File size: 27,613 Bytes
ecde90f
 
 
 
 
 
 
 
 
 
 
 
 
8c9f945
ecde90f
 
 
8c9f945
ecde90f
 
 
18afcf1
ecde90f
 
c105678
ecde90f
 
 
 
 
c105678
ecde90f
 
 
e5edf92
ecde90f
 
 
c105678
d706f08
ecde90f
220d6cc
ecde90f
 
8c9f945
 
ecde90f
 
e5edf92
d706f08
ecde90f
cd1cc5d
ecde90f
 
cd1cc5d
ecde90f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa62b8d
ecde90f
 
c105678
d706f08
8c9f945
 
27f2066
8c9f945
 
 
 
 
 
 
 
ecde90f
f77b9b6
8c9f945
 
 
d706f08
8c9f945
 
 
f77b9b6
27f2066
f77b9b6
cd1cc5d
ecde90f
8c9f945
ecde90f
 
8c9f945
ecde90f
 
 
 
8c9f945
ecde90f
 
 
 
 
f77b9b6
ecde90f
 
 
 
 
f77b9b6
ecde90f
8c9f945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecde90f
 
 
 
 
 
 
 
 
 
 
f77b9b6
8c9f945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecde90f
8c9f945
 
ecde90f
 
 
 
 
 
 
fa62b8d
8c9f945
 
 
 
 
 
 
 
 
 
 
 
 
f77b9b6
 
8c9f945
 
 
 
f77b9b6
d706f08
 
8c9f945
 
d706f08
8c9f945
f77b9b6
d706f08
8c9f945
 
 
 
ecde90f
 
f77b9b6
ecde90f
 
 
 
f77b9b6
d706f08
f77b9b6
 
 
d706f08
f77b9b6
d706f08
f77b9b6
d706f08
f77b9b6
d706f08
f77b9b6
 
ecde90f
d9a9271
 
220d6cc
8c9f945
ecde90f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f77b9b6
 
ecde90f
f77b9b6
 
 
d706f08
ecde90f
f77b9b6
 
ecde90f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f77b9b6
ecde90f
 
 
 
 
 
 
 
 
 
89bd619
 
 
 
 
 
 
 
 
 
f77b9b6
d706f08
 
 
 
f77b9b6
 
 
 
ecde90f
f77b9b6
ecde90f
d706f08
 
 
ecde90f
6a5c502
ecde90f
 
 
 
8c9f945
d706f08
ecde90f
fa62b8d
ecde90f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afec0dd
ecde90f
 
8c9f945
 
ecde90f
8c9f945
 
 
ecde90f
8c9f945
 
ecde90f
 
8c9f945
ecde90f
 
 
 
 
 
 
 
 
 
8c9f945
ecde90f
 
 
 
 
 
 
8c9f945
 
 
ecde90f
 
 
 
 
 
 
 
 
 
 
8c9f945
ecde90f
 
 
 
 
d706f08
ecde90f
 
 
8c9f945
 
ecde90f
 
 
 
 
 
bf2b37d
 
f77b9b6
d706f08
bf2b37d
d706f08
f77b9b6
bf2b37d
d706f08
bf2b37d
 
 
 
 
 
 
 
 
 
 
 
 
 
f77b9b6
bf2b37d
d706f08
bf2b37d
ecde90f
8c9f945
ecde90f
 
 
 
 
 
 
 
 
8c9f945
 
 
ecde90f
 
 
 
8c9f945
ecde90f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c9f945
ecde90f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c9f945
 
ecde90f
 
 
 
 
 
 
 
8c9f945
 
ecde90f
8c9f945
ecde90f
 
 
 
1c91a49
ecde90f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c105678
ecde90f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa62b8d
ecde90f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa62b8d
ecde90f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d706f08
ecde90f
fa62b8d
ecde90f
 
 
d706f08
ecde90f
 
 
 
 
d706f08
ecde90f
 
8c9f945
ecde90f
 
d706f08
ecde90f
d706f08
ecde90f
fa62b8d
ecde90f
 
 
f77b9b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
import os
import torch
import time
import threading
import json
import gc
from flask import Flask, request, jsonify, send_file, Response, stream_with_context
from werkzeug.utils import secure_filename
from PIL import Image
import io
import zipfile
import uuid
import traceback
from huggingface_hub import snapshot_download, login
from flask_cors import CORS
import numpy as np
import trimesh
from transformers import pipeline, AutoImageProcessor, AutoModelForDepthEstimation
from scipy.ndimage import gaussian_filter
from scipy import interpolate
import cv2

app = Flask(__name__)
CORS(app)

