Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,771 +1,769 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
-
|
3 |
-
|
4 |
-
import time
|
5 |
-
import threading
|
6 |
-
import json
|
7 |
-
import gc
|
8 |
-
from flask import Flask, request, jsonify, send_file, Response, stream_with_context
|
9 |
-
from werkzeug.utils import secure_filename
|
10 |
-
from PIL import Image
|
11 |
-
import io
|
12 |
-
import zipfile
|
13 |
-
import uuid
|
14 |
-
import traceback
|
15 |
-
from huggingface_hub import snapshot_download, login
|
16 |
-
from flask_cors import CORS
|
17 |
-
import numpy as np
|
18 |
-
import trimesh
|
19 |
-
from transformers import pipeline, AutoImageProcessor, AutoModelForDepthEstimation
|
20 |
-
from scipy.ndimage import gaussian_filter
|
21 |
-
from scipy import interpolate
|
22 |
-
import cv2
|
23 |
-
from rembg import remove
|
24 |
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
CACHE_DIR = '/tmp/huggingface'
|
32 |
-
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
depth_anything_model = None
|
48 |
-
depth_anything_processor = None
|
49 |
-
model_loaded = False
|
50 |
-
model_loading = False
|
51 |
|
52 |
-
|
53 |
-
|
54 |
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
error = [None]
|
61 |
-
completed = [False]
|
62 |
-
|
63 |
-
def target():
|
64 |
-
try:
|
65 |
-
result[0] = function(*args)
|
66 |
-
completed[0] = True
|
67 |
-
except Exception as e:
|
68 |
-
error[0] = e
|
69 |
-
|
70 |
-
thread = threading.Thread(target=target)
|
71 |
-
thread.daemon = True
|
72 |
-
thread.start()
|
73 |
-
thread.join(timeout)
|
74 |
-
|
75 |
-
if not completed[0]:
|
76 |
-
if thread.is_alive():
|
77 |
-
return None, TimeoutError(f"Processing timed out after {timeout} seconds")
|
78 |
-
elif error[0]:
|
79 |
-
return None, error[0]
|
80 |
-
|
81 |
-
if error[0]:
|
82 |
-
return None, error[0]
|
83 |
-
|
84 |
-
return result[0], None
|
85 |
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
cache_dir=CACHE_DIR,
|
169 |
-
resume_download=True,
|
170 |
-
token=hf_token
|
171 |
-
)
|
172 |
-
print(f"Successfully downloaded {dpt_model_name}")
|
173 |
-
break
|
174 |
-
except Exception as e:
|
175 |
-
if attempt < max_retries - 1:
|
176 |
-
print(f"DPT download attempt {attempt+1} failed: {str(e)}. Retrying after {retry_delay}s...")
|
177 |
-
time.sleep(retry_delay)
|
178 |
-
retry_delay *= 2
|
179 |
-
else:
|
180 |
-
raise
|
181 |
-
|
182 |
-
dpt_estimator = pipeline(
|
183 |
-
"depth-estimation",
|
184 |
-
model=dpt_model_name,
|
185 |
-
device=-1,
|
186 |
-
cache_dir=CACHE_DIR,
|
187 |
-
use_fast=True
|
188 |
-
)
|
189 |
-
print("DPT-Large loaded")
|
190 |
-
gc.collect()
|
191 |
-
|
192 |
-
da_model_name = "depth-anything/Depth-Anything-V2-Tiny-hf"
|
193 |
-
for attempt in range(max_retries):
|
194 |
-
try:
|
195 |
-
print(f"Attempting to download {da_model_name}, attempt {attempt+1}")
|
196 |
-
snapshot_download(
|
197 |
-
repo_id=da_model_name,
|
198 |
-
cache_dir=CACHE_DIR,
|
199 |
-
resume_download=True,
|
200 |
-
token=hf_token
|
201 |
-
)
|
202 |
-
print(f"Successfully downloaded {da_model_name}")
|
203 |
-
break
|
204 |
-
except Exception as e:
|
205 |
-
if attempt < max_retries - 1:
|
206 |
-
print(f"Depth Anything download attempt {attempt+1} failed: {str(e)}. Retrying after {retry_delay}s...")
|
207 |
-
time.sleep(retry_delay)
|
208 |
-
retry_delay *= 2
|
209 |
-
else:
|
210 |
-
print(f"Failed to load Depth Anything: {str(e)}. Falling back to DPT-Large only.")
|
211 |
-
depth_anything_model = None
|
212 |
-
depth_anything_processor = None
|
213 |
-
model_loaded = True
|
214 |
-
return dpt_estimator, None, None
|
215 |
-
|
216 |
-
depth_anything_processor = AutoImageProcessor.from_pretrained(
|
217 |
-
da_model_name,
|
218 |
-
cache_dir=CACHE_DIR,
|
219 |
-
token=hf_token
|
220 |
-
)
|
221 |
-
depth_anything_model = AutoModelForDepthEstimation.from_pretrained(
|
222 |
-
da_model_name,
|
223 |
-
cache_dir=CACHE_DIR,
|
224 |
-
token=hf_token
|
225 |
-
).to("cpu")
|
226 |
-
|
227 |
-
model_loaded = True
|
228 |
-
print("Depth Anything loaded")
|
229 |
-
return dpt_estimator, depth_anything_model, depth_anything_processor
|
230 |
-
|
231 |
-
except Exception as e:
|
232 |
-
print(f"Error loading models: {str(e)}")
|
233 |
-
print(traceback.format_exc())
|
234 |
-
raise
|
235 |
-
finally:
|
236 |
-
model_loading = False
|
237 |
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
fused_depth = dpt_weight * dpt_depth + da_weight * da_depth * weight_da + (1 - weight_da) * dpt_depth
|
263 |
-
else:
|
264 |
-
weight_da = 0.5 if detail_level == 'medium' else 0.3
|
265 |
-
fused_depth = (1 - weight_da) * dpt_depth + weight_da * da_depth
|
266 |
-
|
267 |
-
fused_depth = np.clip(fused_depth, 0, 1)
|
268 |
-
return fused_depth
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
# Rotate vertices based on view angle (in radians)
|
324 |
-
if view_angle != 0:
|
325 |
-
rotation_matrix = trimesh.transformations.rotation_matrix(view_angle, [0, 1, 0])
|
326 |
-
vertices = trimesh.transform_points(vertices, rotation_matrix)
|
327 |
-
|
328 |
-
faces = []
|
329 |
-
for i in range(resolution-1):
|
330 |
-
for j in range(resolution-1):
|
331 |
-
p1 = i * resolution + j
|
332 |
-
p2 = i * resolution + (j + 1)
|
333 |
-
p3 = (i + 1) * resolution + j
|
334 |
-
p4 = (i + 1) * resolution + (j + 1)
|
335 |
-
v1 = vertices[p1]
|
336 |
-
v2 = vertices[p2]
|
337 |
-
v3 = vertices[p3]
|
338 |
-
v4 = vertices[p4]
|
339 |
-
norm1 = np.cross(v2-v1, v4-v1)
|
340 |
-
norm2 = np.cross(v4-v3, v1-v3)
|
341 |
-
if np.dot(norm1, norm2) >= 0:
|
342 |
-
faces.append([p1, p2, p4])
|
343 |
-
faces.append([p1, p4, p3])
|
344 |
-
else:
|
345 |
-
faces.append([p1, p2, p3])
