File size: 8,293 Bytes
79c8ea7
0540355
0c9548a
0540355
 
 
 
 
 
 
 
 
 
 
 
 
b1622cb
d74850e
 
 
0540355
 
 
 
239c804
0540355
8e24199
0540355
1be9899
0540355
 
 
 
 
 
 
 
 
 
4c11732
753db53
0540355
2be14bd
0540355
4c11732
0540355
2be14bd
0540355
 
 
753db53
 
 
0540355
 
753db53
0540355
 
 
 
 
d74850e
0540355
d74850e
0540355
d74850e
 
 
0540355
 
0b363e7
 
 
4c11732
0540355
 
 
 
 
 
0b363e7
4c11732
0b363e7
4c11732
0b363e7
4c11732
2be14bd
d2931fe
0540355
2be14bd
d2931fe
0540355
7e5ddc3
753db53
 
2852c90
2be14bd
0540355
 
 
 
 
 
 
 
 
 
 
 
01cb6f1
0540355
d74850e
 
79c8ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d74850e
 
 
 
0540355
d74850e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
"""import gradio as gr
import uvicorn
import numpy as np
import fitz  # PyMuPDF
import tika
import torch
from fastapi import FastAPI
from transformers import pipeline
from PIL import Image
from io import BytesIO
from starlette.responses import RedirectResponse
from tika import parser
from openpyxl import load_workbook

# Initialize Tika for DOCX & PPTX parsing
tika.initVM()

# Initialize FastAPI
app = FastAPI()

# Load models
device = "cuda" if torch.cuda.is_available() else "cpu"
qa_pipeline = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=device)
image_captioning_pipeline = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")

ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}

# βœ… Function to Validate File Type
def validate_file_type(file):
    if isinstance(file, str):  # Text-based input (NamedString)
        return None
    if hasattr(file, "name"):
        ext = file.name.split(".")[-1].lower()
        if ext not in ALLOWED_EXTENSIONS:
            return f"❌ Unsupported file format: {ext}"
        return None
    return "❌ Invalid file format!"

# βœ… Extract Text from PDF
def extract_text_from_pdf(pdf_bytes):
    doc = fitz.open(stream=pdf_bytes, filetype="pdf")
    return "\n".join([page.get_text() for page in doc])

# βœ… Extract Text from DOCX & PPTX using Tika
def extract_text_with_tika(file_bytes):
    return parser.from_buffer(file_bytes)["content"]

# βœ… Extract Text from Excel
def extract_text_from_excel(file_bytes):
    wb = load_workbook(BytesIO(file_bytes), data_only=True)
    text = []
    for sheet in wb.worksheets:
        for row in sheet.iter_rows(values_only=True):
            text.append(" ".join(str(cell) for cell in row if cell))
    return "\n".join(text)

# βœ… Truncate Long Text for Model
def truncate_text(text, max_length=2048):
    return text[:max_length] if len(text) > max_length else text

# βœ… Answer Questions from Image or Document
def answer_question(file, question: str):
    # Image Processing (Gradio sends images as NumPy arrays)
    if isinstance(file, np.ndarray):  
        image = Image.fromarray(file)
        caption = image_captioning_pipeline(image)[0]['generated_text']
        response = qa_pipeline(f"Question: {question}\nContext: {caption}")
        return response[0]["generated_text"]

    # Validate File
    validation_error = validate_file_type(file)
    if validation_error:
        return validation_error

    file_ext = file.name.split(".")[-1].lower() if hasattr(file, "name") else None
    file_bytes = file.read() if hasattr(file, "read") else None
    if not file_bytes:
        return "❌ Could not read file content!"

    # Extract Text from Supported Documents
    if file_ext == "pdf":
        text = extract_text_from_pdf(file_bytes)
    elif file_ext in ["docx", "pptx"]:
        text = extract_text_with_tika(file_bytes)
    elif file_ext == "xlsx":
        text = extract_text_from_excel(file_bytes)
    else:
        return "❌ Unsupported file format!"

    if not text:
        return "⚠️ No text extracted from the document."

    truncated_text = truncate_text(text)
    response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")

    return response[0]["generated_text"]

# βœ… Gradio Interface (Unified for Images & Documents)
with gr.Blocks() as demo:
    gr.Markdown("## πŸ“„ AI-Powered Document & Image QA")

    with gr.Row():
        file_input = gr.File(label="Upload Document / Image")
        question_input = gr.Textbox(label="Ask a Question", placeholder="What is this document about?")
    