# Configure directories
UPLOAD_FOLDER = '/tmp/uploads'
RESULTS_FOLDER = '/tmp/results'
CACHE_DIR = '/tmp/huggingface'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}

os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULTS_FOLDER, exist_ok=True)
os.makedirs(CACHE_DIR, exist_ok=True)

os.environ['HF_HOME'] = CACHE_DIR
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024

# Job tracking
processing_jobs = {}

# Model variables
dpt_estimator = None
depth_anything_model = None
depth_anything_processor = None
model_loaded = False
model_loading = False

TIMEOUT_SECONDS = 240
MAX_DIMENSION = 518

class TimeoutError(Exception):
    pass

def process_with_timeout(function, args, timeout):
    result = [None]
    error = [None]
    completed = [False]
    
    def target():
        try:
            result[0] = function(*args)
            completed[0] = True
        except Exception as e:
            error[0] = e
    
    thread = threading.Thread(target=target)
    thread.daemon = True
    thread.start()
    thread.join(timeout)
    
    if not completed[0]:
        if thread.is_alive():
            return None, TimeoutError(f"Processing timed out after {timeout} seconds")
        elif error[0]:
            return None, error[0]
    
    if error[0]:
        return None, error[0]
    
    return result[0], None

def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

def preprocess_image(image_path):
    with Image.open(image_path) as img:
        img = img.convert("RGB")
        
        if img.width > MAX_DIMENSION or img.height > MAX_DIMENSION:
            if img.width > img.height:
                new_width = MAX_DIMENSION
                new_height = int(img.height * (MAX_DIMENSION / img.width))
            else:
                new_height = MAX_DIMENSION
                new_width = int(img.width * (MAX_DIMENSION / img.height))
            img = img.resize((new_width, new_height), Image.LANCZOS)
        
        img_array = np.array(img)
        if len(img_array.shape) == 3 and img_array.shape[2] == 3:
            lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2LAB)
            l, a, b = cv2.split(lab)
            clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
            cl = clahe.apply(l)
            enhanced_lab = cv2.merge((cl, a, b))
            img_array = cv2.cvtColor(enhanced_lab, cv2.COLOR_LAB2RGB)
            img = Image.fromarray(img_array)
        
        return img

def load_models():
    global dpt_estimator, depth_anything_model, depth_anything_processor, model_loaded, model_loading
    
    if model_loaded:
        return dpt_estimator, depth_anything_model, depth_anything_processor
    
    if model_loading:
        while model_loading and not model_loaded:
            time.sleep(0.5)
        return dpt_estimator, depth_anything_model, depth_anything_processor
    
    try:
        model_loading = True
        print("Loading models...")
        
        # Authenticate with Hugging Face
        hf_token = os.environ.get('HF_TOKEN')
        if hf_token:
            login(token=hf_token)
            print("Authenticated with Hugging Face token")
        
        # DPT-Large
        dpt_model_name = "Intel/dpt-large"
        max_retries = 3
        retry_delay = 5
        for attempt in range(max_retries):
            try:
                snapshot_download(
                    repo_id=dpt_model_name,
                    cache_dir=CACHE_DIR,
                    resume_download=True,
                    token=hf_token
                )
                break
            except Exception as e:
                if attempt < max_retries - 1:
                    print(f"DPT download attempt {attempt+1} failed: {str(e)}. Retrying...")
                    time.sleep(retry_delay)
                    retry_delay *= 2
                else:
                    raise
        
        dpt_estimator = pipeline(
            "depth-estimation",
            model=dpt_model_name,
            device=-1,
            cache_dir=CACHE_DIR,
            use_fast=True
        )
        print("DPT-Large loaded")
        gc.collect()
        
