Spaces:
Running
Running
File size: 27,613 Bytes
ecde90f 8c9f945 ecde90f 8c9f945 ecde90f 18afcf1 ecde90f c105678 ecde90f c105678 ecde90f e5edf92 ecde90f c105678 d706f08 ecde90f 220d6cc ecde90f 8c9f945 ecde90f e5edf92 d706f08 ecde90f cd1cc5d ecde90f cd1cc5d ecde90f fa62b8d ecde90f c105678 d706f08 8c9f945 27f2066 8c9f945 ecde90f f77b9b6 8c9f945 d706f08 8c9f945 f77b9b6 27f2066 f77b9b6 cd1cc5d ecde90f 8c9f945 ecde90f 8c9f945 ecde90f 8c9f945 ecde90f f77b9b6 ecde90f f77b9b6 ecde90f 8c9f945 ecde90f f77b9b6 8c9f945 ecde90f 8c9f945 ecde90f fa62b8d 8c9f945 f77b9b6 8c9f945 f77b9b6 d706f08 8c9f945 d706f08 8c9f945 f77b9b6 d706f08 8c9f945 ecde90f f77b9b6 ecde90f f77b9b6 d706f08 f77b9b6 d706f08 f77b9b6 d706f08 f77b9b6 d706f08 f77b9b6 d706f08 f77b9b6 ecde90f d9a9271 220d6cc 8c9f945 ecde90f f77b9b6 ecde90f f77b9b6 d706f08 ecde90f f77b9b6 ecde90f f77b9b6 ecde90f 89bd619 f77b9b6 d706f08 f77b9b6 ecde90f f77b9b6 ecde90f d706f08 ecde90f 6a5c502 ecde90f 8c9f945 d706f08 ecde90f fa62b8d ecde90f afec0dd ecde90f 8c9f945 ecde90f 8c9f945 ecde90f 8c9f945 ecde90f 8c9f945 ecde90f 8c9f945 ecde90f 8c9f945 ecde90f 8c9f945 ecde90f d706f08 ecde90f 8c9f945 ecde90f bf2b37d f77b9b6 d706f08 bf2b37d d706f08 f77b9b6 bf2b37d d706f08 bf2b37d f77b9b6 bf2b37d d706f08 bf2b37d ecde90f 8c9f945 ecde90f 8c9f945 ecde90f 8c9f945 ecde90f 8c9f945 ecde90f 8c9f945 ecde90f 8c9f945 ecde90f 8c9f945 ecde90f 1c91a49 ecde90f c105678 ecde90f fa62b8d ecde90f fa62b8d ecde90f d706f08 ecde90f fa62b8d ecde90f d706f08 ecde90f d706f08 ecde90f 8c9f945 ecde90f d706f08 ecde90f d706f08 ecde90f fa62b8d ecde90f f77b9b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
import os
import torch
import time
import threading
import json
import gc
from flask import Flask, request, jsonify, send_file, Response, stream_with_context
from werkzeug.utils import secure_filename
from PIL import Image
import io
import zipfile
import uuid
import traceback
from huggingface_hub import snapshot_download, login
from flask_cors import CORS
import numpy as np
import trimesh
from transformers import pipeline, AutoImageProcessor, AutoModelForDepthEstimation
from scipy.ndimage import gaussian_filter
from scipy import interpolate
import cv2
app = Flask(__name__)
CORS(app)
# Configure directories
UPLOAD_FOLDER = '/tmp/uploads'
RESULTS_FOLDER = '/tmp/results'
CACHE_DIR = '/tmp/huggingface'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULTS_FOLDER, exist_ok=True)
os.makedirs(CACHE_DIR, exist_ok=True)
os.environ['HF_HOME'] = CACHE_DIR
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
# Job tracking
processing_jobs = {}
# Model variables
dpt_estimator = None
depth_anything_model = None
depth_anything_processor = None
model_loaded = False
model_loading = False
TIMEOUT_SECONDS = 240
MAX_DIMENSION = 518
class TimeoutError(Exception):
pass
def process_with_timeout(function, args, timeout):
result = [None]
error = [None]
completed = [False]
def target():
try:
result[0] = function(*args)
completed[0] = True
except Exception as e:
error[0] = e
thread = threading.Thread(target=target)
thread.daemon = True
thread.start()
thread.join(timeout)
if not completed[0]:
if thread.is_alive():
return None, TimeoutError(f"Processing timed out after {timeout} seconds")
elif error[0]:
return None, error[0]
if error[0]:
return None, error[0]
return result[0], None
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def preprocess_image(image_path):
with Image.open(image_path) as img:
img = img.convert("RGB")
if img.width > MAX_DIMENSION or img.height > MAX_DIMENSION:
if img.width > img.height:
new_width = MAX_DIMENSION
new_height = int(img.height * (MAX_DIMENSION / img.width))
