Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -16,204 +16,1051 @@ from flask_cors import CORS
|
|
16 |
import numpy as np
|
17 |
import trimesh
|
18 |
from transformers import pipeline
|
19 |
-
from
|
20 |
-
import
|
21 |
-
|
22 |
|
23 |
app = Flask(__name__)
|
24 |
-
CORS(app)
|
25 |
|
26 |
-
#
|
27 |
UPLOAD_FOLDER = '/tmp/uploads'
|
28 |
RESULTS_FOLDER = '/tmp/results'
|
29 |
CACHE_DIR = '/tmp/huggingface'
|
30 |
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
|
31 |
-
VIEW_ANGLES = [(30, 0), (30, 90), (30, 180), (30, 270)] # (elevation, azimuth)
|
32 |
|
|
|
33 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
34 |
os.makedirs(RESULTS_FOLDER, exist_ok=True)
|
35 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
36 |
|
37 |
-
#
|
38 |
os.environ['HF_HOME'] = CACHE_DIR
|
39 |
os.environ['TRANSFORMERS_CACHE'] = os.path.join(CACHE_DIR, 'transformers')
|
|
|
40 |
|
41 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
42 |
-
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
|
43 |
|
44 |
-
#
|
45 |
-
|
|
|
|
|
46 |
depth_estimator = None
|
47 |
model_loaded = False
|
48 |
model_loading = False
|
49 |
|
50 |
-
|
|
|
|
|
51 |
|
|
|
52 |
class TimeoutError(Exception):
|
53 |
pass
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
def allowed_file(filename):
|
56 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
def
|
64 |
-
global
|
|
|
65 |
if model_loaded:
|
66 |
-
return
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
try:
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
depth_estimator = pipeline(
|
78 |
-
"depth-estimation",
|
79 |
-
model=
|
|
|
80 |
cache_dir=CACHE_DIR
|
81 |
)
|
82 |
-
|
|
|
|
|
|
|
|
|
83 |
model_loaded = True
|
84 |
-
print("
|
|
|
|
|
85 |
except Exception as e:
|
86 |
-
print(f"Error loading
|
|
|
87 |
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
return mesh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
@app.route('/convert', methods=['POST'])
|
127 |
def convert_image_to_3d():
|
|
|
128 |
if 'image' not in request.files:
|
129 |
return jsonify({"error": "No image provided"}), 400
|
130 |
|
131 |
file = request.files['image']
|
|
|
|
|
|
|
132 |
if not allowed_file(file.filename):
|
133 |
-
return jsonify({"error": "
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
job_id = str(uuid.uuid4())
|
136 |
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
137 |
os.makedirs(output_dir, exist_ok=True)
|
138 |
-
|
|
|
139 |
filename = secure_filename(file.filename)
|
140 |
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{filename}")
|
141 |
file.save(filepath)
|
142 |
-
|
|
|
143 |
processing_jobs[job_id] = {
|
144 |
'status': 'processing',
|
145 |
'progress': 0,
|
146 |
'result_url': None,
|
147 |
-
'
|
|
|
|
|
|
|
148 |
}
|
149 |
-
|
|
|
150 |
def process_image():
|
|
|
|
|
|
|
151 |
try:
|
152 |
-
# Preprocess
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
mesh.export(obj_path)
|
182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
processing_jobs[job_id]['status'] = 'completed'
|
184 |
-
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
185 |
processing_jobs[job_id]['progress'] = 100
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
except Exception as e:
|
|
|
188 |
processing_jobs[job_id]['status'] = 'error'
|
189 |
-
processing_jobs[job_id]['error'] = str(e)
|
190 |
-
|
|
|
191 |
if os.path.exists(filepath):
|
192 |
os.remove(filepath)
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
|
|
199 |
|
200 |
-
@app.route('/download/<job_id>')
|
201 |
-
def
|
202 |
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
|
203 |
-
return jsonify({"error": "
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
216 |
|
217 |
if __name__ == '__main__':
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
16 |
import numpy as np
|
17 |
import trimesh
|
18 |
from transformers import pipeline
|
19 |
+
from scipy.ndimage import gaussian_filter, uniform_filter, median_filter
|
20 |
+
from scipy import interpolate
|
21 |
+
import cv2
|
22 |
|
23 |
app = Flask(__name__)
|
24 |
+
CORS(app) # Enable CORS for all routes
|
25 |
|
26 |
+
# Configure directories
|
27 |
UPLOAD_FOLDER = '/tmp/uploads'
|
28 |
RESULTS_FOLDER = '/tmp/results'
|
29 |
CACHE_DIR = '/tmp/huggingface'
|
30 |
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
|
|
|
31 |
|
32 |
+
# Create necessary directories
|
33 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
34 |
os.makedirs(RESULTS_FOLDER, exist_ok=True)
|
35 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
36 |
|
37 |
+
# Set Hugging Face cache environment variables
|
38 |
os.environ['HF_HOME'] = CACHE_DIR
|
39 |
os.environ['TRANSFORMERS_CACHE'] = os.path.join(CACHE_DIR, 'transformers')
|
40 |
+
os.environ['HF_DATASETS_CACHE'] = os.path.join(CACHE_DIR, 'datasets')
|
41 |
|
42 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
43 |
+
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max
|
44 |
|
45 |
+
# Job tracking dictionary
|
46 |
+
processing_jobs = {}
|
47 |
+
|
48 |
+
# Global model variables
|
49 |
depth_estimator = None
|
50 |
model_loaded = False
|
51 |
model_loading = False
|
52 |
|
53 |
+
# Configuration for processing
|
54 |
+
TIMEOUT_SECONDS = 240 # 4 minutes max for processing
|
55 |
+
MAX_DIMENSION = 512 # Max image dimension to process
|
56 |
|
57 |
+
# TimeoutError for handling timeouts
|
58 |
class TimeoutError(Exception):
|
59 |
pass
|
60 |
|
61 |
+
# Thread-safe timeout implementation
|
62 |
+
def process_with_timeout(function, args, timeout):
|
63 |
+
result = [None]
|
64 |
+
error = [None]
|
65 |
+
completed = [False]
|
66 |
+
|
67 |
+
def target():
|
68 |
+
try:
|
69 |
+
result[0] = function(*args)
|