        # Depth Anything
        da_model_name = "depth-anything/Depth-Anything-V2-Small-hf"
        for attempt in range(max_retries):
            try:
                snapshot_download(
                    repo_id=da_model_name,
                    cache_dir=CACHE_DIR,
                    resume_download=True,
                    token=hf_token
                )
                break
            except Exception as e:
                if attempt < max_retries - 1:
                    print(f"Depth Anything download attempt {attempt+1} failed: {str(e)}. Retrying...")
                    time.sleep(retry_delay)
                    retry_delay *= 2
                else:
                    print(f"Failed to load Depth Anything: {str(e)}. Falling back to DPT-Large only.")
                    depth_anything_model = None
                    depth_anything_processor = None
                    model_loaded = True
                    return dpt_estimator, None, None
        
        depth_anything_processor = AutoImageProcessor.from_pretrained(
            da_model_name,
            cache_dir=CACHE_DIR,
            token=hf_token
        )
        depth_anything_model = AutoModelForDepthEstimation.from_pretrained(
            da_model_name,
            cache_dir=CACHE_DIR,
            token=hf_token
        ).to("cpu")
        
        model_loaded = True
        print("Depth Anything loaded")
        return dpt_estimator, depth_anything_model, depth_anything_processor
    
    except Exception as e:
        print(f"Error loading models: {str(e)}")
        print(traceback.format_exc())
        raise
    finally:
        model_loading = False

def fuse_depth_maps(dpt_depth, da_depth, detail_level='medium'):
    if isinstance(dpt_depth, Image.Image):
        dpt_depth = np.array(dpt_depth)
    if isinstance(da_depth, torch.Tensor):
        da_depth = da_depth.cpu().numpy()
    if len(dpt_depth.shape) > 2:
        dpt_depth = np.mean(dpt_depth, axis=2)
    if len(da_depth.shape) > 2:
        da_depth = np.mean(da_depth, axis=2)
    
    if dpt_depth.shape != da_depth.shape:
        da_depth = cv2.resize(da_depth, (dpt_depth.shape[1], dpt_depth.shape[0]), interpolation=cv2.INTER_CUBIC)
    
    p_low_dpt, p_high_dpt = np.percentile(dpt_depth, [1, 99])
    p_low_da, p_high_da = np.percentile(da_depth, [1, 99])
    dpt_depth = np.clip((dpt_depth - p_low_dpt) / (p_high_dpt - p_low_dpt), 0, 1) if p_high_dpt > p_low_dpt else dpt_depth
    da_depth = np.clip((da_depth - p_low_da) / (p_high_da - p_low_da), 0, 1) if p_high_da > p_low_da else da_depth
    
    if detail_level == 'high':
        weight_da = 0.7
        edges = cv2.Canny((da_depth * 255).astype(np.uint8), 50, 150)
        edge_mask = (edges > 0).astype(np.float32)
        dpt_weight = gaussian_filter(1 - edge_mask, sigma=1.0)
        da_weight = gaussian_filter(edge_mask, sigma=1.0)
        fused_depth = dpt_weight * dpt_depth + da_weight * da_depth * weight_da + (1 - weight_da) * dpt_depth
    else:
        weight_da = 0.5 if detail_level == 'medium' else 0.3
        fused_depth = (1 - weight_da) * dpt_depth + weight_da * da_depth
    
    fused_depth = np.clip(fused_depth, 0, 1)
    return fused_depth

def enhance_depth_map(depth_map, detail_level='medium'):
    enhanced_depth = depth_map.copy().astype(np.float32)
    p_low, p_high = np.percentile(enhanced_depth, [1, 99])
    enhanced_depth = np.clip(enhanced_depth, p_low, p_high)
    enhanced_depth = (enhanced_depth - p_low) / (p_high - p_low) if p_high > p_low else enhanced_depth
    
    if detail_level == 'high':
        blurred = gaussian_filter(enhanced_depth, sigma=1.5)
        mask = enhanced_depth - blurred
        enhanced_depth = enhanced_depth + 1.5 * mask
        smooth1 = gaussian_filter(enhanced_depth, sigma=0.5)
        smooth2 = gaussian_filter(enhanced_depth, sigma=2.0)
        edge_mask = enhanced_depth - smooth2
        enhanced_depth = smooth1 + 1.2 * edge_mask
    elif detail_level == 'medium':
        blurred = gaussian_filter(enhanced_depth, sigma=1.0)
        mask = enhanced_depth - blurred
        enhanced_depth = enhanced_depth + 0.8 * mask
        enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.5)
    else:
        enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.7)
    