else:
new_height = MAX_DIMENSION
new_width = int(img.width * (MAX_DIMENSION / img.height))
img = img.resize((new_width, new_height), Image.LANCZOS)
img_array = np.array(img)
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
cl = clahe.apply(l)
enhanced_lab = cv2.merge((cl, a, b))
img_array = cv2.cvtColor(enhanced_lab, cv2.COLOR_LAB2RGB)
img = Image.fromarray(img_array)
return img
def load_models():
global dpt_estimator, depth_anything_model, depth_anything_processor, model_loaded, model_loading
if model_loaded:
return dpt_estimator, depth_anything_model, depth_anything_processor
if model_loading:
while model_loading and not model_loaded:
time.sleep(0.5)
return dpt_estimator, depth_anything_model, depth_anything_processor
try:
model_loading = True
print("Loading models...")
# Authenticate with Hugging Face
hf_token = os.environ.get('HF_TOKEN')
if hf_token:
login(token=hf_token)
print("Authenticated with Hugging Face token")
# DPT-Large
dpt_model_name = "Intel/dpt-large"
max_retries = 3
retry_delay = 5
for attempt in range(max_retries):
try:
snapshot_download(
repo_id=dpt_model_name,
cache_dir=CACHE_DIR,
resume_download=True,
token=hf_token
)
break
except Exception as e:
if attempt < max_retries - 1:
print(f"DPT download attempt {attempt+1} failed: {str(e)}. Retrying...")
time.sleep(retry_delay)
retry_delay *= 2
else:
raise
dpt_estimator = pipeline(
"depth-estimation",
model=dpt_model_name,
device=-1,
cache_dir=CACHE_DIR,
use_fast=True
)
print("DPT-Large loaded")
gc.collect()
# Depth Anything
da_model_name = "depth-anything/Depth-Anything-V2-Small-hf"
for attempt in range(max_retries):
try:
snapshot_download(
repo_id=da_model_name,
cache_dir=CACHE_DIR,
resume_download=True,
token=hf_token
)
break
except Exception as e:
if attempt < max_retries - 1:
print(f"Depth Anything download attempt {attempt+1} failed: {str(e)}. Retrying...")
time.sleep(retry_delay)
retry_delay *= 2
else:
print(f"Failed to load Depth Anything: {str(e)}. Falling back to DPT-Large only.")
depth_anything_model = None
depth_anything_processor = None
model_loaded = True
return dpt_estimator, None, None
depth_anything_processor = AutoImageProcessor.from_pretrained(
da_model_name,
cache_dir=CACHE_DIR,
token=hf_token
)
depth_anything_model = AutoModelForDepthEstimation.from_pretrained(
da_model_name,
cache_dir=CACHE_DIR,
token=hf_token
).to("cpu")
model_loaded = True
print("Depth Anything loaded")
return dpt_estimator, depth_anything_model, depth_anything_processor
except Exception as e:
print(f"Error loading models: {str(e)}")
print(traceback.format_exc())
raise
finally:
model_loading = False
def fuse_depth_maps(dpt_depth, da_depth, detail_level='medium'):
if isinstance(dpt_depth, Image.Image):
dpt_depth = np.array(dpt_depth)
if isinstance(da_depth, torch.Tensor):
da_depth = da_depth.cpu().numpy()
if len(dpt_depth.shape) > 2:
dpt_depth = np.mean(dpt_depth, axis=2)
if len(da_depth.shape) > 2:
da_depth = np.mean(da_depth, axis=2)
if dpt_depth.shape != da_depth.shape:
da_depth = cv2.resize(da_depth, (dpt_depth.shape[1], dpt_depth.shape[0]), interpolation=cv2.INTER_CUBIC)
p_low_dpt, p_high_dpt = np.percentile(dpt_depth, [1, 99])
p_low_da, p_high_da = np.percentile(da_depth, [1, 99])
dpt_depth = np.clip((dpt_depth - p_low_dpt) / (p_high_dpt - p_low_dpt), 0, 1) if p_high_dpt > p_low_dpt else dpt_depth
da_depth = np.clip((da_depth - p_low_da) / (p_high_da - p_low_da), 0, 1) if p_high_da > p_low_da else da_depth
if detail_level == 'high':
weight_da = 0.7
edges = cv2.Canny((da_depth * 255).astype(np.uint8), 50, 150)
edge_mask = (edges > 0).astype(np.float32)
dpt_weight = gaussian_filter(1 - edge_mask, sigma=1.0)
