feat: Add tqdm for progress tracking and time measurement in loop
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
#%%
|
2 |
import time
|
|
|
3 |
from text_processing import split_into_words, Word
|
4 |
import torch
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedModel, PreTrainedTokenizer
|
@@ -64,7 +65,8 @@ low_prob_words = [word for word in words if word.logprob < log_prob_threshold]
|
|
64 |
|
65 |
start_time = time.time()
|
66 |
|
67 |
-
for word in low_prob_words:
|
|
|
68 |
prefix_index = word.first_token_index
|
69 |
prefix_tokens = [token for token, _ in result][:prefix_index + 1]
|
70 |
prefix = tokenizer.convert_tokens_to_string(prefix_tokens)
|
@@ -72,5 +74,8 @@ for word in low_prob_words:
|
|
72 |
print(f"Original word: {word.text}, Log Probability: {word.logprob:.4f}")
|
73 |
print(f"Proposed replacements: {replacements}")
|
74 |
print()
|
75 |
-
|
76 |
-
print(f"Time taken for
|
|
|
|
|
|
|
|
1 |
#%%
|
2 |
import time
|
3 |
+
from tqdm import tqdm
|
4 |
from text_processing import split_into_words, Word
|
5 |
import torch
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedModel, PreTrainedTokenizer
|
|
|
65 |
|
66 |
start_time = time.time()
|
67 |
|
68 |
+
for word in tqdm(low_prob_words, desc="Processing words"):
|
69 |
+
iteration_start_time = time.time()
|
70 |
prefix_index = word.first_token_index
|
71 |
prefix_tokens = [token for token, _ in result][:prefix_index + 1]
|
72 |
prefix = tokenizer.convert_tokens_to_string(prefix_tokens)
|
|
|
74 |
print(f"Original word: {word.text}, Log Probability: {word.logprob:.4f}")
|
75 |
print(f"Proposed replacements: {replacements}")
|
76 |
print()
|
77 |
+
iteration_end_time = time.time()
|
78 |
+
print(f"Time taken for this iteration: {iteration_end_time - iteration_start_time:.4f} seconds")
|
79 |
+
|
80 |
+
end_time = time.time()
|
81 |
+
print(f"Total time taken for the loop: {end_time - start_time:.4f} seconds")
|