70 |
+
completed[0] = True
|
71 |
+
except Exception as e:
|
72 |
+
error[0] = e
|
73 |
+
|
74 |
+
thread = threading.Thread(target=target)
|
75 |
+
thread.daemon = True
|
76 |
+
thread.start()
|
77 |
+
|
78 |
+
thread.join(timeout)
|
79 |
+
|
80 |
+
if not completed[0]:
|
81 |
+
if thread.is_alive():
|
82 |
+
return None, TimeoutError(f"Processing timed out after {timeout} seconds")
|
83 |
+
elif error[0]:
|
84 |
+
return None, error[0]
|
85 |
+
|
86 |
+
if error[0]:
|
87 |
+
return None, error[0]
|
88 |
+
|
89 |
+
return result[0], None
|
90 |
+
|
91 |
def allowed_file(filename):
|
92 |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
93 |
|
94 |
+
# Enhanced image preprocessing with better detail preservation
|
95 |
+
def preprocess_image(image_path):
|
96 |
+
with Image.open(image_path) as img:
|
97 |
+
# Keep alpha channel if present
|
98 |
+
has_alpha = img.mode == 'RGBA'
|
99 |
+
|
100 |
+
# Convert to proper format while preserving alpha
|
101 |
+
if has_alpha:
|
102 |
+
img = img.convert("RGBA")
|
103 |
+
else:
|
104 |
+
img = img.convert("RGB")
|
105 |
+
|
106 |
+
# Resize if the image is too large
|
107 |
+
if img.width > MAX_DIMENSION or img.height > MAX_DIMENSION:
|
108 |
+
# Calculate new dimensions while preserving aspect ratio
|
109 |
+
if img.width > img.height:
|
110 |
+
new_width = MAX_DIMENSION
|
111 |
+
new_height = int(img.height * (MAX_DIMENSION / img.width))
|
112 |
+
else:
|
113 |
+
new_height = MAX_DIMENSION
|
114 |
+
new_width = int(img.width * (MAX_DIMENSION / img.height))
|
115 |
+
|
116 |
+
# Use high-quality Lanczos resampling for better detail preservation
|
117 |
+
img = img.resize((new_width, new_height), Image.LANCZOS)
|
118 |
+
|
119 |
+
# Convert to numpy array for additional preprocessing
|
120 |
+
img_array = np.array(img)
|
121 |
+
|
122 |
+
# Extract alpha channel if present
|
123 |
+
if has_alpha:
|
124 |
+
alpha = img_array[:, :, 3]
|
125 |
+
rgb = img_array[:, :, :3]
|
126 |
+
else:
|
127 |
+
rgb = img_array
|
128 |
+
|
129 |
+
# Apply adaptive histogram equalization for better contrast on RGB channels only
|
130 |
+
if len(rgb.shape) == 3 and rgb.shape[2] == 3:
|
131 |
+
# Convert to LAB color space for better contrast enhancement
|
132 |
+
lab = cv2.cvtColor(rgb, cv2.COLOR_RGB2LAB)
|
133 |
+
l, a, b = cv2.split(lab)
|
134 |
+
|
135 |
+
# Apply CLAHE to L channel
|
136 |
+
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
137 |
+
cl = clahe.apply(l)
|
138 |
+
|
139 |
+
# Merge channels back
|
140 |
+
enhanced_lab = cv2.merge((cl, a, b))
|
141 |
+
|
142 |
+
# Convert back to RGB
|
143 |
+
rgb_enhanced = cv2.cvtColor(enhanced_lab, cv2.COLOR_LAB2RGB)
|
144 |
+
|
145 |
+
# Recombine with alpha if needed
|
146 |
+
if has_alpha:
|
147 |
+
result = np.dstack((rgb_enhanced, alpha))
|
148 |
+
img = Image.fromarray(result, 'RGBA')
|
149 |
+
else:
|
150 |
+
img = Image.fromarray(rgb_enhanced, 'RGB')
|
151 |
+
|
152 |
+
return img
|
153 |
+
|
154 |
|
155 |
+
def load_model():
|
156 |
+
global depth_estimator, model_loaded, model_loading
|
157 |
+
|
158 |
if model_loaded:
|
159 |
+
return depth_estimator
|
160 |
+
|
161 |
+
if model_loading:
|
162 |
+
# Wait for model to load if it's already in progress
|
163 |
+
while model_loading and not model_loaded:
|
164 |
+
time.sleep(0.5)
|
165 |
+
return depth_estimator
|
166 |
+
|
167 |
try:
|
168 |
+
model_loading = True
|
169 |
+
print("Starting model loading...")
|
170 |
+
|
171 |
+
# Using DPT-Large which provides better detail than DPT-Hybrid
|
172 |
+
# Alternatively, consider "vinvino02/glpn-nyu" for different detail characteristics
|
173 |
+
model_name = "Intel/dpt-large"
|
174 |
+
|
175 |
+
# Download model with retry mechanism
|
176 |
+
max_retries = 3
|
177 |
+
retry_delay = 5
|
178 |
+
|
179 |
+
for attempt in range(max_retries):
|
180 |
+
try:
|
181 |
+
snapshot_download(
|
182 |
+
repo_id=model_name,
|
183 |
+
cache_dir=CACHE_DIR,
|
184 |
+
resume_download=True,
|
185 |
+
)
|
186 |
+
break
|
187 |
+
except Exception as e:
|
188 |
+
if attempt < max_retries - 1:
|
189 |
+
print(f"Download attempt {attempt+1} failed: {str(e)}. Retrying in {retry_delay} seconds...")
|
190 |
+
time.sleep(retry_delay)
|
191 |
+
retry_delay *= 2
|
192 |
+
else:
|
193 |
+
raise
|
194 |
+
|
195 |
+
# Initialize model with appropriate precision
|
196 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
197 |
+
|
198 |
+
# Load depth estimator pipeline
|
199 |
depth_estimator = pipeline(
|
200 |
+
"depth-estimation",
|
201 |
+
model=model_name,
|
202 |
+
device=device if device == "cuda" else -1,
|
203 |
cache_dir=CACHE_DIR
|
204 |
)
|
205 |
+
|
206 |
+
# Optimize memory usage
|
207 |
+
if device == "cuda":
|
208 |
+
torch.cuda.empty_cache()
|
209 |
+
|
210 |
model_loaded = True
|
211 |
+
print(f"Model loaded successfully on {device}")
|
212 |
+
return depth_estimator
|
213 |
+
|
214 |
except Exception as e:
|
215 |
+
print(f"Error loading model: {str(e)}")
|
216 |
+
print(traceback.format_exc())
|
217 |
raise
|
218 |
+
finally:
|
219 |
+
model_loading = False
|
220 |
+
|
221 |
+
# Enhanced depth processing function to improve detail quality
|
222 |
+
def enhance_depth_map(depth_map, detail_level='medium'):
|
223 |
+
"""Apply sophisticated processing to enhance depth map details"""
|
224 |
+
# Convert to numpy array if needed
|
225 |
+
if isinstance(depth_map, Image.Image):
|
226 |
+
depth_map = np.array(depth_map)
|
227 |
+
|
228 |
+
# Make sure the depth map is 2D
|
229 |
+
if len(depth_map.shape) > 2:
|
230 |
+
depth_map = np.mean(depth_map, axis=2) if depth_map.shape[2] > 1 else depth_map[:,:,0]
|
231 |
+
|
232 |
+
# Create a copy for processing
|
233 |
+
enhanced_depth = depth_map.copy().astype(np.float32)
