5.0
|
86 |
low_prob_words = [word for word in words if word.logprob < log_prob_threshold]
|
87 |
|
|
|
89 |
|
90 |
start_time = time.time()
|
91 |
|
92 |
+
contexts = [word.context for word in low_prob_words]
|
93 |
+
replacements_batch = generate_replacements(model, tokenizer, contexts, device)
|
94 |
+
|
95 |
+
for word, replacements in zip(low_prob_words, replacements_batch):
|
|
|
96 |
print(f"Original word: {word.text}, Log Probability: {word.logprob:.4f}")
|
97 |
print(f"Proposed replacements: {replacements}")
|
|
|
|
|
|
|
98 |
|
99 |
end_time = time.time()
|
100 |
+
print(f"Total time taken for replacements: {end_time - start_time:.4f} seconds")
|
101 |
|
102 |
# %%
|
text_processing.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
from dataclasses import dataclass
|
2 |
-
from
|
|
|
|
|
3 |
|
4 |
@dataclass
|
5 |
class Word:
|
@@ -15,25 +17,24 @@ def split_into_words(token_probs: list[tuple[int, float]], tokenizer: Tokenizer)
|
|
15 |
current_word_first_token_index: int = 0
|
16 |
all_tokens: list[int] = [token_id for token_id, _ in token_probs]
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
for i, (token_id, logprob) in enumerate(token_probs):
|
19 |
-
token: str = tokenizer.
|
20 |
if not token.startswith(chr(9601)) and token.isalpha():
|
21 |
current_word.append(token_id)
|
22 |
current_log_probs.append(logprob)
|
23 |
else:
|
24 |
-
|
25 |
-
words.append(Word(current_word,
|
26 |
-
tokenizer.decode(current_word),
|
27 |
-
sum(current_log_probs),
|
28 |
-
all_tokens[:current_word_first_token_index]))
|
29 |
current_word = [token_id]
|
30 |
current_log_probs = [logprob]
|
31 |
current_word_first_token_index = i
|
32 |
|
33 |
-
|
34 |
-
words.append(Word(current_word,
|
35 |
-
tokenizer.decode(current_word),
|
36 |
-
sum(current_log_probs),
|
37 |
-
all_tokens[:current_word_first_token_index]))
|
38 |
|
39 |
return words
|
|
|
1 |
from dataclasses import dataclass
|
2 |
+
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
|
3 |
+
|
4 |
+
type Tokenizer = PreTrainedTokenizer | PreTrainedTokenizerFast
|
5 |
|
6 |
@dataclass
|
7 |
class Word:
|
|
|
17 |
current_word_first_token_index: int = 0
|
18 |
all_tokens: list[int] = [token_id for token_id, _ in token_probs]
|
19 |
|
20 |
+
def append_current_word():
|
21 |
+
if current_word:
|
22 |
+
words.append(Word(current_word,
|
23 |
+
tokenizer.decode(current_word),
|
24 |
+
sum(current_log_probs),
|
25 |
+
all_tokens[:current_word_first_token_index]))
|
26 |
+
|
27 |
for i, (token_id, logprob) in enumerate(token_probs):
|
28 |
+
token: str = tokenizer.convert_ids_to_tokens([token_id])[0]
|
29 |
if not token.startswith(chr(9601)) and token.isalpha():
|
30 |
current_word.append(token_id)
|
31 |
current_log_probs.append(logprob)
|
32 |
else:
|
33 |
+
append_current_word()
|
|
|
|
|
|
|
|
|
34 |
current_word = [token_id]
|
35 |
current_log_probs = [logprob]
|
36 |
current_word_first_token_index = i
|
37 |
|
38 |
+
append_current_word()
|
|
|
|
|
|
|
|
|
39 |
|
40 |
return words
|