Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,41 +4,29 @@ from tika import parser # Apache Tika for document parsing
|
|
4 |
import openpyxl
|
5 |
from pptx import Presentation
|
6 |
import torch
|
7 |
-
from torchvision import transforms
|
8 |
-
from torchvision.models.detection import fasterrcnn_resnet50_fpn
|
9 |
from PIL import Image
|
10 |
from transformers import pipeline
|
11 |
import gradio as gr
|
12 |
-
from fastapi.responses import RedirectResponse
|
13 |
import numpy as np
|
|
|
14 |
|
15 |
-
# Initialize FastAPI
|
16 |
-
print("π FastAPI server is starting...")
|
17 |
app = FastAPI()
|
18 |
|
19 |
-
# Load AI Model for Question Answering (DeepSeek-V2-Chat)
|
20 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
21 |
-
|
22 |
-
# Preload Hugging Face model
|
23 |
print(f"π Loading models")
|
24 |
-
qa_pipeline = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=-1)
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
model = fasterrcnn_resnet50_fpn(weights=weights)
|
30 |
-
model.eval()
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
transforms.ToTensor()
|
35 |
-
])
|
36 |
|
37 |
# Allowed File Extensions
|
38 |
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
|
39 |
|
40 |
def validate_file_type(file):
|
41 |
-
ext = file.
|
42 |
print(f"π Validating file type: {ext}")
|
43 |
if ext not in ALLOWED_EXTENSIONS:
|
44 |
return f"β Unsupported file format: {ext}"
|
@@ -52,209 +40,95 @@ def truncate_text(text, max_tokens=450):
|
|
52 |
return truncated
|
53 |
|
54 |
# Document Text Extraction Functions
|
55 |
-
def extract_text_from_pdf(
|
56 |
try:
|
57 |
print("π Extracting text from PDF...")
|
58 |
-
doc = fitz.open(
|
59 |
text = "\n".join([page.get_text("text") for page in doc])
|
60 |
-
print("β
PDF text extraction completed.")
|
61 |
return text if text else "β οΈ No text found."
|
62 |
except Exception as e:
|
63 |
return f"β Error reading PDF: {str(e)}"
|
64 |
|
65 |
-
def extract_text_with_tika(
|
66 |
try:
|
67 |
print("π Extracting text with Tika...")
|
68 |
-
parsed = parser.from_buffer(
|
69 |
-
print("β
Tika text extraction completed.")
|
70 |
return parsed.get("content", "β οΈ No text found.").strip()
|
71 |
except Exception as e:
|
72 |
return f"β Error reading document: {str(e)}"
|
73 |
|
74 |
-
def
|
75 |
-
try:
|
76 |
-
print("π Extracting text from PPTX...")
|
77 |
-
ppt = Presentation(pptx_file)
|
78 |
-
text = []
|
79 |
-
for slide in ppt.slides:
|
80 |
-
for shape in slide.shapes:
|
81 |
-
if hasattr(shape, "text"):
|
82 |
-
text.append(shape.text)
|
83 |
-
print("β
PPTX text extraction completed.")
|
84 |
-
return "\n".join(text) if text else "β οΈ No text found."
|
85 |
-
except Exception as e:
|
86 |
-
return f"β Error reading PPTX: {str(e)}"
|
87 |
-
|
88 |
-
def extract_text_from_excel(excel_file):
|
89 |
try:
|
90 |
print("π Extracting text from Excel...")
|
91 |
-
wb = openpyxl.load_workbook(
|
92 |
text = []
|
93 |
for sheet in wb.worksheets:
|
94 |
for row in sheet.iter_rows(values_only=True):
|
95 |
text.append(" ".join(map(str, row)))
|
96 |
-
print("β
Excel text extraction completed.")
|
97 |
return "\n".join(text) if text else "β οΈ No text found."
|
98 |
except Exception as e:
|
99 |
return f"β Error reading Excel: {str(e)}"
|
100 |
|
101 |
-
def answer_question_from_document(file, question):
|
102 |
print("π Processing document for QA...")
|
103 |
validation_error = validate_file_type(file)
|
104 |
if validation_error:
|
105 |
return validation_error
|
106 |
-
|
|
|
|
|
|
|
107 |
if file_ext == "pdf":
|
108 |
-
text = extract_text_from_pdf(
|
109 |
elif file_ext in ["docx", "pptx"]:
|
110 |
-
text = extract_text_with_tika(
|
111 |
elif file_ext == "xlsx":
|
112 |
-
text = extract_text_from_excel(
|
113 |
else:
|
114 |
return "β Unsupported file format!"
