Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,9 @@ from flask_cors import CORS
|
|
16 |
import numpy as np
|
17 |
import trimesh
|
18 |
from transformers import pipeline
|
19 |
-
from scipy.ndimage import gaussian_filter, uniform_filter
|
|
|
|
|
20 |
|
21 |
app = Flask(__name__)
|
22 |
CORS(app) # Enable CORS for all routes
|
@@ -49,8 +51,8 @@ model_loaded = False
|
|
49 |
model_loading = False
|
50 |
|
51 |
# Configuration for processing
|
52 |
-
TIMEOUT_SECONDS = 240 # 4 minutes max for processing
|
53 |
-
MAX_DIMENSION = 512 # Max image dimension to
|
54 |
|
55 |
# TimeoutError for handling timeouts
|
56 |
class TimeoutError(Exception):
|
@@ -89,10 +91,11 @@ def process_with_timeout(function, args, timeout):
|
|
89 |
def allowed_file(filename):
|
90 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
91 |
|
92 |
-
#
|
93 |
def preprocess_image(image_path):
|
94 |
with Image.open(image_path) as img:
|
95 |
img = img.convert("RGB")
|
|
|
96 |
# Resize if the image is too large
|
97 |
if img.width > MAX_DIMENSION or img.height > MAX_DIMENSION:
|
98 |
# Calculate new dimensions while preserving aspect ratio
|
@@ -102,8 +105,33 @@ def preprocess_image(image_path):
|
|
102 |
else:
|
103 |
new_height = MAX_DIMENSION
|
104 |
new_width = int(img.width * (MAX_DIMENSION / img.height))
|
|
|
|
|
105 |
img = img.resize((new_width, new_height), Image.LANCZOS)
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
return img
|
108 |
|
109 |
def load_model():
|
@@ -123,6 +151,7 @@ def load_model():
|
|
123 |
print("Starting model loading...")
|
124 |
|
125 |
# Using DPT-Large which provides better detail than DPT-Hybrid
|
|
|
126 |
model_name = "Intel/dpt-large"
|
127 |
|
128 |
# Download model with retry mechanism
|
@@ -145,7 +174,7 @@ def load_model():
|
|
145 |
else:
|
146 |
raise
|
147 |
|
148 |
-
# Initialize model with
|
149 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
150 |
|
151 |
# Load depth estimator pipeline
|
@@ -171,10 +200,10 @@ def load_model():
|
|
171 |
finally:
|
172 |
model_loading = False
|
173 |
|
174 |
-
#
|
175 |
-
def
|
176 |
-
"""
|
177 |
-
# Convert
|
178 |
if isinstance(depth_map, Image.Image):
|
179 |
depth_map = np.array(depth_map)
|
180 |
|
@@ -182,39 +211,101 @@ def depth_to_mesh(depth_map, image, resolution=100):
|
|
182 |
if len(depth_map.shape) > 2:
|
183 |
depth_map = np.mean(depth_map, axis=2) if depth_map.shape[2] > 1 else depth_map[:,:,0]
|
184 |
|
185 |
-
#
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
#
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
x = np.linspace(0, w-1, resolution)
|
194 |
y = np.linspace(0, h-1, resolution)
|
195 |
x_grid, y_grid = np.meshgrid(x, y)
|
196 |
|
197 |
-
#
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
201 |
|
202 |
-
#
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
z_values = (z_values - z_min) / (z_max - z_min) if z_max > z_min else z_values
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
local_std = np.sqrt(np.maximum(local_var, 0))
|
214 |
|
215 |
-
|
216 |
-
enhanced_z = (z_values - local_mean) / (local_std + 0.01) * 0.5 + z_values
|
217 |
-
z_values = np.clip(enhanced_z, 0, None) # Keep values positive
|
218 |
|
219 |
# Normalize x and y coordinates
|
220 |
x_grid = (x_grid / w - 0.5) * 2.0 # Map to -1 to 1
|
@@ -223,7 +314,7 @@ def depth_to_mesh(depth_map, image, resolution=100):
|
|
223 |
# Create vertices
|
224 |
vertices = np.vstack([x_grid.flatten(), -y_grid.flatten(), -z_values.flatten()]).T
|
225 |
|
226 |
-
# Create faces (triangles)
|
227 |
faces = []
|
228 |
for i in range(resolution-1):
|
229 |
for j in range(resolution-1):
|
@@ -232,54 +323,103 @@ def depth_to_mesh(depth_map, image, resolution=100):
|
|
232 |
p3 = (i + 1) * resolution + j
|
233 |
p4 = (i + 1) * resolution + (j + 1)
|
234 |
|
235 |
-
#
|
236 |
-
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
faces = np.array(faces)
|
240 |
|
241 |
# Create mesh
|
242 |
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
|
243 |
|
244 |
-
# Apply texturing if image is provided
|
245 |
if image:
|
246 |
# Convert to numpy array if needed
|
247 |
if isinstance(image, Image.Image):
|
248 |