    enhanced_depth = np.clip(enhanced_depth, 0, 1)
    return enhanced_depth

def depth_to_mesh(depth_map, image, resolution=100, detail_level='medium'):
    enhanced_depth = enhance_depth_map(depth_map, detail_level)
    h, w = enhanced_depth.shape
    x = np.linspace(0, w-1, resolution)
    y = np.linspace(0, h-1, resolution)
    x_grid, y_grid = np.meshgrid(x, y)
    
    interp_func = interpolate.RectBivariateSpline(
        np.arange(h), np.arange(w), enhanced_depth, kx=3, ky=3
    )
    z_values = interp_func(y, x, grid=True)
    
    if detail_level == 'high':
        dx = np.gradient(z_values, axis=1)
        dy = np.gradient(z_values, axis=0)
        gradient_magnitude = np.sqrt(dx**2 + dy**2)
        edge_mask = np.clip(gradient_magnitude * 5, 0, 0.2)
        z_values = z_values + edge_mask * (z_values - gaussian_filter(z_values, sigma=1.0))
    
    z_min, z_max = np.percentile(z_values, [2, 98])
    z_values = (z_values - z_min) / (z_max - z_min) if z_max > z_min else z_values
    z_scaling = 2.5 if detail_level == 'high' else 2.0 if detail_level == 'medium' else 1.5
    z_values = z_values * z_scaling
    
    x_grid = (x_grid / w - 0.5) * 2.0
    y_grid = (y_grid / h - 0.5) * 2.0
    vertices = np.vstack([x_grid.flatten(), -y_grid.flatten(), -z_values.flatten()]).T
    
    faces = []
    for i in range(resolution-1):
        for j in range(resolution-1):
            p1 = i * resolution + j
            p2 = i * resolution + (j + 1)
            p3 = (i + 1) * resolution + j
            p4 = (i + 1) * resolution + (j + 1)
            v1 = vertices[p1]
            v2 = vertices[p2]
            v3 = vertices[p3]
            v4 = vertices[p4]
            norm1 = np.cross(v2-v1, v4-v1)
            norm2 = np.cross(v4-v3, v1-v3)
            if np.dot(norm1, norm2) >= 0:
                faces.append([p1, p2, p4])
                faces.append([p1, p4, p3])
            else:
                faces.append([p1, p2, p3])
                faces.append([p2, p4, p3])
    
    faces = np.array(faces)
    mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
    
    if image:
        img_array = np.array(image)
        vertex_colors = np.zeros((vertices.shape[0], 4), dtype=np.uint8)
        for i in range(resolution):
            for j in range(resolution):
                img_x = j * (img_array.shape[1] - 1) / (resolution - 1)
                img_y = i * (img_array.shape[0] - 1) / (resolution - 1)
                x0, y0 = int(img_x), int(img_y)
                x1, y1 = min(x0 + 1, img_array.shape[1] - 1), min(y0 + 1, img_array.shape[0] - 1)
                wx = img_x - x0
                wy = img_y - y0
                vertex_idx = i * resolution + j
                if len(img_array.shape) == 3 and img_array.shape[2] == 3:
                    r = int((1-wx)*(1-wy)*img_array[y0, x0, 0] + wx*(1-wy)*img_array[y0, x1, 0] + 
                            (1-wx)*wy*img_array[y1, x0, 0] + wx*wy*img_array[y1, x1, 0])
                    g = int((1-wx)*(1-wy)*img_array[y0, x0, 1] + wx*(1-wy)*img_array[y0, x1, 1] + 
                            (1-wx)*wy*img_array[y1, x0, 1] + wx*wy*img_array[y1, x1, 1])
                    b = int((1-wx)*(1-wy)*img_array[y0, x0, 2] + wx*(1-wy)*img_array[y0, x1, 2] + 
                            (1-wx)*wy*img_array[y1, x0, 2] + wx*wy*img_array[y1, x1, 2])
                    vertex_colors[vertex_idx, :3] = [r, g, b]
                    vertex_colors[vertex_idx, 3] = 255
                elif len(img_array.shape) == 3 and img_array.shape[2] == 4:
                    for c in range(4):
                        vertex_colors[vertex_idx, c] = int((1-wx)*(1-wy)*img_array[y0, x0, c] + 
                                                        wx*(1-wy)*img_array[y0, x1, c] + 
                                                        (1-wx)*wy*img_array[y1, x0, c] + 
                                                        wx*wy*img_array[y1, x1, c])
                else:
                    gray = int((1-wx)*(1-wy)*img_array[y0, x0] + wx*(1-wy)*img_array[y0, x1] + 
                              (1-wx)*wy*img_array[y1, x0] + wx*wy*img_array[y1, x1])
                    vertex_colors[vertex_idx, :3] = [gray, gray, gray]
                    vertex_colors[vertex_idx, 3] = 255
            mesh.visual.vertex_colors = vertex_colors
    