    answer_output = gr.Textbox(label="Answer")
    
    submit_btn = gr.Button("Get Answer")
    submit_btn.click(answer_question, inputs=[file_input, question_input], outputs=answer_output)

# βœ… Mount Gradio with FastAPI
app = gr.mount_gradio_app(app, demo, path="/")

@app.get("/")
def home():
    return RedirectResponse(url="/")

# βœ… Run FastAPI + Gradio
if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)
""" import gradio as gr
import uvicorn
import numpy as np
import fitz  # PyMuPDF
import tika
import torch
from fastapi import FastAPI
from transformers import pipeline
from PIL import Image
from io import BytesIO
from starlette.responses import RedirectResponse
from tika import parser
from openpyxl import load_workbook

# Initialize Tika for DOCX & PPTX parsing
tika.initVM()

# Initialize FastAPI
app = FastAPI()

# Load models
device = "cuda" if torch.cuda.is_available() else "cpu"
qa_pipeline = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=device)
image_captioning_pipeline = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")

ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}

# βœ… Function to Validate File Type
def validate_file_type(file):
    if file is None:
        return "❌ No file uploaded!"
    if isinstance(file, str):  # Text-based input (NamedString)
        return None
    if hasattr(file, "name"):
        ext = file.name.split(".")[-1].lower()
        if ext not in ALLOWED_EXTENSIONS:
            return f"❌ Unsupported file format: {ext}"
        return None
    return "❌ Invalid file format!"

# βœ… Extract Text from PDF
def extract_text_from_pdf(file):
    try:
        doc = fitz.open(stream=file, filetype="pdf")
        return "\n".join([page.get_text() for page in doc])
    except Exception:
        return None

# βœ… Extract Text from DOCX & PPTX using Tika
def extract_text_with_tika(file):
    try:
        return parser.from_buffer(file)["content"]
    except Exception:
        return None

# βœ… Extract Text from Excel
def extract_text_from_excel(file):
    try:
        wb = load_workbook(BytesIO(file), data_only=True)
        text = []
        for sheet in wb.worksheets:
            for row in sheet.iter_rows(values_only=True):
                text.append(" ".join(str(cell) for cell in row if cell))
        return "\n".join(text)
    except Exception:
        return None

# βœ… Truncate Long Text for Model
def truncate_text(text, max_length=2048):
    return text[:max_length] if len(text) > max_length else text

# βœ… Answer Questions from Image or Document
def answer_question(file, question: str):
    # Image Processing (Gradio sends images as NumPy arrays)
    if isinstance(file, np.ndarray):  
        image = Image.fromarray(file)
        caption = image_captioning_pipeline(image)[0]['generated_text']
        response = qa_pipeline(f"Question: {question}\nContext: {caption}")
        return response[0]["generated_text"]

    # Validate File
    validation_error = validate_file_type(file)
    if validation_error:
        return validation_error

    # βœ… Read File Bytes Properly
    file_ext = file.name.split(".")[-1].lower() if hasattr(file, "name") else None
    file_bytes = file.read() if hasattr(file, "read") else None
    if not file_bytes:
        return "❌ Could not read file content!"

    # Extract Text from Supported Documents
    text = None
    if file_ext == "pdf":
        text = extract_text_from_pdf(file_bytes)
    elif file_ext in ["docx", "pptx"]:
        text = extract_text_with_tika(file_bytes)
    elif file_ext == "xlsx":
        text = extract_text_from_excel(file_bytes)

    if not text:
        return "⚠️ No text extracted from the document."

    truncated_text = truncate_text(text)
    response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")

    return response[0]["generated_text"]

# βœ… Gradio Interface (Unified for Images & Documents)
with gr.Blocks() as demo:
    gr.Markdown("## πŸ“„ AI-Powered Document & Image QA")

    with gr.Row():
        file_input = gr.File(label="Upload Document / Image")
        question_input = gr.Textbox(label="Ask a Question", placeholder="What is this document about?")
    
    answer_output = gr.Textbox(label="Answer")
    
    submit_btn = gr.Button("Get Answer")
    submit_btn.click(answer_question, inputs=[file_input, question_input], outputs=answer_output)

# βœ… Mount Gradio with FastAPI
app = gr.mount_gradio_app(app, demo, path="/")

@app.get("/")
def home():
    return RedirectResponse(url="/")

# βœ… Run FastAPI + Gradio
if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)