|
346 |
-
faces.append([p2, p4, p3])
|
347 |
-
|
348 |
-
faces = np.array(faces)
|
349 |
-
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
|
350 |
-
|
351 |
-
if image:
|
352 |
-
img_array = np.array(image)
|
353 |
-
vertex_colors = np.zeros((vertices.shape[0], 4), dtype=np.uint8)
|
354 |
-
for i in range(resolution):
|
355 |
-
for j in range(resolution):
|
356 |
-
img_x = j * (img_array.shape[1] - 1) / (resolution - 1)
|
357 |
-
img_y = i * (img_array.shape[0] - 1) / (resolution - 1)
|
358 |
-
x0, y0 = int(img_x), int(img_y)
|
359 |
-
x1, y1 = min(x0 + 1, img_array.shape[1] - 1), min(y0 + 1, img_array.shape[0] - 1)
|
360 |
-
wx = img_x - x0
|
361 |
-
wy = img_y - y0
|
362 |
-
vertex_idx = i * resolution + j
|
363 |
-
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
|
364 |
-
r = int((1-wx)*(1-wy)*img_array[y0, x0, 0] + wx*(1-wy)*img_array[y0, x1, 0] +
|
365 |
-
(1-wx)*wy*img_array[y1, x0, 0] + wx*wy*img_array[y1, x1, 0])
|
366 |
-
g = int((1-wx)*(1-wy)*img_array[y0, x0, 1] + wx*(1-wy)*img_array[y0, x1, 1] +
|
367 |
-
(1-wx)*wy*img_array[y1, x0, 1] + wx*wy*img_array[y1, x1, 1])
|
368 |
-
b = int((1-wx)*(1-wy)*img_array[y0, x0, 2] + wx*(1-wy)*img_array[y0, x1, 2] +
|
369 |
-
(1-wx)*wy*img_array[y1, x0, 2] + wx*wy*img_array[y1, x1, 2])
|
370 |
-
vertex_colors[vertex_idx, :3] = [r, g, b]
|
371 |
-
vertex_colors[vertex_idx, 3] = 255
|
372 |
-
else:
|
373 |
-
gray = int((1-wx)*(1-wy)*img_array[y0, x0] + wx*(1-wy)*img_array[y0, x1] +
|
374 |
-
(1-wx)*wy*img_array[y1, x0] + wx*wy*img_array[y1, x1])
|
375 |
-
vertex_colors[vertex_idx, :3] = [gray, gray, gray]
|
376 |
-
vertex_colors[vertex_idx, 3] = 255
|
377 |
-
mesh.visual.vertex_colors = vertex_colors
|
378 |
-
|
379 |
-
if detail_level != 'high':
|
380 |
-
mesh = mesh.smoothed(method='laplacian', iterations=1)
|
381 |
-
mesh.fix_normals()
|
382 |
-
return mesh
|
383 |
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
for mesh in meshes:
|
393 |
-
combined_vertices.append(mesh.vertices)
|
394 |
-
combined_faces.append(mesh.faces + vertex_offset)
|
395 |
-
vertex_offset += len(mesh.vertices)
|
396 |
-
|
397 |
-
combined_vertices = np.vstack(combined_vertices)
|
398 |
-
combined_faces = np.vstack(combined_faces)
|
399 |
-
|
400 |
-
combined_mesh = trimesh.Trimesh(vertices=combined_vertices, faces=combined_faces)
|
401 |
-
|
402 |
-
# Stitch overlapping vertices
|
403 |
-
combined_mesh = combined_mesh.subdivide_to_size(max_edge=0.05)
|
404 |
-
combined_mesh = combined_mesh.smoothed(method='laplacian', iterations=2)
|
405 |
-
|
406 |
-
# Ensure watertight mesh
|
407 |
-
combined_mesh.fill_holes()
|
408 |
-
combined_mesh.fix_normals()
|
409 |
-
|
410 |
-
return combined_mesh
|
411 |
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
mesh_resolution = min(int(request.form.get('mesh_resolution', 80)), 120)
|
471 |
-
output_format = request.form.get('output_format', 'glb').lower()
|
472 |
-
detail_level = request.form.get('detail_level', 'medium').lower()
|
473 |
-
texture_quality = request.form.get('texture_quality', 'medium').lower()
|
474 |
-
except ValueError:
|
475 |
-
return jsonify({"error": "Invalid parameter values"}), 400
|
476 |
-
|
477 |
-
if output_format not in ['obj', 'glb']:
|
478 |
-
return jsonify({"error": "Unsupported output format. Use 'obj' or 'glb'"}), 400
|
479 |
-
|
480 |
-
if detail_level == 'high':
|
481 |
-
mesh_resolution = min(int(mesh_resolution * 1.5), 120)
|
482 |
-
elif detail_level == 'low':
|
483 |
-
mesh_resolution = max(int(mesh_resolution * 0.7), 50)
|
484 |
-
|
485 |
-
job_id = str(uuid.uuid4())
|
486 |
-
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
487 |
-
os.makedirs(output_dir, exist_ok=True)
|
488 |
-
|
489 |
-
filepaths = {}
|
490 |
-
for view, file in view_files.items():
|
491 |
-
filename = secure_filename(file.filename)
|
492 |
-
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{view}_{filename}")
|
493 |
-
file.save(filepath)
|
494 |
-
filepaths[view] = filepath
|
495 |
-
|
496 |
-
processing_jobs[job_id] = {
|
497 |
-
'status': 'processing',
|
498 |
-
'progress': 0,
|
499 |
-
'result_url': None,
|
500 |
-
'preview_url': None,
|
501 |
-
'error': None,
|
502 |
-
'output_format': output_format,
|
503 |
-
'created_at': time.time()
|
504 |
-
}
|
505 |
-
|
506 |
-
def process_images():
|
507 |
-
thread = threading.current_thread()
|
508 |
-
processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
|
509 |
-
|
510 |
-
try:
|
511 |
-
processing_jobs[job_id]['progress'] = 5
|
512 |
-
images = {}
|
513 |
-
for view, filepath in filepaths.items():
|
514 |
-
try:
|
515 |
-
images[view] = preprocess_image(filepath)
|
516 |
-
except ValueError as e:
|
517 |
-
processing_jobs[job_id]['status'] = 'error'
|
518 |
-
processing_jobs[job_id]['error'] = f"Error preprocessing {view} image: {str(e)}"
|
519 |
-
return
|
520 |
-
processing_jobs[job_id]['progress'] = 10
|
521 |
-
|
522 |
-
try:
|
523 |
-
dpt_model, da_model, da_processor = load_models()
|
524 |
-
processing_jobs[job_id]['progress'] = 20
|
525 |
-
except Exception as e:
|
526 |
-
processing_jobs[job_id]['status'] = 'error'
|
527 |
-
processing_jobs[job_id]['error'] = f"Error loading models: {str(e)}"
|
528 |
-
return
|
529 |
-
|
530 |
-
try:
|
531 |
-
def estimate_depths():
|
532 |
-
meshes = []
|
533 |
-
view_angles = {'front': 0, 'back': np.pi, 'left': np.pi/2, 'right': -np.pi/2}
|
534 |
-
with torch.no_grad():
|
535 |
-
for view, image in images.items():
|
536 |
-
# DPT-Large
|
537 |
-
dpt_result = dpt_model(image)
|
538 |
-
dpt_depth = dpt_result["depth"]
|
539 |
-
|
540 |
-
# Depth Anything (if loaded)
|
541 |
-
if da_model and da_processor:
|
542 |
-
inputs = da_processor(images=image, return_tensors="pt")