img_array = np.array(image)
|
249 |
else:
|
250 |
img_array = image
|
251 |
-
|
252 |
-
# Create
|
253 |
if resolution <= img_array.shape[0] and resolution <= img_array.shape[1]:
|
254 |
-
# Create vertex colors by sampling the image
|
255 |
vertex_colors = np.zeros((vertices.shape[0], 4), dtype=np.uint8)
|
256 |
|
|
|
257 |
for i in range(resolution):
|
258 |
for j in range(resolution):
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
vertex_idx = i * resolution + j
|
|
|
263 |
if len(img_array.shape) == 3 and img_array.shape[2] == 3: # RGB
|
264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
vertex_colors[vertex_idx, 3] = 255 # Alpha
|
266 |
elif len(img_array.shape) == 3 and img_array.shape[2] == 4: # RGBA
|
267 |
-
|
|
|
|
|
|
|
|
|
268 |
else:
|
269 |
-
# Handle grayscale
|
270 |
-
|
271 |
-
|
|
|
272 |
vertex_colors[vertex_idx, 3] = 255
|
273 |
|
274 |
mesh.visual.vertex_colors = vertex_colors
|
275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
return mesh
|
277 |
|
278 |
@app.route('/health', methods=['GET'])
|
279 |
def health_check():
|
280 |
return jsonify({
|
281 |
"status": "healthy",
|
282 |
-
"model": "Depth-Based 3D Model Generator (DPT-Large)",
|
283 |
"device": "cuda" if torch.cuda.is_available() else "cpu"
|
284 |
}), 200
|
285 |
|
@@ -339,7 +479,8 @@ def convert_image_to_3d():
|
|
339 |
try:
|
340 |
mesh_resolution = min(int(request.form.get('mesh_resolution', 100)), 200) # Limit max resolution
|
341 |
output_format = request.form.get('output_format', 'obj').lower()
|
342 |
-
detail_level = request.form.get('detail_level', 'medium').lower() #
|
|
|
343 |
except ValueError:
|
344 |
return jsonify({"error": "Invalid parameter values"}), 400
|
345 |
|
@@ -349,7 +490,7 @@ def convert_image_to_3d():
|
|
349 |
|
350 |
# Adjust mesh resolution based on detail level
|
351 |
if detail_level == 'high':
|
352 |
-
mesh_resolution = min(mesh_resolution * 1.5, 200)
|
353 |
elif detail_level == 'low':
|
354 |
mesh_resolution = max(int(mesh_resolution * 0.7), 50)
|
355 |
|
@@ -380,7 +521,7 @@ def convert_image_to_3d():
|
|
380 |
processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
|
381 |
|
382 |
try:
|
383 |
-
# Preprocess image
|
384 |
processing_jobs[job_id]['progress'] = 5
|
385 |
image = preprocess_image(filepath)
|
386 |
processing_jobs[job_id]['progress'] = 10
|
@@ -423,9 +564,9 @@ def convert_image_to_3d():
|
|
423 |
|
424 |
processing_jobs[job_id]['progress'] = 60
|
425 |
|
426 |
-
# Create mesh from depth map
|
427 |
mesh_resolution_int = int(mesh_resolution)
|
428 |
-
mesh = depth_to_mesh(depth_map, image, resolution=mesh_resolution_int)
|
429 |
processing_jobs[job_id]['progress'] = 80
|
430 |
|
431 |
except Exception as e:
|
@@ -436,11 +577,18 @@ def convert_image_to_3d():
|
|
436 |
print(error_details)
|
437 |
return
|
438 |
|
439 |
-
# Export based on requested format
|
440 |
try:
|
441 |
if output_format == 'obj':
|
442 |
obj_path = os.path.join(output_dir, "model.obj")
|
443 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
|
445 |
# Create a zip file with OBJ and MTL
|
446 |
zip_path = os.path.join(output_dir, "model.zip")
|
@@ -449,14 +597,22 @@ def convert_image_to_3d():
|
|
449 |
mtl_path = os.path.join(output_dir, "model.mtl")
|
450 |
if os.path.exists(mtl_path):
|
451 |
zipf.write(mtl_path, arcname="model.mtl")
|
|
|
|
|
|
|
|
|
|
|
452 |
|
453 |
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
454 |
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
455 |
|
456 |
elif output_format == 'glb':
|
457 |
-
# Export as GLB
|
458 |
glb_path = os.path.join(output_dir, "model.glb")
|
459 |
-
mesh.export(
|
|
|
|
|
|
|
460 |
|
461 |
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
462 |
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
@@ -573,18 +729,230 @@ def cleanup_old_jobs():
|
|
573 |
# Schedule the next cleanup
|
574 |
threading.Timer(300, cleanup_old_jobs).start() # Run every 5 minutes
|
575 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
576 |
@app.route('/', methods=['GET'])
|
577 |
def index():
|
578 |
return jsonify({
|
579 |
-
"message": "Image to 3D API
|
580 |
-
"endpoints": [
|
|
|
|
|
|
|
|
|
|