|
234 |
+
|
235 |
+
# Remove outliers using percentile clipping (more stable than min/max)
|
236 |
+
p_low, p_high = np.percentile(enhanced_depth, [1, 99])
|
237 |
+
enhanced_depth = np.clip(enhanced_depth, p_low, p_high)
|
238 |
+
|
239 |
+
# Normalize to 0-1 range for processing
|
240 |
+
enhanced_depth = (enhanced_depth - p_low) / (p_high - p_low) if p_high > p_low else enhanced_depth
|
241 |
+
|
242 |
+
# Apply different enhancement methods based on detail level
|
243 |
+
if detail_level == 'high':
|
244 |
+
# Apply unsharp masking for edge enhancement - simulating Hunyuan's detail technique
|
245 |
+
# First apply gaussian blur
|
246 |
+
blurred = gaussian_filter(enhanced_depth, sigma=1.5)
|
247 |
+
# Create the unsharp mask
|
248 |
+
mask = enhanced_depth - blurred
|
249 |
+
# Apply the mask with strength factor
|
250 |
+
enhanced_depth = enhanced_depth + 1.5 * mask
|
251 |
+
|
252 |
+
# Apply bilateral filter to preserve edges while smoothing noise
|
253 |
+
# Simulate using gaussian combinations
|
254 |
+
smooth1 = gaussian_filter(enhanced_depth, sigma=0.5)
|
255 |
+
smooth2 = gaussian_filter(enhanced_depth, sigma=2.0)
|
256 |
+
edge_mask = enhanced_depth - smooth2
|
257 |
+
enhanced_depth = smooth1 + 1.2 * edge_mask
|
258 |
+
|
259 |
+
elif detail_level == 'medium':
|
260 |
+
# Less aggressive but still effective enhancement
|
261 |
+
# Apply mild unsharp masking
|
262 |
+
blurred = gaussian_filter(enhanced_depth, sigma=1.0)
|
263 |
+
mask = enhanced_depth - blurred
|
264 |
+
enhanced_depth = enhanced_depth + 0.8 * mask
|
265 |
+
|
266 |
+
# Apply mild smoothing to reduce noise but preserve edges
|
267 |
+
enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.5)
|
268 |
+
|
269 |
+
else: # low
|
270 |
+
# Just apply noise reduction without too much detail enhancement
|
271 |
+
enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.7)
|
272 |
+
|
273 |
+
# Normalize again after processing
|
274 |
+
enhanced_depth = np.clip(enhanced_depth, 0, 1)
|
275 |
+
|
276 |
+
return enhanced_depth
|
277 |
|
278 |
+
# Convert depth map to 3D mesh with significantly enhanced detail
|
279 |
+
def depth_to_mesh(depth_map, image, resolution=100, detail_level='medium'):
|
280 |
+
"""Convert depth map to complete 3D model with all sides"""
|
281 |
+
# First, enhance the depth map for better details
|
282 |
+
enhanced_depth = enhance_depth_map(depth_map, detail_level)
|
283 |
+
|
284 |
+
# Get dimensions of depth map
|
285 |
+
h, w = enhanced_depth.shape
|
286 |
+
|
287 |
+
# Create a higher resolution grid for better detail
|
288 |
+
x = np.linspace(0, w-1, resolution)
|
289 |
+
y = np.linspace(0, h-1, resolution)
|
290 |
+
x_grid, y_grid = np.meshgrid(x, y)
|
291 |
+
|
292 |
+
# Use bicubic interpolation for smoother surface
|
293 |
+
interp_func = interpolate.RectBivariateSpline(
|
294 |
+
np.arange(h), np.arange(w), enhanced_depth, kx=3, ky=3
|
295 |
+
)
|
296 |
+
|
297 |
+
# Sample depth at grid points
|
298 |
+
z_values = interp_func(y, x, grid=True)
|
299 |
+
|
300 |
+
# Process enhancement as in original code
|
301 |
+
if detail_level == 'high':
|
302 |
+
dx = np.gradient(z_values, axis=1)
|
303 |
+
dy = np.gradient(z_values, axis=0)
|
304 |
+
gradient_magnitude = np.sqrt(dx**2 + dy**2)
|
305 |
+
edge_mask = np.clip(gradient_magnitude * 5, 0, 0.2)
|
306 |
+
z_values = z_values + edge_mask * (z_values - gaussian_filter(z_values, sigma=1.0))
|
307 |
+
|
308 |
+
# Normalize z-values with advanced scaling
|
309 |
+
z_min, z_max = np.percentile(z_values, [2, 98])
|
310 |
+
z_values = (z_values - z_min) / (z_max - z_min) if z_max > z_min else z_values
|
311 |
+
|
312 |
+
# Apply depth scaling
|
313 |
+
if detail_level == 'high':
|
314 |
+
z_scaling = 2.5
|
315 |
+
elif detail_level == 'medium':
|
316 |
+
z_scaling = 2.0
|
317 |
+
else:
|
318 |
+
z_scaling = 1.5
|
319 |
+
|
320 |
+
z_values = z_values * z_scaling
|
321 |
+
|
322 |
+
# Normalize coordinates for front face
|
323 |
+
x_grid_front = (x_grid / w - 0.5) * 2.0
|
324 |
+
y_grid_front = (y_grid / h - 0.5) * 2.0
|
325 |
+
|
326 |
+
# Create all vertices (front, back, and sides)
|
327 |
+
vertices = []
|
328 |
+
|
329 |
+
# Front face vertices
|
330 |
+
front_vertices = np.vstack([x_grid_front.flatten(), -y_grid_front.flatten(), -z_values.flatten()]).T
|
331 |
+
vertices.append(front_vertices)
|
332 |
+
|
333 |
+
# Back face vertices (mirrored from front face)
|
334 |
+
back_depth = 1.0 # Constant thickness for the model
|
335 |
+
back_vertices = np.vstack([x_grid_front.flatten(), -y_grid_front.flatten(), -z_values.flatten() - back_depth]).T
|
336 |
+
vertices.append(back_vertices)
|
337 |
+
|
338 |
+
# Create side vertices (top, bottom, left, right)
|
339 |
+
# For simplicity, we use a grid mapping for sides
|
340 |
+
top_vertices = []
|
341 |
+
bottom_vertices = []
|
342 |
+
left_vertices = []
|
343 |
+
right_vertices = []
|
344 |
+
|
345 |
+
# Create sides by connecting front and back faces
|
346 |
+
for i in range(resolution):
|
347 |
+
# Top edge
|
348 |
+
for j in range(resolution):
|
349 |
+
if i == 0:
|
350 |
+
top_vertices.append(front_vertices[i * resolution + j])
|
351 |
+
top_vertices.append(back_vertices[i * resolution + j])
|
352 |
+
# Bottom edge
|
353 |
+
if i == resolution - 1:
|
354 |
+
bottom_vertices.append(front_vertices[i * resolution + j])
|
355 |
+
bottom_vertices.append(back_vertices[i * resolution + j])
|
356 |
+
# Left edge
|
357 |
+
if j == 0:
|
358 |
+
left_vertices.append(front_vertices[i * resolution + j])
|
359 |
+
left_vertices.append(back_vertices[i * resolution + j])
|
360 |
+
# Right edge
|
361 |
+
if j == resolution - 1:
|
362 |
+
right_vertices.append(front_vertices[i * resolution + j])