|
543 |
-
inputs = {k: v.to("cpu") for k, v in inputs.items()}
|
544 |
-
outputs = da_model(**inputs)
|
545 |
-
da_depth = outputs.predicted_depth.squeeze()
|
546 |
-
da_depth = torch.nn.functional.interpolate(
|
547 |
-
da_depth.unsqueeze(0).unsqueeze(0),
|
548 |
-
size=(image.height, image.width),
|
549 |
-
mode='bicubic',
|
550 |
-
align_corners=False
|
551 |
-
).squeeze()
|
552 |
-
fused_depth = fuse_depth_maps(dpt_depth, da_depth, detail_level)
|
553 |
-
else:
|
554 |
-
fused_depth = np.array(dpt_depth) if isinstance(dpt_depth, Image.Image) else dpt_depth
|
555 |
-
if len(fused_depth.shape) > 2:
|
556 |
-
fused_depth = np.mean(fused_depth, axis=2)
|
557 |
-
p_low, p_high = np.percentile(fused_depth, [1, 99])
|
558 |
-
fused_depth = np.clip((fused_depth - p_low) / (p_high - p_low), 0, 1) if p_high > p_low else fused_depth
|
559 |
-
|
560 |
-
mesh = depth_to_mesh(fused_depth, image, resolution=mesh_resolution, detail_level=detail_level, view_angle=view_angles[view])
|
561 |
-
meshes.append(mesh)
|
562 |
-
gc.collect()
|
563 |
-
|
564 |
-
combined_mesh = combine_meshes(meshes)
|
565 |
-
return combined_mesh
|
566 |
-
|
567 |
-
combined_mesh, error = process_with_timeout(estimate_depths, [], TIMEOUT_SECONDS)
|
568 |
-
|
569 |
-
if error:
|
570 |
-
if isinstance(error, TimeoutError):
|
571 |
-
processing_jobs[job_id]['status'] = 'error'
|
572 |
-
processing_jobs[job_id]['error'] = f"Processing timed out after {TIMEOUT_SECONDS} seconds"
|
573 |
-
return
|
574 |
-
else:
|
575 |
-
raise error
|
576 |
-
|
577 |
-
processing_jobs[job_id]['progress'] = 80
|
578 |
-
|
579 |
-
if output_format == 'obj':
|
580 |
-
obj_path = os.path.join(output_dir, "model.obj")
|
581 |
-
combined_mesh.export(
|
582 |
-
obj_path,
|
583 |
-
file_type='obj',
|
584 |
-
include_normals=True,
|
585 |
-
include_texture=True
|
586 |
-
)
|
587 |
-
zip_path = os.path.join(output_dir, "model.zip")
|
588 |
-
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
589 |
-
zipf.write(obj_path, arcname="model.obj")
|
590 |
-
mtl_path = os.path.join(output_dir, "model.mtl")
|
591 |
-
if os.path.exists(mtl_path):
|
592 |
-
zipf.write(mtl_path, arcname="model.mtl")
|
593 |
-
texture_path = os.path.join(output_dir, "model.png")
|
594 |
-
if os.path.exists(texture_path):
|
595 |
-
zipf.write(texture_path, arcname="model.png")
|
596 |
-
|
597 |
-
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
598 |
-
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
599 |
-
|
600 |
-
elif output_format == 'glb':
|
601 |
-
glb_path = os.path.join(output_dir, "model.glb")
|
602 |
-
combined_mesh.export(
|
603 |
-
glb_path,
|
604 |
-
file_type='glb'
|
605 |
-
)
|
606 |
-
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
607 |
-
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
608 |
-
|
609 |
-
processing_jobs[job_id]['status'] = 'completed'
|
610 |
-
processing_jobs[job_id]['progress'] = 100
|
611 |
-
print(f"Job {job_id} completed")
|
612 |
-
|
613 |
-
except Exception as e:
|
614 |
-
error_details = traceback.format_exc()
|
615 |
-
processing_jobs[job_id]['status'] = 'error'
|
616 |
-
processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
|
617 |
-
print(f"Error processing job {job_id}: {str(e)}")
|
618 |
-
print(error_details)
|
619 |
-
return
|
620 |
-
|
621 |
-
for filepath in filepaths.values():
|
622 |
-
if os.path.exists(filepath):
|
623 |
-
os.remove(filepath)
|
624 |
-
gc.collect()
|
625 |
-
|
626 |
-
except Exception as e:
|
627 |
-
error_details = traceback.format_exc()
|
628 |
-
processing_jobs[job_id]['status'] = 'error'
|
629 |
-
processing_jobs[job_id]['error'] = f"{str(e)}\n{error_details}"
|
630 |
-
print(f"Error processing job {job_id}: {str(e)}")
|
631 |
-
print(error_details)
|
632 |
-
for filepath in filepaths.values():
|
633 |
-
if os.path.exists(filepath):
|
634 |
-
os.remove(filepath)
|
635 |
-
|
636 |
-
processing_thread = threading.Thread(target=process_images)
|
637 |
-
processing_thread.daemon = True
|
638 |
-
processing_thread.start()
|
639 |
-
|
640 |
-
return jsonify({"job_id": job_id}), 202
|
641 |
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
|
|
|
|
|
|
|
|
|
|
679 |
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
703 |
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
model_stats['package_size'] = os.path.getsize(zip_path)
|
728 |
-
else:
|
729 |
-
glb_path = os.path.join(output_dir, "model.glb")
|
730 |
-
if os.path.exists(glb_path):
|
731 |
-
model_stats['model_size'] = os.path.getsize(glb_path)
|
732 |
-
|
733 |
-
return jsonify({
|
734 |
-
"status": job['status'],
|
735 |
-
"model_format": job['output_format'],
|
736 |
-
"download_url": job['result_url'],
|
737 |
-
"preview_url": job['preview_url'],
|
738 |
-
"model_stats": model_stats,
|
739 |
-
"created_at": job.get('created_at'),
|
740 |
-
"completed_at": job.get('completed_at')
|
741 |
-
}), 200
|
742 |
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
"endpoints": [
|
748 |
-
"/convert",
|
749 |
-
"/progress/<job_id>",
|
750 |
-
"/download/<job_id>",
|
751 |
-
"/preview/<job_id>",
|
752 |
-
"/model-info/<job_id>"
|
753 |
-
],
|
754 |
-
"parameters": {
|
755 |
-
"front": "Image file (required)",
|
756 |
-
"back": "Image file (required)",
|
757 |
-
"left": "Image file (optional)",
|
758 |
-
"right": "Image file (optional)",
|
759 |
-
"mesh_resolution": "Integer (50-120)",
|
760 |
-
"output_format": "obj or glb",
|
761 |
-
"detail_level": "low, medium, or high",
|
762 |
-
"texture_quality": "low, medium, or high"
|
763 |
-
},
|
764 |
-
"description": "Creates high-quality 3D models from multiple 2D images (front, back, left, right) using DPT-Large and Depth Anything."