da_weight = gaussian_filter(edge_mask, sigma=1.0)
fused_depth = dpt_weight * dpt_depth + da_weight * da_depth * weight_da + (1 - weight_da) * dpt_depth
else:
weight_da = 0.5 if detail_level == 'medium' else 0.3
fused_depth = (1 - weight_da) * dpt_depth + weight_da * da_depth
fused_depth = np.clip(fused_depth, 0, 1)
return fused_depth
def enhance_depth_map(depth_map, detail_level='medium'):
enhanced_depth = depth_map.copy().astype(np.float32)
p_low, p_high = np.percentile(enhanced_depth, [1, 99])
enhanced_depth = np.clip(enhanced_depth, p_low, p_high)
enhanced_depth = (enhanced_depth - p_low) / (p_high - p_low) if p_high > p_low else enhanced_depth
if detail_level == 'high':
blurred = gaussian_filter(enhanced_depth, sigma=1.5)
mask = enhanced_depth - blurred
enhanced_depth = enhanced_depth + 1.5 * mask
smooth1 = gaussian_filter(enhanced_depth, sigma=0.5)
smooth2 = gaussian_filter(enhanced_depth, sigma=2.0)
edge_mask = enhanced_depth - smooth2
enhanced_depth = smooth1 + 1.2 * edge_mask
elif detail_level == 'medium':
blurred = gaussian_filter(enhanced_depth, sigma=1.0)
mask = enhanced_depth - blurred
enhanced_depth = enhanced_depth + 0.8 * mask
enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.5)
else:
enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.7)
enhanced_depth = np.clip(enhanced_depth, 0, 1)
return enhanced_depth
def depth_to_mesh(depth_map, image, resolution=100, detail_level='medium'):
enhanced_depth = enhance_depth_map(depth_map, detail_level)
h, w = enhanced_depth.shape
x = np.linspace(0, w-1, resolution)
y = np.linspace(0, h-1, resolution)
x_grid, y_grid = np.meshgrid(x, y)
interp_func = interpolate.RectBivariateSpline(
np.arange(h), np.arange(w), enhanced_depth, kx=3, ky=3
)
z_values = interp_func(y, x, grid=True)
if detail_level == 'high':
dx = np.gradient(z_values, axis=1)
dy = np.gradient(z_values, axis=0)
gradient_magnitude = np.sqrt(dx**2 + dy**2)
edge_mask = np.clip(gradient_magnitude * 5, 0, 0.2)
z_values = z_values + edge_mask * (z_values - gaussian_filter(z_values, sigma=1.0))
z_min, z_max = np.percentile(z_values, [2, 98])
z_values = (z_values - z_min) / (z_max - z_min) if z_max > z_min else z_values
z_scaling = 2.5 if detail_level == 'high' else 2.0 if detail_level == 'medium' else 1.5
z_values = z_values * z_scaling
x_grid = (x_grid / w - 0.5) * 2.0
y_grid = (y_grid / h - 0.5) * 2.0
vertices = np.vstack([x_grid.flatten(), -y_grid.flatten(), -z_values.flatten()]).T
faces = []
for i in range(resolution-1):
for j in range(resolution-1):
p1 = i * resolution + j
p2 = i * resolution + (j + 1)
p3 = (i + 1) * resolution + j
p4 = (i + 1) * resolution + (j + 1)
v1 = vertices[p1]
v2 = vertices[p2]
v3 = vertices[p3]
v4 = vertices[p4]
norm1 = np.cross(v2-v1, v4-v1)
norm2 = np.cross(v4-v3, v1-v3)
if np.dot(norm1, norm2) >= 0:
faces.append([p1, p2, p4])
faces.append([p1, p4, p3])
else:
faces.append([p1, p2, p3])
faces.append([p2, p4, p3])
faces = np.array(faces)
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
if image:
img_array = np.array(image)
vertex_colors = np.zeros((vertices.shape[0], 4), dtype=np.uint8)
for i in range(resolution):
for j in range(resolution):
img_x = j * (img_array.shape[1] - 1) / (resolution - 1)
img_y = i * (img_array.shape[0] - 1) / (resolution - 1)
x0, y0 = int(img_x), int(img_y)
x1, y1 = min(x0 + 1, img_array.shape[1] - 1), min(y0 + 1, img_array.shape[0] - 1)
wx = img_x - x0
wy = img_y - y0
vertex_idx = i * resolution + j
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
r = int((1-wx)*(1-wy)*img_array[y0, x0, 0] + wx*(1-wy)*img_array[y0, x1, 0] +
(1-wx)*wy*img_array[y1, x0, 0] + wx*wy*img_array[y1, x1, 0])