|
|
|
115 |
if not text:
|
116 |
return "β οΈ No text extracted from the document."
|
|
|
117 |
truncated_text = truncate_text(text)
|
118 |
print("π€ Generating response...")
|
119 |
-
response =
|
120 |
-
|
121 |
return response[0]["generated_text"]
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
doc_interface = gr.Interface(fn=answer_question_from_document, inputs=[gr.File(), gr.Textbox()], outputs="text")
|
126 |
-
|
127 |
-
demo = gr.TabbedInterface([doc_interface], ["Document QA"])
|
128 |
-
app = gr.mount_gradio_app(app, demo, path="/")
|
129 |
-
|
130 |
-
@app.get("/")
|
131 |
-
def home():
|
132 |
-
return RedirectResponse(url="/")
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
"""import gradio as gr
|
137 |
-
import pandas as pd
|
138 |
-
import matplotlib.pyplot as plt
|
139 |
-
import seaborn as sns
|
140 |
-
from fastapi import FastAPI
|
141 |
-
from transformers import pipeline
|
142 |
-
from fastapi.responses import RedirectResponse
|
143 |
-
import io
|
144 |
-
import ast
|
145 |
-
from PIL import Image
|
146 |
-
import re
|
147 |
-
|
148 |
-
# β
Load AI models
|
149 |
-
print("π Initializing application...")
|
150 |
-
table_analyzer = pipeline("question-answering", model="deepset/tinyroberta-squad2", device=-1)
|
151 |
-
code_generator = pipeline("text-generation", model="distilgpt2", device=-1)
|
152 |
-
print("β
AI models loaded successfully!")
|
153 |
-
|
154 |
-
# β
Initialize FastAPI
|
155 |
-
app = FastAPI()
|
156 |
-
|
157 |
-
def generate_visualization(excel_file, viz_type, user_request):
|
158 |
-
Generates Python visualization code and insights based on user requests and Excel data.
|
159 |
try:
|
160 |
-
print("
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
# Convert date columns
|
165 |
-
for col in df.select_dtypes(include=["object", "datetime64"]):
|
166 |
-
try:
|
167 |
-
df[col] = pd.to_datetime(df[col], errors='coerce').dt.strftime('%Y-%m-%d %H:%M:%S')
|
168 |
-
except Exception:
|
169 |
-
pass
|
170 |
-
|
171 |
-
df = df.fillna(0) # Fill NaN values
|
172 |
-
|
173 |
-
formatted_table = [{col: str(value) for col, value in row.items()} for row in df.to_dict(orient="records")]
|
174 |
-
print(f"π Formatted table: {formatted_table[:5]}")
|
175 |
-
print(f"π User request: {user_request}")
|
176 |
-
|
177 |
-
if not isinstance(user_request, str):
|
178 |
-
raise ValueError("User request must be a string")
|
179 |
-
|
180 |
-
print("π§ Sending data to TAPAS model for analysis...")
|
181 |
-
table_answer = table_analyzer({"table": formatted_table, "query": user_request})
|
182 |
-
print("β
Table analysis completed!")
|
183 |
-
|
184 |
-
# β
AI-generated code
|
185 |
-
prompt = f Generate clean and executable Python code to visualize the following dataset:
|
186 |
-
Columns: {list(df.columns)}
|
187 |
-
Visualization type: {viz_type}
|
188 |
-
User request: {user_request}
|
189 |
-
Use the provided DataFrame 'df' without reloading it.
|
190 |
-
Ensure 'plt.show()' is at the end.
|
191 |
|
|
|
|
|
192 |
|
193 |
-
print("π€
|
194 |
-
|
195 |
-
print("π AI-generated code:")
|
196 |
-
print(generated_code)
|
197 |
-
|
198 |
-
# β
Validate generated code
|
199 |
-
valid_syntax = re.match(r".*plt\.show\(\).*", generated_code, re.DOTALL)
|
200 |
-
if not valid_syntax:
|
201 |
-
print("β οΈ AI code generation failed! Using fallback visualization...")