|
765 |
-
}), 200
|
766 |
-
|
767 |
-
if __name__ == '__main__':
|
768 |
-
cleanup_old_jobs()
|
769 |
-
port = int(os.environ.get('PORT', 7860))
|
770 |
-
app.run(host='0.0.0.0', port=port)
|
771 |
-
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import time
|
4 |
+
import threading
|
5 |
+
import json
|
6 |
+
import gc
|
7 |
+
from flask import Flask, request, jsonify, send_file, Response, stream_with_context
|
8 |
+
from werkzeug.utils import secure_filename
|
9 |
+
from PIL import Image
|
10 |
+
import io
|
11 |
+
import zipfile
|
12 |
+
import uuid
|
13 |
+
import traceback
|
14 |
+
from huggingface_hub import snapshot_download, login
|
15 |
+
from flask_cors import CORS
|
16 |
+
import numpy as np
|
17 |
+
import trimesh
|
18 |
+
from transformers import pipeline, AutoImageProcessor, AutoModelForDepthEstimation
|
19 |
+
from scipy.ndimage import gaussian_filter
|
20 |
+
from scipy import interpolate
|
21 |
+
import cv2
|
22 |
+
from rembg import remove
|
23 |
|
24 |
+
app = Flask(__name__)
|
25 |
+
CORS(app)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Configure directories
|
28 |
+
UPLOAD_FOLDER = '/tmp/uploads'
|
29 |
+
RESULTS_FOLDER = '/tmp/results'
|
30 |
+
CACHE_DIR = '/tmp/huggingface'
|
31 |
+
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
|
32 |
|
33 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
34 |
+
os.makedirs(RESULTS_FOLDER, exist_ok=True)
|
35 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
|
|
|
|
36 |
|
37 |
+
os.environ['HF_HOME'] = CACHE_DIR
|
38 |
+
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
39 |
+
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
|
40 |
|
41 |
+
# Job tracking
|
42 |
+
processing_jobs = {}
|
|
|
43 |
|
44 |
+
# Model variables
|
45 |
+
dpt_estimator = None
|
46 |
+
depth_anything_model = None
|
47 |
+
depth_anything_processor = None
|
48 |
+
model_loaded = False
|
49 |
+
model_loading = False
|
50 |
|
51 |
+
TIMEOUT_SECONDS = 240
|
52 |
+
MAX_DIMENSION = 518
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
class TimeoutError(Exception):
|
55 |
+
pass
|
56 |
|
57 |
+
def process_with_timeout(function, args, timeout):
|
58 |
+
result = [None]
|
59 |
+
error = [None]
|
60 |
+
completed = [False]
|
61 |
+
|
62 |
+
def target():
|
63 |
+
try:
|
64 |
+
result[0] = function(*args)
|
65 |
+
completed[0] = True
|
66 |
+
except Exception as e:
|
67 |
+
error[0] = e
|
68 |
+
|
69 |
+
thread = threading.Thread(target=target)
|
70 |
+
thread.daemon = True
|
71 |
+
thread.start()
|
72 |
+
thread.join(timeout)
|
73 |
+
|
74 |
+
if not completed[0]:
|
75 |
+
if thread.is_alive():
|
76 |
+
return None, TimeoutError(f"Processing timed out after {timeout} seconds")
|
77 |
+
elif error[0]:
|
78 |
+
return None, error[0]
|
79 |
+
|
80 |
+
if error[0]:
|
81 |
+
return None, error[0]
|
82 |
+
|
83 |
+
return result[0], None
|
84 |
|
85 |
+
def allowed_file(filename):
|
86 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
def remove_background(image_path):
|
89 |
+
try:
|
90 |
+
with open(image_path, "rb") as img_file:
|
91 |
+
img_data = img_file.read()
|
92 |
+
result = remove(img_data)
|
93 |
+
img = Image.open(io.BytesIO(result)).convert("RGBA")
|
94 |
+
|
95 |
+
# Check if image is fully transparent (no object)
|
96 |
+
img_array = np.array(img)
|
97 |
+
if np.all(img_array[:, :, 3] == 0):
|
98 |
+
print(f"Warning: Image {image_path} is fully transparent or no object detected")
|
99 |
+
return None
|
100 |
+
|
101 |
+
# Create black background
|
102 |
+
black_bg = Image.new("RGB", img.size, (0, 0, 0))
|
103 |
+
black_bg.paste(img, (0, 0), img)
|
104 |
+
return black_bg
|
105 |
+
except Exception as e:
|
106 |
+
print(f"Error in remove_background for {image_path}: {str(e)}")
|
107 |
+
raise
|
108 |
|
109 |
+
def preprocess_image(image_path):
|
110 |
+
# Remove background and add black background
|
111 |
+
img = remove_background(image_path)
|
112 |
+
if img is None:
|
113 |
+
raise ValueError("Image is fully transparent or no object detected")
|
114 |
+
|
115 |
+
if img.width > MAX_DIMENSION or img.height > MAX_DIMENSION:
|
116 |
+
if img.width > img.height:
|
117 |
+
new_width = MAX_DIMENSION
|
118 |
+
new_height = int(img.height * (MAX_DIMENSION / img.width))
|
119 |
+
else:
|
120 |
+
new_height = MAX_DIMENSION
|
121 |
+
new_width = int(img.width * (MAX_DIMENSION / img.height))
|
122 |
+
img = img.resize((new_width, new_height), Image.LANCZOS)
|
123 |
+
|
124 |
+
img_array = np.array(img)
|
125 |
+
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
|
126 |
+
lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2LAB)
|
127 |
+
l, a, b = cv2.split(lab)
|
128 |
+
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
129 |
+
cl = clahe.apply(l)
|
130 |
+
enhanced_lab = cv2.merge((cl, a, b))
|
131 |
+
img_array = cv2.cvtColor(enhanced_lab, cv2.COLOR_LAB2RGB)
|
132 |
+
img = Image.fromarray(img_array)
|
133 |
+
|
134 |
+
return img
|
135 |
|
136 |
+
def load_models():
|
137 |
+
global dpt_estimator, depth_anything_model, depth_anything_processor, model_loaded, model_loading
|
138 |
+
|
139 |
+
if model_loaded:
|
140 |
+
return dpt_estimator, depth_anything_model, depth_anything_processor
|
141 |
+
|
142 |
+
if model_loading:
|
143 |
+
while model_loading and not model_loaded:
|
144 |
+
time.sleep(0.5)
|
145 |
+
return dpt_estimator, depth_anything_model, depth_anything_processor
|
146 |
+
|
147 |
+
try:
|
148 |
+
model_loading = True
|
149 |
+
print("Loading models...")
|
150 |
+
|
151 |
+
hf_token = os.environ.get('HF_TOKEN')
|
152 |
+
if hf_token:
|
153 |
+
print("HF_TOKEN found, attempting login...")
|
154 |
+
login(token=hf_token)
|
155 |
+
print("Authenticated with Hugging Face token")
|
156 |
+
else:
|
157 |
+
print("Warning: HF_TOKEN not found in environment")
|
158 |
+
|
159 |
+
dpt_model_name = "Intel/dpt-large"
|
160 |
+
max_retries = 3
|
161 |
+
retry_delay = 5
|
162 |
+
for attempt in range(max_retries):
|
163 |
+
try:
|
164 |
+
print(f"Attempting to download {dpt_model_name}, attempt {attempt+1}")
|
165 |
+
snapshot_download(
|
166 |
+
repo_id=dpt_model_name,
|
167 |
+
cache_dir=CACHE_DIR,
|
168 |
+
resume_download=True,
|
169 |
+
token=hf_token
|
170 |
+
)
|
171 |
+
print(f"Successfully downloaded {dpt_model_name}")
|
172 |
+
break
|
173 |
+
except Exception as e:
|
174 |
+
if attempt < max_retries - 1:
|
175 |
+
print(f"DPT download attempt {attempt+1} failed: {str(e)}. Retrying after {retry_delay}s...")
|
176 |
+
time.sleep(retry_delay)
|
177 |
+
retry_delay *= 2
|
178 |
+
else:
|
179 |
+
raise
|
180 |
+
|
181 |
+
dpt_estimator = pipeline(
|
182 |
+
"depth-estimation",
|
183 |
+
model=dpt_model_name,
|
184 |
+
device=-1,
|
185 |
+
cache_dir=CACHE_DIR,
|
186 |
+
use_fast=True
|
187 |
+
)
|
188 |
+
print("DPT-Large loaded")
|
189 |
+
gc.collect()
|
190 |
+
|
191 |
+
da_model_name = "depth-anything/Depth-Anything-V2-Tiny-hf"
|
192 |
+
for attempt in range(max_retries):
|
193 |
+
try:
|
194 |
+
print(f"Attempting to download {da_model_name}, attempt {attempt+1}")
|
195 |
+
snapshot_download(
|
196 |
+
repo_id=da_model_name,
|
197 |
+
cache_dir=CACHE_DIR,
|
198 |
+
resume_download=True,
|
199 |
+
token=hf_token
|
200 |
+
)
|
201 |
+
print(f"Successfully downloaded {da_model_name}")
|
202 |
+
break
|
203 |
+
except Exception as e:
|
204 |
+
if attempt < max_retries - 1:
|
205 |
+
print(f"Depth Anything download attempt {attempt+1} failed: {str(e)}. Retrying after {retry_delay}s...")