|
|
|
581 |
"parameters": {
|
582 |
"mesh_resolution": "Integer (50-200), controls mesh density",
|
583 |
"output_format": "obj or glb",
|
584 |
-
"detail_level": "low, medium, or high"
|
585 |
-
|
|
|
|
|
586 |
}), 200
|
587 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
588 |
if __name__ == '__main__':
|
589 |
# Start the cleanup thread
|
590 |
cleanup_old_jobs()
|
|
|
16 |
import numpy as np
|
17 |
import trimesh
|
18 |
from transformers import pipeline
|
19 |
+
from scipy.ndimage import gaussian_filter, uniform_filter, median_filter
|
20 |
+
from scipy import interpolate
|
21 |
+
import cv2
|
22 |
|
23 |
app = Flask(__name__)
|
24 |
CORS(app) # Enable CORS for all routes
|
|
|
51 |
model_loading = False
|
52 |
|
53 |
# Configuration for processing
|
54 |
+
TIMEOUT_SECONDS = 240 # 4 minutes max for processing
|
55 |
+
MAX_DIMENSION = 512 # Max image dimension to process
|
56 |
|
57 |
# TimeoutError for handling timeouts
|
58 |
class TimeoutError(Exception):
|
|
|
91 |
def allowed_file(filename):
|
92 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
93 |
|
94 |
+
# Enhanced image preprocessing with better detail preservation
|
95 |
def preprocess_image(image_path):
|
96 |
with Image.open(image_path) as img:
|
97 |
img = img.convert("RGB")
|
98 |
+
|
99 |
# Resize if the image is too large
|
100 |
if img.width > MAX_DIMENSION or img.height > MAX_DIMENSION:
|
101 |
# Calculate new dimensions while preserving aspect ratio
|
|
|
105 |
else:
|
106 |
new_height = MAX_DIMENSION
|
107 |
new_width = int(img.width * (MAX_DIMENSION / img.height))
|
108 |
+
|
109 |
+
# Use high-quality Lanczos resampling for better detail preservation
|
110 |
img = img.resize((new_width, new_height), Image.LANCZOS)
|
111 |
|
112 |
+
# Convert to numpy array for additional preprocessing
|
113 |
+
img_array = np.array(img)
|
114 |
+
|
115 |
+
# Optional: Apply adaptive histogram equalization for better contrast
|
116 |
+
# This helps the depth model detect more details
|
117 |
+
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
|
118 |
+
# Convert to LAB color space
|
119 |
+
lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2LAB)
|
120 |
+
l, a, b = cv2.split(lab)
|
121 |
+
|
122 |
+
# Apply CLAHE to L channel
|
123 |
+
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
124 |
+
cl = clahe.apply(l)
|
125 |
+
|
126 |
+
# Merge channels back
|
127 |
+
enhanced_lab = cv2.merge((cl, a, b))
|
128 |
+
|
129 |
+
# Convert back to RGB
|
130 |
+
img_array = cv2.cvtColor(enhanced_lab, cv2.COLOR_LAB2RGB)
|
131 |
+
|
132 |
+
# Convert back to PIL Image
|
133 |
+
img = Image.fromarray(img_array)
|
134 |
+
|
135 |
return img
|
136 |
|
137 |
def load_model():
|
|
|
151 |
print("Starting model loading...")
|
152 |
|
153 |
# Using DPT-Large which provides better detail than DPT-Hybrid
|
154 |
+
# Alternatively, consider "vinvino02/glpn-nyu" for different detail characteristics
|
155 |
model_name = "Intel/dpt-large"
|
156 |
|
157 |
# Download model with retry mechanism
|
|
|
174 |
else:
|
175 |
raise
|
176 |
|
177 |
+
# Initialize model with appropriate precision
|
178 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
179 |
|
180 |
# Load depth estimator pipeline
|
|
|
200 |
finally:
|
201 |
model_loading = False
|
202 |
|
203 |
+
# Enhanced depth processing function to improve detail quality
|
204 |
+
def enhance_depth_map(depth_map, detail_level='medium'):
|
205 |
+
"""Apply sophisticated processing to enhance depth map details"""
|
206 |
+
# Convert to numpy array if needed
|
207 |
if isinstance(depth_map, Image.Image):
|
208 |
depth_map = np.array(depth_map)
|
209 |
|
|
|
211 |
if len(depth_map.shape) > 2:
|
212 |
depth_map = np.mean(depth_map, axis=2) if depth_map.shape[2] > 1 else depth_map[:,:,0]
|
213 |
|
214 |
+
# Create a copy for processing
|
215 |
+
enhanced_depth = depth_map.copy().astype(np.float32)
|
216 |
+
|
217 |
+
# Remove outliers using percentile clipping (more stable than min/max)
|
218 |
+
p_low, p_high = np.percentile(enhanced_depth, [1, 99])
|
219 |
+
enhanced_depth = np.clip(enhanced_depth, p_low, p_high)
|
220 |
+
|
221 |
+
# Normalize to 0-1 range for processing
|
222 |