|
363 |
+
right_vertices.append(back_vertices[i * resolution + j])
|
364 |
+
|
365 |
+
# Combine all vertices
|
366 |
+
all_vertices = np.vstack([
|
367 |
+
front_vertices,
|
368 |
+
back_vertices,
|
369 |
+
np.array(top_vertices),
|
370 |
+
np.array(bottom_vertices),
|
371 |
+
np.array(left_vertices),
|
372 |
+
np.array(right_vertices)
|
373 |
+
])
|
374 |
+
|
375 |
+
# Create faces (triangles)
|
376 |
+
faces = []
|
377 |
+
|
378 |
+
# Front face triangles
|
379 |
+
front_faces = []
|
380 |
+
for i in range(resolution-1):
|
381 |
+
for j in range(resolution-1):
|
382 |
+
p1 = i * resolution + j
|
383 |
+
p2 = i * resolution + (j + 1)
|
384 |
+
p3 = (i + 1) * resolution + j
|
385 |
+
p4 = (i + 1) * resolution + (j + 1)
|
386 |
+
|
387 |
+
# Calculate normals for consistent orientation
|
388 |
+
v1 = front_vertices[p1]
|
389 |
+
v2 = front_vertices[p2]
|
390 |
+
v3 = front_vertices[p3]
|
391 |
+
v4 = front_vertices[p4]
|
392 |
+
|
393 |
+
norm1 = np.cross(v2-v1, v4-v1)
|
394 |
+
norm2 = np.cross(v4-v3, v1-v3)
|
395 |
+
|
396 |
+
if np.dot(norm1, norm2) >= 0:
|
397 |
+
front_faces.append([p1, p2, p4])
|
398 |
+
front_faces.append([p1, p4, p3])
|
399 |
+
else:
|
400 |
+
front_faces.append([p1, p2, p3])
|
401 |
+
front_faces.append([p2, p4, p3])
|
402 |
+
|
403 |
+
# Back face triangles (note: reversed winding order for correct normals)
|
404 |
+
back_offset = resolution * resolution # Offset for back face vertices
|
405 |
+
back_faces = []
|
406 |
+
for i in range(resolution-1):
|
407 |
+
for j in range(resolution-1):
|
408 |
+
p1 = back_offset + i * resolution + j
|
409 |
+
p2 = back_offset + i * resolution + (j + 1)
|
410 |
+
p3 = back_offset + (i + 1) * resolution + j
|
411 |
+
p4 = back_offset + (i + 1) * resolution + (j + 1)
|
412 |
+
|
413 |
+
# Reverse winding order compared to front face
|
414 |
+
back_faces.append([p1, p4, p2])
|
415 |
+
back_faces.append([p1, p3, p4])
|
416 |
+
|
417 |
+
# Side faces (connecting front and back)
|
418 |
+
side_faces = []
|
419 |
+
|
420 |
+
# Add faces for sides (top, bottom, left, right)
|
421 |
+
side_offset = 2 * resolution * resolution # Offset after front and back
|
422 |
+
|
423 |
+
# Top side
|
424 |
+
top_count = len(top_vertices)
|
425 |
+
for i in range(0, top_count - 2, 2):
|
426 |
+
side_faces.append([side_offset + i, side_offset + i + 1, side_offset + i + 3])
|
427 |
+
side_faces.append([side_offset + i, side_offset + i + 3, side_offset + i + 2])
|
428 |
+
|
429 |
+
# Bottom side
|
430 |
+
bottom_offset = side_offset + top_count
|
431 |
+
bottom_count = len(bottom_vertices)
|
432 |
+
for i in range(0, bottom_count - 2, 2):
|
433 |
+
side_faces.append([bottom_offset + i, bottom_offset + i + 3, bottom_offset + i + 1])
|
434 |
+
side_faces.append([bottom_offset + i, bottom_offset + i + 2, bottom_offset + i + 3])
|
435 |
+
|
436 |
+
# Left side
|
437 |
+
left_offset = bottom_offset + bottom_count
|
438 |
+
left_count = len(left_vertices)
|
439 |
+
for i in range(0, left_count - 2, 2):
|
440 |
+
side_faces.append([left_offset + i, left_offset + i + 1, left_offset + i + 3])
|
441 |
+
side_faces.append([left_offset + i, left_offset + i + 3, left_offset + i + 2])
|
442 |
+
|
443 |
+
# Right side
|
444 |
+
right_offset = left_offset + left_count
|
445 |
+
right_count = len(right_vertices)
|
446 |
+
for i in range(0, right_count - 2, 2):
|
447 |
+
side_faces.append([right_offset + i, right_offset + i + 3, right_offset + i + 1])
|
448 |
+
side_faces.append([right_offset + i, right_offset + i + 2, right_offset + i + 3])
|
449 |
+
|
450 |
+
# Combine all faces
|
451 |
+
faces = np.array(front_faces + back_faces + side_faces)
|
452 |
+
|
453 |
+
# Create mesh
|
454 |
+
mesh = trimesh.Trimesh(vertices=all_vertices, faces=faces)
|
455 |
+
|
456 |
+
# Apply texturing if image is provided
|
457 |
+
if image:
|
458 |
+
# Handle RGBA properly to ensure transparency is maintained
|
459 |
+
img_array = np.array(image)
|
460 |
+
|
461 |
+
# Check if image has alpha channel
|
462 |
+
has_alpha = len(img_array.shape) == 3 and img_array.shape[2] == 4
|
463 |
+
|
464 |
+
# Create vertex colors with transparency support
|
465 |
+
vertex_colors = np.zeros((all_vertices.shape[0], 4), dtype=np.uint8)
|
466 |
+
|
467 |
+
# Fill with default color (will be overridden for front face)
|
468 |
+
vertex_colors[:, :3] = [200, 200, 200] # Light gray default
|
469 |
+
vertex_colors[:, 3] = 255 # Fully opaque
|
470 |
+
|
471 |
+
# Front face texture (sample from image)
|
472 |
+
for i in range(resolution):
|
473 |
+
for j in range(resolution):
|
474 |
+
# Calculate image coordinates
|
475 |
+
img_x = j * (img_array.shape[1] - 1) / (resolution - 1)
|
476 |
+
img_y = i * (img_array.shape[0] - 1) / (resolution - 1)
|
477 |
+
|
478 |
+
# Bilinear interpolation setup
|
479 |
+
x0, y0 = int(img_x), int(img_y)
|
480 |
+
x1, y1 = min(x0 + 1, img_array.shape[1] - 1), min(y0 + 1, img_array.shape[0] - 1)
|
481 |
+
|
482 |
+
# Interpolation weights
|
483 |
+
wx = img_x - x0
|
484 |
+
wy = img_y - y0
|
485 |
+
|
486 |
+
vertex_idx = i * resolution + j
|
487 |
+
|
488 |
+
if has_alpha:
|
489 |
+
# Handle RGBA with bilinear interpolation
|
490 |
+
for c in range(4):
|
491 |
+
vertex_colors[vertex_idx, c] = int((1-wx)*(1-wy)*img_array[y0, x0, c] +
|
492 |
+
wx*(1-wy)*img_array[y0, x1, c] +
|
493 |
+
(1-wx)*wy*img_array[y1, x0, c] +
|
494 |
+
wx*wy*img_array[y1, x1, c])
|
495 |
+
else:
|
496 |
+
# Handle RGB (no alpha)
|
497 |
+
for c in range(3):
|
498 |
+
vertex_colors[vertex_idx, c] = int((1-wx)*(1-wy)*img_array[y0, x0, c] +
|
499 |
+
wx*(1-wy)*img_array[y0, x1, c] +
|
500 |
+
(1-wx)*wy*img_array[y1, x0, c] +
|
501 |
+
wx*wy*img_array[y1, x1, c])