|
206 |
+
time.sleep(retry_delay)
|
207 |
+
retry_delay *= 2
|
208 |
+
else:
|
209 |
+
print(f"Failed to load Depth Anything: {str(e)}. Falling back to DPT-Large only.")
|
210 |
+
depth_anything_model = None
|
211 |
+
depth_anything_processor = None
|
212 |
+
model_loaded = True
|
213 |
+
return dpt_estimator, None, None
|
214 |
+
|
215 |
+
depth_anything_processor = AutoImageProcessor.from_pretrained(
|
216 |
+
da_model_name,
|
217 |
+
cache_dir=CACHE_DIR,
|
218 |
+
token=hf_token
|
219 |
+
)
|
220 |
+
depth_anything_model = AutoModelForDepthEstimation.from_pretrained(
|
221 |
+
da_model_name,
|
222 |
+
cache_dir=CACHE_DIR,
|
223 |
+
token=hf_token
|
224 |
+
).to("cpu")
|
225 |
+
|
226 |
+
model_loaded = True
|
227 |
+
print("Depth Anything loaded")
|
228 |
+
return dpt_estimator, depth_anything_model, depth_anything_processor
|
229 |
+
|
230 |
+
except Exception as e:
|
231 |
+
print(f"Error loading models: {str(e)}")
|
232 |
+
print(traceback.format_exc())
|
233 |
+
raise
|
234 |
+
finally:
|
235 |
+
model_loading = False
|
236 |
|
237 |
+
def fuse_depth_maps(dpt_depth, da_depth, detail_level='medium'):
|
238 |
+
if isinstance(dpt_depth, Image.Image):
|
239 |
+
dpt_depth = np.array(dpt_depth)
|
240 |
+
if isinstance(da_depth, torch.Tensor):
|
241 |
+
da_depth = da_depth.cpu().numpy()
|
242 |
+
if len(dpt_depth.shape) > 2:
|
243 |
+
dpt_depth = np.mean(dpt_depth, axis=2)
|
244 |
+
if len(da_depth.shape) > 2:
|
245 |
+
da_depth = np.mean(da_depth, axis=2)
|
246 |
+
|
247 |
+
if dpt_depth.shape != da_depth.shape:
|
248 |
+
da_depth = cv2.resize(da_depth, (dpt_depth.shape[1], dpt_depth.shape[0]), interpolation=cv2.INTER_CUBIC)
|
249 |
+
|
250 |
+
p_low_dpt, p_high_dpt = np.percentile(dpt_depth, [1, 99])
|
251 |
+
p_low_da, p_high_da = np.percentile(da_depth, [1, 99])
|
252 |
+
dpt_depth = np.clip((dpt_depth - p_low_dpt) / (p_high_dpt - p_low_dpt), 0, 1) if p_high_dpt > p_low_dpt else dpt_depth
|
253 |
+
da_depth = np.clip((da_depth - p_low_da) / (p_high_da - p_low_da), 0, 1) if p_high_da > p_low_da else da_depth
|
254 |
+
|
255 |
+
if detail_level == 'high':
|
256 |
+
weight_da = 0.7
|
257 |
+
edges = cv2.Canny((da_depth * 255).astype(np.uint8), 50, 150)
|
258 |
+
edge_mask = (edges > 0).astype(np.float32)
|
259 |
+
dpt_weight = gaussian_filter(1 - edge_mask, sigma=1.0)
|
260 |
+
da_weight = gaussian_filter(edge_mask, sigma=1.0)
|
261 |
+
fused_depth = dpt_weight * dpt_depth + da_weight * da_depth * weight_da + (1 - weight_da) * dpt_depth
|
262 |
+
else:
|
263 |
+
weight_da = 0.5 if detail_level == 'medium' else 0.3
|
264 |
+
fused_depth = (1 - weight_da) * dpt_depth + weight_da * da_depth
|
265 |
+
|
266 |
+
fused_depth = np.clip(fused_depth, 0, 1)
|
267 |
+
return fused_depth
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
+
def enhance_depth_map(depth_map, detail_level='medium'):
|
270 |
+
enhanced_depth = depth_map.copy().astype(np.float32)
|
271 |
+
p_low, p_high = np.percentile(enhanced_depth, [1, 99])
|
272 |
+
enhanced_depth = np.clip(enhanced_depth, p_low, p_high)
|
273 |
+
enhanced_depth = (enhanced_depth - p_low) / (p_high - p_low) if p_high > p_low else enhanced_depth
|
274 |
+
|
275 |
+
if detail_level == 'high':
|
276 |
+
blurred = gaussian_filter(enhanced_depth, sigma=1.5)
|
277 |
+
mask = enhanced_depth - blurred
|
278 |
+
enhanced_depth = enhanced_depth + 1.5 * mask
|
279 |
+
smooth1 = gaussian_filter(enhanced_depth, sigma=0.5)
|
280 |
+
smooth2 = gaussian_filter(enhanced_depth, sigma=2.0)
|
281 |
+
edge_mask = enhanced_depth - smooth2
|
282 |
+
enhanced_depth = smooth1 + 1.2 * edge_mask
|
283 |
+
elif detail_level == 'medium':
|
284 |
+
blurred = gaussian_filter(enhanced_depth, sigma=1.0)
|
285 |
+
mask = enhanced_depth - blurred
|
286 |
+
enhanced_depth = enhanced_depth + 0.8 * mask
|
287 |
+
enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.5)
|
288 |
+
else:
|
289 |
+
enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.7)
|
290 |
+
|
291 |
+
fused_depth = np.clip(fused_depth, 0, 1)
|
292 |
+
return fused_depth
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
+
def depth_to_mesh(depth_map, image, resolution=80, detail_level='medium', view_angle=0):
|
295 |
+
enhanced_depth = enhance_depth_map(depth_map, detail_level)
|
296 |
+
h, w = enhanced_depth.shape
|
297 |
+
x = np.linspace(0, w-1, resolution)
|
298 |
+
y = np.linspace(0, h-1, resolution)
|
299 |
+
x_grid, y_grid = np.meshgrid(x, y)
|
300 |
+
|
301 |
+
interp_func = interpolate.RectBivariateSpline(
|
302 |
+
np.arange(h), np.arange(w), enhanced_depth, kx=3, ky=3
|
303 |
+
)
|
304 |
+
z_values = interp_func(y, x, grid=True)
|
305 |
+
|
306 |
+
if detail_level == 'high':
|
307 |
+
dx = np.gradient(z_values, axis=1)
|
308 |
+
dy = np.gradient(z_values, axis=0)
|
309 |
+
gradient_magnitude = np.sqrt(dx**2 + dy**2)
|
310 |
+
edge_mask = np.clip(gradient_magnitude * 5, 0, 0.2)
|
311 |
+
z_values = z_values + edge_mask * (z_values - gaussian_filter(z_values, sigma=1.0))
|
312 |
+
|
313 |
+
z_min, z_max = np.percentile(z_values, [2, 98])
|
314 |
+
z_values = (z_values - z_min) / (z_max - z_min) if z_max > z_min else z_values
|
315 |
+
z_scaling = 2.5 if detail_level == 'high' else 2.0 if detail_level == 'medium' else 1.5
|
316 |
+
z_values = z_values * z_scaling
|
317 |
+
|
318 |
+
x_grid = (x_grid / w - 0.5) * 2.0
|
319 |
+
y_grid = (y_grid / h - 0.5) * 2.0
|
320 |
+
vertices = np.vstack([x_grid.flatten(), -y_grid.flatten(), -z_values.flatten()]).T
|
321 |
+
|
322 |
+
# Rotate vertices based on view angle (in radians)
|
323 |
+
if view_angle != 0:
|
324 |
+
rotation_matrix = trimesh.transformations.rotation_matrix(view_angle, [0, 1, 0])
|
325 |
+
vertices = trimesh.transform_points(vertices, rotation_matrix)
|
326 |
+
|
327 |
+
faces = []
|
328 |
+
for i in range(resolution-1):
|
329 |
+
for j in range(resolution-1):
|
330 |
+
p1 = i * resolution + j
|
331 |
+
p2 = i * resolution + (j + 1)
|
332 |
+
p3 = (i + 1) * resolution + j
|
333 |
+
p4 = (i + 1) * resolution + (j + 1)
|
334 |
+
v1 = vertices[p1]
|
335 |
+
v2 = vertices[p2]