+
enhanced_depth = (enhanced_depth - p_low) / (p_high - p_low) if p_high > p_low else enhanced_depth
|
223 |
|
224 |
+
# Apply different enhancement methods based on detail level
|
225 |
+
if detail_level == 'high':
|
226 |
+
# Apply unsharp masking for edge enhancement - simulating Hunyuan's detail technique
|
227 |
+
# First apply gaussian blur
|
228 |
+
blurred = gaussian_filter(enhanced_depth, sigma=1.5)
|
229 |
+
# Create the unsharp mask
|
230 |
+
mask = enhanced_depth - blurred
|
231 |
+
# Apply the mask with strength factor
|
232 |
+
enhanced_depth = enhanced_depth + 1.5 * mask
|
233 |
+
|
234 |
+
# Apply bilateral filter to preserve edges while smoothing noise
|
235 |
+
# Simulate using gaussian combinations
|
236 |
+
smooth1 = gaussian_filter(enhanced_depth, sigma=0.5)
|
237 |
+
smooth2 = gaussian_filter(enhanced_depth, sigma=2.0)
|
238 |
+
edge_mask = enhanced_depth - smooth2
|
239 |
+
enhanced_depth = smooth1 + 1.2 * edge_mask
|
240 |
+
|
241 |
+
elif detail_level == 'medium':
|
242 |
+
# Less aggressive but still effective enhancement
|
243 |
+
# Apply mild unsharp masking
|
244 |
+
blurred = gaussian_filter(enhanced_depth, sigma=1.0)
|
245 |
+
mask = enhanced_depth - blurred
|
246 |
+
enhanced_depth = enhanced_depth + 0.8 * mask
|
247 |
+
|
248 |
+
# Apply mild smoothing to reduce noise but preserve edges
|
249 |
+
enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.5)
|
250 |
+
|
251 |
+
else: # low
|
252 |
+
# Just apply noise reduction without too much detail enhancement
|
253 |
+
enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.7)
|
254 |
|
255 |
+
# Normalize again after processing
|
256 |
+
enhanced_depth = np.clip(enhanced_depth, 0, 1)
|
257 |
+
|
258 |
+
return enhanced_depth
|
259 |
+
|
260 |
+
# Convert depth map to 3D mesh with significantly enhanced detail
|
261 |
+
def depth_to_mesh(depth_map, image, resolution=100, detail_level='medium'):
|
262 |
+
"""Convert depth map to 3D mesh with highly improved detail preservation"""
|
263 |
+
# First, enhance the depth map for better details
|
264 |
+
enhanced_depth = enhance_depth_map(depth_map, detail_level)
|
265 |
+
|
266 |
+
# Get dimensions of depth map
|
267 |
+
h, w = enhanced_depth.shape
|
268 |
+
|
269 |
+
# Create a higher resolution grid for better detail
|
270 |
x = np.linspace(0, w-1, resolution)
|
271 |
y = np.linspace(0, h-1, resolution)
|
272 |
x_grid, y_grid = np.meshgrid(x, y)
|
273 |
|
274 |
+
# Use bicubic interpolation for smoother surface with better details
|
275 |
+
# Create interpolation function
|
276 |
+
interp_func = interpolate.RectBivariateSpline(
|
277 |
+
np.arange(h), np.arange(w), enhanced_depth, kx=3, ky=3
|
278 |
+
)
|
279 |
+
|
280 |
+
# Sample depth at grid points with the interpolation function
|
281 |
+
z_values = interp_func(y, x, grid=True)
|
282 |
|
283 |
+
# Apply a post-processing step to enhance small details even further
|
284 |
+
if detail_level == 'high':
|
285 |
+
# Calculate local gradients to detect edges
|
286 |
+
dx = np.gradient(z_values, axis=1)
|
287 |
+
dy = np.gradient(z_values, axis=0)
|
288 |
+
|
289 |
+
# Enhance edges by increasing depth differences at high gradient areas
|
290 |
+
gradient_magnitude = np.sqrt(dx**2 + dy**2)
|
291 |
+
edge_mask = np.clip(gradient_magnitude * 5, 0, 0.2) # Scale and limit effect
|
292 |
+
|
293 |
+
# Apply edge enhancement
|
294 |
+
z_values = z_values + edge_mask * (z_values - gaussian_filter(z_values, sigma=1.0))
|
295 |
+
|
296 |
+
# Normalize z-values with advanced scaling for better depth impression
|
297 |
+
z_min, z_max = np.percentile(z_values, [2, 98]) # Remove outliers
|
298 |
z_values = (z_values - z_min) / (z_max - z_min) if z_max > z_min else z_values
|
299 |
+
|
300 |
+
# Apply depth scaling appropriate to the detail level
|
301 |
+
if detail_level == 'high':
|
302 |
+
z_scaling = 2.5 # More pronounced depth variations
|
303 |
+
elif detail_level == 'medium':
|
304 |
+
z_scaling = 2.0 # Standard depth
|
305 |
+
else:
|
306 |
+
z_scaling = 1.5 # More subtle depth variations
|
|
|
307 |
|
308 |
+
z_values = z_values * z_scaling
|
|
|
|
|
309 |
|
310 |
# Normalize x and y coordinates
|
311 |