|
202 |
-
return generated_code, "Error: The AI did not generate a valid Matplotlib script."
|
203 |
-
|
204 |
-
try:
|
205 |
-
ast.parse(generated_code) # Syntax validation
|
206 |
-
except SyntaxError as e:
|
207 |
-
return generated_code, f"Syntax error: {e}"
|
208 |
-
|
209 |
-
# β
Execute AI-generated code
|
210 |
-
try:
|
211 |
-
print("β‘ Executing AI-generated code...")
|
212 |
-
exec_globals = {"plt": plt, "sns": sns, "pd": pd, "df": df.copy(), "io": io}
|
213 |
-
exec(generated_code, exec_globals)
|
214 |
-
|
215 |
-
fig = plt.gcf()
|
216 |
-
img_buf = io.BytesIO()
|
217 |
-
fig.savefig(img_buf, format='png')
|
218 |
-
img_buf.seek(0)
|
219 |
-
plt.close(fig)
|
220 |
-
except Exception as e:
|
221 |
-
print(f"β Error executing AI-generated code: {str(e)}")
|
222 |
-
return generated_code, f"Error executing visualization: {str(e)}"
|
223 |
-
|
224 |
-
img = Image.open(img_buf)
|
225 |
-
return generated_code, img
|
226 |
|
|
|
227 |
except Exception as e:
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
gr.File(label="Upload Excel File"),
|
237 |
-
gr.Radio([
|
238 |
-
"Bar Chart", "Line Chart", "Scatter Plot", "Histogram",
|
239 |
-
"Boxplot", "Heatmap", "Pie Chart", "Area Chart", "Bubble Chart", "Violin Plot"
|
240 |
-
], label="Select Visualization Type"),
|
241 |
-
gr.Textbox(label="Enter visualization request (e.g., 'Sales trend over time')")
|
242 |
-
],
|
243 |
-
outputs=[
|
244 |
-
gr.Code(label="Generated Python Code"),
|
245 |
-
gr.Image(label="Visualization Result")
|
246 |
-
],
|
247 |
-
title="AI-Powered Data Visualization π",
|
248 |
-
description="Upload an Excel file, choose your visualization type, and ask a question about your data!"
|
249 |
)
|
250 |
-
print("β
Gradio interface configured successfully!")
|
251 |
|
252 |
-
#
|
253 |
-
|
254 |
-
app = gr.mount_gradio_app(app, gradio_ui, path="/")
|
255 |
-
print("β
Gradio interface mounted successfully!")
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
print("π Redirecting to UI...")
|
260 |
-
return RedirectResponse(url="/")"""
|
|
|
4 |
import openpyxl
|
5 |
from pptx import Presentation
|
6 |
import torch
|
|
|
|
|
7 |
from PIL import Image
|
8 |
from transformers import pipeline
|
9 |
import gradio as gr
|
|
|
10 |
import numpy as np
|
11 |
+
import easyocr
|
12 |
|
13 |
+
# Initialize FastAPI (not needed for HF Spaces, but kept for flexibility)
|
|
|
14 |
app = FastAPI()
|
15 |
|
|
|
|
|
|
|
|
|
16 |
print(f"π Loading models")
|
|
|
17 |
|
18 |
+
doc_qa_pipeline = pipeline("text2text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=-1)
|
19 |
+
image_captioning_pipeline = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
20 |
+
print("β
Models loaded")
|
|
|
|
|
21 |
|
22 |
+
# Initialize OCR Model (CPU Mode)
|
23 |
+
reader = easyocr.Reader(["en"], gpu=False)
|
|
|
|
|
24 |
|
25 |
# Allowed File Extensions
|
26 |
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
|
27 |
|
28 |
def validate_file_type(file):
|
29 |
+
ext = file.filename.split(".")[-1].lower()
|
30 |
print(f"π Validating file type: {ext}")
|
31 |
if ext not in ALLOWED_EXTENSIONS:
|
32 |
return f"β Unsupported file format: {ext}"
|
|
|
40 |
return truncated
|
41 |
|
42 |
# Document Text Extraction Functions
|
43 |
+
def extract_text_from_pdf(pdf_bytes):
|
44 |
try:
|
45 |
print("π Extracting text from PDF...")
|
46 |
+
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
47 |
text = "\n".join([page.get_text("text") for page in doc])
|
|
|
48 |
return text if text else "β οΈ No text found."
