mebubo commited on
Commit
9029ade
·
1 Parent(s): 4ef971a

fix: Set attention mask in model inputs to avoid unexpected behavior

Browse files
Files changed (1) hide show
  1. app.py +4 -1
app.py CHANGED
@@ -16,11 +16,12 @@ def load_model_and_tokenizer(model_name):
16
  def process_input_text(input_text, tokenizer, device):
17
  inputs = tokenizer(input_text, return_tensors="pt").to(device)
18
  input_ids = inputs["input_ids"]
 
19
  return inputs, input_ids
20
 
21
  def calculate_log_probabilities(model, tokenizer, inputs, input_ids):
22
  with torch.no_grad():
23
- outputs = model(**inputs, labels=input_ids)
24
  logits = outputs.logits[0, :-1, :]
25
  log_probs = torch.log_softmax(logits, dim=-1)
26
  token_log_probs = log_probs[range(log_probs.shape[0]), input_ids[0][1:]]
@@ -31,9 +32,11 @@ def calculate_log_probabilities(model, tokenizer, inputs, input_ids):
31
  def generate_replacements(model: PreTrainedModel, tokenizer: PreTrainedTokenizer, prefix: str, device: torch.device, num_samples: int = 5) -> list[str]:
32
  input_context = tokenizer(prefix, return_tensors="pt").to(device)
33
  input_ids = input_context["input_ids"]
 
34
  with torch.no_grad():
35
  outputs = model.generate(
36
  input_ids=input_ids,
 
37
  max_length=input_ids.shape[-1] + 5,
38
  num_return_sequences=num_samples,
39
  temperature=1.0,
 
16
  def process_input_text(input_text, tokenizer, device):
17
  inputs = tokenizer(input_text, return_tensors="pt").to(device)
18
  input_ids = inputs["input_ids"]
19
+ attention_mask = inputs["attention_mask"]
20
  return inputs, input_ids
21
 
22
  def calculate_log_probabilities(model, tokenizer, inputs, input_ids):
23
  with torch.no_grad():
24
+ outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=input_ids)
25
  logits = outputs.logits[0, :-1, :]
26
  log_probs = torch.log_softmax(logits, dim=-1)
27
  token_log_probs = log_probs[range(log_probs.shape[0]), input_ids[0][1:]]
 
32
  def generate_replacements(model: PreTrainedModel, tokenizer: PreTrainedTokenizer, prefix: str, device: torch.device, num_samples: int = 5) -> list[str]:
33
  input_context = tokenizer(prefix, return_tensors="pt").to(device)
34
  input_ids = input_context["input_ids"]
35
+ attention_mask = input_context["attention_mask"]
36
  with torch.no_grad():
37
  outputs = model.generate(
38
  input_ids=input_ids,
39
+ attention_mask=attention_mask,
40
  max_length=input_ids.shape[-1] + 5,
41
  num_return_sequences=num_samples,
42
  temperature=1.0,