|
502 |
+
vertex_colors[vertex_idx, 3] = 255 # Fully opaque
|
503 |
+
|
504 |
+
# Apply simpler texturing to back face
|
505 |
+
back_face_start = resolution * resolution
|
506 |
+
back_face_color = [180, 180, 180, 255] # Slightly darker gray
|
507 |
+
vertex_colors[back_face_start:back_face_start + (resolution * resolution)] = back_face_color
|
508 |
+
|
509 |
+
mesh.visual.vertex_colors = vertex_colors
|
510 |
+
|
511 |
+
# Apply smoothing to get rid of staircase artifacts
|
512 |
+
if detail_level != 'high':
|
513 |
+
mesh = mesh.smoothed(method='laplacian', iterations=1)
|
514 |
+
|
515 |
+
# Calculate and fix normals for better rendering
|
516 |
+
mesh.fix_normals()
|
517 |
+
|
518 |
return mesh
|
519 |
+
|
520 |
+
|
521 |
+
|
522 |
+
@app.route('/health', methods=['GET'])
|
523 |
+
def health_check():
|
524 |
+
return jsonify({
|
525 |
+
"status": "healthy",
|
526 |
+
"model": "Enhanced Depth-Based 3D Model Generator (DPT-Large)",
|
527 |
+
"device": "cuda" if torch.cuda.is_available() else "cpu"
|
528 |
+
}), 200
|
529 |
+
|
530 |
+
@app.route('/progress/<job_id>', methods=['GET'])
|
531 |
+
def progress(job_id):
|
532 |
+
def generate():
|
533 |
+
if job_id not in processing_jobs:
|
534 |
+
yield f"data: {json.dumps({'error': 'Job not found'})}\n\n"
|
535 |
+
return
|
536 |
+
|
537 |
+
job = processing_jobs[job_id]
|
538 |
+
|
539 |
+
# Send initial progress
|
540 |
+
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
|
541 |
+
|
542 |
+
# Wait for job to complete or update
|
543 |
+
last_progress = job['progress']
|
544 |
+
check_count = 0
|
545 |
+
while job['status'] == 'processing':
|
546 |
+
if job['progress'] != last_progress:
|
547 |
+
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
|
548 |
+
last_progress = job['progress']
|
549 |
+
|
550 |
+
time.sleep(0.5)
|
551 |
+
check_count += 1
|
552 |
+
|
553 |
+
# If client hasn't received updates for a while, check if job is still running
|
554 |
+
if check_count > 60: # 30 seconds with no updates
|
555 |
+
if 'thread_alive' in job and not job['thread_alive']():
|
556 |
+
job['status'] = 'error'
|
557 |
+
job['error'] = 'Processing thread died unexpectedly'
|
558 |
+
break
|
559 |
+
check_count = 0
|
560 |
+
|
561 |
+
# Send final status
|
562 |
+
if job['status'] == 'completed':
|
563 |
+
yield f"data: {json.dumps({'status': 'completed', 'progress': 100, 'result_url': job['result_url'], 'preview_url': job['preview_url']})}\n\n"
|
564 |
+
else:
|
565 |
+
yield f"data: {json.dumps({'status': 'error', 'error': job['error']})}\n\n"
|
566 |
+
|
567 |
+
return Response(stream_with_context(generate()), mimetype='text/event-stream')
|
568 |
|
569 |
@app.route('/convert', methods=['POST'])
|
570 |
def convert_image_to_3d():
|
571 |
+
# Check if image is in the request
|
572 |
if 'image' not in request.files:
|
573 |
return jsonify({"error": "No image provided"}), 400
|
574 |
|
575 |
file = request.files['image']
|
576 |
+
if file.filename == '':
|
577 |
+
return jsonify({"error": "No image selected"}), 400
|
578 |
+
|
579 |
if not allowed_file(file.filename):
|
580 |
+
return jsonify({"error": f"File type not allowed. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400
|
581 |
+
|
582 |
+
# Get optional parameters with defaults
|
583 |
+
try:
|
584 |
+
mesh_resolution = min(int(request.form.get('mesh_resolution', 100)), 200) # Limit max resolution
|
585 |
+
output_format = request.form.get('output_format', 'obj').lower()
|
586 |
+
detail_level = request.form.get('detail_level', 'medium').lower() # Parameter for detail level
|
587 |
+
texture_quality = request.form.get('texture_quality', 'medium').lower() # New parameter for texture quality
|
588 |
+
except ValueError:
|
589 |
+
return jsonify({"error": "Invalid parameter values"}), 400
|
590 |
+
|
591 |
+
# Validate output format
|
592 |
+
if output_format not in ['obj', 'glb']:
|
593 |
+
return jsonify({"error": "Unsupported output format. Use 'obj' or 'glb'"}), 400
|
594 |
+
|
595 |
+
# Adjust mesh resolution based on detail level
|
596 |
+
if detail_level == 'high':
|
597 |
+
mesh_resolution = min(int(mesh_resolution * 1.5), 200)
|
598 |
+
elif detail_level == 'low':
|
599 |
+
mesh_resolution = max(int(mesh_resolution * 0.7), 50)
|
600 |
+
|
601 |
+
# Create a job ID
|
602 |
job_id = str(uuid.uuid4())
|
603 |
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
604 |
os.makedirs(output_dir, exist_ok=True)
|
605 |
+
|
606 |
+
# Save the uploaded file
|
607 |
filename = secure_filename(file.filename)
|
608 |
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{filename}")
|
609 |
file.save(filepath)
|
610 |
+
|
611 |
+
# Initialize job tracking
|
612 |
processing_jobs[job_id] = {
|
613 |
'status': 'processing',
|
614 |
'progress': 0,
|
615 |
'result_url': None,
|
616 |
+
'preview_url': None,
|
617 |
+
'error': None,
|
618 |
+
'output_format': output_format,
|
619 |
+
'created_at': time.time()
|
620 |
}
|
621 |
+
|
622 |
+
# Start processing in a separate thread
|
623 |
def process_image():
|
624 |
+
thread = threading.current_thread()
|
625 |
+
processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
|
626 |
+
|
627 |
try:
|
628 |
+
# Preprocess image with enhanced detail preservation
|
629 |
+
processing_jobs[job_id]['progress'] = 5
|
630 |
+
image = preprocess_image(filepath)
|
631 |
+
processing_jobs[job_id]['progress'] = 10
|
632 |
+
|
633 |
+
# Load model
|
634 |
+
try:
|
635 |
+
model = load_model()
|
636 |
+
processing_jobs[job_id]['progress'] = 30
|
637 |
+
except Exception as e:
|
638 |
+
processing_jobs[job_id]['status'] = 'error'
|
639 |
+
processing_jobs[job_id]['error'] = f"Error loading model: {str(e)}"
|
640 |
+
return
|
641 |
+