g = int((1-wx)*(1-wy)*img_array[y0, x0, 1] + wx*(1-wy)*img_array[y0, x1, 1] +
(1-wx)*wy*img_array[y1, x0, 1] + wx*wy*img_array[y1, x1, 1])
b = int((1-wx)*(1-wy)*img_array[y0, x0, 2] + wx*(1-wy)*img_array[y0, x1, 2] +
(1-wx)*wy*img_array[y1, x0, 2] + wx*wy*img_array[y1, x1, 2])
vertex_colors[vertex_idx, :3] = [r, g, b]
vertex_colors[vertex_idx, 3] = 255
elif len(img_array.shape) == 3 and img_array.shape[2] == 4:
for c in range(4):
vertex_colors[vertex_idx, c] = int((1-wx)*(1-wy)*img_array[y0, x0, c] +
wx*(1-wy)*img_array[y0, x1, c] +
(1-wx)*wy*img_array[y1, x0, c] +
wx*wy*img_array[y1, x1, c])
else:
gray = int((1-wx)*(1-wy)*img_array[y0, x0] + wx*(1-wy)*img_array[y0, x1] +
(1-wx)*wy*img_array[y1, x0] + wx*wy*img_array[y1, x1])
vertex_colors[vertex_idx, :3] = [gray, gray, gray]
vertex_colors[vertex_idx, 3] = 255
mesh.visual.vertex_colors = vertex_colors
if detail_level != 'high':
mesh = mesh.smoothed(method='laplacian', iterations=1)
mesh.fix_normals()
return mesh
@app.route('/health', methods=['GET'])
def health_check():
return jsonify({
"status": "healthy",
"model": "DPT-Large + Depth Anything",
"device": "cpu"
}), 200
@app.route('/progress/<job_id>', methods=['GET'])
def progress(job_id):
def generate():
if job_id not in processing_jobs:
yield f"data: {json.dumps({'error': 'Job not found'})}\n\n"
return
job = processing_jobs[job_id]
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
last_progress = job['progress']
check_count = 0
while job['status'] == 'processing':
if job['progress'] != last_progress:
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
last_progress = job['progress']
time.sleep(0.5)
check_count += 1
if check_count > 60:
if 'thread_alive' in job and not job['thread_alive']():
job['status'] = 'error'
job['error'] = 'Processing thread died unexpectedly'
break
check_count = 0
if job['status'] == 'completed':
yield f"data: {json.dumps({'status': 'completed', 'progress': 100, 'result_url': job['result_url'], 'preview_url': job['preview_url']})}\n\n"
else:
yield f"data: {json.dumps({'status': 'error', 'error': job['error']})}\n\n"
return Response(stream_with_context(generate()), mimetype='text/event-stream')
@app.route('/convert', methods=['POST'])
def convert_image_to_3d():
if 'image' not in request.files:
return jsonify({"error": "No image provided"}), 400
file = request.files['image']
if file.filename == '':
return jsonify({"error": "No image selected"}), 400
if not allowed_file(file.filename):
return jsonify({"error": f"File type not allowed. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400
try:
mesh_resolution = min(int(request.form.get('mesh_resolution', 100)), 150)
output_format = request.form.get('output_format', 'glb').lower()
detail_level = request.form.get('detail_level', 'medium').lower()
texture_quality = request.form.get('texture_quality', 'medium').lower()
except ValueError:
return jsonify({"error": "Invalid parameter values"}), 400
if output_format not in ['obj', 'glb']:
return jsonify({"error": "Unsupported output format. Use 'obj' or 'glb'"}), 400
if detail_level == 'high':
mesh_resolution = min(int(mesh_resolution * 1.5), 150)
elif detail_level == 'low':
mesh_resolution = max(int(mesh_resolution * 0.7), 50)
job_id = str(uuid.uuid4())
output_dir = os.path.join(RESULTS_FOLDER, job_id)
os.makedirs(output_dir, exist_ok=True)
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{filename}")
file.save(filepath)
processing_jobs[job_id] = {
'status': 'processing',
'progress': 0,
'result_url': None,
'preview_url': None,
'error': None,
'output_format': output_format,
'created_at': time.time()
}
def process_image():