    if detail_level != 'high':
        mesh = mesh.smoothed(method='laplacian', iterations=1)
    mesh.fix_normals()
    return mesh

@app.route('/health', methods=['GET'])
def health_check():
    return jsonify({
        "status": "healthy",
        "model": "DPT-Large + Depth Anything",
        "device": "cpu"
    }), 200

@app.route('/progress/<job_id>', methods=['GET'])
def progress(job_id):
    def generate():
        if job_id not in processing_jobs:
            yield f"data: {json.dumps({'error': 'Job not found'})}\n\n"
            return
            
        job = processing_jobs[job_id]
        yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
        
        last_progress = job['progress']
        check_count = 0
        while job['status'] == 'processing':
            if job['progress'] != last_progress:
                yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
                last_progress = job['progress']
            time.sleep(0.5)
            check_count += 1
            if check_count > 60:
                if 'thread_alive' in job and not job['thread_alive']():
                    job['status'] = 'error'
                    job['error'] = 'Processing thread died unexpectedly'
                    break
                check_count = 0
        
        if job['status'] == 'completed':
            yield f"data: {json.dumps({'status': 'completed', 'progress': 100, 'result_url': job['result_url'], 'preview_url': job['preview_url']})}\n\n"
        else:
            yield f"data: {json.dumps({'status': 'error', 'error': job['error']})}\n\n"
    
    return Response(stream_with_context(generate()), mimetype='text/event-stream')

@app.route('/convert', methods=['POST'])
def convert_image_to_3d():
    if 'image' not in request.files:
        return jsonify({"error": "No image provided"}), 400
    
    file = request.files['image']
    if file.filename == '':
        return jsonify({"error": "No image selected"}), 400
    
    if not allowed_file(file.filename):
        return jsonify({"error": f"File type not allowed. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400
    
    try:
        mesh_resolution = min(int(request.form.get('mesh_resolution', 100)), 150)
        output_format = request.form.get('output_format', 'glb').lower()
        detail_level = request.form.get('detail_level', 'medium').lower()
        texture_quality = request.form.get('texture_quality', 'medium').lower()
    except ValueError:
        return jsonify({"error": "Invalid parameter values"}), 400
    
    if output_format not in ['obj', 'glb']:
        return jsonify({"error": "Unsupported output format. Use 'obj' or 'glb'"}), 400
    
    if detail_level == 'high':
        mesh_resolution = min(int(mesh_resolution * 1.5), 150)
    elif detail_level == 'low':
        mesh_resolution = max(int(mesh_resolution * 0.7), 50)
    
    job_id = str(uuid.uuid4())
    output_dir = os.path.join(RESULTS_FOLDER, job_id)
    os.makedirs(output_dir, exist_ok=True)
    
    filename = secure_filename(file.filename)
    filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{filename}")
    file.save(filepath)
    
    processing_jobs[job_id] = {
        'status': 'processing',
        'progress': 0,
        'result_url': None,
        'preview_url': None,
        'error': None,
        'output_format': output_format,
        'created_at': time.time()
    }
    
    def process_image():
        thread = threading.current_thread()
        processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
        
        try:
            processing_jobs[job_id]['progress'] = 5
            image = preprocess_image(filepath)
            processing_jobs[job_id]['progress'] = 10
            
            try:
                dpt_model, da_model, da_processor = load_models()
                processing_jobs[job_id]['progress'] = 30
            except Exception as e:
                processing_jobs[job_id]['status'] = 'error'
                processing_jobs[job_id]['error'] = f"Error loading models: {str(e)}"
                return
            
            try:
                def estimate_depth():
                    with torch.no_grad():
                        # DPT-Large
                        dpt_result = dpt_model(image)
                        dpt_depth = dpt_result["depth"]
                        