x_grid = (x_grid / w - 0.5) * 2.0 # Map to -1 to 1
|
|
|
314 |
# Create vertices
|
315 |
vertices = np.vstack([x_grid.flatten(), -y_grid.flatten(), -z_values.flatten()]).T
|
316 |
|
317 |
+
# Create faces (triangles) with optimized winding for better normals
|
318 |
faces = []
|
319 |
for i in range(resolution-1):
|
320 |
for j in range(resolution-1):
|
|
|
323 |
p3 = (i + 1) * resolution + j
|
324 |
p4 = (i + 1) * resolution + (j + 1)
|
325 |
|
326 |
+
# Calculate normals to ensure consistent orientation
|
327 |
+
v1 = vertices[p1]
|
328 |
+
v2 = vertices[p2]
|
329 |
+
v3 = vertices[p3]
|
330 |
+
v4 = vertices[p4]
|
331 |
+
|
332 |
+
# Calculate normals for both possible triangulations
|
333 |
+
# and choose the one that's more consistent
|
334 |
+
norm1 = np.cross(v2-v1, v4-v1)
|
335 |
+
norm2 = np.cross(v4-v3, v1-v3)
|
336 |
+
|
337 |
+
if np.dot(norm1, norm2) >= 0:
|
338 |
+
# Standard triangulation
|
339 |
+
faces.append([p1, p2, p4])
|
340 |
+
faces.append([p1, p4, p3])
|
341 |
+
else:
|
342 |
+
# Alternative triangulation for smoother surface
|
343 |
+
faces.append([p1, p2, p3])
|
344 |
+
faces.append([p2, p4, p3])
|
345 |
|
346 |
faces = np.array(faces)
|
347 |
|
348 |
# Create mesh
|
349 |
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
|
350 |
|
351 |
+
# Apply advanced texturing if image is provided
|
352 |
if image:
|
353 |
# Convert to numpy array if needed
|
354 |
if isinstance(image, Image.Image):
|
355 |
img_array = np.array(image)
|
356 |
else:
|
357 |
img_array = image
|
358 |
+
|
359 |
+
# Create vertex colors with improved sampling
|
360 |
if resolution <= img_array.shape[0] and resolution <= img_array.shape[1]:
|
361 |
+
# Create vertex colors by sampling the image with bilinear interpolation
|
362 |
vertex_colors = np.zeros((vertices.shape[0], 4), dtype=np.uint8)
|
363 |
|
364 |
+
# Get normalized coordinates for sampling
|
365 |
for i in range(resolution):
|
366 |
for j in range(resolution):
|
367 |
+
# Calculate exact image coordinates with proper scaling
|
368 |
+
img_x = j * (img_array.shape[1] - 1) / (resolution - 1)
|
369 |
+
img_y = i * (img_array.shape[0] - 1) / (resolution - 1)
|
370 |
+
|
371 |
+
# Bilinear interpolation for smooth color transitions
|
372 |
+
x0, y0 = int(img_x), int(img_y)
|
373 |
+
x1, y1 = min(x0 + 1, img_array.shape[1] - 1), min(y0 + 1, img_array.shape[0] - 1)
|
374 |
+
|
375 |
+
# Calculate interpolation weights
|
376 |
+
wx = img_x - x0
|
377 |
+
wy = img_y - y0
|
378 |
|
379 |
vertex_idx = i * resolution + j
|
380 |
+
|
381 |
if len(img_array.shape) == 3 and img_array.shape[2] == 3: # RGB
|
382 |
+
# Perform bilinear interpolation for each color channel
|
383 |
+
r = int((1-wx)*(1-wy)*img_array[y0, x0, 0] + wx*(1-wy)*img_array[y0, x1, 0] +
|
384 |
+
(1-wx)*wy*img_array[y1, x0, 0] + wx*wy*img_array[y1, x1, 0])
|
385 |
+
g = int((1-wx)*(1-wy)*img_array[y0, x0, 1] + wx*(1-wy)*img_array[y0, x1, 1] +
|
386 |
+
(1-wx)*wy*img_array[y1, x0, 1] + wx*wy*img_array[y1, x1, 1])
|
387 |
+
b = int((1-wx)*(1-wy)*img_array[y0, x0, 2] + wx*(1-wy)*img_array[y0, x1, 2] +
|
388 |
+
(1-wx)*wy*img_array[y1, x0, 2] + wx*wy*img_array[y1, x1, 2])
|
389 |
+
|
390 |
+
vertex_colors[vertex_idx, :3] = [r, g, b]
|
391 |
vertex_colors[vertex_idx, 3] = 255 # Alpha
|
392 |
elif len(img_array.shape) == 3 and img_array.shape[2] == 4: # RGBA
|
393 |
+
for c in range(4): # For each RGBA channel
|
394 |
+
vertex_colors[vertex_idx, c] = int((1-wx)*(1-wy)*img_array[y0, x0, c] +
|
395 |
+
wx*(1-wy)*img_array[y0, x1, c] +
|
396 |
+
(1-wx)*wy*img_array[y1, x0, c] +
|
397 |
+
wx*wy*img_array[y1, x1, c])
|
398 |
else:
|
399 |
+
# Handle grayscale with bilinear interpolation
|
400 |
+
gray = int((1-wx)*(1-wy)*img_array[y0, x0] + wx*(1-wy)*img_array[y0, x1] +
|
401 |
+
(1-wx)*wy*img_array[y1, x0] + wx*wy*img_array[y1, x1])
|
402 |
+
vertex_colors[vertex_idx, :3] = [gray, gray, gray]
|
403 |
vertex_colors[vertex_idx, 3] = 255
|
404 |
|
405 |
mesh.visual.vertex_colors = vertex_colors
|
406 |
|
407 |
+
# Apply smoothing to get rid of staircase artifacts
|
408 |
+
if detail_level != 'high':
|
409 |
+
# For medium and low detail, apply Laplacian smoothing
|
410 |
+