thread = threading.current_thread()
processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
try:
processing_jobs[job_id]['progress'] = 5
image = preprocess_image(filepath)
processing_jobs[job_id]['progress'] = 10
try:
dpt_model, da_model, da_processor = load_models()
processing_jobs[job_id]['progress'] = 30
except Exception as e:
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Error loading models: {str(e)}"
return
try:
def estimate_depth():
with torch.no_grad():
# DPT-Large
dpt_result = dpt_model(image)
dpt_depth = dpt_result["depth"]
# Depth Anything (if loaded)
if da_model and da_processor:
inputs = da_processor(images=image, return_tensors="pt")
inputs = {k: v.to("cpu") for k, v in inputs.items()}
outputs = da_model(**inputs)
da_depth = outputs.predicted_depth.squeeze()
da_depth = torch.nn.functional.interpolate(
da_depth.unsqueeze(0).unsqueeze(0),
size=(image.height, image.width),
mode='bicubic',
align_corners=False
).squeeze()
fused_depth = fuse_depth_maps(dpt_depth, da_depth, detail_level)
else:
fused_depth = np.array(dpt_depth) if isinstance(dpt_depth, Image.Image) else dpt_depth
if len(fused_depth.shape) > 2:
fused_depth = np.mean(fused_depth, axis=2)
p_low, p_high = np.percentile(fused_depth, [1, 99])
fused_depth = np.clip((fused_depth - p_low) / (p_high - p_low), 0, 1) if p_high > p_low else fused_depth
return fused_depth
fused_depth, error = process_with_timeout(estimate_depth, [], TIMEOUT_SECONDS)
if error:
if isinstance(error, TimeoutError):
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Processing timed out after {TIMEOUT_SECONDS} seconds"
return
else:
raise error
processing_jobs[job_id]['progress'] = 60
mesh_resolution_int = int(mesh_resolution)
mesh = depth_to_mesh(fused_depth, image, resolution=mesh_resolution_int, detail_level=detail_level)
processing_jobs[job_id]['progress'] = 80
if output_format == 'obj':
obj_path = os.path.join(output_dir, "model.obj")
mesh.export(
obj_path,
file_type='obj',
include_normals=True,
include_texture=True
)
zip_path = os.path.join(output_dir, "model.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
zipf.write(obj_path, arcname="model.obj")
mtl_path = os.path.join(output_dir, "model.mtl")
if os.path.exists(mtl_path):
zipf.write(mtl_path, arcname="model.mtl")
texture_path = os.path.join(output_dir, "model.png")
if os.path.exists(texture_path):
zipf.write(texture_path, arcname="model.png")
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
elif output_format == 'glb':
glb_path = os.path.join(output_dir, "model.glb")
mesh.export(
glb_path,
file_type='glb'
)
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
processing_jobs[job_id]['status'] = 'completed'
processing_jobs[job_id]['progress'] = 100
print(f"Job {job_id} completed")
except Exception as e:
error_details = traceback.format_exc()
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
print(f"Error processing job {job_id}: {str(e)}")
print(error_details)
return
if os.path.exists(filepath):
os.remove(filepath)
gc.collect()
except Exception as e:
error_details = traceback.format_exc()
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"{str(e)}\n{error_details}"
print(f"Error processing job {job_id}: {str(e)}")
print(error_details)
if os.path.exists(filepath):
os.remove(filepath)
processing_thread = threading.Thread(target=process_image)
processing_thread.daemon = True
processing_thread.start()
return jsonify({"job_id": job_id}), 202
@app.route('/download/<job_id>', methods=['GET'])
def download_model(job_id):
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
return jsonify({"error": "Model not found or processing not complete"}), 404
