Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,26 @@
|
|
1 |
-
|
2 |
-
from fastapi.responses import RedirectResponse
|
3 |
import fitz # PyMuPDF for PDF parsing
|
4 |
from tika import parser # Apache Tika for document parsing
|
5 |
import openpyxl
|
6 |
from pptx import Presentation
|
7 |
from PIL import Image
|
8 |
-
import torch
|
9 |
from transformers import pipeline
|
10 |
-
import
|
11 |
import numpy as np
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
|
16 |
-
|
|
|
17 |
|
18 |
-
|
19 |
-
doc_qa_pipeline = pipeline(
|
20 |
-
"text-generation",
|
21 |
-
model="Qwen/Qwen2.5-VL-7B-Instruct",
|
22 |
-
device=0 if torch.cuda.is_available() else -1
|
23 |
-
)
|
24 |
-
|
25 |
-
image_captioning_pipeline = pipeline(
|
26 |
-
"image-to-text",
|
27 |
-
model="Salesforce/blip-image-captioning-base",
|
28 |
-
device=0 if torch.cuda.is_available() else -1,
|
29 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
30 |
-
use_fast=True
|
31 |
-
)
|
32 |
-
|
33 |
-
print("β
Models loaded successfully")
|
34 |
|
35 |
# Allowed File Extensions
|
36 |
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
|
37 |
|
38 |
def validate_file_type(file):
|
39 |
-
ext = file.
|
40 |
-
print(f"π Validating file type: {ext}")
|
41 |
if ext not in ALLOWED_EXTENSIONS:
|
42 |
return f"β Unsupported file format: {ext}"
|
43 |
return None
|
@@ -45,48 +28,34 @@ def validate_file_type(file):
|
|
45 |
# Function to truncate text to 450 tokens
|
46 |
def truncate_text(text, max_tokens=450):
|
47 |
words = text.split()
|
48 |
-
|
49 |
-
print(f"βοΈ Truncated text to {max_tokens} tokens.")
|
50 |
-
return truncated
|
51 |
|
52 |
# Document Text Extraction Functions
|
53 |
def extract_text_from_pdf(pdf_bytes):
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
text = "\n".join([page.get_text("text") for page in doc])
|
58 |
-
return text if text else "β οΈ No text found."
|
59 |
-
except Exception as e:
|
60 |
-
return f"β Error reading PDF: {str(e)}"
|
61 |
|
62 |
def extract_text_with_tika(file_bytes):
|
63 |
-
|
64 |
-
|
65 |
-
parsed = parser.from_buffer(file_bytes)
|
66 |
-
return parsed.get("content", "β οΈ No text found.").strip()
|
67 |
-
except Exception as e:
|
68 |
-
return f"β Error reading document: {str(e)}"
|
69 |
|
70 |
def extract_text_from_excel(excel_bytes):
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
return f"β Error reading Excel: {str(e)}"
|
81 |
-
|
82 |
-
def answer_question_from_document(file: UploadFile, question: str):
|
83 |
-
print("π Processing document for QA...")
|
84 |
validation_error = validate_file_type(file)
|
85 |
if validation_error:
|
86 |
return validation_error
|
87 |
|
88 |
-
file_ext = file.
|
89 |
-
file_bytes = file.
|
90 |
|
91 |
if file_ext == "pdf":
|
92 |
text = extract_text_from_pdf(file_bytes)
|
@@ -101,51 +70,33 @@ def answer_question_from_document(file: UploadFile, question: str):
|
|
101 |
return "β οΈ No text extracted from the document."
|
102 |
|
103 |
truncated_text = truncate_text(text)
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
return response[0]["generated_text"]
|
108 |
|
|
|
109 |
def answer_question_from_image(image, question):
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
print("πΌοΈ Generating caption for image...")
|
116 |
-
caption = image_captioning_pipeline(image)[0]['generated_text']
|
117 |
-
|
118 |
-
print("π€ Answering question based on caption with Qwen2.5-VL-7B...")
|
119 |
-
response = doc_qa_pipeline(f"Question: {question}\nContext: {caption}", max_length=100)
|
120 |
-
|
121 |
-
return response[0]["generated_text"]
|
122 |
-
except Exception as e:
|
123 |
-
return f"β Error processing image: {str(e)}"
|
124 |
-
|
125 |
-
# Gradio UI for Document & Image QA
|
126 |
-
doc_interface = gr.Interface(
|
127 |
-
fn=answer_question_from_document,
|
128 |
-
inputs=[gr.File(label="π Upload Document"), gr.Textbox(label="π¬ Ask a Question")],
|
129 |
-
outputs="text",
|
130 |
-
title="π AI Document Question Answering"
|
131 |
-
)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
outputs="text",
|
137 |
-
title="
|
|
|
138 |
)
|
139 |
|
140 |
-
|
141 |
-
demo = gr.TabbedInterface([doc_interface, img_interface], ["π Document QA", "πΌοΈ Image QA"])
|
142 |
-
app = gr.mount_gradio_app(app, demo, path="/")
|
143 |
-
|
144 |
-
@app.get("/")
|
145 |
-
def home():
|
146 |
-
return RedirectResponse(url="/")
|
147 |
-
|
148 |
-
# Run FastAPI + Gradio together
|
149 |
-
if __name__ == "__main__":
|
150 |
-
import uvicorn
|
151 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
+
import gradio as gr
|
|
|
2 |
import fitz # PyMuPDF for PDF parsing
|
3 |
from tika import parser # Apache Tika for document parsing
|
4 |
import openpyxl
|
5 |
from pptx import Presentation
|
6 |
from PIL import Image
|
|
|
7 |
from transformers import pipeline
|
8 |
+
import torch
|
9 |
import numpy as np
|
10 |
|
11 |
+
# Load Optimized Hugging Face Models
|
12 |
+
print("π Loading models...")