|
642 |
+
# Process image with thread-safe timeout
|
643 |
+
try:
|
644 |
+
def estimate_depth():
|
645 |
+
# Get depth map
|
646 |
+
result = model(image)
|
647 |
+
depth_map = result["depth"]
|
648 |
+
|
649 |
+
# Convert to numpy array if needed
|
650 |
+
if isinstance(depth_map, torch.Tensor):
|
651 |
+
depth_map = depth_map.cpu().numpy()
|
652 |
+
elif hasattr(depth_map, 'numpy'):
|
653 |
+
depth_map = depth_map.numpy()
|
654 |
+
elif isinstance(depth_map, Image.Image):
|
655 |
+
depth_map = np.array(depth_map)
|
656 |
+
|
657 |
+
return depth_map
|
658 |
|
659 |
+
depth_map, error = process_with_timeout(estimate_depth, [], TIMEOUT_SECONDS)
|
660 |
+
|
661 |
+
if error:
|
662 |
+
if isinstance(error, TimeoutError):
|
663 |
+
processing_jobs[job_id]['status'] = 'error'
|
664 |
+
processing_jobs[job_id]['error'] = f"Processing timed out after {TIMEOUT_SECONDS} seconds"
|
665 |
+
return
|
666 |
+
else:
|
667 |
+
raise error
|
668 |
+
|
669 |
+
processing_jobs[job_id]['progress'] = 60
|
670 |
+
|
671 |
+
# Create mesh from depth map with enhanced detail handling
|
672 |
+
mesh_resolution_int = int(mesh_resolution)
|
673 |
+
mesh = depth_to_mesh(depth_map, image, resolution=mesh_resolution_int, detail_level=detail_level)
|
674 |
+
processing_jobs[job_id]['progress'] = 80
|
675 |
+
|
676 |
+
except Exception as e:
|
677 |
+
error_details = traceback.format_exc()
|
678 |
+
processing_jobs[job_id]['status'] = 'error'
|
679 |
+
processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
|
680 |
+
print(f"Error processing job {job_id}: {str(e)}")
|
681 |
+
print(error_details)
|
682 |
+
return
|
683 |
+
|
684 |
+
# Export based on requested format with enhanced quality settings
|
685 |
+
try:
|
686 |
+
if output_format == 'obj':
|
687 |
+
obj_path = os.path.join(output_dir, "model.obj")
|
688 |
+
|
689 |
+
# Export with normal and texture coordinates
|
690 |
+
mesh.export(
|
691 |
+
obj_path,
|
692 |
+
file_type='obj',
|
693 |
+
include_normals=True,
|
694 |
+
include_texture=True
|
695 |
+
)
|
696 |
+
|
697 |
+
# Create a zip file with OBJ and MTL
|
698 |
+
zip_path = os.path.join(output_dir, "model.zip")
|
699 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
700 |
+
zipf.write(obj_path, arcname="model.obj")
|
701 |
+
mtl_path = os.path.join(output_dir, "model.mtl")
|
702 |
+
if os.path.exists(mtl_path):
|
703 |
+
zipf.write(mtl_path, arcname="model.mtl")
|
704 |
+
|
705 |
+
# Include texture file if it exists
|
706 |
+
texture_path = os.path.join(output_dir, "model.png")
|
707 |
+
if os.path.exists(texture_path):
|
708 |
+
zipf.write(texture_path, arcname="model.png")
|
709 |
+
|
710 |
+
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
711 |
+
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
712 |
+
|
713 |
+
elif output_format == 'glb':
|
714 |
+
# Export as GLB with enhanced settings
|
715 |
+
glb_path = os.path.join(output_dir, "model.glb")
|
716 |
+
mesh.export(
|
717 |
+
glb_path,
|
718 |
+
file_type='glb'
|
719 |
+
)
|
720 |
+
|
721 |
+
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
722 |
+
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
723 |
+
|
724 |
+
# Update job status
|
725 |
+
processing_jobs[job_id]['status'] = 'completed'
|
726 |
+
processing_jobs[job_id]['progress'] = 100
|
727 |
+
print(f"Job {job_id} completed successfully")
|
728 |
+
except Exception as e:
|
729 |
+
error_details = traceback.format_exc()
|
730 |
+
processing_jobs[job_id]['status'] = 'error'
|
731 |
+
processing_jobs[job_id]['error'] = f"Error exporting model: {str(e)}"
|
732 |
+
print(f"Error exporting model for job {job_id}: {str(e)}")
|
733 |
+
print(error_details)
|
734 |
+
|
735 |
+
# Clean up temporary file
|
736 |
+
if os.path.exists(filepath):
|
737 |
+
os.remove(filepath)
|
738 |
+
|
739 |
+
# Force garbage collection to free memory
|
740 |
+
gc.collect()
|
741 |
+
if torch.cuda.is_available():
|
742 |
+
torch.cuda.empty_cache()
|
743 |
+
|
744 |
+
except Exception as e:
|
745 |
+
# Handle errors
|
746 |
+
error_details = traceback.format_exc()
|
747 |
+
processing_jobs[job_id]['status'] = 'error'
|
748 |
+
processing_jobs[job_id]['error'] = f"{str(e)}\n{error_details}"
|
749 |
+
print(f"Error processing job {job_id}: {str(e)}")
|
750 |
+
print(error_details)
|
751 |
+
|
752 |
+
# Clean up on error
|
753 |
+
if os.path.exists(filepath):
|
754 |
+
os.remove(filepath)
|
755 |
+
|
756 |
+
# Start processing thread
|
757 |
+
processing_thread = threading.Thread(target=process_image)
|
758 |
+
processing_thread.daemon = True
|
759 |
+
processing_thread.start()
|
760 |
+
|
761 |
+
# Return job ID immediately
|
762 |
+
return jsonify({"job_id": job_id}), 202 # 202 Accepted
|
763 |
|
764 |
+
@app.route('/download/<job_id>', methods=['GET'])
|
765 |
+
def download_model(job_id):
|
766 |
+
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
|
767 |
+
return jsonify({"error": "Model not found or processing not complete"}), 404
|
768 |
+
|
769 |
+
# Get the output directory for this job
|
770 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
771 |
+
|
772 |
+
# Determine file format from the job data
|
773 |
+
output_format = processing_jobs[job_id].get('output_format', 'obj')
|
774 |
+
|
775 |
+
if output_format == 'obj':
|
776 |
+
zip_path = os.path.join(output_dir, "model.zip")
|
777 |
+
if os.path.exists(zip_path):
|
778 |
+
return send_file(zip_path, as_attachment=True, download_name="model.zip")
|
779 |
+
else: # glb
|
780 |
+
glb_path = os.path.join(output_dir, "model.glb")
|
781 |
+
if os.path.exists(glb_path):
|
782 |
+
return send_file(glb_path, as_attachment=True, download_name="model.glb")
|
783 |
+
|
784 |
+
return jsonify({"error": "File not found"}), 404