|
336 |
+
v3 = vertices[p3]
|
337 |
+
v4 = vertices[p4]
|
338 |
+
norm1 = np.cross(v2-v1, v4-v1)
|
339 |
+
norm2 = np.cross(v4-v3, v1-v3)
|
340 |
+
if np.dot(norm1, norm2) >= 0:
|
341 |
+
faces.append([p1, p2, p4])
|
342 |
+
faces.append([p1, p4, p3])
|
343 |
+
else:
|
344 |
+
faces.append([p1, p2, p3])
|
345 |
+
faces.append([p2, p4, p3])
|
346 |
+
|
347 |
+
faces = np.array(faces)
|
348 |
+
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
|
349 |
+
|
350 |
+
if image:
|
351 |
+
img_array = np.array(image)
|
352 |
+
vertex_colors = np.zeros((vertices.shape[0], 4), dtype=np.uint8)
|
353 |
+
for i in range(resolution):
|
354 |
+
for j in range(resolution):
|
355 |
+
img_x = j * (img_array.shape[1] - 1) / (resolution - 1)
|
356 |
+
img_y = i * (img_array.shape[0] - 1) / (resolution - 1)
|
357 |
+
x0, y0 = int(img_x), int(img_y)
|
358 |
+
x1, y1 = min(x0 + 1, img_array.shape[1] - 1), min(y0 + 1, img_array.shape[0] - 1)
|
359 |
+
wx = img_x - x0
|
360 |
+
wy = img_y - y0
|
361 |
+
vertex_idx = i * resolution + j
|
362 |
+
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
|
363 |
+
r = int((1-wx)*(1-wy)*img_array[y0, x0, 0] + wx*(1-wy)*img_array[y0, x1, 0] +
|
364 |
+
(1-wx)*wy*img_array[y1, x0, 0] + wx*wy*img_array[y1, x1, 0])
|
365 |
+
g = int((1-wx)*(1-wy)*img_array[y0, x0, 1] + wx*(1-wy)*img_array[y0, x1, 1] +
|
366 |
+
(1-wx)*wy*img_array[y1, x0, 1] + wx*wy*img_array[y1, x1, 1])
|
367 |
+
b = int((1-wx)*(1-wy)*img_array[y0, x0, 2] + wx*(1-wy)*img_array[y0, x1, 2] +
|
368 |
+
(1-wx)*wy*img_array[y1, x0, 2] + wx*wy*img_array[y1, x1, 2])
|
369 |
+
vertex_colors[vertex_idx, :3] = [r, g, b]
|
370 |
+
vertex_colors[vertex_idx, 3] = 255
|
371 |
+
else:
|
372 |
+
gray = int((1-wx)*(1-wy)*img_array[y0, x0] + wx*(1-wy)*img_array[y0, x1] +
|
373 |
+
(1-wx)*wy*img_array[y1, x0] + wx*wy*img_array[y1, x1])
|
374 |
+
vertex_colors[vertex_idx, :3] = [gray, gray, gray]
|
375 |
+
vertex_colors[vertex_idx, 3] = 255
|
376 |
+
mesh.visual.vertex_colors = vertex_colors
|
377 |
+
|
378 |
+
if detail_level != 'high':
|
379 |
+
mesh = mesh.smoothed(method='laplacian', iterations=1)
|
380 |
+
mesh.fix_normals()
|
381 |
+
return mesh
|
382 |
|
383 |
+
def combine_meshes(meshes):
|
384 |
+
if len(meshes) == 1:
|
385 |
+
return meshes[0]
|
386 |
+
|
387 |
+
combined_vertices = []
|
388 |
+
combined_faces = []
|
389 |
+
vertex_offset = 0
|
390 |
+
|
391 |
+
for mesh in meshes:
|
392 |
+
combined_vertices.append(mesh.vertices)
|
393 |
+
combined_faces.append(mesh.faces + vertex_offset)
|
394 |
+
vertex_offset += len(mesh.vertices)
|
395 |
+
|
396 |
+
combined_vertices = np.vstack(combined_vertices)
|
397 |
+
combined_faces = np.vstack(combined_faces)
|
398 |
+
|
399 |
+
combined_mesh = trimesh.Trimesh(vertices=combined_vertices, faces=combined_faces)
|
400 |
+
|
401 |
+
# Stitch overlapping vertices
|
402 |
+
combined_mesh = combined_mesh.subdivide_to_size(max_edge=0.05)
|
403 |
+
combined_mesh = combined_mesh.smoothed(method='laplacian', iterations=2)
|
404 |
+
|
405 |
+
# Ensure watertight mesh
|
406 |
+
combined_mesh.fill_holes()
|
407 |
+
combined_mesh.fix_normals()
|
408 |
+
|
409 |
+
return combined_mesh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
|
411 |
+
@app.route('/health', methods=['GET'])
|
412 |
+
def health_check():
|
413 |
+
return jsonify({
|
414 |
+
"status": "healthy",
|
415 |
+
"model": "DPT-Large + Depth Anything (Multi-View)",
|
416 |
+
"device": "cpu"
|
417 |
+
}), 200
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
|
419 |
+
@app.route('/progress/<job_id>', methods=['GET'])
|
420 |
+
def progress(job_id):
|
421 |
+
def generate():
|
422 |
+
if job_id not in processing_jobs:
|
423 |
+
yield f"data: {json.dumps({'error': 'Job not found'})}\n\n"
|
424 |
+
return
|
425 |
+
|
426 |
+
job = processing_jobs[job_id]
|
427 |
+
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
|
428 |
+
|
429 |
+
last_progress = job['progress']
|
430 |
+
check_count = 0
|
431 |
+
while job['status'] == 'processing':
|
432 |
+
if job['progress'] != last_progress:
|
433 |
+
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
|
434 |
+
last_progress = job['progress']
|
435 |
+
time.sleep(0.5)
|
436 |
+
check_count += 1
|
437 |
+
if check_count > 60:
|
438 |
+
if 'thread_alive' in job and not job['thread_alive']():
|
439 |
+
job['status'] = 'error'
|
440 |
+
job['error'] = 'Processing thread died unexpectedly'
|
441 |
+
break
|
442 |
+
check_count = 0
|
443 |
+
|
444 |
+
if job['status'] == 'completed':
|
445 |
+
yield f"data: {json.dumps({'status': 'completed', 'progress': 100, 'result_url': job['result_url'], 'preview_url': job['preview_url']})}\n\n"
|
446 |
+
else:
|
447 |
+
yield f"data: {json.dumps({'status': 'error', 'error': job['error']})}\n\n"
|
448 |
+
|
449 |
+
return Response(stream_with_context(generate()), mimetype='text/event-stream')
|
450 |
|
451 |
+
@app.route('/convert', methods=['POST'])
|
452 |
+
def convert_image_to_3d():
|
453 |
+
required_views = ['front', 'back']
|
454 |
+
optional_views = ['left', 'right']
|
455 |
+
view_files = {}
|
456 |
+
|
457 |
+
for view in required_views + optional_views:
|
458 |
+
if view in request.files and request.files[view].filename != '':
|
459 |
+
view_files[view] = request.files[view]
|
460 |
+
|
461 |
+
if not all(view in view_files for view in required_views):
|
462 |
+
return jsonify({"error": "Front and back images are required"}), 400
|
463 |
+
|
464 |
+
for view, file in view_files.items():
|
465 |
+
if not allowed_file(file.filename):
|
466 |
+
return jsonify({"error": f"File type not allowed for {view}. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400
|
467 |
+
|
468 |
+
try:
|
469 |
+
mesh_resolution = min(int(request.form.get('mesh_resolution', 80)), 120)
|
470 |
+
output_format = request.form.get('output_format', 'glb').lower()
|
471 |
+
detail_level = request.form.get('detail_level', 'medium').lower()
|
472 |
+
texture_quality = request.form.get('texture_quality', 'medium').lower()
|
473 |
+
except ValueError:
|
474 |
+
return jsonify({"error": "Invalid parameter values"}), 400