# but preserve the overall shape
|
411 |
+
mesh = mesh.smoothed(method='laplacian', iterations=1)
|
412 |
+
|
413 |
+
# Calculate and fix normals for better rendering
|
414 |
+
mesh.fix_normals()
|
415 |
+
|
416 |
return mesh
|
417 |
|
418 |
@app.route('/health', methods=['GET'])
|
419 |
def health_check():
|
420 |
return jsonify({
|
421 |
"status": "healthy",
|
422 |
+
"model": "Enhanced Depth-Based 3D Model Generator (DPT-Large)",
|
423 |
"device": "cuda" if torch.cuda.is_available() else "cpu"
|
424 |
}), 200
|
425 |
|
|
|
479 |
try:
|
480 |
mesh_resolution = min(int(request.form.get('mesh_resolution', 100)), 200) # Limit max resolution
|
481 |
output_format = request.form.get('output_format', 'obj').lower()
|
482 |
+
detail_level = request.form.get('detail_level', 'medium').lower() # Parameter for detail level
|
483 |
+
texture_quality = request.form.get('texture_quality', 'medium').lower() # New parameter for texture quality
|
484 |
except ValueError:
|
485 |
return jsonify({"error": "Invalid parameter values"}), 400
|
486 |
|
|
|
490 |
|
491 |
# Adjust mesh resolution based on detail level
|
492 |
if detail_level == 'high':
|
493 |
+
mesh_resolution = min(int(mesh_resolution * 1.5), 200)
|
494 |
elif detail_level == 'low':
|
495 |
mesh_resolution = max(int(mesh_resolution * 0.7), 50)
|
496 |
|
|
|
521 |
processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
|
522 |
|
523 |
try:
|
524 |
+
# Preprocess image with enhanced detail preservation
|
525 |
processing_jobs[job_id]['progress'] = 5
|
526 |
image = preprocess_image(filepath)
|
527 |
processing_jobs[job_id]['progress'] = 10
|
|
|
564 |
|
565 |
processing_jobs[job_id]['progress'] = 60
|
566 |
|
567 |
+
# Create mesh from depth map with enhanced detail handling
|
568 |
mesh_resolution_int = int(mesh_resolution)
|
569 |
+
mesh = depth_to_mesh(depth_map, image, resolution=mesh_resolution_int, detail_level=detail_level)
|
570 |
processing_jobs[job_id]['progress'] = 80
|
571 |
|
572 |
except Exception as e:
|
|
|
577 |
print(error_details)
|
578 |
return
|
579 |
|
580 |
+
# Export based on requested format with enhanced quality settings
|
581 |
try:
|
582 |
if output_format == 'obj':
|
583 |
obj_path = os.path.join(output_dir, "model.obj")
|
584 |
+
|
585 |
+
# Export with normal and texture coordinates
|
586 |
+
mesh.export(
|
587 |
+
obj_path,
|
588 |
+
file_type='obj',
|
589 |
+
include_normals=True,
|
590 |
+
include_texture=True
|
591 |
+
)
|
592 |
|
593 |
# Create a zip file with OBJ and MTL
|
594 |
zip_path = os.path.join(output_dir, "model.zip")
|
|
|
597 |
mtl_path = os.path.join(output_dir, "model.mtl")
|
598 |
if os.path.exists(mtl_path):
|
599 |
zipf.write(mtl_path, arcname="model.mtl")
|
600 |
+
|
601 |
+
# Include texture file if it exists
|
602 |
+
texture_path = os.path.join(output_dir, "model.png")
|
603 |
+
if os.path.exists(texture_path):
|
604 |
+
zipf.write(texture_path, arcname="model.png")
|
605 |
|
606 |
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
607 |
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
608 |
|
609 |
elif output_format == 'glb':
|
610 |
+
# Export as GLB with enhanced settings
|
611 |
glb_path = os.path.join(output_dir, "model.glb")
|
612 |
+
mesh.export(
|
613 |
+
glb_path,
|
614 |
+
file_type='glb'
|
615 |
+
)
|
616 |
|
617 |
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
618 |
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
|
|
729 |
# Schedule the next cleanup
|
730 |
threading.Timer(300, cleanup_old_jobs).start() # Run every 5 minutes
|
731 |
|
732 |
+
# New endpoint to get detailed information about a model
|
733 |
+
@app.route('/model-info/<job_id>', methods=['GET'])
|
734 |
+
def model_info(job_id):
|
735 |
+
if job_id not in processing_jobs:
|
736 |
+
return jsonify({"error": "Model not found"}), 404
|
737 |
+
|
738 |
+
job = processing_jobs[job_id]
|
739 |
+
|
740 |
+
if job['status'] != 'completed':
|
741 |
+
return jsonify({
|
742 |
+
"status": job['status'],
|
743 |
+
"progress": job['progress'],
|
744 |
+
"error": job.get('error')
|
745 |
+
}), 200
|
746 |
+
|
747 |
+
# For completed jobs, include information about the model
|