|
785 |
|
786 |
+
@app.route('/preview/<job_id>', methods=['GET'])
|
787 |
+
def preview_model(job_id):
|
788 |
+
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
|
789 |
+
return jsonify({"error": "Model not found or processing not complete"}), 404
|
790 |
+
|
791 |
+
# Get the output directory for this job
|
792 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
793 |
+
output_format = processing_jobs[job_id].get('output_format', 'obj')
|
794 |
+
|
795 |
+
if output_format == 'obj':
|
796 |
+
obj_path = os.path.join(output_dir, "model.obj")
|
797 |
+
if os.path.exists(obj_path):
|
798 |
+
return send_file(obj_path, mimetype='model/obj')
|
799 |
+
else: # glb
|
800 |
+
glb_path = os.path.join(output_dir, "model.glb")
|
801 |
+
if os.path.exists(glb_path):
|
802 |
+
return send_file(glb_path, mimetype='model/gltf-binary')
|
803 |
+
|
804 |
+
return jsonify({"error": "Model file not found"}), 404
|
805 |
+
|
806 |
+
# Cleanup old jobs periodically
|
807 |
+
def cleanup_old_jobs():
|
808 |
+
current_time = time.time()
|
809 |
+
job_ids_to_remove = []
|
810 |
+
|
811 |
+
for job_id, job_data in processing_jobs.items():
|
812 |
+
# Remove completed jobs after 1 hour
|
813 |
+
if job_data['status'] == 'completed' and (current_time - job_data.get('created_at', 0)) > 3600:
|
814 |
+
job_ids_to_remove.append(job_id)
|
815 |
+
# Remove error jobs after 30 minutes
|
816 |
+
elif job_data['status'] == 'error' and (current_time - job_data.get('created_at', 0)) > 1800:
|
817 |
+
job_ids_to_remove.append(job_id)
|
818 |
+
|
819 |
+
# Remove the jobs
|
820 |
+
for job_id in job_ids_to_remove:
|
821 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
822 |
+
try:
|
823 |
+
import shutil
|
824 |
+
if os.path.exists(output_dir):
|
825 |
+
shutil.rmtree(output_dir)
|
826 |
+
except Exception as e:
|
827 |
+
print(f"Error cleaning up job {job_id}: {str(e)}")
|
828 |
+
|
829 |
+
# Remove from tracking dictionary
|
830 |
+
if job_id in processing_jobs:
|
831 |
+
del processing_jobs[job_id]
|
832 |
+
|
833 |
+
# Schedule the next cleanup
|
834 |
+
threading.Timer(300, cleanup_old_jobs).start() # Run every 5 minutes
|
835 |
+
|
836 |
+
# New endpoint to get detailed information about a model
|
837 |
+
@app.route('/model-info/<job_id>', methods=['GET'])
|
838 |
+
def model_info(job_id):
|
839 |
+
if job_id not in processing_jobs:
|
840 |
+
return jsonify({"error": "Model not found"}), 404
|
841 |
+
|
842 |
+
job = processing_jobs[job_id]
|
843 |
+
|
844 |
+
if job['status'] != 'completed':
|
845 |
+
return jsonify({
|
846 |
+
"status": job['status'],
|
847 |
+
"progress": job['progress'],
|
848 |
+
"error": job.get('error')
|
849 |
+
}), 200
|
850 |
+
|
851 |
+
# For completed jobs, include information about the model
|
852 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
853 |
+
model_stats = {}
|
854 |
+
|
855 |
+
# Get file size
|
856 |
+
if job['output_format'] == 'obj':
|
857 |
+
obj_path = os.path.join(output_dir, "model.obj")
|
858 |
+
zip_path = os.path.join(output_dir, "model.zip")
|
859 |
+
|
860 |
+
if os.path.exists(obj_path):
|
861 |
+
model_stats['obj_size'] = os.path.getsize(obj_path)
|
862 |
|
863 |
+
if os.path.exists(zip_path):
|
864 |
+
model_stats['package_size'] = os.path.getsize(zip_path)
|
|
|
865 |
|
866 |
+
else: # glb
|
867 |
+
glb_path = os.path.join(output_dir, "model.glb")
|
868 |
+
if os.path.exists(glb_path):
|
869 |
+
model_stats['model_size'] = os.path.getsize(glb_path)
|
870 |
+
|
871 |
+
# Return detailed info
|
872 |
+
return jsonify({
|
873 |
+
"status": job['status'],
|
874 |
+
"model_format": job['output_format'],
|
875 |
+
"download_url": job['result_url'],
|
876 |
+
"preview_url": job['preview_url'],
|
877 |
+
"model_stats": model_stats,
|
878 |
+
"created_at": job.get('created_at'),
|
879 |
+
"completed_at": job.get('completed_at')
|
880 |
+
}), 200
|
881 |
+
|
882 |
+
@app.route('/', methods=['GET'])
|
883 |
+
def index():
|
884 |
+
return jsonify({
|
885 |
+
"message": "Enhanced Image to 3D API (DPT-Large Model)",
|
886 |
+
"endpoints": [
|
887 |
+
"/convert",
|
888 |
+
"/progress/<job_id>",
|
889 |
+
"/download/<job_id>",
|
890 |
+
"/preview/<job_id>",
|
891 |
+
"/model-info/<job_id>"
|
892 |
+
],
|
893 |
+
"parameters": {
|
894 |
+
"mesh_resolution": "Integer (50-200), controls mesh density",
|
895 |
+
"output_format": "obj or glb",
|
896 |
+
"detail_level": "low, medium, or high - controls the level of detail in the final model",
|
897 |
+
"texture_quality": "low, medium, or high - controls the quality of textures"
|
898 |
+
},
|
899 |
+
"description": "This API creates high-quality 3D models from 2D images with enhanced detail finishing similar to Hunyuan model"
|
900 |
+
}), 200
|
901 |
+
|
902 |
+
# Example endpoint showing how to compare different detail levels
|
903 |
+
@app.route('/detail-comparison', methods=['POST'])
|
904 |
+
def compare_detail_levels():
|
905 |
+
# Check if image is in the request
|
906 |
+
if 'image' not in request.files:
|
907 |
+
return jsonify({"error": "No image provided"}), 400
|
908 |
+
|
909 |
+
file = request.files['image']
|
910 |
+
if file.filename == '':
|
911 |
+
return jsonify({"error": "No image selected"}), 400
|
912 |
+
|
913 |
+
if not allowed_file(file.filename):
|
914 |
+
return jsonify({"error": f"File type not allowed. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400
|
915 |
+
|
916 |
+
# Create a job ID
|
917 |
+
job_id = str(uuid.uuid4())
|
918 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
919 |
+
os.makedirs(output_dir, exist_ok=True)
|
920 |
+
|
921 |
+
# Save the uploaded file
|
922 |
+
filename = secure_filename(file.filename)
|
923 |
+