|
13 |
|
14 |
+
qa_pipeline = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=-1)
|
15 |
+
image_captioning_pipeline = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base", device=-1, use_fast=True)
|
16 |
|
17 |
+
print("β
Models loaded (Optimized for Speed)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Allowed File Extensions
|
20 |
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
|
21 |
|
22 |
def validate_file_type(file):
|
23 |
+
ext = file.name.split(".")[-1].lower()
|
|
|
24 |
if ext not in ALLOWED_EXTENSIONS:
|
25 |
return f"β Unsupported file format: {ext}"
|
26 |
return None
|
|
|
28 |
# Function to truncate text to 450 tokens
|
29 |
def truncate_text(text, max_tokens=450):
|
30 |
words = text.split()
|
31 |
+
return " ".join(words[:max_tokens])
|
|
|
|
|
32 |
|
33 |
# Document Text Extraction Functions
|
34 |
def extract_text_from_pdf(pdf_bytes):
|
35 |
+
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
36 |
+
text = "\n".join([page.get_text("text") for page in doc])
|
37 |
+
return text if text else "β οΈ No text found."
|
|
|
|
|
|
|
|
|
38 |
|
39 |
def extract_text_with_tika(file_bytes):
|
40 |
+
parsed = parser.from_buffer(file_bytes)
|
41 |
+
return parsed.get("content", "β οΈ No text found.").strip()
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def extract_text_from_excel(excel_bytes):
|
44 |
+
wb = openpyxl.load_workbook(excel_bytes, read_only=True)
|
45 |
+
text = []
|
46 |
+
for sheet in wb.worksheets:
|
47 |
+
for row in sheet.iter_rows(values_only=True):
|
48 |
+
text.append(" ".join(map(str, row)))
|
49 |
+
return "\n".join(text) if text else "β οΈ No text found."
|
50 |
+
|
51 |
+
# Function to process document and answer question
|
52 |
+
def answer_question_from_document(file, question):
|
|
|
|
|
|
|
|
|
53 |
validation_error = validate_file_type(file)
|
54 |
if validation_error:
|
55 |
return validation_error
|
56 |
|
57 |
+
file_ext = file.name.split(".")[-1].lower()
|
58 |
+
file_bytes = file.read()
|
59 |
|
60 |
if file_ext == "pdf":
|
61 |
text = extract_text_from_pdf(file_bytes)
|
|
|
70 |
return "β οΈ No text extracted from the document."
|
71 |
|
72 |
truncated_text = truncate_text(text)
|
73 |
+
response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
|
74 |
+
|
|
|
75 |
return response[0]["generated_text"]
|
76 |
|
77 |
+
# Function to process image and answer question
|
78 |
def answer_question_from_image(image, question):
|
79 |
+
if isinstance(image, np.ndarray):
|
80 |
+
image = Image.fromarray(image)
|
81 |
+
|
82 |
+
caption = image_captioning_pipeline(image)[0]['generated_text']
|
83 |
+
response = qa_pipeline(f"Question: {question}\nContext: {caption}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
return response[0]["generated_text"]
|
86 |
+
|
87 |
+
# Gradio Interface
|
88 |
+
interface = gr.Interface(
|
89 |
+
fn=lambda file, image, question: (
|
90 |
+
answer_question_from_document(file, question) if file else answer_question_from_image(image, question)
|
91 |
+
),
|
92 |
+
inputs=[
|
93 |
+
gr.File(label="π Upload Document (PDF, DOCX, PPTX, XLSX)", optional=True),
|
94 |
+
gr.Image(label="πΌοΈ Upload Image", optional=True),
|
95 |
+
gr.Textbox(label="π¬ Ask a Question")
|
96 |
+
],
|
97 |
outputs="text",
|
98 |
+
title="π AI Document & Image Question Answering",
|
99 |
+
description="Upload a **document** (PDF, DOCX, PPTX, XLSX) or an **image**, then ask a question about its content."
|
100 |
)
|
101 |
|
102 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|