|
475 |
+
|
476 |
+
if output_format not in ['obj', 'glb']:
|
477 |
+
return jsonify({"error": "Unsupported output format. Use 'obj' or 'glb'"}), 400
|
478 |
+
|
479 |
+
if detail_level == 'high':
|
480 |
+
mesh_resolution = min(int(mesh_resolution * 1.5), 120)
|
481 |
+
elif detail_level == 'low':
|
482 |
+
mesh_resolution = max(int(mesh_resolution * 0.7), 50)
|
483 |
+
|
484 |
+
job_id = str(uuid.uuid4())
|
485 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
486 |
+
os.makedirs(output_dir, exist_ok=True)
|
487 |
+
|
488 |
+
filepaths = {}
|
489 |
+
for view, file in view_files.items():
|
490 |
+
filename = secure_filename(file.filename)
|
491 |
+
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{view}_{filename}")
|
492 |
+
file.save(filepath)
|
493 |
+
filepaths[view] = filepath
|
494 |
+
|
495 |
+
processing_jobs[job_id] = {
|
496 |
+
'status': 'processing',
|
497 |
+
'progress': 0,
|
498 |
+
'result_url': None,
|
499 |
+
'preview_url': None,
|
500 |
+
'error': None,
|
501 |
+
'output_format': output_format,
|
502 |
+
'created_at': time.time()
|
503 |
+
}
|
504 |
+
|
505 |
+
def process_images():
|
506 |
+
thread = threading.current_thread()
|
507 |
+
processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
|
508 |
+
|
509 |
+
try:
|
510 |
+
processing_jobs[job_id]['progress'] = 5
|
511 |
+
images = {}
|
512 |
+
for view, filepath in filepaths.items():
|
513 |
+
try:
|
514 |
+
images[view] = preprocess_image(filepath)
|
515 |
+
except ValueError as e:
|
516 |
+
processing_jobs[job_id]['status'] = 'error'
|
517 |
+
processing_jobs[job_id]['error'] = f"Error preprocessing {view} image: {str(e)}"
|
518 |
+
return
|
519 |
+
processing_jobs[job_id]['progress'] = 10
|
520 |
+
|
521 |
+
try:
|
522 |
+
dpt_model, da_model, da_processor = load_models()
|
523 |
+
processing_jobs[job_id]['progress'] = 20
|
524 |
+
except Exception as e:
|
525 |
+
processing_jobs[job_id]['status'] = 'error'
|
526 |
+
processing_jobs[job_id]['error'] = f"Error loading models: {str(e)}"
|
527 |
+
return
|
528 |
+
|
529 |
+
try:
|
530 |
+
def estimate_depths():
|
531 |
+
meshes = []
|
532 |
+
view_angles = {'front': 0, 'back': np.pi, 'left': np.pi/2, 'right': -np.pi/2}
|
533 |
+
with torch.no_grad():
|
534 |
+
for view, image in images.items():
|
535 |
+
# DPT-Large
|
536 |
+
dpt_result = dpt_model(image)
|
537 |
+
dpt_depth = dpt_result["depth"]
|
538 |
+
|
539 |
+
# Depth Anything (if loaded)
|
540 |
+
if da_model and da_processor:
|
541 |
+
inputs = da_processor(images=image, return_tensors="pt")
|
542 |
+
inputs = {k: v.to("cpu") for k, v in inputs.items()}
|
543 |
+
outputs = da_model(**inputs)
|
544 |
+
da_depth = outputs.predicted_depth.squeeze()
|
545 |
+
da_depth = torch.nn.functional.interpolate(
|
546 |
+
da_depth.unsqueeze(0).unsqueeze(0),
|
547 |
+
size=(image.height, image.width),
|
548 |
+
mode='bicubic',
|
549 |
+
align_corners=False
|
550 |
+
).squeeze()
|
551 |
+
fused_depth = fuse_depth_maps(dpt_depth, da_depth, detail_level)
|
552 |
+
else:
|
553 |
+
fused_depth = np.array(dpt_depth) if isinstance(dpt_depth, Image.Image) else dpt_depth
|
554 |
+
if len(fused_depth.shape) > 2:
|
555 |
+
fused_depth = np.mean(fused_depth, axis=2)
|
556 |
+
p_low, p_high = np.percentile(fused_depth, [1, 99])
|
557 |
+
fused_depth = np.clip((fused_depth - p_low) / (p_high - p_low), 0, 1) if p_high > p_low else fused_depth
|
558 |
+
|
559 |
+
mesh = depth_to_mesh(fused_depth, image, resolution=mesh_resolution, detail_level=detail_level, view_angle=view_angles[view])
|
560 |
+
meshes.append(mesh)
|
561 |
+
gc.collect()
|
562 |
+
|
563 |
+
combined_mesh = combine_meshes(meshes)
|
564 |
+
return combined_mesh
|
565 |
+
|
566 |
+
combined_mesh, error = process_with_timeout(estimate_depths, [], TIMEOUT_SECONDS)
|
567 |
+
|
568 |
+
if error:
|
569 |
+
if isinstance(error, TimeoutError):
|
570 |
+
processing_jobs[job_id]['status'] = 'error'
|
571 |
+
processing_jobs[job_id]['error'] = f"Processing timed out after {TIMEOUT_SECONDS} seconds"
|
572 |
+
return
|
573 |
+
else:
|
574 |
+
raise error
|
575 |
+
|
576 |
+
processing_jobs[job_id]['progress'] = 80
|
577 |
+
|
578 |
+
if output_format == 'obj':
|
579 |
+
obj_path = os.path.join(output_dir, "model.obj")
|
580 |
+
combined_mesh.export(
|
581 |
+
obj_path,
|
582 |
+
file_type='obj',
|
583 |
+
include_normals=True,
|
584 |
+
include_texture=True
|
585 |
+
)
|
586 |
+
zip_path = os.path.join(output_dir, "model.zip")
|
587 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
588 |
+
zipf.write(obj_path, arcname="model.obj")
|
589 |
+
mtl_path = os.path.join(output_dir, "model.mtl")
|
590 |
+
if os.path.exists(mtl_path):
|
591 |
+
zipf.write(mtl_path, arcname="model.mtl")
|
592 |
+
texture_path = os.path.join(output_dir, "model.png")
|
593 |
+
if os.path.exists(texture_path):
|
594 |
+
zipf.write(texture_path, arcname="model.png")
|
595 |
+
|
596 |
+
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
597 |
+
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
598 |
+
|
599 |
+
elif output_format == 'glb':
|
600 |
+
glb_path = os.path.join(output_dir, "model.glb")
|
601 |
+
combined_mesh.export(
|
602 |
+
glb_path,
|
603 |
+
file_type='glb'
|
604 |
+
)
|
605 |
+
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
606 |
+
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
607 |
+
|
608 |
+
processing_jobs[job_id]['status'] = 'completed'
|
609 |
+
processing_jobs[job_id]['progress'] = 100
|
610 |
+
print(f"Job {job_id} completed")
|
611 |
+
|
612 |
+
except Exception as e:
|
613 |
+
error_details = traceback.format_exc()
|
614 |
+
processing_jobs[job_id]['status'] = 'error'
|
615 |
+
processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
|
616 |
+
print(f"Error processing job {job_id}: {str(e)}")
|
617 |
+
print(error_details)
|
618 |
+
return
|
619 |
+
|
620 |
+
for filepath in filepaths.values():
|
621 |
+
if os.path.exists(filepath):
|
622 |
+
os.remove(filepath)
|
623 |
+
gc.collect()
|
624 |
+
|
625 |
+
except Exception as e:
|
626 |
+