output_dir = os.path.join(RESULTS_FOLDER, job_id)
output_format = processing_jobs[job_id].get('output_format', 'glb')
if output_format == 'obj':
zip_path = os.path.join(output_dir, "model.zip")
if os.path.exists(zip_path):
return send_file(zip_path, as_attachment=True, download_name="model.zip")
else:
glb_path = os.path.join(output_dir, "model.glb")
if os.path.exists(glb_path):
return send_file(glb_path, as_attachment=True, download_name="model.glb")
return jsonify({"error": "File not found"}), 404
@app.route('/preview/<job_id>', methods=['GET'])
def preview_model(job_id):
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
return jsonify({"error": "Model not found or processing not complete"}), 404
output_dir = os.path.join(RESULTS_FOLDER, job_id)
output_format = processing_jobs[job_id].get('output_format', 'glb')
if output_format == 'obj':
obj_path = os.path.join(output_dir, "model.obj")
if os.path.exists(obj_path):
return send_file(obj_path, mimetype='model/obj')
else:
glb_path = os.path.join(output_dir, "model.glb")
if os.path.exists(glb_path):
return send_file(glb_path, mimetype='model/gltf-binary')
return jsonify({"error": "File not found"}), 404
def cleanup_old_jobs():
current_time = time.time()
job_ids_to_remove = []
for job_id, job_data in processing_jobs.items():
if job_data['status'] == 'completed' and (current_time - job_data.get('created_at', 0)) > 3600:
job_ids_to_remove.append(job_id)
elif job_data['status'] == 'error' and (current_time - job_data.get('created_at', 0)) > 1800:
job_ids_to_remove.append(job_id)
for job_id in job_ids_to_remove:
output_dir = os.path.join(RESULTS_FOLDER, job_id)
try:
import shutil
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
except Exception as e:
print(f"Error cleaning up job {job_id}: {str(e)}")
if job_id in processing_jobs:
del processing_jobs[job_id]
threading.Timer(300, cleanup_old_jobs).start()
@app.route('/model-info/<job_id>', methods=['GET'])
def model_info(job_id):
if job_id not in processing_jobs:
return jsonify({"error": "Model not found"}), 404
job = processing_jobs[job_id]
if job['status'] != 'completed':
return jsonify({
"status": job['status'],
"progress": job['progress'],
"error": job.get('error')
}), 200
output_dir = os.path.join(RESULTS_FOLDER, job_id)
model_stats = {}
if job['output_format'] == 'obj':
obj_path = os.path.join(output_dir, "model.obj")
zip_path = os.path.join(output_dir, "model.zip")
if os.path.exists(obj_path):
model_stats['obj_size'] = os.path.getsize(obj_path)
if os.path.exists(zip_path):
model_stats['package_size'] = os.path.getsize(zip_path)
else:
glb_path = os.path.join(output_dir, "model.glb")
if os.path.exists(glb_path):
model_stats['model_size'] = os.path.getsize(glb_path)
return jsonify({
"status": job['status'],
"model_format": job['output_format'],
"download_url": job['result_url'],
"preview_url": job['preview_url'],
"model_stats": model_stats,
"created_at": job.get('created_at'),
"completed_at": job.get('completed_at')
}), 200
@app.route('/', methods=['GET'])
def index():
return jsonify({
"message": "Image to 3D API (DPT-Large + Depth Anything)",
"endpoints": [
"/convert",
"/progress/<job_id>",
"/download/<job_id>",
"/preview/<job_id>",
"/model-info/<job_id>"
],
"parameters": {
"mesh_resolution": "Integer (50-150)",
"output_format": "obj or glb",
"detail_level": "low, medium, or high",
"texture_quality": "low, medium, or high"
},
"description": "Creates high-quality 3D models from 2D images using DPT-Large and Depth Anything."
}), 200
if __name__ == '__main__':
cleanup_old_jobs()
port = int(os.environ.get('PORT', 7860))
app.run(host='0.0.0.0', port=port)
|