                        # Depth Anything (if loaded)
                        if da_model and da_processor:
                            inputs = da_processor(images=image, return_tensors="pt")
                            inputs = {k: v.to("cpu") for k, v in inputs.items()}
                            outputs = da_model(**inputs)
                            da_depth = outputs.predicted_depth.squeeze()
                            da_depth = torch.nn.functional.interpolate(
                                da_depth.unsqueeze(0).unsqueeze(0),
                                size=(image.height, image.width),
                                mode='bicubic',
                                align_corners=False
                            ).squeeze()
                            fused_depth = fuse_depth_maps(dpt_depth, da_depth, detail_level)
                        else:
                            fused_depth = np.array(dpt_depth) if isinstance(dpt_depth, Image.Image) else dpt_depth
                            if len(fused_depth.shape) > 2:
                                fused_depth = np.mean(fused_depth, axis=2)
                            p_low, p_high = np.percentile(fused_depth, [1, 99])
                            fused_depth = np.clip((fused_depth - p_low) / (p_high - p_low), 0, 1) if p_high > p_low else fused_depth
                        
                        return fused_depth
                
                fused_depth, error = process_with_timeout(estimate_depth, [], TIMEOUT_SECONDS)
                
                if error:
                    if isinstance(error, TimeoutError):
                        processing_jobs[job_id]['status'] = 'error'
                        processing_jobs[job_id]['error'] = f"Processing timed out after {TIMEOUT_SECONDS} seconds"
                        return
                    else:
                        raise error
                        
                processing_jobs[job_id]['progress'] = 60
                mesh_resolution_int = int(mesh_resolution)
                mesh = depth_to_mesh(fused_depth, image, resolution=mesh_resolution_int, detail_level=detail_level)
                processing_jobs[job_id]['progress'] = 80
                
                if output_format == 'obj':
                    obj_path = os.path.join(output_dir, "model.obj")
                    mesh.export(
                        obj_path,
                        file_type='obj',
                        include_normals=True,
                        include_texture=True
                    )
                    zip_path = os.path.join(output_dir, "model.zip")
                    with zipfile.ZipFile(zip_path, 'w') as zipf:
                        zipf.write(obj_path, arcname="model.obj")
                        mtl_path = os.path.join(output_dir, "model.mtl")
                        if os.path.exists(mtl_path):
                            zipf.write(mtl_path, arcname="model.mtl")
                        texture_path = os.path.join(output_dir, "model.png")
                        if os.path.exists(texture_path):
                            zipf.write(texture_path, arcname="model.png")
                    
                    processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
                    processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
                
                elif output_format == 'glb':
                    glb_path = os.path.join(output_dir, "model.glb")
                    mesh.export(
                        glb_path,
                        file_type='glb'
                    )
                    processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
                    processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
                
                processing_jobs[job_id]['status'] = 'completed'
                processing_jobs[job_id]['progress'] = 100
                print(f"Job {job_id} completed")
            
            except Exception as e:
                error_details = traceback.format_exc()
                processing_jobs[job_id]['status'] = 'error'
                processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
                print(f"Error processing job {job_id}: {str(e)}")
                print(error_details)
                return
            
            if os.path.exists(filepath):
                os.remove(filepath)
            gc.collect()
            
        except Exception as e:
            error_details = traceback.format_exc()
            processing_jobs[job_id]['status'] = 'error'
            processing_jobs[job_id]['error'] = f"{str(e)}\n{error_details}"
            print(f"Error processing job {job_id}: {str(e)}")
            print(error_details)
            if os.path.exists(filepath):
                os.remove(filepath)
    
    processing_thread = threading.Thread(target=process_image)
    processing_thread.daemon = True
    processing_thread.start()
    
    return jsonify({"job_id": job_id}), 202

@app.route('/download/<job_id>', methods=['GET'])
def download_model(job_id):
    if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
        return jsonify({"error": "Model not found or processing not complete"}), 404
    
    output_dir = os.path.join(RESULTS_FOLDER, job_id)
    output_format = processing_jobs[job_id].get('output_format', 'glb')
    