error_details = traceback.format_exc()
|
627 |
+
processing_jobs[job_id]['status'] = 'error'
|
628 |
+
processing_jobs[job_id]['error'] = f"{str(e)}\n{error_details}"
|
629 |
+
print(f"Error processing job {job_id}: {str(e)}")
|
630 |
+
print(error_details)
|
631 |
+
for filepath in filepaths.values():
|
632 |
+
if os.path.exists(filepath):
|
633 |
+
os.remove(filepath)
|
634 |
+
|
635 |
+
processing_thread = threading.Thread(target=process_images)
|
636 |
+
processing_thread.daemon = True
|
637 |
+
processing_thread.start()
|
638 |
+
|
639 |
+
return jsonify({"job_id": job_id}), 202
|
640 |
|
641 |
+
@app.route('/download/<job_id>', methods=['GET'])
|
642 |
+
def download_model(job_id):
|
643 |
+
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
|
644 |
+
return jsonify({"error": "Model not found or processing not complete"}), 404
|
645 |
+
|
646 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
647 |
+
output_format = processing_jobs[job_id].get('output_format', 'glb')
|
648 |
+
|
649 |
+
if output_format == 'obj':
|
650 |
+
zip_path = os.path.join(output_dir, "model.zip")
|
651 |
+
if os.path.exists(zip_path):
|
652 |
+
return send_file(zip_path, as_attachment=True, download_name="model.zip")
|
653 |
+
else:
|
654 |
+
glb_path = os.path.join(output_dir, "model.glb")
|
655 |
+
if os.path.exists(glb_path):
|
656 |
+
return send_file(glb_path, as_attachment=True, download_name="model.glb")
|
657 |
+
|
658 |
+
return jsonify({"error": "File not found"}), 404
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
659 |
|
660 |
+
@app.route('/preview/<job_id>', methods=['GET'])
|
661 |
+
def preview_model(job_id):
|
662 |
+
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
|
663 |
+
return jsonify({"error": "Model not found or processing not complete"}), 404
|
664 |
+
|
665 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
666 |
+
output_format = processing_jobs[job_id].get('output_format', 'glb')
|
667 |
+
|
668 |
+
if output_format == 'obj':
|
669 |
+
obj_path = os.path.join(output_dir, "model.obj")
|
670 |
+
if os.path.exists(obj_path):
|
671 |
+
return send_file(obj_path, mimetype='model/obj')
|
672 |
+
else:
|
673 |
+
glb_path = os.path.join(output_dir, "model.glb")
|
674 |
+
if os.path.exists(glb_path):
|
675 |
+
return send_file(glb_path, mimetype='model/gltf-binary')
|
676 |
+
|
677 |
+
return jsonify({"error": "File not found"}), 404
|
678 |
|
679 |
+
def cleanup_old_jobs():
|
680 |
+
current_time = time.time()
|
681 |
+
job_ids_to_remove = []
|
682 |
+
|
683 |
+
for job_id, job_data in processing_jobs.items():
|
684 |
+
if job_data['status'] == 'completed' and (current_time - job_data.get('created_at', 0)) > 3600:
|
685 |
+
job_ids_to_remove.append(job_id)
|
686 |
+
elif job_data['status'] == 'error' and (current_time - job_data.get('created_at', 0)) > 1800:
|
687 |
+
job_ids_to_remove.append(job_id)
|
688 |
+
|
689 |
+
for job_id in job_ids_to_remove:
|
690 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
691 |
+
try:
|
692 |
+
import shutil
|
693 |
+
if os.path.exists(output_dir):
|
694 |
+
shutil.rmtree(output_dir)
|
695 |
+
except Exception as e:
|
696 |
+
print(f"Error cleaning up job {job_id}: {str(e)}")
|
697 |
+
|
698 |
+
if job_id in processing_jobs:
|
699 |
+
del processing_jobs[job_id]
|
700 |
+
|
701 |
+
threading.Timer(300, cleanup_old_jobs).start()
|
702 |
|
703 |
+
@app.route('/model-info/<job_id>', methods=['GET'])
|
704 |
+
def model_info(job_id):
|
705 |
+
if job_id not in processing_jobs:
|
706 |
+
return jsonify({"error": "Model not found"}), 404
|
707 |
+
|
708 |
+
job = processing_jobs[job_id]
|
709 |
+
|
710 |
+
if job['status'] != 'completed':
|
711 |
+
return jsonify({
|
712 |
+
"status": job['status'],
|
713 |
+
"progress": job['progress'],
|
714 |
+
"error": job.get('error')
|
715 |
+
}), 200
|
716 |
+
|
717 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
718 |
+
model_stats = {}
|
719 |
+
|
720 |
+
if job['output_format'] == 'obj':
|
721 |
+
obj_path = os.path.join(output_dir, "model.obj")
|
722 |
+
zip_path = os.path.join(output_dir, "model.zip")
|
723 |
+
if os.path.exists(obj_path):
|
724 |
+
model_stats['obj_size'] = os.path.getsize(obj_path)
|
725 |
+
if os.path.exists(zip_path):
|
726 |
+
model_stats['package_size'] = os.path.getsize(zip_path)
|
727 |
+
else:
|
728 |
+
glb_path = os.path.join(output_dir, "model.glb")
|
729 |
+
if os.path.exists(glb_path):
|
730 |
+
model_stats['model_size'] = os.path.getsize(glb_path)
|
731 |
+
|
732 |
+
return jsonify({
|
733 |
+
"status": job['status'],
|
734 |
+
"model_format": job['output_format'],
|
735 |
+
"download_url": job['result_url'],
|
736 |
+
"preview_url": job['preview_url'],
|
737 |
+
"model_stats": model_stats,
|
738 |
+
"created_at": job.get('created_at'),
|
739 |
+
"completed_at": job.get('completed_at')
|
740 |
+
}), 200
|
741 |
|
742 |
+
@app.route('/', methods=['GET'])
|
743 |
+
def index():
|
744 |
+
return jsonify({
|
745 |
+
"message": "Multi-View Image to 3D API (DPT-Large + Depth Anything)",
|
746 |
+
"endpoints": [
|
747 |
+
"/convert",
|
748 |
+
"/progress/<job_id>",
|
749 |
+
"/download/<job_id>",
|
750 |
+
"/preview/<job_id>",
|
751 |
+
"/model-info/<job_id>"
|
752 |
+
],
|
753 |
+
"parameters": {
|
754 |
+
"front": "Image file (required)",
|
755 |
+
"back": "Image file (required)",
|
756 |
+
"left": "Image file (optional)",
|
757 |
+
"right": "Image file (optional)",
|
758 |
+
"mesh_resolution": "Integer (50-120)",
|
759 |
+
"output_format": "obj or glb",
|
760 |
+
"detail_level": "low, medium, or high",
|
761 |
+
"texture_quality": "low, medium, or high"
|
762 |
+
},
|
763 |
+
"description": "Creates high-quality 3D models from multiple 2D images (front, back, left, right) using DPT-Large and Depth Anything."
|
764 |
+
}), 200
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
765 |
|
766 |
+
if __name__ == '__main__':
|
767 |
+
cleanup_old_jobs()
|
768 |
+
port = int(os.environ.get('PORT', 7860))
|
769 |
+
app.run(host='0.0.0.0', port=port)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|