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{filename}")
|
924 |
+
file.save(filepath)
|
925 |
+
|
926 |
+
# Initialize job tracking
|
927 |
+
processing_jobs[job_id] = {
|
928 |
+
'status': 'processing',
|
929 |
+
'progress': 0,
|
930 |
+
'result_url': None,
|
931 |
+
'preview_url': None,
|
932 |
+
'error': None,
|
933 |
+
'output_format': 'glb', # Use GLB for comparison
|
934 |
+
'created_at': time.time(),
|
935 |
+
'comparison': True
|
936 |
+
}
|
937 |
+
|
938 |
+
# Process in separate thread to create 3 different detail levels
|
939 |
+
def process_comparison():
|
940 |
+
thread = threading.current_thread()
|
941 |
+
processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
|
942 |
+
|
943 |
+
try:
|
944 |
+
# Preprocess image
|
945 |
+
image = preprocess_image(filepath)
|
946 |
+
processing_jobs[job_id]['progress'] = 10
|
947 |
+
|
948 |
+
# Load model
|
949 |
+
try:
|
950 |
+
model = load_model()
|
951 |
+
processing_jobs[job_id]['progress'] = 20
|
952 |
+
except Exception as e:
|
953 |
+
processing_jobs[job_id]['status'] = 'error'
|
954 |
+
processing_jobs[job_id]['error'] = f"Error loading model: {str(e)}"
|
955 |
+
return
|
956 |
+
|
957 |
+
# Process image to get depth map
|
958 |
+
try:
|
959 |
+
depth_map = model(image)["depth"]
|
960 |
+
if isinstance(depth_map, torch.Tensor):
|
961 |
+
depth_map = depth_map.cpu().numpy()
|
962 |
+
elif hasattr(depth_map, 'numpy'):
|
963 |
+
depth_map = depth_map.numpy()
|
964 |
+
elif isinstance(depth_map, Image.Image):
|
965 |
+
depth_map = np.array(depth_map)
|
966 |
+
|
967 |
+
processing_jobs[job_id]['progress'] = 40
|
968 |
+
except Exception as e:
|
969 |
+
processing_jobs[job_id]['status'] = 'error'
|
970 |
+
processing_jobs[job_id]['error'] = f"Error estimating depth: {str(e)}"
|
971 |
+
return
|
972 |
+
|
973 |
+
# Create meshes at different detail levels
|
974 |
+
result_urls = {}
|
975 |
+
|
976 |
+
for detail_level in ['low', 'medium', 'high']:
|
977 |
+
try:
|
978 |
+
# Update progress
|
979 |
+
if detail_level == 'low':
|
980 |
+
processing_jobs[job_id]['progress'] = 50
|
981 |
+
elif detail_level == 'medium':
|
982 |
+
processing_jobs[job_id]['progress'] = 70
|
983 |
+
else:
|
984 |
+
processing_jobs[job_id]['progress'] = 90
|
985 |
+
|
986 |
+
# Create mesh with appropriate detail level
|
987 |
+
mesh_resolution = 100 # Fixed resolution for fair comparison
|
988 |
+
if detail_level == 'high':
|
989 |
+
mesh_resolution = 150
|
990 |
+
elif detail_level == 'low':
|
991 |
+
mesh_resolution = 80
|
992 |
+
|
993 |
+
mesh = depth_to_mesh(depth_map, image,
|
994 |
+
resolution=mesh_resolution,
|
995 |
+
detail_level=detail_level)
|
996 |
+
|
997 |
+
# Export as GLB
|
998 |
+
model_path = os.path.join(output_dir, f"model_{detail_level}.glb")
|
999 |
+
mesh.export(model_path, file_type='glb')
|
1000 |
+
|
1001 |
+
# Add to result URLs
|
1002 |
+
result_urls[detail_level] = f"/compare-download/{job_id}/{detail_level}"
|
1003 |
+
|
1004 |
+
except Exception as e:
|
1005 |
+
print(f"Error processing {detail_level} detail level: {str(e)}")
|
1006 |
+
# Continue with other detail levels even if one fails
|
1007 |
+
|
1008 |
+
# Update job status
|
1009 |
processing_jobs[job_id]['status'] = 'completed'
|
|
|
1010 |
processing_jobs[job_id]['progress'] = 100
|
1011 |
+
processing_jobs[job_id]['result_urls'] = result_urls
|
1012 |
+
processing_jobs[job_id]['completed_at'] = time.time()
|
1013 |
+
|
1014 |
+
# Clean up temporary file
|
1015 |
+
if os.path.exists(filepath):
|
1016 |
+
os.remove(filepath)
|
1017 |
+
|
1018 |
+
# Force garbage collection
|
1019 |
+
gc.collect()
|
1020 |
+
if torch.cuda.is_available():
|
1021 |
+
torch.cuda.empty_cache()
|
1022 |
+
|
1023 |
except Exception as e:
|
1024 |
+
# Handle errors
|
1025 |
processing_jobs[job_id]['status'] = 'error'
|
1026 |
+
processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
|
1027 |
+
|
1028 |
+
# Clean up on error
|
1029 |
if os.path.exists(filepath):
|
1030 |
os.remove(filepath)
|
1031 |
+
|
1032 |
+
# Start processing thread
|
1033 |
+
processing_thread = threading.Thread(target=process_comparison)
|
1034 |
+
processing_thread.daemon = True
|
1035 |
+
processing_thread.start()
|
1036 |
+
|
1037 |
+
# Return job ID immediately
|
1038 |
+
return jsonify({"job_id": job_id, "check_progress_at": f"/progress/{job_id}"}), 202
|
1039 |
|
1040 |
+
@app.route('/compare-download/<job_id>/<detail_level>', methods=['GET'])
|
1041 |
+
def download_comparison_model(job_id, detail_level):
|
1042 |
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
|
1043 |
+
return jsonify({"error": "Model not found or processing not complete"}), 404
|
1044 |
|
1045 |
+
if 'comparison' not in processing_jobs[job_id] or not processing_jobs[job_id]['comparison']:
|
1046 |
+
return jsonify({"error": "This is not a comparison job"}), 400
|
1047 |
+
|
1048 |
+
if detail_level not in ['low', 'medium', 'high']:
|
1049 |
+
return jsonify({"error": "Invalid detail level"}), 400
|
1050 |
+
|
1051 |
+
# Get the output directory for this job
|
1052 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
1053 |
+
model_path = os.path.join(output_dir, f"model_{detail_level}.glb")
|
1054 |
+
|
1055 |
+
if os.path.exists(model_path):
|
1056 |
+
return send_file(model_path, as_attachment=True, download_name=f"model_{detail_level}.glb")
|
1057 |
+
|
1058 |
+
return jsonify({"error": "File not found"}), 404
|
1059 |
|
1060 |
if __name__ == '__main__':
|
1061 |
+
# Start the cleanup thread
|
1062 |
+
cleanup_old_jobs()
|
1063 |
+
|
1064 |
+
# Use port 7860 which is standard for Hugging Face Spaces
|
1065 |
+
port = int(os.environ.get('PORT', 7860))
|
1066 |
+
app.run(host='0.0.0.0', port=port)
|