    if output_format == 'obj':
        zip_path = os.path.join(output_dir, "model.zip")
        if os.path.exists(zip_path):
            return send_file(zip_path, as_attachment=True, download_name="model.zip")
    else:
        glb_path = os.path.join(output_dir, "model.glb")
        if os.path.exists(glb_path):
            return send_file(glb_path, as_attachment=True, download_name="model.glb")
    
    return jsonify({"error": "File not found"}), 404

@app.route('/preview/<job_id>', methods=['GET'])
def preview_model(job_id):
    if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
        return jsonify({"error": "Model not found or processing not complete"}), 404
    
    output_dir = os.path.join(RESULTS_FOLDER, job_id)
    output_format = processing_jobs[job_id].get('output_format', 'glb')
    
    if output_format == 'obj':
        obj_path = os.path.join(output_dir, "model.obj")
        if os.path.exists(obj_path):
            return send_file(obj_path, mimetype='model/obj')
    else:
        glb_path = os.path.join(output_dir, "model.glb")
        if os.path.exists(glb_path):
            return send_file(glb_path, mimetype='model/gltf-binary')
    
    return jsonify({"error": "File not found"}), 404

def cleanup_old_jobs():
    current_time = time.time()
    job_ids_to_remove = []
    
    for job_id, job_data in processing_jobs.items():
        if job_data['status'] == 'completed' and (current_time - job_data.get('created_at', 0)) > 3600:
            job_ids_to_remove.append(job_id)
        elif job_data['status'] == 'error' and (current_time - job_data.get('created_at', 0)) > 1800:
            job_ids_to_remove.append(job_id)
    
    for job_id in job_ids_to_remove:
        output_dir = os.path.join(RESULTS_FOLDER, job_id)
        try:
            import shutil
            if os.path.exists(output_dir):
                shutil.rmtree(output_dir)
        except Exception as e:
            print(f"Error cleaning up job {job_id}: {str(e)}")
        
        if job_id in processing_jobs:
            del processing_jobs[job_id]
    
    threading.Timer(300, cleanup_old_jobs).start()

@app.route('/model-info/<job_id>', methods=['GET'])
def model_info(job_id):
    if job_id not in processing_jobs:
        return jsonify({"error": "Model not found"}), 404
        
    job = processing_jobs[job_id]
    
    if job['status'] != 'completed':
        return jsonify({
            "status": job['status'],
            "progress": job['progress'],
            "error": job.get('error')
        }), 200
    
    output_dir = os.path.join(RESULTS_FOLDER, job_id)
    model_stats = {}
    
    if job['output_format'] == 'obj':
        obj_path = os.path.join(output_dir, "model.obj")
        zip_path = os.path.join(output_dir, "model.zip")
        if os.path.exists(obj_path):
            model_stats['obj_size'] = os.path.getsize(obj_path)
        if os.path.exists(zip_path):
            model_stats['package_size'] = os.path.getsize(zip_path)
    else:
        glb_path = os.path.join(output_dir, "model.glb")
        if os.path.exists(glb_path):
            model_stats['model_size'] = os.path.getsize(glb_path)
    
    return jsonify({
        "status": job['status'],
        "model_format": job['output_format'],
        "download_url": job['result_url'],
        "preview_url": job['preview_url'],
        "model_stats": model_stats,
        "created_at": job.get('created_at'),
        "completed_at": job.get('completed_at')
    }), 200

@app.route('/', methods=['GET'])
def index():
    return jsonify({
        "message": "Image to 3D API (DPT-Large + Depth Anything)",
        "endpoints": [
            "/convert",
            "/progress/<job_id>",
            "/download/<job_id>",
            "/preview/<job_id>",
            "/model-info/<job_id>"
        ],
        "parameters": {
            "mesh_resolution": "Integer (50-150)",
            "output_format": "obj or glb",
            "detail_level": "low, medium, or high",
            "texture_quality": "low, medium, or high"
        },
        "description": "Creates high-quality 3D models from 2D images using DPT-Large and Depth Anything."
    }), 200

if __name__ == '__main__':
    cleanup_old_jobs()
    port = int(os.environ.get('PORT', 7860))
    app.run(host='0.0.0.0', port=port)