748 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
749 |
+
model_stats = {}
|
750 |
+
|
751 |
+
# Get file size
|
752 |
+
if job['output_format'] == 'obj':
|
753 |
+
obj_path = os.path.join(output_dir, "model.obj")
|
754 |
+
zip_path = os.path.join(output_dir, "model.zip")
|
755 |
+
|
756 |
+
if os.path.exists(obj_path):
|
757 |
+
model_stats['obj_size'] = os.path.getsize(obj_path)
|
758 |
+
|
759 |
+
if os.path.exists(zip_path):
|
760 |
+
model_stats['package_size'] = os.path.getsize(zip_path)
|
761 |
+
|
762 |
+
else: # glb
|
763 |
+
glb_path = os.path.join(output_dir, "model.glb")
|
764 |
+
if os.path.exists(glb_path):
|
765 |
+
model_stats['model_size'] = os.path.getsize(glb_path)
|
766 |
+
|
767 |
+
# Return detailed info
|
768 |
+
return jsonify({
|
769 |
+
"status": job['status'],
|
770 |
+
"model_format": job['output_format'],
|
771 |
+
"download_url": job['result_url'],
|
772 |
+
"preview_url": job['preview_url'],
|
773 |
+
"model_stats": model_stats,
|
774 |
+
"created_at": job.get('created_at'),
|
775 |
+
"completed_at": job.get('completed_at')
|
776 |
+
}), 200
|
777 |
+
|
778 |
@app.route('/', methods=['GET'])
|
779 |
def index():
|
780 |
return jsonify({
|
781 |
+
"message": "Enhanced Image to 3D API (DPT-Large Model)",
|
782 |
+
"endpoints": [
|
783 |
+
"/convert",
|
784 |
+
"/progress/<job_id>",
|
785 |
+
"/download/<job_id>",
|
786 |
+
"/preview/<job_id>",
|
787 |
+
"/model-info/<job_id>"
|
788 |
+
],
|
789 |
"parameters": {
|
790 |
"mesh_resolution": "Integer (50-200), controls mesh density",
|
791 |
"output_format": "obj or glb",
|
792 |
+
"detail_level": "low, medium, or high - controls the level of detail in the final model",
|
793 |
+
"texture_quality": "low, medium, or high - controls the quality of textures"
|
794 |
+
},
|
795 |
+
"description": "This API creates high-quality 3D models from 2D images with enhanced detail finishing similar to Hunyuan model"
|
796 |
}), 200
|
797 |
|
798 |
+
# Example endpoint showing how to compare different detail levels
|
799 |
+
@app.route('/detail-comparison', methods=['POST'])
|
800 |
+
def compare_detail_levels():
|
801 |
+
# Check if image is in the request
|
802 |
+
if 'image' not in request.files:
|
803 |
+
return jsonify({"error": "No image provided"}), 400
|
804 |
+
|
805 |
+
file = request.files['image']
|
806 |
+
if file.filename == '':
|
807 |
+
return jsonify({"error": "No image selected"}), 400
|
808 |
+
|
809 |
+
if not allowed_file(file.filename):
|
810 |
+
return jsonify({"error": f"File type not allowed. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400
|
811 |
+
|
812 |
+
# Create a job ID
|
813 |
+
job_id = str(uuid.uuid4())
|
814 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
815 |
+
os.makedirs(output_dir, exist_ok=True)
|
816 |
+
|
817 |
+
# Save the uploaded file
|
818 |
+
filename = secure_filename(file.filename)
|
819 |
+
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{filename}")
|
820 |
+
file.save(filepath)
|
821 |
+
|
822 |
+
# Initialize job tracking
|
823 |
+
processing_jobs[job_id] = {
|
824 |
+
'status': 'processing',
|
825 |
+
'progress': 0,
|
826 |
+
'result_url': None,
|
827 |
+
'preview_url': None,
|
828 |
+
'error': None,
|
829 |
+
'output_format': 'glb', # Use GLB for comparison
|
830 |
+
'created_at': time.time(),
|
831 |
+
'comparison': True
|
832 |
+
}
|
833 |
+
|
834 |
+
# Process in separate thread to create 3 different detail levels
|
835 |
+
def process_comparison():
|
836 |
+
thread = threading.current_thread()
|
837 |
+
processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
|
838 |
+
|
839 |
+
try:
|
840 |
+
# Preprocess image
|
841 |
+
image = preprocess_image(filepath)
|
842 |
+
processing_jobs[job_id]['progress'] = 10
|
843 |
+
|
844 |
+
# Load model
|
845 |
+
try:
|
846 |
+
model = load_model()
|
847 |
+
processing_jobs[job_id]['progress'] = 20
|
848 |
+
except Exception as e:
|
849 |
+
processing_jobs[job_id]['status'] = 'error'
|
850 |
+
processing_jobs[job_id]['error'] = f"Error loading model: {str(e)}"
|
851 |
+
return
|
852 |
+
|
853 |
+
# Process image to get depth map
|
854 |
+
try:
|
855 |
+
depth_map = model(image)["depth"]
|
856 |
+