|
49 |
except Exception as e:
|
50 |
return f"β Error reading PDF: {str(e)}"
|
51 |
|
52 |
+
def extract_text_with_tika(file_bytes):
|
53 |
try:
|
54 |
print("π Extracting text with Tika...")
|
55 |
+
parsed = parser.from_buffer(file_bytes)
|
|
|
56 |
return parsed.get("content", "β οΈ No text found.").strip()
|
57 |
except Exception as e:
|
58 |
return f"β Error reading document: {str(e)}"
|
59 |
|
60 |
+
def extract_text_from_excel(excel_bytes):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
try:
|
62 |
print("π Extracting text from Excel...")
|
63 |
+
wb = openpyxl.load_workbook(excel_bytes, read_only=True)
|
64 |
text = []
|
65 |
for sheet in wb.worksheets:
|
66 |
for row in sheet.iter_rows(values_only=True):
|
67 |
text.append(" ".join(map(str, row)))
|
|
|
68 |
return "\n".join(text) if text else "β οΈ No text found."
|
69 |
except Exception as e:
|
70 |
return f"β Error reading Excel: {str(e)}"
|
71 |
|
72 |
+
def answer_question_from_document(file: UploadFile, question: str):
|
73 |
print("π Processing document for QA...")
|
74 |
validation_error = validate_file_type(file)
|
75 |
if validation_error:
|
76 |
return validation_error
|
77 |
+
|
78 |
+
file_ext = file.filename.split(".")[-1].lower()
|
79 |
+
file_bytes = file.file.read()
|
80 |
+
|
81 |
if file_ext == "pdf":
|
82 |
+
text = extract_text_from_pdf(file_bytes)
|
83 |
elif file_ext in ["docx", "pptx"]:
|
84 |
+
text = extract_text_with_tika(file_bytes)
|
85 |
elif file_ext == "xlsx":
|
86 |
+
text = extract_text_from_excel(file_bytes)
|
87 |
else:
|
88 |
return "β Unsupported file format!"
|
89 |
+
|
90 |
if not text:
|
91 |
return "β οΈ No text extracted from the document."
|
92 |
+
|
93 |
truncated_text = truncate_text(text)
|
94 |
print("π€ Generating response...")
|
95 |
+
response = doc_qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
|
96 |
+
|
97 |
return response[0]["generated_text"]
|
98 |
|
99 |
+
def answer_question_from_image(image, question):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
try:
|
101 |
+
print("πΌοΈ Processing image for QA...")
|
102 |
+
if isinstance(image, np.ndarray): # If it's a NumPy array from Gradio
|
103 |
+
image = Image.fromarray(image) # Convert to PIL Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
print("πΌοΈ Generating caption for image...")
|
106 |
+
caption = image_captioning_pipeline(image)[0]['generated_text']
|
107 |
|
108 |
+
print("π€ Answering question based on caption...")
|
109 |
+
response = doc_qa_pipeline(f"Question: {question}\nContext: {caption}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
return response[0]["generated_text"]
|
112 |
except Exception as e:
|
113 |
+
return f"β Error processing image: {str(e)}"
|
114 |
+
|
115 |
+
# Gradio UI for Document & Image QA
|
116 |
+
doc_interface = gr.Interface(
|
117 |
+
fn=answer_question_from_document,
|
118 |
+
inputs=[gr.File(label="π Upload Document"), gr.Textbox(label="π¬ Ask a Question")],
|
119 |
+
outputs="text",
|
120 |
+
title="π AI Document Question Answering"
|
121 |
+
)
|
122 |
|
123 |
+
img_interface = gr.Interface(
|
124 |
+
fn=answer_question_from_image,
|
125 |
+
inputs=[gr.Image(label="πΌοΈ Upload Image"), gr.Textbox(label="π¬ Ask a Question")],
|
126 |
+
outputs="text",
|
127 |
+
title="πΌοΈ AI Image Question Answering"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
)
|
|
|
129 |
|
130 |
+
# Launch Gradio
|
131 |
+
app = gr.TabbedInterface([doc_interface, img_interface], ["π Document QA", "πΌοΈ Image QA"])
|
|
|
|
|
132 |
|
133 |
+
if __name__ == "__main__":
|
134 |
+
app.launch(share=True) # For Hugging Face Spaces
|
|
|
|