Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,26 +5,32 @@ from tika import parser # Apache Tika for document parsing
|
|
5 |
import openpyxl
|
6 |
from pptx import Presentation
|
7 |
from PIL import Image
|
8 |
-
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration
|
9 |
-
import gradio as gr
|
10 |
import torch
|
|
|
|
|
11 |
import numpy as np
|
12 |
|
13 |
# Initialize FastAPI
|
14 |
app = FastAPI()
|
15 |
|
16 |
-
print(f"π Loading models")
|
17 |
|
18 |
# Load Hugging Face Models
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
26 |
|
27 |
-
print("β
Models loaded")
|
28 |
|
29 |
# Allowed File Extensions
|
30 |
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
|
@@ -73,31 +79,20 @@ def extract_text_from_excel(excel_bytes):
|
|
73 |
except Exception as e:
|
74 |
return f"β Error reading Excel: {str(e)}"
|
75 |
|
76 |
-
def answer_question_from_document(file, question: str):
|
77 |
print("π Processing document for QA...")
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
return "β No file uploaded."
|
82 |
-
|
83 |
-
ext = file.name.split(".")[-1].lower()
|
84 |
-
print(f"π Validating file type: {ext}")
|
85 |
-
if ext not in ALLOWED_EXTENSIONS:
|
86 |
-
return f"β Unsupported file format: {ext}"
|
87 |
-
|
88 |
-
# Read file contents
|
89 |
-
try:
|
90 |
-
with open(file.name, "rb") as f:
|
91 |
-
file_bytes = f.read()
|
92 |
-
except Exception as e:
|
93 |
-
return f"β Error reading file: {str(e)}"
|
94 |
|
95 |
-
|
96 |
-
if ext == "pdf":
|
97 |
text = extract_text_from_pdf(file_bytes)
|
98 |
-
elif
|
99 |
text = extract_text_with_tika(file_bytes)
|
100 |
-
elif
|
101 |
text = extract_text_from_excel(file_bytes)
|
102 |
else:
|
103 |
return "β Unsupported file format!"
|
@@ -106,8 +101,8 @@ def answer_question_from_document(file, question: str):
|
|
106 |
return "β οΈ No text extracted from the document."
|
107 |
|
108 |
truncated_text = truncate_text(text)
|
109 |
-
print("π€ Generating response...")
|
110 |
-
response = doc_qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
|
111 |
|
112 |
return response[0]["generated_text"]
|
113 |
|
@@ -118,12 +113,10 @@ def answer_question_from_image(image, question):
|
|
118 |
image = Image.fromarray(image) # Convert to PIL Image
|
119 |
|
120 |
print("πΌοΈ Generating caption for image...")
|
121 |
-
|
122 |
-
output = model.generate(**inputs)
|
123 |
-
caption = processor.decode(output[0], skip_special_tokens=True)
|
124 |
|
125 |
-
print("π€ Answering question based on caption...")
|
126 |
-
response = doc_qa_pipeline(f"Question: {question}\nContext: {caption}")
|
127 |
|
128 |
return response[0]["generated_text"]
|
129 |
except Exception as e:
|
|
|
5 |
import openpyxl
|
6 |
from pptx import Presentation
|
7 |
from PIL import Image
|
|
|
|
|
8 |
import torch
|
9 |
+
from transformers import pipeline
|
10 |
+
import gradio as gr
|
11 |
import numpy as np
|
12 |
|
13 |
# Initialize FastAPI
|
14 |
app = FastAPI()
|
15 |
|
16 |
+
print(f"π Loading models (Running on GPU: {torch.cuda.is_available()})")
|
17 |
|
18 |
# Load Hugging Face Models
|
19 |
+
doc_qa_pipeline = pipeline(
|
20 |
+
"text-generation",
|
21 |
+
model="Qwen/Qwen2.5-VL-7B-Instruct",
|
22 |
+
device=0 if torch.cuda.is_available() else -1
|
23 |
+
)
|
24 |
|
25 |
+
image_captioning_pipeline = pipeline(
|
26 |
+
"image-to-text",
|
27 |
+
model="Salesforce/blip-image-captioning-base",
|
28 |
+
device=0 if torch.cuda.is_available() else -1,
|
29 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
30 |
+
use_fast=True
|
31 |
+
)
|
32 |
|
33 |
+
print("β
Models loaded successfully")
|
34 |
|
35 |
# Allowed File Extensions
|
36 |
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
|
|
|
79 |
except Exception as e:
|
80 |
return f"β Error reading Excel: {str(e)}"
|
81 |
|
82 |
+
def answer_question_from_document(file: UploadFile, question: str):
|
83 |
print("π Processing document for QA...")
|
84 |
+
validation_error = validate_file_type(file)
|
85 |
+
if validation_error:
|
86 |
+
return validation_error
|
87 |
|
88 |
+
file_ext = file.filename.split(".")[-1].lower()
|
89 |
+
file_bytes = file.file.read()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
if file_ext == "pdf":
|
|
|
92 |
text = extract_text_from_pdf(file_bytes)
|
93 |
+
elif file_ext in ["docx", "pptx"]:
|
94 |
text = extract_text_with_tika(file_bytes)
|
95 |
+
elif file_ext == "xlsx":
|
96 |
text = extract_text_from_excel(file_bytes)
|
97 |
else:
|
98 |
return "β Unsupported file format!"
|
|
|
101 |
return "β οΈ No text extracted from the document."
|
102 |
|
103 |
truncated_text = truncate_text(text)
|
104 |
+
print("π€ Generating response with Qwen2.5-VL-7B...")
|
105 |
+
response = doc_qa_pipeline(f"Question: {question}\nContext: {truncated_text}", max_length=100)
|
106 |
|
107 |
return response[0]["generated_text"]
|
108 |
|
|
|
113 |
image = Image.fromarray(image) # Convert to PIL Image
|
114 |
|
115 |
print("πΌοΈ Generating caption for image...")
|
116 |
+
caption = image_captioning_pipeline(image)[0]['generated_text']
|
|
|
|
|
117 |
|
118 |
+
print("π€ Answering question based on caption with Qwen2.5-VL-7B...")
|
119 |
+
response = doc_qa_pipeline(f"Question: {question}\nContext: {caption}", max_length=100)
|
120 |
|
121 |
return response[0]["generated_text"]
|
122 |
except Exception as e:
|