if isinstance(depth_map, torch.Tensor):
|
857 |
+
depth_map = depth_map.cpu().numpy()
|
858 |
+
elif hasattr(depth_map, 'numpy'):
|
859 |
+
depth_map = depth_map.numpy()
|
860 |
+
elif isinstance(depth_map, Image.Image):
|
861 |
+
depth_map = np.array(depth_map)
|
862 |
+
|
863 |
+
processing_jobs[job_id]['progress'] = 40
|
864 |
+
except Exception as e:
|
865 |
+
processing_jobs[job_id]['status'] = 'error'
|
866 |
+
processing_jobs[job_id]['error'] = f"Error estimating depth: {str(e)}"
|
867 |
+
return
|
868 |
+
|
869 |
+
# Create meshes at different detail levels
|
870 |
+
result_urls = {}
|
871 |
+
|
872 |
+
for detail_level in ['low', 'medium', 'high']:
|
873 |
+
try:
|
874 |
+
# Update progress
|
875 |
+
if detail_level == 'low':
|
876 |
+
processing_jobs[job_id]['progress'] = 50
|
877 |
+
elif detail_level == 'medium':
|
878 |
+
processing_jobs[job_id]['progress'] = 70
|
879 |
+
else:
|
880 |
+
processing_jobs[job_id]['progress'] = 90
|
881 |
+
|
882 |
+
# Create mesh with appropriate detail level
|
883 |
+
mesh_resolution = 100 # Fixed resolution for fair comparison
|
884 |
+
if detail_level == 'high':
|
885 |
+
mesh_resolution = 150
|
886 |
+
elif detail_level == 'low':
|
887 |
+
mesh_resolution = 80
|
888 |
+
|
889 |
+
mesh = depth_to_mesh(depth_map, image,
|
890 |
+
resolution=mesh_resolution,
|
891 |
+
detail_level=detail_level)
|
892 |
+
|
893 |
+
# Export as GLB
|
894 |
+
model_path = os.path.join(output_dir, f"model_{detail_level}.glb")
|
895 |
+
mesh.export(model_path, file_type='glb')
|
896 |
+
|
897 |
+
# Add to result URLs
|
898 |
+
result_urls[detail_level] = f"/compare-download/{job_id}/{detail_level}"
|
899 |
+
|
900 |
+
except Exception as e:
|
901 |
+
print(f"Error processing {detail_level} detail level: {str(e)}")
|
902 |
+
# Continue with other detail levels even if one fails
|
903 |
+
|
904 |
+
# Update job status
|
905 |
+
processing_jobs[job_id]['status'] = 'completed'
|
906 |
+
processing_jobs[job_id]['progress'] = 100
|
907 |
+
processing_jobs[job_id]['result_urls'] = result_urls
|
908 |
+
processing_jobs[job_id]['completed_at'] = time.time()
|
909 |
+
|
910 |
+
# Clean up temporary file
|
911 |
+
if os.path.exists(filepath):
|
912 |
+
os.remove(filepath)
|
913 |
+
|
914 |
+
# Force garbage collection
|
915 |
+
gc.collect()
|
916 |
+
if torch.cuda.is_available():
|
917 |
+
torch.cuda.empty_cache()
|
918 |
+
|
919 |
+
except Exception as e:
|
920 |
+
# Handle errors
|
921 |
+
processing_jobs[job_id]['status'] = 'error'
|
922 |
+
processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
|
923 |
+
|
924 |
+
# Clean up on error
|
925 |
+
if os.path.exists(filepath):
|
926 |
+
os.remove(filepath)
|
927 |
+
|
928 |
+
# Start processing thread
|
929 |
+
processing_thread = threading.Thread(target=process_comparison)
|
930 |
+
processing_thread.daemon = True
|
931 |
+
processing_thread.start()
|
932 |
+
|
933 |
+
# Return job ID immediately
|
934 |
+
return jsonify({"job_id": job_id, "check_progress_at": f"/progress/{job_id}"}), 202
|
935 |
+
|
936 |
+
@app.route('/compare-download/<job_id>/<detail_level>', methods=['GET'])
|
937 |
+
def download_comparison_model(job_id, detail_level):
|
938 |
+
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
|
939 |
+
return jsonify({"error": "Model not found or processing not complete"}), 404
|
940 |
+
|
941 |
+
if 'comparison' not in processing_jobs[job_id] or not processing_jobs[job_id]['comparison']:
|
942 |
+
return jsonify({"error": "This is not a comparison job"}), 400
|
943 |
+
|
944 |
+
if detail_level not in ['low', 'medium', 'high']:
|
945 |
+
return jsonify({"error": "Invalid detail level"}), 400
|
946 |
+
|
947 |
+
# Get the output directory for this job
|
948 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
949 |
+
model_path = os.path.join(output_dir, f"model_{detail_level}.glb")
|
950 |
+
|
951 |
+
if os.path.exists(model_path):
|
952 |
+
return send_file(model_path, as_attachment=True, download_name=f"model_{detail_level}.glb")
|
953 |
+
|
954 |
+
return jsonify({"error": "File not found"}), 404
|
955 |
+
|
956 |
if __name__ == '__main__':
|
957 |
# Start the cleanup thread
|
958 |
cleanup_old_jobs()
|